

Burr Elementary School 1960 Burr Street, Fairfield, CT

Remedial Action/ Verification Report

Town of Fairfield June 2022

Tighe&Bond

100% Recyclable

June 29, 2022

Jade Barber Department of Energy and Environmental Protection Bureau of Water Protection and Land Reuse Remediation Division 79 Elm Street Hartford, CT 06106-5127

Re: Burr Elementary School – 1960 Burr Street Remedial Action/Verification Report Julian Fill Projects, Fairfield, CT

Dear Ms. Barber:

On behalf of the Town of Fairfield, enclosed is the Remedial Action/Verification Report for investigation and remediation of Julian Fill and affected soil at Burr Elementary School located at 1960 Burr Street in Fairfield, CT. This report is being submitted in accordance with the requirements of Consent Order 2020002DEEP, dated October 26, 2020 between the Town of Fairfield and the CT Department of Energy and Environmental Protection (CTDEEP).

If you have any questions or comments, please contact me at (860)704-4761 or <u>jtolsen@tighebond.com</u>.

Very truly yours,

TIGHE & BOND, INC.

James T. Olsen, PG, LEP Vice President

cc: Brenda Kupchick, First Selectwoman – Town of Fairfield Thomas Bremer – Chief Administration Officer – Town of Fairfield Michael Miller – Wiggin & Dana

Cover Letter

Section 1 Introduction

Section 2 Site Description

2.1	Site Location, Improvements, and History2	2-1
2.2	Groundwater Quality Classification2	2-1
2.3	Julian Fill Usage	2-1

Section 3 Site Investigations

3.1	Sampling Protocols	. 3-1
3.2	Laboratory Analyses	. 3-1

Section 4 Regulatory Criteria

4.1	Direct Exposure	Criteria	4-1
4.2	Pollutant Mobility	⁷ Criteria	4-2

Section 5 Investigation Results

Section 6 Remedial Action

6.1	Julian Fill Removal and Post Excavation Sampling	6-1
6.2	Sampling Protocols	6-2
6.3	Air Monitoring	6-2

Section 7 Conceptual Site Model

7.1	Description of the Site, Environments, and AOCs	7-1
7.2	Nature and Extent of Contamination at the Site	7-1
7.3	Potential Release Mechanisms and Migration Pathways at the Site	7-2

Section 8 Quality Assurance / Quality Control

8.1	Data Quality Objectives	3-1
8.2	DQA/DUE for Investigation and Non-Investigation Results	3-1
8.3	DQA/DUE for Remediation Results	3-2
8.4	Duplicate Samples	3-3

Section 9 LEP Opinion

Section 10 Certification

J:\F\F0439 Fairfield Target Client Business Development\20 Fill Investigation, Management & Remedial Planning\Sites\Burr\RAR\Burr Elementary School RAR.docx

Appendices

- A Figures
 - 1 Site Location Map
 - 2 Site Plan
 - 3 Sampling Locations
 - 4 Pre-Remediation Soil Excavation Plan
 - 5 Final Excavation Limits and Post-Excavation Sample Locations
- B Tables
 - 1 Summary of Soil Investigation Analytical Data
 - 2 Summary of Non-Investigation Analytical Data
 - 3 Summary of Soil Remediation Analytical Data
 - 4 Summary of Data Usability Evaluation
- C November 16, 2021 CTDEEP Meeting Minutes
- D Photographs
- E Laboratory Data
- F Waste Disposal Documentation

Section 1 Introduction

By way of background, in 2019, the Town of Fairfield Health Department began its evaluation of the potential use of "Julian Fill"¹ at locations within the Town's municipal boundaries during 2013 – 2016. Town Health Department staff gathered relevant information from communications with staff from the Town Public Schools and Parks and Recreation, Public Works, Conservation and Engineering Departments. In addition, Town Health Department staff obtained and reviewed over 180 invoices / tickets purportedly showing the removal of "Julian Fill" from the Town's former Reclamation Yard, then operated by Julian Development, LLC d/b/a Julian Enterprises, to identify locations within the Town's municipal boundaries where Julian Fill potentially was placed during the relevant time. Town Health Department staff also gleaned information from certain Town resident inquiries about various projects occurring in Town rights of way and easements during this time. From these sources of information, Town Health Department staff developed and now maintains a list of locations where it is believed that Julian Fill could have been improperly placed. Burr Elementary School was identified as a location where Julian Fill was potentially placed.

The following is the Remedial Action/Verification Report summarizing investigation and remediation of "Julian Fill" at Burr Elementary School located at 1960 Burr Street in Fairfield, Connecticut (Site). The investigation and remediation described in this Remedial Action/Verification Report was performed in accordance with the Consent Order 2020002DEEP, dated October 26, 2020, by and between the Town of Fairfield and the Connecticut Department of Energy and Environmental Protection (CTDEEP) and the Remedial Action Plan (RAP) dated December 21, 2021. Remediation of the Site was completed on December 28, 2021.

¹ This term refers to the materials that were processed by Julian Development, LLC d/b/a Julian Enterprises at the Town's former Reclamation Yard, located at 1 Richard White Way, Fairfield, Connecticut, circa 2013-2016 and improperly placed at certain Town locations.

Section 2 Site Description

2.1 Site Location, Improvements, and History

The Site is located at 1960 Burr Street in Fairfield, Connecticut and consists of the goalie areas and centerline of the athletic soccer field. A Site location map is provided as Figure 1 (Appendix A). The real property comprising the Site is known as Burr Elementary School, which encompasses approximately 15.75 acres. A Site plan is provided as Figure 2.

Based upon the investigation described in Section 1 above, an unknown volume of Julian Fill was used at the Site sometime between 2013 and 2016 as under dressing at the goalie areas and along the center line of the athletic field to level the grade prior to covering with new sod and/or seed.

2.2 Groundwater Quality Classification

According to the CTDEEP Water Quality Classifications Map of Fairfield, Connecticut (October 2018), groundwater at the Site is classified as GA. Groundwater classified as GA is presumed suitable for drinking or other domestic uses without treatment.

2.3 Julian Fill Usage

Based on research conducted by the Town, information provided by Town personnel (including George Kaczegowicz, General Supervisor of Streets), field observations conducted by Tighe & Bond, and confirmatory sampling performed by Tighe & Bond, Julian Fill was used as under dressing at the goalie areas and along the center line of the athletic field to level grade prior to covering with new sod and/or seed. Based on the Town's research, consisting of a review of Fairfield Public Works work tickets and Julian Enterprises invoices and discussions with Town Public Works and Conservation personnel, an unknown volume of Julian Fill was used at the Site sometime between 2013 and 2016. The location at the Site where the Julian Fill was placed is shown in Figure 2.

Section 3 Site Investigations

3.1 Sampling Protocols

Tighe & Bond conducted Site investigations of the subject Julian Fill location in August 2019 and August 2021. The Site investigation completed in 2019 was done prior to the issuance of the Consent Order. The Site investigation completed in August 2021 was done in accordance with the Consent Order and included the collection of samples at 20-foot spacing overlaying the Julian Fill area, as shown on Figure 3. A total of 22 hand test pits were advanced, of which 14 were within the reported Julian Fill location.

During the Site investigations, a soil sample was collected from each hand test pit and analyzed for constituents of concern (COCs) known to be present in Julian Fill including extractable total petroleum hydrocarbons (ETPH), polycyclic aromatic hydrocarbons (PAHs), arsenic, lead, polychlorinated biphenyls (PCBs), pesticides, and/or asbestos in soil. To evaluate potential leaching of COCs, certain samples were additionally analyzed for arsenic, lead, and pesticides using the Synthetic Precipitation Leaching Procedure (SPLP). During sampling, the subject material was also observed for the presence of asbestos containing materials (ACM), which is also known to be a constituent of Julian Fill. Tighe & Bond did not identify potential ACM (PACM).

Of the 22 samples collected, 14 were collected within the reported Julian Fill location. The remaining samples were collected from background locations (three samples) or within three playground areas at the request of the Town of Fairfield Board of Education to evaluate subsurface conditions (five samples). It was confirmed that the playground areas were not Julian Fill placement locations and the data obtained from these associated samples was not relevant to the objectives of the Julian Fill investigation.

Investigation soil samples were collected in accordance with CTDEEP guidance and Tighe & Bond standard operating procedures (SOPs) and submitted under proper chain-ofcustody to the receiving laboratory. Hand test pit equipment was decontaminated between sampling locations. All samples were collected with dedicated nitrile gloves and placed into appropriate laboratory-supplied containers, chilled on ice, and were extracted and analyzed within the method specific holding time. Duplicate samples were collected on a frequency of one per 20 samples or 5 percent. A discussion of Quality Control/Quality Assurance for sampling and laboratory analyses is provided in Section 8.

After collection, sampling points were located in the field using a field tablet and R1 GPS locating unit. This data was subsequently uploaded into Tighe & Bond's GIS program for mapping and presentation.

3.2 Laboratory Analyses

Laboratory analyses were conducted in accordance with CTDEEP's Reasonable Confidence Protocols (RCPs) by Phoenix Environmental Laboratory (Phoenix) of Manchester, CT. Asbestos in soil samples were submitted to EAS of Elmsford, NY for analysis. Analytical methods that were followed are listed on Table 1 (Appendix B) for each COC. A Data Quality Assessment / Data Usability Evaluation (DQA/DUE) was completed for the data to ensure that Quality Control / Quality Assurance (QA/QC) was maintained and is presented in Section 8.

Laboratory data was received from the laboratory in electronic data deliverable (EDD) format for direct upload into Tighe & Bond's EnviroData data management program for data post processing, comparison to cleanup criteria, and export to the GIS mapping program.

Section 4 Regulatory Criteria

The Remediation Standard Regulations (RSRs) are set forth in Sections 22a-133k-1 through 22a-133k-3 of the RCSA, adopted January 1, 1996 and amended on June 27, 2013 and February 16, 2021. The RSRs contain criteria for the remediation of soil and groundwater. Further, in accordance with the Consent Order, Julian Fill that is determined to meet the definition of "solid waste" must be removed to satisfy Connecticut's Solid Waste Management requirements, Chapter 446d of the General Statutes and RCSA §§ 22a-209-1, et seq. If the material is determined to be "clean fill," however, Connecticut's Solid Waste Management requirements do not apply to the location that is the subject of investigation – that is, because the material that was identified to be Julian Fill is not in fact "solid waste." Furthermore, the CTDEEP provided concurrence during a November 16, 2021 meeting with Tighe & Bond that targeted removal of Julian Fill that does not meet the definition of "clean fill" was acceptable. Meeting minutes from the November 16, 2021 meeting are provided in Appendix C.

The CTDEEP soil remediation criteria integrate two risk-based goals:

- Direct Exposure Criteria (DEC) to protect human health and the environment from risks associated with direct exposure (ingestion) to contaminated soil.
- Pollutant Mobility Criteria (PMC) to protect groundwater quality from contaminants that migrate or leach from the soil to groundwater. Soils to which both criteria apply must be remediated to a level, which is equal to the more stringent criteria.

4.1 Direct Exposure Criteria

CTDEEP has established specific numeric exposure criteria for a broad range of contaminants in soil. The DEC applies to accessible soil to a depth of 15 feet. The DEC for substances other than PCBs does not apply to inaccessible soil at a release area, provided that, if such inaccessible soil is less than 15 feet below the ground surface, an environmental use restriction (EUR)² is in effect with respect to the subject release area in accordance with the RSRs. For PCBs, a maximum concentration of 10 milligrams per kilogram (mg/Kg) can remain in soils to be considered inaccessible, provided that an ELUR is in effect the subject area complies with the other applicable DEC provisions in the RSRs. Inaccessible soil generally means polluted soil, which is the following:

- More than 4 feet below the ground surface;
- More than 2 feet below a paved surface comprised of a minimum of three inches of bituminous pavement or concrete;
- Beneath a paved surface comprised of a minimum of three inches of bituminous concrete or concrete polluted only with concentrations of semi-volatile substances or petroleum hydrocarbons, normal constituents of bituminous concrete, in excess of applicable DEC and metals concentrations that are less than two times the applicable DEC;

² "Environmental Use Restriction" is defined to include both a Notice of Activity and Use Limitation (NAUL) and an Environmental Land Use Restriction (ELUR). Conn. Gen. Stat. § 22a-133n.

- Beneath an existing building;
- Beneath another permanent structure(s) approved by the CTDEEP Commissioner; or
- Buildings can be constructed and/or clean fill can be placed over contaminated soils rendering them inaccessible.

CTDEEP has established two sets of DEC using exposure assumptions appropriate for residential land use (RES DEC) or for industrial and certain commercial land use (I/C DEC). In general, all locations to which the RSRs apply are required to be remediated to the residential criteria. If the industrial/commercial land use criteria are applicable and used, an EUR (NAUL or ELUR) is required to be in effect in accordance with the RSRs.

4.2 Pollutant Mobility Criteria

The PMC that apply to remediation of a site depends on the groundwater classification of the site. The purpose of these criteria is to prevent contamination to groundwater in "GA" classified areas, and to prevent unacceptable further degradation to groundwater in "GB" classified areas.

The applicable PMC for the Site is the PMC for a "GA" classified area. The PMC generally applies to all soil within the unsaturated zone, which represents the soil located from the ground surface to the seasonal low-water table in "GA" classified areas. The criteria do not apply to environmentally isolated soils that are polluted with substances other than VOCs provided an EUR is recorded for the release area which ensures that such soils will not be exposed (unless approved in writing by the CTDEEP Commissioner). Environmentally isolated soils are defined as certain contaminated soils, which are above the seasonal high-water table, beneath an existing building and not a source of on-going contamination. An EUR must be recorded for the site, which ensures that such soils will not be exposed by building demolition or other activities. Buildings can be constructed over contaminated soils rendering them environmentally isolated.

Remediation based upon the listed PMC requires that a substance in soil, other than an inorganic substance or PCBs, be remediated to at least that concentration at which the results of a mass analysis of soil for such substances does not exceed the PMC applicable to the groundwater classification (i.e., GA) of the area in which the soil is located (default PMC). An inorganic substance (metals) or PCBs in soil must be remediated to at least that concentration at which the analytical results of leachate produced from either the Toxicity Characteristic Leaching Procedure (TCLP) or the Synthetic Precipitation Leaching Procedure (SPLP) does not exceed the PMC applicable to the groundwater classification of the area in which the soil is located.

In addition, the RSRs provide an alternate method for compliance with the PMC. For polluted soils within a GA groundwater area, an SPLP or TCLP concentration of a substance in soil may be remediated to the groundwater protection criteria (GWPC) or ten-times the groundwater protection criteria in certain GA areas.

Section 5 Investigation Results

A summary of the results from the investigations of the Julian Fill at Burr Elementary School in August 2019 and August 2021 is as follows:

- ETPH was not detected at concentrations above the laboratory reporting limits in any soil sample.
- Arsenic was detected at concentrations ranging from 3.6 mg/Kg to 5.85 mg/Kg, which are below the RES DEC of 10 mg/Kg. Further analysis using the SPLP method did not identify concentrations of leachable arsenic above the laboratory reporting limit, indicating compliance with the GA PMC.
- Lead was detected at concentrations ranging from 10.9 mg/Kg to 26.3 mg/Kg, which are below the RES DEC of 400 mg/Kg. Further analysis using the SPLP method did not identify concentrations of leachable lead above the laboratory reporting limit, indicating compliance with the GA PMC.
- PCBs were not detected at concentrations above the laboratory reporting limits in any soil sample.
- Pesticides were detected in three of five samples analyzed with concentrations of total DDT and/or dieldrin above the numerical GA PMC. Soil that was collected from these locations was additionally evaluated for pesticides using the SPLP. Leachable dieldrin was detected in sample BES 201 (0-0.5') at a concentration of 0.007 μg/L, which was above the optional GA PMC (i.e., GWPC) of 0.002 μg/L.
- Several individual PAH compounds were detected in soil samples BES S3 (0-0.5') and BES S4 (0-0.5') at concentrations below their respective RES DEC and GA PMC.
- Asbestos was not detected in any soil samples. In addition, PACMs were not identified during the investigation.

A summary of soil investigation analytical data is provided in Table 1, along with a comparison of soil data to the RSRs described in the previous section. Laboratory data reports are provided in Appendix E. The locations of the soil samples are provided on Figure 3.

Background Sampling

Given the potential for the historical placement of fill material, Tighe & Bond collected background samples from the shallow soil outside the reported Julian Fill area. A total of three background samples were collected (BES BACK 1 through BES BACK 3) and analyzed for COCs known to be present in Julian Fill, including ETPH, PAHs, arsenic, lead, and pesticides. Each sample location was also evaluated for PACM. A summary of the background sampling is as follows:

- ETPH was not detected at concentrations above the laboratory reporting limits in any soil sample.
- Arsenic was detected at concentrations ranging from 3.57 mg/Kg to 4.09 mg/Kg, which are below the RES DEC of 10 mg/Kg.

- Lead was detected at concentrations ranging from 12.0 mg/Kg to 13.6 mg/Kg, which are below the RES DEC of 400 mg/Kg.
- Pesticides were not detected at concentrations above the laboratory reporting limits in any soil sample.
- PAHs were not detected at concentrations above the laboratory reporting limits in any soil sample.
- PACMs were not identified in any background soil sampling location.

Non-Julian Fill Investigation Sampling

As previously discussed, Tighe & Bond also collected a total of five samples from three playground areas located at Burr Elementary School at the request of the Town of Fairfield Board of Education to evaluate subsurface conditions. According to the Town of Fairfield research, Julian Fill was not used at these locations, and as such, the soil data collected from these areas is not relevant to the Julian Fill investigation. A summary of the investigation analytical data of this sampling is provided in Table 2, along with a comparison of soil data to the RSRs described in the previous section. Laboratory reports are provided in Appendix E. The locations of the soil samples are provided on Figure 3.

As indicated on Table 2, only arsenic and lead were detected in these samples at naturally occurring concentrations below RSR criteria.

Remedial Objectives

Based on the Town's research and Tighe & Bond's investigation, Julian Fill was placed at the goalie areas and along the center line of the athletic field. The Julian Fill was identified within the upper six inches of soil and consisted of brown sand with some silt and trace gravel. The extent of the Julian Fill requiring remediation (above RSR criteria) is shown on Figure 4 and is approximately 20 feet by 20 feet by 0.5 feet below ground surface (bgs). Representative photographs are provided in Appendix D.

Based on these results, remediation was determined to be necessary within the southern goalie area (at investigation sample location BES 201). Remediation was planned to achieve compliance with the requirements of the Consent Order, which requires removal of Julian Fill that does not meet the definition of "clean fill" and soil affected at concentrations above the applicable RSR criteria and/or background. The RES DEC and GA PMC are the applicable cleanup criteria for the Site. Remedial actions are described in the next section.

Section 6 Remedial Action

6.1 Julian Fill Removal and Post Excavation Sampling

Julian Fill and affected soil were remediated following the procedures detailed in the December 21, 2021 Site RAP. The excavation plan from the RAP that was used for the planning of the remediation is included in this Remedial Action/Verification Report as Figure 4. The area requiring remediation consisted of the shallow soils within the southern goalie area (at investigation sample location BES 201) where pesticides were detected above the GA PMC. Remediation activities were completed by CISCO, LLC (CISCO) of New Haven, CT, a CTDEEP-permitted spill cleanup contractor, CT-HW-877.

Prior to the commencement of remedial activities, Tighe & Bond collected soil samples from the presumed extents of the proposed excavation for pre-confirmation. Four samples were collected from the vertical extents of the impact (BES 201A through BES 201D) and one sample was collected from the horizontal extent of the impact (BES 201, 0.5-1'). Each sample was analyzed for ETPH, lead, arsenic, PCBs, pesticides, and PAHs. One sample that contained concentrations of PAHs and pesticides above the numerical GA PMC was additionally analyzed for these COCs using the SPLP method. Based on the testing completed, one PAH compound (benzo(b)fluoranthene) was detected in the west pre-confirmation sample above the RES DEC. As such, the proposed remedial area was augmented to extend beyond this location to excavate the PAH impact. The preconfirmation sample locations are shown on Figure 5 and a summary of analytical results along with analytical methods is summarized in Table 3. Laboratory data reports are provided in Appendix E.

On December 28, 2021, the Julian Fill and affected soil were excavated and direct loaded into a truck. A total of 14.56 tons of Julian Fill and affected soil, were excavated and transported to the Clean Earth facility located in Plainville, CT, a CTDEEP-permitted soil recycling and treatment facility, CTDEEP 110021-CRW, 146-0042/146-0143. The facility was previously approved for disposal by CTDEEP staff. Tighe & Bond observed the excavation and guided the removal of Julian Fill. Tighe & Bond observed the pre-confirmation samples.

The final excavation measured approximately 26 feet by 20 feet to a depth of 0.5 feet bgs. Final excavation limits are shown on Figure 5. Photographs taken during the excavation activities are included as Appendix D. The fully executed waste manifest and facility weight ticket are included in Appendix F.

Tighe & Bond collected at total of six post-excavation soil samples (including one duplicate) from the bottom and sidewalls of the Julian Fill excavation in accordance with the sampling plan concurred by CTDEEP in an email dated June 14, 2021. Sidewall samples were collected from depths between 0 feet and the corresponding bottom of the excavation of 0.5 feet bgs and were no more than 20 feet spaced from each other. Samples were submitted to Phoenix for analysis of COCs including ETPH, PAHs, arsenic, lead, PCBs, and pesticides. Each sample was also analyzed for pesticides by the SPLP

method to confirm that the leachable pesticide impact identified during the investigation was remediated. In addition, detections of arsenic and lead were further evaluated for leachability using the SPLP method to determine compliance with the GA PMC. A representative number of samples (approximately 30%) that exhibited the highest concentrations of each COC were analyzed by this method. Post-excavation sample locations are shown on Figure 5 and a summary of analytical results along with analytical methods is summarized in Table 3. Laboratory data reports are provided in Appendix E.

A summary of the soil analytical results is as follows:

- ETPH was not detected at concentrations above the laboratory reporting limits in any soil sample.
- Arsenic was detected at concentrations ranging from 3.23 mg/Kg to 4.21 mg/Kg, which are below the RES DEC of 10 mg/Kg. Further analysis using the SPLP method did not identify concentrations of leachable arsenic above the laboratory reporting limit, indicating compliance with the GA PMC.
- Lead was detected at concentrations ranging from 8.89 mg/Kg to 15.3 mg/Kg, which are below the RES DEC of 400 mg/Kg. Further analysis using the SPLP method did not identify concentrations of leachable lead above the laboratory reporting limit, indicating compliance with the GA PMC.
- PCBs were not detected at concentrations above the laboratory reporting limits in any soil sample.
- Pesticides were detected in sample BES 306S (0-0.5') with concentrations of total DDT above the numerical GA PMC. SPLP testing that was completed on all samples did not identify concentrations of leachable pesticides above the laboratory reporting limits, indicating compliance with the optional GA PMC (i.e., GWPC).
- PAHs were not detected at concentrations above the laboratory reporting limits in any soil sample.
- PACMs were not identified during the remediation.

The excavation was backfilled in February 2022.

6.2 Sampling Protocols

Post excavation soil samples were collected in accordance with CTDEEP guidance and Tighe & Bond standard operating procedures and submitted under proper chain-ofcustody to the receiving laboratory. All samples were collected and placed into appropriate laboratory-supplied containers and chilled on ice and were extracted and analyzed within the method specific holding time. Duplicate samples were collected on a frequency of one per 20 samples or 5 percent. A discussion of Quality Control/Quality Assurance for sampling and laboratory analyses is provided in Section 8.

6.3 Air Monitoring

Daily total particulate (dust) air monitoring using real time monitors was conducted during excavation activities. The dust monitors were placed in two locations (up and

down wind of the work area) to document CISCO's use of appropriate dust controls and effectiveness. This was accomplished using two monitoring units, conducting real-time monitoring of dust levels during remediation using TSI DUSTTRAK 8530 air monitoring instruments and Netronix Thiamis 1000 telemetry units (or equivalent) to determine if levels are below those specified for the project. Each monitor was equipped with a wireless telemetry system capable of sending alerts to the project monitor's cellular telephone using a web-based application should the Action Level be exceeded. During the remediation project Action Levels were not exceeded.

Section 7 Conceptual Site Model

An initial conceptual site model (CSM) was submitted to CTDEEP by Tighe & Bond on April 16, 2020 describing COCs that are expected to be encountered during investigation and remediation of locations where Julian Fill was placed. The CSM provided below is intended to supplement the April 16, 2020 CSM, and a similar CSM will be presented for each Julian Fill location as additional data is gathered through investigation and remediation activities required in connection with Consent Order 2020002DEEP. The following CSM is specifically tailored for the Site-specific conditions at Burr Elementary School.

7.1 Description of the Site, Environments, and AOCs

A description of the Site, environments, and AOCs is provided in Section 2. There is one AOC at the Site: the area where Julian Fill was reportedly used in connection with under dressing at the goalie areas and along the center line of the athletic field to level the grade prior to covering with new sod and/or seed sometime between 2013 and 2016.

7.2 Nature and Extent of Contamination at the Site

As discussed in Section 2.3, based on the Town's research, an unknown volume of Julian Fill was used at the Burr Elementary School athletic soccer field sometime between 2013 and 2016. The area that was targeted for remediation consisted of the shallow soils within the southern goalie area, as shown in Figure 4.

Based on field observations and investigation sampling completed by Tighe & Bond, PAHs, arsenic, lead, and pesticides were detected in the Julian Fill and/or underlying soil. Initially, pesticides were the only COC detected above the GA PMC; however, preconfirmatory sampling (prior to remediation) also identified a concentration of one PAH compound above the RES DEC. ETPH and PCBs were not detected and PACMs were not observed in the Julian Fill and underlying soil.

Although an unknown volume of Julian Fill was used at the Site, the volume is not suspected to be significant considering the purpose of the use (to replenish soil in high use areas). A total of 14.56 tons of Julian Fill and affected soil above regulatory standards were removed from the Site during remedial actions, as discussed in Section 6.

The remediation observed by Tighe & Bond and post-excavation soil sampling confirms that all the Julian Fill (that was not shown to meet the definition of "clean fill") and affected soil containing pesticides and PAHs above RSR criteria have been removed. Based on this and the results of the investigation sampling, there is no longer a risk posed with human exposure to Julian Fill at the Site.

7.3 Potential Release Mechanisms and Migration Pathways at the Site

Julian Fill was used at the Burr Elementary School athletic field and was reportedly placed at goalie areas and along the center line of the athletic soccer field, as shown in Figure 3. The shallow soil within the southern goalie area contained concentrations of pesticides and PAHs above RSR criteria. The remediation discussed in Section 6 was successful in removing the Julian Fill (that was not shown to meet the definition of "clean fill") and affected soil with impacts above RSR criteria. Tighe & Bond did not observe any migration pathways due to soil erosion or overland flow.

Although pesticides were detected above the GA PMC in one sample collected from the Site, corresponding samples collected from beneath this sample location did not contain concentrations of pesticides (including leachable pesticides) above the laboratory reporting limits. As such, the potential leaching of pesticides to the groundwater is not a concern.

Section 8 Quality Assurance / Quality Control

During the investigations and remedial activities conducted by Tighe & Bond, sufficient Quality Assurance/Quality Control (QA/QC) procedures were followed to conduct a Data Quality Assessment (DQA) and Data Usability Evaluation (DUE), as required by the CTDEEP Laboratory QA/QC DQA & DUE Guidance Document, dated May 2009, revised December 2010. The following provides a discussion of the DQA/DUE conducted for the data obtained by Tighe & Bond.

Based on the information provided in this section, it is Tighe & Bond's opinion that the site-specific Data Quality Objectives (DQOs) have been met.

A summary of results from QA/QC samples, including duplicate samples, are included in the sections below.

8.1 Data Quality Objectives

DQOs for the environmental investigations and remedial actions were developed to ensure that a sufficient quantity and quality of analytical data were obtained in order to:

- Determine if a release has taken place;
- Determine if contamination is present in the environment at concentrations exceeding the applicable RSR criteria;
- Support a defensible conclusion that the horizontal and vertical extent of contamination has been adequately delineated; and,
- Support a defensible conclusion that a release area has been remediated such that the post-remediation concentrations of COCs comply with the RSRs.

The soil samples obtained during Tighe & Bond's investigations and remedial activities were analyzed per the RCP methods to demonstrate sufficient quality of data.

8.2 DQA/DUE for Investigation and Non-Investigation Results

The investigation and non-investigation data was provided within three laboratory reports from Phoenix. Samples were collected between August 2019 and August 2021. These samples were analyzed using the RCP methods. The RCP Case Narratives of the laboratory reports indicate that minor QA/QC nonconformities were identified and are summarized below. Laboratory data reports are provided in Appendix E. The following briefly summarizes the findings of the DUE; see Table 4 for details:

 The QA/QC Certification Forms for each of the three laboratory reports indicate that each report met the requirements for "Reasonable Confidence", except that not all RCP metals and RCP SVOCs were requested on the chain of custodies; only COCs at the site were submitted for analysis. With the consideration above, all data used for the investigation of the site met the requirements for "Reasonable Confidence".

- Proper Chain of Custody protocols were utilized for all laboratory reports, including recordation of signatures, dates, and times documenting custody changes.
- All samples were received by the laboratory below 6°C.
- All reporting limits were met.
- All samples were analyzed within holding times for the various parameters.
- COCs associated with the site were not detected in any of the laboratory blanks.
- All laboratory control samples (LCS) were within the method specific limits for COCs associated with the Site except for the following:
 - For lab report GCD89521 some samples reported LCS/LCSD recovery and RPD values for CT ETPH and PAH surrogates and naphthalene outside of method criteria. The affected analytes were either not reported in the respective samples or detected at concentrations sufficiently below criteria; therefore, no significant bias is suspected.
- All surrogates were within acceptable limits for the various parameters except for:
 - For Lab report GCD89521 CT ETPH surrogates were reported outside of method criteria. Target analyte QC data was acceptable; therefore, no significant bias is suspected.
- Matrix spike and matrix spike duplicates were within method specific limits for COCs associated with the Site.
- Other significant QA/QC non-conformities were not noted.

Asbestos in soil results were provided within two laboratory reports from Eastern Analytical Services, Inc., CT NVLAP Lab Code 101646-0. Samples were collected in August and September 2019. The analyses were performed in general compliance with Appendix E to Subpart E of 40 CFR (previously EPA 600/M4-82-020 "Interim Method") but augmented with procedures outlined in the 1993 ("final") version of the method.

8.3 DQA/DUE for Remediation Results

The remediation data was provided within two laboratory reports from Phoenix. Remediation samples were collected in December 2021. These samples were analyzed using the RCP methods. The RCP Case Narratives of the laboratory reports indicates that minor QA/QC nonconformities were identified and are summarized below. The following briefly summarizes the findings of the DUE:

- The QA/QC Certification Forms for each of the two laboratory reports indicate that each report met the requirements for "Reasonable Confidence", except that not all RCP metals and RCP SVOCs were requested on the chain of custodies; only COCs at the site were submitted for analysis. With the consideration above, all data used for the investigation of the site met the requirements for "Reasonable Confidence".
- Proper Chain of Custody protocols were utilized for all laboratory reports, including recordation of signatures, dates, and times documenting custody changes.

- All samples were received by the laboratory below 6°C.
- All reporting limits were met.
- All samples were analyzed within holding times for the various parameters.
- COCs associated with the site were not detected in any of the laboratory blanks.
- All laboratory control samples (LCS) were within the method specific limits for COCs associated with the Site except for the following:
 - For lab reports GCJ93594 and GCK06455 some samples reported LCS/LCSD recovery and RPD values for pesticides and/or pesticide surrogate outside method criteria. The analytes in question were not reported in the respective samples and/or target analyte QC data was acceptable; therefore, no significant bias is suspected.
- All surrogates were within acceptable limits for the various parameters except for:
 - For Lab report GCK06455 the CT ETPH surrogates were reported outside of method criteria. Target analyte QC data was acceptable; therefore, no significant bias is suspected.
- Matrix spike and matrix spike duplicates were within method specific limits for COCs associated with the Site.
- Other significant QA/QC non-conformities were not noted.

8.4 Duplicate Samples

Field duplicate samples are collected to provide information on data reproducibility. The duplicate samples were obtained by collecting two identical sets of soil samples from a single sample location. The respective duplicate samples were analyzed for the same parameters analyzed in the original sample. The comparison is a measurement of analytical precision, measured as Relative Percent Difference (RPD) as defined within the CTDEEP Laboratory Quality Assurance and Quality Control Guidance Document, dated May 2009, revised December 2010.

During investigation and non-investigation activities less than twenty samples were collected; as such, duplicate samples were not collected. During remediation activities, one duplicate sample was collected: BES-302B (parent sample BES-301B). The samples were analyzed for arsenic, lead, CT ETPH, PCBs, Pesticides, SPLP pesticides, and PAHs. All analytes with the exception of arsenic and lead were not reported above laboratory reporting limits. The RPD values between the duplicate and parent sample for arsenic and lead were below 20%. Based on our data evaluation, the data appear useable for their intended purpose.

Section 9 LEP Opinion

Tighe & Bond conducted investigations of the Julian Fill and underlying soil at the Site in accordance with prevailing standards and guidelines. The COCs associated with the Julian Fill have been identified and the extent and degree of contamination from Julian Fill and associated impacts to underlying soil has been defined.

Based on the Town's research, an unknown volume of Julian Fill was used at the Site as under dressing at the goalie areas and along the center line of the athletic field to level the grade prior to covering with new sod and/or seed sometime between 2013 and 2016, as shown on Figure 3. Remediation was completed within the southern goalie area where pesticides and PAHs were detected above the GA PMC and RES DEC, respectively. Approximately 14.56 tons of Julian Fill and affected soil with impacts above RSR criteria have been removed from the Site, as observed and confirmed by Tighe & Bond. Based on the results of the investigation and post-excavation sampling, the remaining soil at the Site complies with the RSRs and meets the definition of "clean fill".

Although concentrations of pesticides were above the GA PMC in one shallow soil sample, corresponding samples that were collected beneath this sample location did not contain concentrations of pesticides (including leachable pesticides) above the laboratory reporting limits. As such, the potential leaching of pesticides to the groundwater is not a concern and groundwater monitoring is not necessary.

It is the opinion of this LEP that the investigation of the above-described area of the Site where Julian Fill was previously placed has been completed in accordance with prevailing standards and guidelines and that such pollution has been remediated in accordance with the RSRs and requirements of Consent Order 2020002DEEP.

James D Olsen, PG, LEP#178 Project Director, LEP of Record

6/29/22

Date

Section 10 Certification

I have personally examined and am familiar with the information submitted in this document and all attachments thereto, and I certify, based on reasonable investigation, including my inquiry of those individuals responsible for obtaining the information, that the submitted information is true, accurate and complete to the best of my knowledge and belief. I understand that any false statement made in the submitted information is punishable as a criminal offense under §53a-157b of the Connecticut General Statutes and any other applicable law.

Honorable Brenda Kupchick First Selectwoman – Town of Fairfield

6-28-22

Dat

J:\F\F0439 Fairfield Target Client Business Development\20 Fill Investigation, Management & Remedial Planning\Sites\Burr\RAR\Burr Elementary School RAR.docx

Tighe&Bond

APPENDIX A

IS\CT\EairfieldCT\MXDs\Burr\BAB\Eig 1	BurSchool Topo myc	Exported By: AFreudenberg	1/24/2022	10.59.56 AM1

G:\GIS\CT\FairfieldCT\MXDs\Burr\RAR\Fig 2 BurrSchool_SitePlan.mxd [Exported By: AFreudenberg, 3/22/2022, 12:54:34 PM]

G:\GIS\CT\FairfieldCT\MXDs\Burr\RAR\Fig 3 BurrSchool_SamplingLOcations.mxd [Exported By: AFreudenberg, 3/22/2022, 12:56:10 PM]

FIGURE 3 SAMPLING LOCATIONS LEGEND + Investigation Sample Location Playground Sample Location (Non-Investigation Sample) Pesticides Exceed GA PMC & SPLP Pesticides Exceed GWPC Reported Area of Julian Fill Usage Approximate Site Parcel Approximate Parcel Boundary According to the Town of Fairfield research, Julian Fill was used as yearly under dressing done in goalie area (replace small amount under sod/grass to make area level-all areas covered with new sod/grass seed) small amounts of topsoil used. LOCUS MAP - Aler 60 Feet 1 " = 60 ' NOTES 1. Based on September 2013 Imagery, Courtesy of Google Earth. Burr School 1960 Burr Street Fairfield, Connecticut March 2022

FIGURE 4 PRE-REMEDIATION SOIL EXCAVATION PLAN

Tighe&Bond

APPENDIX B

TABLE 1

Summary of Investigation Analytical Data

Burr Elementary School Fairfield, Connecticut

Last Updated: 03/01/2021 (JLL)												Excavated									
Sample ID	C	TDEEP F	RSR	US EPA	BES BACK 1	BES BACK 2	BES BACK 3	BES S1	BES S2	BES S3	BES S4	BES201	BES202	BES203	BES204	BES205	BES206	BES207	BES208	BES209	BES210
Sample Depth		Criteria	а		0-0.5 ft	0-0.5 ft	0-0.5 ft	0-0.5 ft	0-0.5 ft	0-0.5 ft	0-0.5 ft	0-0.5 ft	0-0.5 ft	0-0.5 ft	0-0.5 ft	0-0.5 ft	0-0.5 ft	0-0.5 ft	0-0.5 ft	0-0.5 ft	0-0.5 ft
Sample Date	RES	GA	GWPC		8/24/21	8/24/21	8/24/21	8/21/19	8/21/19	8/21/19	8/21/19	8/24/21	8/24/21	8/24/21	8/24/21	8/24/21	8/24/21	8/24/21	8/24/21	8/24/21	8/24/21
Lah Sample ID	DEC	PMC	01110		C112765	C112766	C112767	CD89521	CD89522	CD89523	CD89524	C112755	C112756	C112757	C112758	C112759	C112760	C112761	C112762	C112763	C112764
Lab Benort ID	DLC	THE			GC112755	GC112755	GC112755	GCD89521	GCD89521	GCD89521	GCD89521	GC112755	GC112755	GC112755	GC112755	GC112755	GC112755	GC112755	GC112755	GC112755	GC112755
Ashestos PLM 198 12					0012733	00312733	0012755	00000021	000000021	00000021	00000021	0012/00	00312733	00312733	0012/33	00312733	00312733	0012/33	00312733	00312733	00312733
Aspestos FLM 190.1-	NIA	NIA	NIA	NIA				0.004	0.004	0.004	0.004										
% Chrucatile	NA	NA	NA	NA	-	-	-	0.0%	0.0%	0.0%	0.0%	-	-	-	-	-	-	-	-	-	-
% Chrysollie	NA	NA	NA	NA	-	-	-	0.0%	0.0%	0.0%	0.0%	-	-	-	-	-	-	-	-	-	-
	NA	INA	NA	INA 10(-	-	-	0.0%	0.0%	0.0%	0.0%	-	-	-	-	-	-	-	-	-	-
% Total Aspestos	NA	NA	NA	1%	-	-	-	0.0%	0.0%	0.0%	0.0%	-	-	-	-	-	-	-	-	-	-
Total Metals 6010D (mg/Kg) Arsenic Lead	10 400	NA NA	NA NA	NA NA	3.67 12.0	3.57 12.1	4.09 13.6	4.16 12.3	3.6 10.9	5.85 26.3	3.91 22.1	-	-	5.1 16.2	-	-	:	-	3.98 13.4	-	-
SPLP Metals 6010D (mg/L) Arsenic Lead	NA NA	0.05 0.015	NA NA	NA NA	-	- -	- -	-	-	-	-	-	-	<0.004 <0.010	-	-	-	-	-	-	-
CTETPH 8015D (mg/Kg)	500	500	NA	NA	<66	<67	<68	<58	<59	<59	<71	-	-	<68	-	-	-	-	<77	-	-
PCBs SW8082A (mg/Kg) Total PCBs	1	NA	NA	NA	-	-	-	<0.39	<0.39	<0.39	<0.47	-	<0.220	<0.230	<0.220	-	<0.250	<0.220	<0.260	<0.210	-
Pesticides 8081B (mg/Kg)																					
DDD, 4,4-	NE	NE	NA	NA	< 0.0017	<0.0018	< 0.0018	-	-	-	-	< 0.0018	-	0.0071	-	< 0.0018	-	-	< 0.0020	-	<0.0020
DDE, 4,4-	NE	NE	NA	NA	< 0.0017	< 0.0018	< 0.0018	-	-	-	-	0.02	-	0.027	-	0.0042	-	-	< 0.0020	-	< 0.0020
DDT. 4.4-	NE	NF	NA	NA	< 0.0017	< 0.0018	< 0.0018	-	-	-	-	0.013	-	0.043	-	0.008	-	-	< 0.0020	-	< 0.0030
DDT (Total)	18	0 003	NA	NA	ND	ND	ND	-	-	-	-	0.033		0.077	-	0.0122	-	-	ND	-	ND
Dieldrin	0.038	0.007	NΔ	NΔ	<0.0043	<0.0045	<0.0045	_	_	_	_	0.019	_	0.012	_	0.0073	_	_	<0.0051	_	<0 0049
Dieldriff	0.050	0.007	11/3	1473	<0.0015	<0.0045	<0.0015					0.010		0.012		0.0075			<0.0001		<0.0015
SPLP Pesticides 8081B (ug/L) Dieldrin	NA	NA	0.002	NA	-	-	-	-	-	-	-	0.007	-	<0.002	-	<0.002	-	-	-	-	-
PAHe SW8270D (mg/Kg)																					
	4	1	NLA	NLA	-0.210	-0.220	-0.210	-0.27	-0.20	0.27	-0.24			-0.220					10 200		
	1	1	NA	NA	<0.310	<0.320	< 0.310	< 0.27	< 0.20	0.37	< 0.34	-	-	<0.320	-	-	-	-	< 0.300	-	-
Benzo(a)pyrene	1	1	NA	INA	< 0.310	< 0.320	< 0.310	< 0.27	< 0.28	0.41	< 0.34	-	-	< 0.320	-	-	-	-	< 0.360	-	-
Benzo(D)fluoranthene		1	NA	NA	< 0.310	<0.320	< 0.310	< 0.27	<0.28	0.38	< 0.34	-	-	<0.320	-	-	-	-	< 0.360	-	-
Benzo(gni)perviene	8.4	1	NA	NA	< 0.310	<0.320	< 0.310	<0.27	<0.28	0.3	< 0.34	-	-	<0.320	-	-	-	-	< 0.360	-	-
Benzo(k)fluoranthene	8.4	1	NA	NA	< 0.310	< 0.320	< 0.310	< 0.27	< 0.28	0.4	< 0.34	-	-	< 0.320	-	-	-	-	< 0.360	-	-
Chrysene	84	1	NA	NA	< 0.310	< 0.320	< 0.310	<0.27	<0.28	0.46	< 0.34	-	-	< 0.320	-	-	-	-	< 0.360	-	-
Fluoranthene	1,000	5.6	NA	NA	< 0.310	<0.320	< 0.310	<0.27	<0.28	0.67	0.36	-	-	<0.320	-	-	-	-	< 0.360	-	-
Indeno(1,2,3-cd)pyrene	1	1	NA	NA	< 0.310	<0.320	<0.310	<0.27	<0.28	0.3	<0.34	-	-	<0.320	-	-	-	-	<0.360	-	-
Phenanthrene	1,000	4	NA	NA	< 0.310	<0.320	<0.310	<0.27	<0.28	0.3	<0.34	-	-	<0.320	-	-	-	-	<0.360	-	-
Pyrene	1,000	4	NA	NA	<0.310	<0.320	<0.310	<0.27	<0.28	0.68	0.34	-	-	<0.320	-	-	-	-	<0.360	-	-
SPLP PAHs SW8270D (ug/l)	NA	NA	Varies	NA	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-

CTDEEP RSRs- Connecticut Department of Energy and Environmental

Protection Remediation Standard Regulations (February 16, 2021) and CTDEEP Additional Polluting Substances (September 20, 2018) US EPA - United State Environmental Protection Agency

RES DEC-Residential Direct Exposure Criteria

GA PMC- Pollutant Mobility Criteria in a GA groundwater area

NE- Not established

NA- Not Applicable

CT ETPH- Connecticut Department of Public Health Extractable Total Petroleum Hydrocarbons PAHs- Polycyclic Aromatic Hydrocarbons PCBs- Polychlorinated Biphenyls

xx indicates compound was not reported above reporting limits.
Boxed values indicate exceedance of RES DEC
Grey shade indicates exceedance of GA PMC

Blue shade indicates exceedance of GWPC
²- Asbestos analysis of Bulk Materials via 40 CFR Part 763, Sub. E, App. E/NYS-DOH 198.1 (PLM) by Eastern Analytical Services, Inc.
SPLP results compared to GWPC

BRL - Below reporting limit

Tighe&Bond

Tighe&Bond

TABLE 2

Summary of Non-Investigation Analytical Data Burr Elementary School Playground Fairfield, Connecticut Last Updated: 01/31/2022

Sample ID	CTDEEP RSR		US EPA	BES S100	BES S101	BES S102	BES S103	BES S104	
Sample Depth	Criteria			2.25-2.5 ft	2.25-2.5 ft	2.25-2.5 ft	1.5-2 ft	1.5-1.75 ft	
Sample Date	RES	GA		9/4/19	9/4/19	9/4/19	9/4/19	9/4/19	
Lab Sample ID	DEC	PMC		CD97460	CD97461	CD97462	CD97463	CD97464	
Lab Report ID				GCD97460	GCD97460	GCD97460	GCD97460	GCD97460	
Asbestos PLM 198.1 ²									
% Amosite	NA	NA	NA	0.0%	0.0%	0.0%	0.0%	0.0%	
% Chrysotile	NA	NA	NA	0.0%	0.0%	0.0%	0.0%	0.0%	
% Other	NA	NA	NA	0.0%	0.0%	0.0%	0.0%	0.0%	
% Total Asbestos	NA	NA	1%	0.0%	0.0%	0.0%	0.0%	0.0%	
Total Metals 6010D (mg/L)									
Arsenic	10	NΔ	NΔ	2 56	3 01	27	4 17	4 09	
Lead	400	NΔ	NΔ	6.7	7 42	83	10.9	12.8	
Lead	400	11/3		0.7	7.72	0.5	10.9	12.0	
CTETPH 8015D (mg/Kg)	500	500	NA	<59	<58	<61	<61	<63	
PCBs 8082A (mg/Kg)									
Total PCBs	1	NA	NA	<0.4	<0.38	<0.41	<0.41	<0.42	
DAH_{C} 8270 D (mg/Kg)	Varios	Varias	NA	PDI	PDI	PDI	PDI	PDI	
PARS 02/00 (mg/kg)	varies	varies	INA	DKL	DKL	DKL	DKL	DKL	
Desticidas 2021B (mg/Kg)	Varias	Varias	NIA	DDI	DDI	DDI	DDI	DDI	

Pesticides 8081B (mg/Kg)VariesVariesNABRLBRLBRLBRLBRLBRLCTDEEP RSRs- Connecticut Department of Energy and Environmental ProtectionRemediation Standard Regulations (February 16, 2021) and CTDEEP Additional Polluting Substances (September 20, 2018)

US EPA - United State Environmental Protection Agency

RES DEC-Residential Direct Exposure Criteria

GA PMC- Pollutant Mobility Criteria in a GA groundwater area

NE- Not established

NA- Not Applicable

CT ETPH- Connecticut Department of Public Health Extractable Total Petroleum Hydrocarbons

PAHs- Polycyclic Aromatic Hydrocarbons

PCBs- Polychlorinated Biphenyls

cx indicates compound was not detected. Detection limit is provided.
Boxed values indicate exceedances of RES DEC

Grey values indicate exceedances of GA PMC

2- Asbestos analysis of Bulk Materials via 40 CFR Part 763, Sub. E, App. E/NYS-DOH 198.1 (PLM) by Eastern Analytical Services, Inc. BRL - Below reporting limit

TABLE 3

Summary of Remediation Analytical Data Burr Elementary School

Fairfield, Connecticut

Last Updated: 03/01/2022 (JLL)								Excavated						
Sample ID	C	rdeep f	RSR	BES-201	BES-201A	BES-201B	BES-201C	BES-201D	BES-301B	BES-302B	BES-303S	BES-304S	BES-305S	BES-306S
Sample Depth		Criteria	а	0.5 - 1 ft	0.5 ft	DUP (CK06455)	0 - 0.5 ft							
Sample Date	RES	GA	GWPC	12/8/21	12/8/21	12/8/21	12/8/21	12/8/21	12/28/2021	12/28/2021	12/28/2021	12/28/2021	12/28/2021	12/28/2021
Lab Sample ID	DEC	PMC		CJ93594	CJ93595	CJ93596	CJ93597	CJ93598	CK06455	CK06456	CK06457	CK06458	CK06459	CK06460
Lab Report ID				GCJ93594	GCJ93594	GCJ93594	GCJ93594	GCJ93594	GCK06455	GCK06455	GCK06455	GCK06455	GCK06455	GCK06455
Total Metals 6010D (mg/Kg)														
Arsenic	10	NA	NA	4.18	4.26	3.74	3.85	4.71	3.42	3.34	3.23	3.86	3.61	4.21
Lead	400	NA	NA	13.7	13.1	11.9	12.7	22.4	12.0	13.5	8.89	12.6	14.4	15.3
SPLP Metals 6010D (mg/L)														
Arsenic	NA	0.05	NA	-	-	-	-	-	-	-	-	< 0.004	-	< 0.004
Lead	NA	0.015	NA	-	-	-	-	-	-	-	-	-	<0.010	<0.010
CTETPH 8015D (mg/Kg)	500	500	NA	<59	<64	<59	<59	<300	<56	<58	<64	<60	<59	<63
PCBs SW8082A (mg/Kg)														
Total PCBs	1	NA	NA	<0.390	<0.430	<0.400	<0.400	<0.400	<0.190	<0.200	<0.220	<0.210	<0.200	<0.210
Pesticides 8081B (mg/Kg)														
			NIA	-0.0010	-0.0017	-0.0010	-0.0010	-0.0010	<0.001E	<0.001C	-0.0017	-0.0010	-0.0010	-0.0010
			NA	< 0.0016	<0.0017	<0.0016	<0.0016	< 0.0010	<0.0015	<0.0016	<0.0017	< 0.0016	<0.0016	< 0.0010
			NA	< 0.0016	<0.0017	<0.0016	<0.0016	0.0095	<0.0015	<0.0016	<0.0017	< 0.0016	<0.0016	0.0060
			NA	<0.0010	<0.0017	<0.0010	<0.0010	0.0100	<0.0015	<0.0016	<0.0017	< 0.0016	<0.0016	0.0002
DDT (Total) Dialdrin	1.0	0.003	NA		ND	ND		<0.0195	<0.0015	<0.0010	<0.0017	< 0.0010	<0.0010	<0.0122
Dieldini	0.038	0.007	NA	<0.0039	<0.0045	<0.0040	<0.0040	<0.0040	<0.0038	<0.0059	<0.0045	<0.0041	<0.0040	<0.0041
SPLP Pesticides 8081B (ug/L)	NA	NA	Varies	-	-	-	-	BRL	BRL	BRL	BRL	BRL	BRL	BRL
PAHs SW8270D(mg/Kg)														
Benz(a)anthracene	1	1	NA	< 0.280	< 0.300	< 0.280	< 0.270	0.83	< 0.270	< 0.270	< 0.300	< 0.290	< 0.280	< 0.290
Benzo(a)pyrene	1	1	NA	< 0.280	< 0.300	< 0.280	< 0.270	1	< 0.270	< 0.270	< 0.300	< 0.290	< 0.280	< 0.290
Benzo(b)fluoranthene	1	1	NA	< 0.280	< 0.300	< 0.280	< 0.270	1.1	< 0.270	< 0.270	< 0.300	< 0.290	< 0.280	< 0.290
Benzo(ahi)pervlene	8.4	1	NA	< 0.280	< 0.300	< 0.280	< 0.270	0.77	<0.270	< 0.270	< 0.300	< 0.290	< 0.280	< 0.290
Benzo(k)fluoranthene	8.4	1	NA	< 0.280	< 0.300	< 0.280	<0.270	0.88	< 0.270	< 0.270	< 0.300	< 0.290	<0.280	< 0.290
Chrysene	84	1	NA	< 0.280	< 0.300	< 0.280	<0.270	1.1	< 0.270	< 0.270	< 0.300	< 0.290	<0.280	< 0.290
Fluoranthene	1,000	5.6	NA	< 0.280	< 0.300	< 0.280	<0.270	1.6	< 0.270	< 0.270	< 0.300	< 0.290	<0.280	< 0.290
Indeno(1,2,3-cd)pyrene	1	1	NA	< 0.280	< 0.300	< 0.280	<0.270	0.82	<0.270	< 0.270	< 0.300	<0.290	<0.280	<0.290
Phenanthrene	1,000	4	NA	< 0.280	< 0.300	< 0.280	<0.270	0.78	<0.270	< 0.270	< 0.300	<0.290	<0.280	<0.290
Pyrene	1,000	4	NA	<0.280	<0.300	<0.280	<0.270	1.5	<0.270	<0.270	<0.300	<0.290	<0.280	<0.290
	NIA	NIA	Varias					וחס						
SPLP PARS SWOZ/UD (UG/I)	NA	NA	varies	-	-	-	-	DKL	-	-	-	-	-	-

CTDEEP RSRs- Connecticut Department of Energy and Environmental Protection Remediation Standard Regulations (February 16, 2021) and CTDEEP Additional Polluting Substances (September 20, 2018) RES DEC-Residential Direct Exposure Criteria

RES DEC-Residential Direct Exposure Criteria GA PMC- Pollutant Mobility Criteria in a GA groundwater area NE- Not established NA- Not Applicable CT ETPH- Connecticut Department of Public Health Extractable Total Petroleum Hydrocarbons PAHs- Polycyclic Aromatic Hydrocarbons PCBs- Polycyclic Aromatic Hydrocarbons C xy indicates compound was not reported above reporting limit

xx indicates compound was not reported above reporting limits.
SPLP results compared to GWPC
BRL - Below reporting limit

Tighe&Bond

TABLE 4

Summary of Data Usability Evaluation Burr Elementary School Fairfield, Connecticut

Last Updated: 01/31/2022 (JLL)

Laboratory Report ID	Sample Date	Batch Group	Lab	Lab Sample ID	Sample ID	Media	Compound	QA/QC Description	Result Bias	Target Range	Result %	Detected in Sample	DUE Consideration	
							Naphthalene; Nitrobenzene-D5	High LCS/LCSD RPD	Variability	30	36, 31.1	No	Analytes were not reported in the samples. No significant variability is suspected.	
GCD89521	8/21/19	493418	Phoenix	CD89521, CD89522,	BES S1, BES S2, BES S3,	Soil		Low LCSD Recovery	Low	50-150	40	No		
				CD89523, CD89524	BES S4		Pentacosane, n-	High LCS/LCSD RPD	Variability	30	35.1	No	The recovery of the target analytes is acceptable. No significant bias is suspected.	
								Low Surrogate Recovery	Low	50-150	36, 40	No		
GCD97460	9/4/19					Soil							No Issues	
GCJ12755	8/24/21					Soil							No Issues	
GCJ93594	12/8/21	604823	Phoenix	CJ93598	BES-201D (0.5-1)	Soil	Endosulfan I, Endrin aldehyde	High LCS/LCSD RPD	Variability	20	21.5, 23.5	No	Analytes were not reported in the samples. No significant variability is suspected.	
			Phoenix	CK06455, CK06456,	BES-301B (0.5), BES- , 302B (0.5), BES-303S	_	BHC, Delta- (δ-Lindane)	High LCS/LCSD RPD	Variability	30	34.9	No	This analyte was not reported in the samples. No significant variability is suspected.	
		606257 Phoenix		CK06459, CK06460	(06457, CK06458, (0.0-0.5), BES-304S (0.0- K06459, CK06460 0.5), BES-305S (0.0- 0.5), BES-306S (0.0-0.5)		Chemical oxygen demand	Low Surrogate Recovery	Low	50-150	34	No	Target QC data is acceptable. No significant bias is suspected.	
GCK06455	12/28/21	12/28/21	SPLP 606469	Phoenix	CK06460	BES-306S (0.0-0.5)	Soil	BHC, Beta- (β-Lindane); DDD, 4,4-; DDE, 4,4-; Endosulfan II; Methoxychlor	High LCS/LCSD Recovery	High	40-140	143, 162/171, 145, 143/145, 153	SPLP: No	Analytes were not reported in the samples. No significant variability is suspected.
							Decachlorobiphenyl	High LCS/LCSD RPD	Variability	20	30.1	No	The RPD for the target analytes is acceptable. No significant variability is suspected.	

LCS - Laboratory Control Sample LCSD - Laboratory Control Sample Duplicate SUR - Surrogate

Tighe&Bond

Tighe&Bond

APPENDIX C

Description of Meeting

То:	Jade Barber, CTDEEP Joe Schiavone, CTDEEP Ray Frigon	James Olsen, Tighe & Bond Harley Langford, Tighe & Bond Michael Miller, Wiggin and Dana LLP
FROM:	James Olsen	
DATE:	December 21, 2021	

On November 16, 2021, a Teams meeting was held between CTDEEP, Tighe & Bond, and Attorney Miller from 3 to 4 pm. The purpose of the meeting was to discuss soil assessment results and cleanup options for several Julian fill sites. The following are discussion items from this meeting.

<u>Case Study Presentation</u> - Soil assessment results were presented for the following sites. In general, the data for each site indicated that contaminant concentrations reported in the fill material were consistent with site background conditions with the exception of a few samples that were above applicable RSR Criteria.

- Riverfield Elementary School
- Dwight Elementary School
- Town Hall
- Burr Elementary school
- Thomlinson Middle School

Follow-Up Discussion Points – The following topics were discussed following the case study presentations.

- Mr. Frigon and Mr. Schiavone agreed that complete removal of all Julian Fill from the sites presented was not necessary given that the assessment data collected is sufficient to demonstrate that the majority of the Julian Fill material at these sites meets the definition of "Clean Fill" and does not contain large quantities of constituents typically found in solid waste like glass, masonry debris, plastics, and general refuse.
- CTDEEP asked if it was possible to visually identify a clean break between the Julian Fill material and pre-existing soils. Tighe & Bond advised that it is possible at some sites but, in many cases, it is difficult because the sites were filled in with similar material many times prior to the placement of Julian Fill. In these cases, the following lines of evidence have been used to determine the limits of the Julian Fill.
 - \circ Town records indicating the volume of material used at each site.
 - \circ Interviews and site walks with Town personnel familiar with the work in question.
 - Analytical data collected from known Julian Fill material and background samples.
 - Visual inspection of the soil types, compaction of the soils, standard limits of construction work (where applicable).

- The concept of limiting soil removal to the identified "target removal" and / or use of a 95% UCL calculation to demonstrate compliance with the Consent Order was discussed.
 - Mr. Frigon and Mr. Schiavone concurred that "targeted removal" is a satisfactory approach for demonstrating compliance with the Consent Order.
 - CTDEEP indicated that post "targeted removal" sidewall sampling must be used to demonstrate compliance with the RSRs.
 - CTDEEP suggested that the use of a 95% UCL calculation would be possible in certain situations where exposure to contaminated fill / soils was limited in nature, such as beneath pavement or another hardscape. Use of this compliance method must be evaluated on a case by case basis.
 - If the 95% UCL is used, the Town must document where soils are known to exceed RSR criteria. The specific mechanism for recording such information may require further discussion.
- The Julian Fill used in many applications is similar to what is commonly used for road base or structural fill beneath walkways or other hardscapes and structures. These materials commonly contain concentrations of PAHs, metals, and/or ETPH due to asphalt fragments and urban soil/fill materials used in the aggregate and background conditions. For this reason, removal of Julian Fill used in a construction fill application was not deemed necessary so long as it does not contain reportable asbestos concentrations, PCB concentrations >0.5 ppm, or metals above the Residential Direct Exposure Criteria or Background concentrations. In a follow up email exchange between DEEP and Tighe & Bond on November 23rd, (see attached), it was agreed that notification on the land records will not be necessary if the fill is consistent with typical backfill.

Attachment – email exchange between DEEP and Tighe & Bond
From:	Barber, Jade <jade.barber@ct.gov></jade.barber@ct.gov>
Sent:	Monday, November 22, 2021 8:43 AM
То:	James T. Olsen
Subject:	RE: Fairfield Fill Projects

Low

Importance:

[Caution - External Sender]

Morning Jim,

I agree on the meeting!

- Notification on the land records will not be necessary assuming the fill is consistent with typical backfill.
- No comments or questions on the Lake Mohegan RAR
 - I think my review is up to date on submittals, but if you want to send me a reminder *list* I will double check.

Thank you, Jade

From: James T. Olsen <<u>JTOIsen@tighebond.com</u>> Sent: Friday, November 19, 2021 6:04 PM To: Barber, Jade <<u>Jade.Barber@ct.gov</u>> Subject: RE: Fairfield Fill Projects

EXTERNAL EMAIL: This email originated from outside of the organization. Do not click any links or open any attachments unless you trust the sender and know the content is safe.

Hi Jade,

Thanks again for the meeting. It was very helpful.

Couple of questions/clarifications.

- If we leave Julian Fill under roadways and sidewalks that is consistent with typical asphalt type backfill, will the Town need to file any kind of notification on the land records? I didn't think so but just wanted to check.
- Also, did you finish your review of the Lake Mohegan Park RAR and if so do you have any questions or comments?

Jim

From: James T. Olsen
Sent: Tuesday, November 9, 2021 5:22 PM
To: Barber, Jade <<u>Jade.Barber@ct.gov</u>>
Subject: RE: Fairfield Fill Projects

Hi Jade,

Thank you for the follow up and information. This is very helpful.

For the question regarding the Julian Fill under sidewalks and roads, the following is proposed:

- asbestos none detected
- PCBs < 0.5 mg/Kg
- metals arsenic and lead complaint with the RES DEC or within background range

Would the DEEP team be available this Thu during the timeframes from 8:30 to 10:30 or 2:00 to 3:30? I think an hour of meeting time should be enough.

Jim

From: Barber, Jade <<u>Jade.Barber@ct.gov</u>> Sent: Tuesday, November 9, 2021 12:28 PM To: James T. Olsen <<u>JTOIsen@tighebond.com</u>> Subject: RE: Fairfield Fill Projects Importance: Low

[Caution - External Sender]

Jim,

The Department concurs with a hot spot removal approach, and application of the 95% UCL to demonstrate that areas of soil fill meet the applicable RSRs. For areas where laboratory data indicates that removal of fill is not warranted, please ensure that such decisions are based on a sufficient and reasonable body of data.

Please clarify what constitutes "elevated" levels of PCB, metals, or asbestos.

• "The Town can leave Julian Fill under sidewalks and roadways if it's similar in COC composition (i.e. ETPH and PAHs) to other road base in the area and does not contain elevated levels of PCB, metals, or asbestos."

A technical meeting to present a few case studies for discussion would be helpful. The DEEP team may be able to squeeze something in this week or next, so please let me know some times that you are available, and how much time you think you will need.

Thank you, Jade

From: James T. Olsen <<u>JTOlsen@tighebond.com</u>>
Sent: Monday, November 1, 2021 5:12 PM
To: Barber, Jade <<u>Jade.Barber@ct.gov</u>>
Subject: Fairfield Fill Projects

EXTERNAL EMAIL: This email originated from outside of the organization. Do not click any links or open any attachments unless you trust the sender and know the content is safe.

Hi Jade,

Thank you for your time to discuss the Fairfield Fill projects last Thu. I'm just following up on our discussions to confirm some points including:

- The Town can leave Julian Fill under sidewalks and roadways if it's similar in COC composition (i.e. ETPH and PAHs) to other road base in the area and does not contain elevated levels of PCB, metals, or asbestos.
- The Town can remove "hot spots" of Julian Fill at a site if it can be demonstrated that the remaining Julian Fill that is left in place meets the definition of clean fill under the Solid Waste Regulations.
- The Town can use statistics by way of the 95% UCL of the RSRs to demonstrate that the Julian Fill meets the definition of clean fill under the Solid Waste Regulations and can be left in place.

Please let me know if I stated these points correctly.

Also, I think it would be good to have a technical, virtual meeting between DEEP and Tighe & Bond to present a few case studies where we would apply the above approaches for discussion and concurrence with DEEP. I'm thinking it would be you, Joe Schiavone, myself and another Tighe & Bond technical staff person.

Can we schedule something for next week or the 3rd week of November? We can also discuss the schedule and priority for remediating the remaining sites per your other email inquiry.

Jim

James Olsen, PG, LEP Vice President

Tighe&Bond

o. 860.704.4761 | m. 860.805.8776

213 Court Street, Suite 1100, Middletown, CT 06457 w: tighebond.com | halvorsondesign.com

Tighe&Bond

APPENDIX D

Appendix D - Photographic Log

Client: Town of Fairfield

Job Number: 15-0439

Burr Elementary School **Site:** 1960 Burr Street, Fairfield, CT

Photograph No.: 1	Date: 8/24/2021	Direction Taken: Facing Northwest			
Description: Reported Julian Fill Use Location (goalie areas and centerline of field)					
	AL ALL				
		and a station have			
	- state the				
and the second					

Client: Town of Fairfield

Job Number: <u>15-0439</u>

Burr Elementary School **Site:** 1960 Burr Street, Fairfield, CT

Photograph No.: 3	Date: 12/28/2021	Direction Taken: Facing Southwest			
Description: Remediation					

Photograph No.: 4	Date: 12/28/2021	Direction Taken: Facing Northwest
Description: Remediation	on	

Tighe&Bond

APPENDIX E

Eastern Analytical Services, Inc.

Phone (914) 592-8380

4 Westchester Plaza Elmsford, New York 10523-1610 http://www.EASInc.com Fax (914) 592-8956

August 22, 2019

Mr. James T. Olsen Tighe & Bond 53 Southampton Road Westfield, MA 01085

RE: CPN 150439020 - Burr School EAS Batch No. 1906849

Dear Mr. Olsen:

Enclosed please find the laboratory results for the 4 bulk sample(s) received by Eastern Analytical Services, Inc. August 21, 2019. The analysis was performed in accordance with EPA/600/R-93/116 and NYS-DOH Item 198.1.

Thank you for allowing EAS, Inc. to provide Tighe & Bond with professional analytical services. If you have any questions or require additional information or assistance, please feel free to contact me at the number above or e-mail Lab@EASInc.com.

Sincerely,

EASTERN ANALYTICAL SERVICES, INC.

Paul Stascavage Laboratory Director

PS:om

Enclosures

Electronically Transmitted August 22, 2019

			TAS-		
EAS Batch No.	1906849	Eastern RE:	Analytical Service Bulk Sample Results CPN 150439020 - Burr Sch	es, Inc.	Page 1 of 1
Date Collected Collected By : Date Received Date Analyzed Analyzed By : Signature : Analytical Met NVLAP Lab C NYS Lab No.	 1: 08/21/2019 Brian Sirowici : 08/21/2019 1: 08/21/2019 Ghayath Elias CFR Part 7 Code : 101646-0 10851 	h 63, Sub. E, App. E/N	Client: TYS-DOH 198.1 (PLM)	Tighe & Bond 53 Southampton Road Westfield, MA 01085	
Sample ID Nu	mber	BES S1	BES S2	BES S3	BES S4
Layer Number					
Lab ID Numbe	er	2639076	2639077	2639078	2639079
Sample Locatio	on	Not Given	Not Given	Not Given	Not Given
Sample Descrij	ption	Not Given	Not Given	Not Given	Not Given
Method of Qua	ntification	Visual Estimation	Visual Estimation	Visual Estimation	Visual Estimation
Appearance	Layered Homogenous Fibrous Color	No No Yes Brown	No No Yes Brown	No No Yes Brown	No No Yes Brown
Sample Treatm	ent	Homogenized	Homogenized	Homogenized	Homogenized
Asbestos Content	% Amosite % Chrysotile % Other % Total Asbestos	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
Other Fibrous Materials Present	% Fibrous Glass % Cellulose % Other % Unidentified	0.0 5.0 0.0 0.0	0.0 5.0 0.0 0.0	0.0 5.0 0.0 0.0	0.0 5.0 0.0 0.0
Non-Fibrous Materials Present	% Silicates % Carbonates % Other % Unidentified	15.0 20.0 0.0 60.0	15.0 20.0 0.0 60.0	15.0 10.0 0.0 70.0	15.0 20.0 0.0 60.0

Results Applicable To Those Items Tested. Report Cannot be Reproduced, Except Entirely, Without Written Approval of the Laboratory. Liability Limited To Cost Of Analysis. This Report Must Not be Used by the Client to Claim Product Endorsement by NVLAP or Any Agency of the US Government. These Results Can Not Be Used To Claim That NOB Items Tested Are Non-Asbestos Containing. Overall Lab Accuracy ± 17%. Samples received in acceptable condition unless otherwise noted. AIHA Accreditation No. 100263 Rhode Island DOH No. AAL-072 Massachusetts DOL No. A A 000072 Connecticut DOH No. PH-0622 Maine DEP No. LA-024 Vermont DOH No. AL-709936

Eastern Analytical Services, Inc. Chain of Custody Form

EAS Client:	Tighe & Bond	EAS Batch No.	1906849			
	53 Southampton Road Westfield, MA 01085			Turn-Around:	12 Hr	
		Shipped Via:	Walk In			
Analyte:	% Asb			State of Origin:	СТ	
No. of Samples	4			Sample Disposition:	Standard	x
Received:					Return	
No. of Samples Analyzed:	4					
Client Designt	DE. CDN 150420020	D C -11				

Client Project RE: CPN 150439020 - Burr School Number/Name:

Lab ID Numbers: 2639076-2639079

Collected By:	Brian Sirowich	Signature	Date: 08/21/2019	
Received By:	Damien Warner	QE.M.	Date: 08/21/2019	Time: 1718
Logged In By:	Ghayath Elias		Date: 08/21/2019	
Prepped By:	Joseph B. LaPuebla	Jose Inc	Date: 08/21/2019	
Analyzed By :	Ghayath Elias	- Alexandre	Date: 08/21/2019	Time: 1905
Re-Analyzed By:			Date:	
Checked By:	Damien Warner	QE M	Date: 08/22/2019	
E-Transmitted By:	Damien Warner	25.111	Date: 08/22/2019	Time: 1012
Logged Out By:			Date:	

4 Westchester Plaza - Elmsford, NY 10523 www.EASine.com	
914-592-8380 BES SI	L BES S4
CHAIN OF CUSTODY BES S2 BES S3	
EAS Client: <u>Tighe & Bond</u> No. of Samples: <u>4</u>	
Westfield MA 01085 Turn- □03Hr □06Hr 12H Around □48Hr □72Hr □961	Hr 🖬 24Hr 🖬 30Hr Hr 🖬 5Day 🗖 Other
Analyte: Asbestos Lead Fungi Image: PLM Image: Solid Image: Spore Trap Shipped Image: US Mail Image: Spore Trap Image: NOB PLM Only Image: Image: Trap Lift Image: Tr	Walk In US Exp Courier Other PA MA Other (Return)
NYSDOH 198.1 PLM Client Project Name/Number: 150439020 - Burr School	
Sampled By: Brian Sirowich Name (Print or Type) Signature	8 21 /19 Date
Submitted By:	Date
Comments: <u>Engil results to jtolsen etighebond.com</u> (ILL) bsirowichetighebond.com, jilibbye,tighe	ebond.com
Account Number:	
Received By: AUG 21 12 Name (Print) Signature Logged-In By: Date	S 17:1 S Time
Prepped By:	
Analyzed By:	·
Re-Analyzed By:	
Logged-Out By:	

5

CCLOB C 201)	Contraction of the		Comments:
	A. 0. 0 1		
2		_	0 52
			S
		F	ا ک
CG	NG-		BES 5
Sample Description	Sample Location	ber	Sample Num
072 Hr 096	RE: Sin school		Date Analyze Analyzed By: Time: Signature:
Tum- 003 Hr 000 Around 12 Hr 024	Address: Toyle & Roud		Date Collecte Collected By Date Receive
ES, INC. Pa	EASTERN ANALYTICAL SERVIC BULK SAMPLE DATA SHEET		

Non-Friable Organically Bound (NOB) Materials - This term refers to a wide variety of building materials, such as vinyl or asphalt floor tile, resilient floor covering, mastic, asphalt shingle, roofing material, caulk, putty, etc.. Polarized Light Microscopy (PLM) analysis has limitations when NOB materials are encountered. These limitations, such as the inability to detect thin or extremely short fibers (less than 1 micrometer in length) generated during the milling process and/or the difficulty of separating asbestos fibers and bundles from the resinous matrix, may lead to false negatives or underestimates of the amount of asbestos fibers present in the sample. Recently, NYS DOH added Celling Tiles with Cellulose to the list of materials to be analyzed via the NOB methods. For these reasons, when analysis by PLM yields negative results for the presence of asbestos in NOB materials, The State of New York Department of Health (DOH) has issued the following requirements as of April 8, 2011: NOBs and celling tiles with cellulose must be analyzed by both of the gravimetric matrix reduction methods (ELAP Item 198.6 and 198.4) to be deemed negative for asbestos.

EAS is approved by the NYS-DOH to perform analysis of NOB materials via Transmission Electron Microscopy (ELAP Item 198.4). The superior resolution of Transmission Electron Microscopy can detect the presence of asbestos fibers well beyond the range of PLM. In addition, the use of selected-area electron diffraction (SAED) and energy-dispersive spectroscopy (EDS) can positively identify asbestos fibers in the sample. NOB samples determined to contain less than 1% asbestos via the TEM method, must also be analyzed via PLM (198.6) to verify the absence of large amphibole fibers which may not have been successfully transferred to the EM Grids.

The State of New Jersey recently adopted amendments to their regulations requiring gravimetric reduction followed by PLM and TEM analysis for NOB building materials. The regulations can be found at http://wd.dol.state.ni.us/labor/lsse/laws/Asbestos_law.html#5a39.

Recently (April 3, 2011), Maine DEP revised their regulations to require gravimetric reduction of NOBs https://wwwl.maine.gov/dep/waste/asbestos/documents/asbbulksampanalvsisprotocolsformYenabled.pdf.

Vermiculite - As of July 9, 2013, NYS has issued new guidance on Vermiculite loose bulk materials and insulation materials which contain Vermiculite. The following quotes have been taken from their guidance letter: "If material is attic fill, block fill or other loose bulk vermiculite materials, it must be designated and treated as ACM. No approved analytical method currently exists to reliably confirm such vermiculite material as non-ACM" "Where thermal systems insulation (TSI), *, or other presumed ACM (PACM) or miscellaneous suspect ACM contain 10% vermiculite or less, certified laboratories may use ELAP Certification Manual Item 198.1 to determine the asbestos content of the material. Where TSI, *, or other PACM or miscellaneous suspect ACM contain greater than 10% vermiculite, Item 198.6 may be used to evaluate the asbestos content of the material; provided, however, that any test results using this method must be reported with the following conspicuous disclaimer:"

"This method does not remove vermiculite and may underestimate the level of asbestos present in a sample containing greater than 10% vermiculite."

See the BPA website at https://www.epa.gov/asbestos/protect-your-family-asbestos-contaminated-vermiculite-insulation

* Surfacing Material Containing Vermiculite - As of May 6, 2016, NYS has issued new guidance regarding Surfacing Material containing vermiculite (essentially expanding the previous requirements for spray-on fireproofing to apply to all surfacing materials). If a surfacing material contains *any* vermiculite, it must be analyzed via NYS-DOH Method 198.8 (or RJ Lee Group Method 055) to be deemed negative for asbestos.

Surface Wipe Samples - Due to the fact that a large percentage of asbestos fibers released from deteriorating asbestos-containing materials or from improperly performed abatement activities are on the order of 5 micrometers or less and are near or below the resolution of a Polarized Light Microscope, Eastern Analytical Services, Inc. recommends that negative surface wipe samples be confirmed utilizing Transmission Electron Microscopy.

Point Counting - New York State Department of Health regulations require quantification of asbestos via the "Stratified Point Count" Method for all bulk samples originating from New York State. Please indicate the state of origin on the Chain of Custody form for all samples submitted to the laboratory. There is no additional charge for quantification using this method.

Layered Samples - NESHAP policy regarding layered bulk samples has changed. In the past, laboratories were required to analyze individual layers of multi-layered bulk samples separately, but report the results in terms of quantity of asbestos for the composite sample. This policy change requires that the layers be analyzed separately and reported as such. Additionally, materials are to be characterized as asbestos or non-asbestos based on the results of the individual layers.

As a result of this policy, EAS will be reporting the results of the individual layers of multi-layered bulk samples submitted for asbestos analysis UNLESS COMPOSITE RESULTS ARE SPECIFICALLY REQUESTED BY THE CLIENT. Additional layers for all bulk samples will be billed as separate samples.

If you have any questions concerning the above, please feel free to contact EAS.

Eastern Analytical Services, Inc.

Phone (914) 592-8380

Fax (914) 592-8956

4 Westchester Plaza Elmsford, New York 10523-1610 Federal ID #11-2753797

CLIENT Tighe & Bond 53 Southampton Road Westfield, MA 01085

Account No. 040136

INVOICE Nº 1023949

DATE 08/22/2019

P.O. NUMBER

TERMS 1%/10, Net 30, 1.5% Int 30+

EAS Batch No. 1906849

DATE	DESCRIPTION		PRICE
08/21/2019	Analytical Services (12 Hr Turn-Around) RE: CPN 150439020 - Burr School Fiber Identification Polarized Light Microscopy		
	4 Samples @ \$13.00 /Sample		\$52.00
		Total	\$52.00
	Please Reference Invoice Number with Payment		

Monday, August 26, 2019

Attn: Brian Sirowich Tighe & Bond 213 Court St, Suite 1100 Middletown, CT 06457

Project ID: 150439020- BURR SCHOOL SDG ID: GCD89521 Sample ID#s: CD89521 - CD89524

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Sincerely yours,

 $\lambda \in \mathcal{D}_{\bullet}$

Phyllis/Shiller Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #M-CT007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 UT Lab Registration #CT00007 VT Lab Registration #VT11301

Sample Id Cross Reference

August 26, 2019

SDG I.D.: GCD89521

Project ID: 150439020- BURR SCHOOL

Client Id	Lab Id	Matrix
BES S1	CD89521	SOIL
BES S2	CD89522	SOIL
BES S3	CD89523	SOIL
BES S4	CD89524	SOIL

Analysis Report

August 26, 2019

FOR: Attn: Brian Sirowich Tighe & Bond 213 Court St, Suite 1100 Middletown, CT 06457

Sample Information		Custody Information		<u>Date</u>	<u>Time</u>
Matrix:	SOIL	Collected by:		08/21/19	7:50
Location Code:	TIGHE-DAS	Received by:	CP	08/21/19	16:16
Rush Request:	24 Hour	Analyzed by:	see "By" below		
P.O.#:					

Laboratory Data

SDG ID: GCD89521 Phoenix ID: CD89521

Project ID:	150439020- BURR SCHOOL
Client ID:	BES S1

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference
Arsenic	4.16	0.84	mg/Kg	1	08/22/19	CPP	SW6010D
Lead	12.3	0.42	mg/Kg	1	08/22/19	CPP	SW6010D
Percent Solid	84		%		08/21/19	VT	SW846-%Solid
Soil Extraction SVOA PAH	Completed				08/21/19	NT/NM/L	∨SW3545A
Extraction of CT ETPH	Completed				08/21/19	NT/G/VI	_ SW3545A
Extraction for PCB	Completed				08/21/19	BX/VT/K	LSW3540C
Total Metals Digest	Completed				08/21/19	M/AG/BI	F SW3050B
TPH by GC (Extractable	Products	<u>;)</u>					
Ext. Petroleum H.C. (C9-C36)	ND	58	mg/Kg	1	08/22/19	JRB	CTETPH 8015D
Identification	ND		mg/Kg	1	08/22/19	JRB	CTETPH 8015D
QA/QC Surrogates							
% n-Pentacosane	63		%	1	08/22/19	JRB	50 - 150 %
PCB (Soxhlet SW3540C	<u>;)</u>						
PCB-1016	ND	390	ug/Kg	10	08/22/19	SC	SW8082A
PCB-1221	ND	390	ug/Kg	10	08/22/19	SC	SW8082A
PCB-1232	ND	390	ug/Kg	10	08/22/19	SC	SW8082A
PCB-1242	ND	390	ug/Kg	10	08/22/19	SC	SW8082A
PCB-1248	ND	390	ug/Kg	10	08/22/19	SC	SW8082A
PCB-1254	ND	390	ug/Kg	10	08/22/19	SC	SW8082A
PCB-1260	ND	390	ug/Kg	10	08/22/19	SC	SW8082A
PCB-1262	ND	390	ug/Kg	10	08/22/19	SC	SW8082A
PCB-1268	ND	390	ug/Kg	10	08/22/19	SC	SW8082A
QA/QC Surrogates							
% DCBP	55		%	10	08/22/19	SC	30 - 150 %
% DCBP (Confirmation)	54		%	10	08/22/19	SC	30 - 150 %
% TCMX	49		%	10	08/22/19	SC	30 - 150 %

Project ID: 150439020- BURR SCHOOL Client ID: BES S1

	RL/					
Result	PQL	Units	Dilution	Date/Time	Ву	Reference
50		%	10	08/22/19	SC	30 - 150 %
2						
ND	270	ug/Kg	1	08/22/19	AW	SW8270D
ND	270	ug/Kg	1	08/22/19	AW	SW8270D
ND	270	ug/Kg	1	08/22/19	AW	SW8270D
ND	270	ug/Kg	1	08/22/19	AW	SW8270D
ND	270	ug/Kg	1	08/22/19	AW	SW8270D
ND	270	ug/Kg	1	08/22/19	AW	SW8270D
ND	270	ug/Kg	1	08/22/19	AW	SW8270D
ND	270	ug/Kg	1	08/22/19	AW	SW8270D
ND	270	ug/Kg	1	08/22/19	AW	SW8270D
ND	270	ug/Kg	1	08/22/19	AW	SW8270D
ND	270	ug/Kg	1	08/22/19	AW	SW8270D
ND	270	ug/Kg	1	08/22/19	AW	SW8270D
ND	270	ug/Kg	1	08/22/19	AW	SW8270D
ND	270	ug/Kg	1	08/22/19	AW	SW8270D
ND	270	ug/Kg	1	08/22/19	AW	SW8270D
ND	270	ug/Kg	1	08/22/19	AW	SW8270D
ND	270	ug/Kg	1	08/22/19	AW	SW8270D
69		%	1	08/22/19	AW	30 - 130 %
76		%	1	08/22/19	AW	30 - 130 %
57		%	1	08/22/19	AW	30 - 130 %
	Result 50 ND ND ND ND ND ND ND ND ND ND ND ND ND	Result PQL 50 50 ND 270 ND 270	Result PQL Units 50 % 50 % ND 270 ug/Kg ND 270 ug/Kg	Result PQL Units Dilution 50 % 10 50 % 10 MD 270 ug/Kg 1 ND 270 ug/Kg 1 ND	RL/ PQLUnitsDilutionDate/Time50%1008/22/1950%1008/22/19ND270ug/Kg108/22/19ND	Result PQL Units Dilution Date/Time By 50 % 10 08/22/19 SC ND 270 ug/Kg 1 08/22/19 AW ND 270 ug/Kg 1 08/22/19 AW

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis, Shiller, Laboratory Director August 26, 2019 Reviewed and Released by: Greg Lawrence, Assistant Lab Director

Analysis Report

August 26, 2019

FOR: Attn: Brian Sirowich Tighe & Bond 213 Court St, Suite 1100 Middletown, CT 06457

Sample Informa	ation	Custody Information		<u>Date</u>	<u>Time</u>
Matrix:	SOIL	Collected by:		08/21/19	7:55
Location Code:	TIGHE-DAS	Received by:	CP	08/21/19	16:16
Rush Request:	24 Hour	Analyzed by:	see "By" below		
P.O.#:		1 - 6 - 4 - 6 - 4			

Laboratory Data

SDG ID: GCD89521 Phoenix ID: CD89522

Project ID:	150439020- BURR SCHOOL
Client ID:	BES S2

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference
Arsenic	3.60	0.75	mg/Kg	1	08/22/19	CPP	SW6010D
Lead	10.9	0.38	mg/Kg	1	08/22/19	CPP	SW6010D
Percent Solid	83		%		08/21/19	VT	SW846-%Solid
Soil Extraction SVOA PAH	Completed				08/21/19	NT/NM/L	∨SW3545A
Extraction of CT ETPH	Completed				08/21/19	NT/G/VI	_ SW3545A
Extraction for PCB	Completed				08/21/19	BX/VT/K	LSW3540C
Total Metals Digest	Completed				08/21/19	M/AG/BI	= SW3050B
TPH by GC (Extractable	e Products)					
Ext. Petroleum H.C. (C9-C36)	ND	59	mg/Kg	1	08/22/19	JRB	CTETPH 8015D
Identification	ND		mg/Kg	1	08/22/19	JRB	CTETPH 8015D
QA/QC Surrogates							
% n-Pentacosane	72		%	1	08/22/19	JRB	50 - 150 %
PCB (Soxhlet SW35400	<u>C)</u>						
PCB-1016	ND	390	ug/Kg	10	08/22/19	SC	SW8082A
PCB-1221	ND	390	ug/Kg	10	08/22/19	SC	SW8082A
PCB-1232	ND	390	ug/Kg	10	08/22/19	SC	SW8082A
PCB-1242	ND	390	ug/Kg	10	08/22/19	SC	SW8082A
PCB-1248	ND	390	ug/Kg	10	08/22/19	SC	SW8082A
PCB-1254	ND	390	ug/Kg	10	08/22/19	SC	SW8082A
PCB-1260	ND	390	ug/Kg	10	08/22/19	SC	SW8082A
PCB-1262	ND	390	ug/Kg	10	08/22/19	SC	SW8082A
PCB-1268	ND	390	ug/Kg	10	08/22/19	SC	SW8082A
QA/QC Surrogates							
% DCBP	79		%	10	08/22/19	SC	30 - 150 %
% DCBP (Confirmation)	72		%	10	08/22/19	SC	30 - 150 %
% TCMX	80		%	10	08/22/19	SC	30 - 150 %

Project ID: 150439020- BURR SCHOOL Client ID: BES S2

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference
% TCMX (Confirmation)	80		%	10	08/22/19	SC	30 - 150 %
Polynuclear Aromatic H	<u>IC</u>						
2-Methylnaphthalene	ND	280	ug/Kg	1	08/22/19	AW	SW8270D
Acenaphthene	ND	280	ug/Kg	1	08/22/19	AW	SW8270D
Acenaphthylene	ND	280	ug/Kg	1	08/22/19	AW	SW8270D
Anthracene	ND	280	ug/Kg	1	08/22/19	AW	SW8270D
Benz(a)anthracene	ND	280	ug/Kg	1	08/22/19	AW	SW8270D
Benzo(a)pyrene	ND	280	ug/Kg	1	08/22/19	AW	SW8270D
Benzo(b)fluoranthene	ND	280	ug/Kg	1	08/22/19	AW	SW8270D
Benzo(ghi)perylene	ND	280	ug/Kg	1	08/22/19	AW	SW8270D
Benzo(k)fluoranthene	ND	280	ug/Kg	1	08/22/19	AW	SW8270D
Chrysene	ND	280	ug/Kg	1	08/22/19	AW	SW8270D
Dibenz(a,h)anthracene	ND	280	ug/Kg	1	08/22/19	AW	SW8270D
Fluoranthene	ND	280	ug/Kg	1	08/22/19	AW	SW8270D
Fluorene	ND	280	ug/Kg	1	08/22/19	AW	SW8270D
Indeno(1,2,3-cd)pyrene	ND	280	ug/Kg	1	08/22/19	AW	SW8270D
Naphthalene	ND	280	ug/Kg	1	08/22/19	AW	SW8270D
Phenanthrene	ND	280	ug/Kg	1	08/22/19	AW	SW8270D
Pyrene	ND	280	ug/Kg	1	08/22/19	AW	SW8270D
QA/QC Surrogates							
% 2-Fluorobiphenyl	58		%	1	08/22/19	AW	30 - 130 %
% Nitrobenzene-d5	63		%	1	08/22/19	AW	30 - 130 %
% Terphenyl-d14	50		%	1	08/22/19	AW	30 - 130 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director August 26, 2019 Reviewed and Released by: Greg Lawrence, Assistant Lab Director

Analysis Report

August 26, 2019

FOR: Attn: Brian Sirowich Tighe & Bond 213 Court St, Suite 1100 Middletown, CT 06457

Sample Informa	ation	Custody Information		<u>Date</u>	<u>Time</u>
Matrix:	SOIL	Collected by:		08/21/19	8:00
Location Code:	TIGHE-DAS	Received by:	CP	08/21/19	16:16
Rush Request:	24 Hour	Analyzed by:	see "By" below		
P.O.#:		I sharefee			

Laboratory Data

SDG ID: GCD89521 Phoenix ID: CD89523

Project ID:	150439020- BURR SCHOOL
Client ID:	BES S3

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Arsenic	5.85	0.85	mg/Kg	1	08/22/19	CPP	SW6010D
Lead	26.3	0.43	mg/Kg	1	08/22/19	CPP	SW6010D
Percent Solid	84		%		08/21/19	VT	SW846-%Solid
Soil Extraction SVOA PAH	Completed				08/21/19	NT/NM/L	vSW3545A
Extraction of CT ETPH	Completed				08/21/19	NT/G/VL	_ SW3545A
Extraction for PCB	Completed				08/21/19	BX/VT/K	LSW3540C
Total Metals Digest	Completed				08/21/19	M/AG/BI	= SW3050B
TPH by GC (Extractable	Products	<u>;)</u>					
Ext. Petroleum H.C. (C9-C36)	ND	59	mg/Kg	1	08/22/19	JRB	CTETPH 8015D
Identification	ND		mg/Kg	1	08/22/19	JRB	CTETPH 8015D
QA/QC Surrogates							
% n-Pentacosane	74		%	1	08/22/19	JRB	50 - 150 %
PCB (Soxhlet SW3540C)						
PCB-1016	ND	390	ug/Kg	10	08/22/19	SC	SW8082A
PCB-1221	ND	390	ug/Kg	10	08/22/19	SC	SW8082A
PCB-1232	ND	390	ug/Kg	10	08/22/19	SC	SW8082A
PCB-1242	ND	390	ug/Kg	10	08/22/19	SC	SW8082A
PCB-1248	ND	390	ug/Kg	10	08/22/19	SC	SW8082A
PCB-1254	ND	390	ug/Kg	10	08/22/19	SC	SW8082A
PCB-1260	ND	390	ug/Kg	10	08/22/19	SC	SW8082A
PCB-1262	ND	390	ug/Kg	10	08/22/19	SC	SW8082A
PCB-1268	ND	390	ug/Kg	10	08/22/19	SC	SW8082A
QA/QC Surrogates							
% DCBP	72		%	10	08/22/19	SC	30 - 150 %
% DCBP (Confirmation)	53		%	10	08/22/19	SC	30 - 150 %
% TCMX	69		%	10	08/22/19	SC	30 - 150 %

Project ID: 150439020- BURR SCHOOL Client ID: BES S3

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
% TCMX (Confirmation)	62		%	10	08/22/19	SC	30 - 150 %
Polynuclear Aromatic I	<u>+C</u>						
2-Methylnaphthalene	ND	270	ug/Kg	1	08/22/19	AW	SW8270D
Acenaphthene	ND	270	ug/Kg	1	08/22/19	AW	SW8270D
Acenaphthylene	ND	270	ug/Kg	1	08/22/19	AW	SW8270D
Anthracene	ND	270	ug/Kg	1	08/22/19	AW	SW8270D
Benz(a)anthracene	370	270	ug/Kg	1	08/22/19	AW	SW8270D
Benzo(a)pyrene	410	270	ug/Kg	1	08/22/19	AW	SW8270D
Benzo(b)fluoranthene	380	270	ug/Kg	1	08/22/19	AW	SW8270D
Benzo(ghi)perylene	300	270	ug/Kg	1	08/22/19	AW	SW8270D
Benzo(k)fluoranthene	400	270	ug/Kg	1	08/22/19	AW	SW8270D
Chrysene	460	270	ug/Kg	1	08/22/19	AW	SW8270D
Dibenz(a,h)anthracene	ND	270	ug/Kg	1	08/22/19	AW	SW8270D
Fluoranthene	670	270	ug/Kg	1	08/22/19	AW	SW8270D
Fluorene	ND	270	ug/Kg	1	08/22/19	AW	SW8270D
Indeno(1,2,3-cd)pyrene	300	270	ug/Kg	1	08/22/19	AW	SW8270D
Naphthalene	ND	270	ug/Kg	1	08/22/19	AW	SW8270D
Phenanthrene	300	270	ug/Kg	1	08/22/19	AW	SW8270D
Pyrene	680	270	ug/Kg	1	08/22/19	AW	SW8270D
QA/QC Surrogates							
% 2-Fluorobiphenyl	59		%	1	08/22/19	AW	30 - 130 %
% Nitrobenzene-d5	68		%	1	08/22/19	AW	30 - 130 %
% Terphenyl-d14	52		%	1	08/22/19	AW	30 - 130 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director August 26, 2019 Reviewed and Released by: Greg Lawrence, Assistant Lab Director

Analysis Report

August 26, 2019

FOR: Attn: Brian Sirowich Tighe & Bond 213 Court St, Suite 1100 Middletown, CT 06457

Sample Informa	ation	Custody Information		<u>Date</u>	<u>Time</u>
Matrix:	SOIL	Collected by:		08/21/19	8:15
Location Code:	TIGHE-DAS	Received by:	CP	08/21/19	16:16
Rush Request:	24 Hour	Analyzed by:	see "By" below		
P.O.#:					

Laboratory Data

SDG ID: GCD89521 Phoenix ID: CD89524

Project ID:	150439020- BURR SCHOOL
Client ID:	BES S4

	RL/						
Result	PQL	Units	Dilution	Date/Time	Ву	Reference	
3.91	0.98	mg/Kg	1	08/22/19	CPP	SW6010D	
22.1	0.49	mg/Kg	1	08/22/19	CPP	SW6010D	
69		%		08/21/19	VT	SW846-%Solid	
Completed				08/21/19	NT/NM/L	∨SW3545A	
Completed				08/21/19	NT/G/VI	_ SW3545A	
Completed				08/21/19	BX/VT/K	LSW3540C	
Completed				08/21/19	M/AG/BI	= SW3050B	
Products	5)						
ND	71	mg/Kg	1	08/22/19	JRB	CTETPH 8015D	
ND		mg/Kg	1	08/22/19	JRB	CTETPH 8015D	
57		%	1	08/22/19	JRB	50 - 150 %	
)							
ND	470	ug/Kg	10	08/22/19	SC	SW8082A	
ND	470	ug/Kg	10	08/22/19	SC	SW8082A	
ND	470	ug/Kg	10	08/22/19	SC	SW8082A	
ND	470	ug/Kg	10	08/22/19	SC	SW8082A	
ND	470	ug/Kg	10	08/22/19	SC	SW8082A	
ND	470	ug/Kg	10	08/22/19	SC	SW8082A	
ND	470	ug/Kg	10	08/22/19	SC	SW8082A	
ND	470	ug/Kg	10	08/22/19	SC	SW8082A	
ND	470	ug/Kg	10	08/22/19	SC	SW8082A	
65		%	10	08/22/19	SC	30 - 150 %	
42		%	10	08/22/19	SC	30 - 150 %	
63		%	10	08/22/19	SC	30 - 150 %	
	Result 3.91 22.1 69 Completed Completed Completed Completed Completed Sources ND ND S7 ND ND ND ND ND ND ND ND ND ND	Result PQL 3.91 0.98 22.1 0.49 69	Result PQL Units 3.91 0.98 mg/Kg 22.1 0.49 mg/Kg 69 % Completed Completed Completed mg/Kg Completed mg/Kg 0 71 mg/Kg 0 71 mg/Kg 57 % % 57 % % 57 % % 0 1 mg/Kg 57 % % 0 1 mg/Kg 0 470 ug/Kg ND 470	Result PQL Units Dilution 3.91 0.98 mg/Kg 1 22.1 0.49 mg/Kg 1 69 % 0 0 69 % 0 0 Completed 0 % 0 Completed 0 0 0 Products) ND 71 mg/Kg 1 MD 71 mg/Kg 1 57 % 1 57 % 1 MD 470 ug/Kg 10 ND 470 ug/Kg 10	Result PQL Units Dilution Date/Time 3.91 0.98 mg/Kg 1 08/22/19 22.1 0.49 mg/Kg 1 08/22/19 69 % 08/21/19 08/21/19 Completed 08/21/19 08/21/19 08/21/19 Products) mg/Kg 1 08/22/19 ND 71 mg/Kg 1 08/22/19 ND 71 mg/Kg 1 08/22/19 ND 70 ug/Kg 10 08/22/19 ND 470 ug/Kg 10 08/22/19 ND 470 ug/Kg 10 08/22/19 ND 470 ug/Kg 10 08/22/19 ND	Result PQL Units Dilution Date/Time By 3.91 0.98 mg/Kg 1 08/22/19 CPP 22.1 0.49 mg/Kg 1 08/22/19 CPP 69 % 08/21/19 VT Completed 08/21/19 NT/MML Completed 08/21/19 NT/MML Completed 08/21/19 NT/GAU Completed 08/21/19 NT/GAU Completed 08/21/19 NT/GAU Completed 08/21/19 JRB MD 71 mg/Kg 1 08/22/19 JRB MD 71 mg/Kg 1 08/22/19 JRB 57 % 1 08/22/19 JRB 57 % 1 08/22/19 SC ND 470 ug/Kg 10 08/22/19 SC ND 470 ug/Kg 10 08/22/19 SC ND 470	Result PQL Units Dilution Date/Time By Reference 3.91 0.98 mg/Kg 1 08/22/19 CPP SW6010D 22.1 0.49 mg/Kg 1 08/22/19 CPP SW6010D 69 % 08/21/19 VT SW846%Solid Completed 08/21/19 NT/MMLVSW3545A 08/21/19 NT/MMLVSW3545A Completed 08/21/19 NT/MMLVSW3545A 08/21/19 NT/MLVSW3545A Completed 08/21/19 NT/G/L SW35050B 9 Products) ND 71 mg/Kg 1 08/22/19 JRB CTETPH 8015D ND 71 mg/Kg 1 08/22/19 JRB CTETPH 8015D 57 % 1 08/22/19 JRB CTETPH 8015D 57 % 1 08/22/19 SC SW8082A ND 470 ug/Kg 10 08/22/19 SC SW8082A ND 470

Project ID: 150439020- BURR SCHOOL Client ID: BES S4

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference
% TCMX (Confirmation)	39		%	10	08/22/19	SC	30 - 150 %
Polynuclear Aromatic	HC						
2-Methylnaphthalene	ND	340	ug/Kg	1	08/22/19	WB	SW8270D
Acenaphthene	ND	340	ug/Kg	1	08/22/19	WB	SW8270D
Acenaphthylene	ND	340	ug/Kg	1	08/22/19	WB	SW8270D
Anthracene	ND	340	ug/Kg	1	08/22/19	WB	SW8270D
Benz(a)anthracene	ND	340	ug/Kg	1	08/22/19	WB	SW8270D
Benzo(a)pyrene	ND	340	ug/Kg	1	08/22/19	WB	SW8270D
Benzo(b)fluoranthene	ND	340	ug/Kg	1	08/22/19	WB	SW8270D
Benzo(ghi)perylene	ND	340	ug/Kg	1	08/22/19	WB	SW8270D
Benzo(k)fluoranthene	ND	340	ug/Kg	1	08/22/19	WB	SW8270D
Chrysene	ND	340	ug/Kg	1	08/22/19	WB	SW8270D
Dibenz(a,h)anthracene	ND	340	ug/Kg	1	08/22/19	WB	SW8270D
Fluoranthene	360	340	ug/Kg	1	08/22/19	WB	SW8270D
Fluorene	ND	340	ug/Kg	1	08/22/19	WB	SW8270D
Indeno(1,2,3-cd)pyrene	ND	340	ug/Kg	1	08/22/19	WB	SW8270D
Naphthalene	ND	340	ug/Kg	1	08/22/19	WB	SW8270D
Phenanthrene	ND	340	ug/Kg	1	08/22/19	WB	SW8270D
Pyrene	340	340	ug/Kg	1	08/22/19	WB	SW8270D
QA/QC Surrogates							
% 2-Fluorobiphenyl	61		%	1	08/22/19	WB	30 - 130 %
% Nitrobenzene-d5	67		%	1	08/22/19	WB	30 - 130 %
% Terphenyl-d14	56		%	1	08/22/19	WB	30 - 130 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

PCB Comment:

Sample was evaluated against an external standard.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis, Shiller, Laboratory Director August 26, 2019 Reviewed and Released by: Greg Lawrence, Assistant Lab Director

QA/QC Report August 26, 2019

QA/QC Data

SDG I.D.: GCD89521

Parameter	Blank	Blk RL	Sample Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
QA/QC Batch 493448 (mg/kg), C ICP Metals - Soil	2C Sam	ple No:	CD8958	3 (CD89	521, CI	089522	2, CD895	523, CE	089524))			
Arsenic	BRL	0.67	5.32	5.35	0.60	109	107	1.9	93.6			75 - 125	30
Lead	BRL	0.33	26.4	22.5	16.0	107	103	3.8	95.0			75 - 125	30

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

August 26, 2019

QA/QC Data

SDG I.D.: GCD89521

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
QA/QC Batch 493416 (mg/Kg), C	C Sar	ple No: CD89505 (CD89521, CE	089522	, CD89	523, CD	89524))				
TPH by GC (Extractable Pi	roduc	ts) - Soil									
Ext. Petroleum H.C. (C9-C36)	ND	50	82	75	8.9	119			60 - 120	30	
% n-Pentacosane	36	%	57	40	35.1	107			50 - 150	30	l,r,s
Comment:											
This batch consists of a Blank, LCS	, LCSD	and MS.									
Additional surrogate criteria: LCS ac normalized based on the alkane cal	ceptan	ce range is 60-120% MS acceptance	range	50-150%	o. The ET	PH/DR	O LCS h	as beei	ı		
QA/QC Batch 493423 (ug/Kg), Q	C Sam	ple No: CD89511 10X (CD89521	, CD89	522, CI	089523	CD89	524)				
Polychlorinated Biphenyls	- Soil										
PCB-1016	ND	170	97	90	7.5	88	95	7.7	40 - 140	30	
PCB-1221	ND	170							40 - 140	30	
PCB-1232	ND	170							40 - 140	30	
PCB-1242	ND	170							40 - 140	30	
PCB-1248	ND	170							40 - 140	30	
PCB-1254	ND	170							40 - 140	30	
PCB-1260	ND	170	114	95	18.2	94	100	6.2	40 - 140	30	
PCB-1262	ND	170							40 - 140	30	
PCB-1268	ND	170							40 - 140	30	
% DCBP (Surrogate Rec)	97	%	114	101	12.1	97	103	6.0	30 - 150	30	
% DCBP (Surrogate Rec) (Confirm	83	%	105	88	17.6	85	92	7.9	30 - 150	30	
% TCMX (Surrogate Rec)	95	%	115	96	18.0	92	101	9.3	30 - 150	30	
% TCMX (Surrogate Rec) (Confirm	96	%	118	93	23.7	89	97	8.6	30 - 150	30	
QA/QC Batch 493418 (ug/kg), Q0	C Sam	ole No: CD89652 (CD89521, CD	89522,	CD895	23, CD8	89524)					
Polynuclear Aromatic HC -	Soil										
2-Methylnaphthalene	ND	230	59	46	24.8	31	54	54.1	30 - 130	30	r
Acenaphthene	ND	230	68	59	14.2	65	71	8.8	30 - 130	30	
Acenaphthylene	ND	230	66	57	14.6	60	68	12.5	30 - 130	30	
Anthracene	ND	230	66	58	12.9	66	72	8.7	30 - 130	30	
Benz(a)anthracene	ND	230	68	60	12.5	70	77	9.5	30 - 130	30	
Benzo(a)pyrene	ND	230	67	61	9.4	66	74	11.4	30 - 130	30	
Benzo(b)fluoranthene	ND	230	70	63	10.5	71	78	9.4	30 - 130	30	
Benzo(ghi)perylene	ND	230	66	59	11.2	66	73	10.1	30 - 130	30	
Benzo(k)fluoranthene	ND	230	69	61	12.3	68	74	8.5	30 - 130	30	
Chrysene	ND	230	66	59	11.2	67	75	11.3	30 - 130	30	
Dibenz(a,h)anthracene	ND	230	73	68	7.1	72	82	13.0	30 - 130	30	
Fluoranthene	ND	230	63	57	10.0	64	74	14.5	30 - 130	30	
Fluorene	ND	230	66	58	12.9	64	72	11.8	30 - 130	30	
Indeno(1,2,3-cd)pyrene	ND	230	73	65	11.6	73	81	10.4	30 - 130	30	
Naphthalene	ND	230	59	41	36.0	54	59	8.8	30 - 130	30	r
Phenanthrene	ND	230	65	57	13.1	66	/2	8.7	30 - 130	30	
Pyrene	ND	230	64	59	8.1	65	/4	12.9	30 - 130	30	

QA/QC Data

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
% 2-Fluorobiphenyl	46	%	62	54	13.8	60	65	8.0	30 - 130	30	
% Nitrobenzene-d5	34	%	52	38	31.1	52	65	22.2	30 - 130	30	r
% Terphenyl-d14	50	%	56	53	5.5	57	63	10.0	30 - 130	30	
Commont											

Comment:

Additional 8270 criteria: 20% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 15-110%, for soils 30-130%)

I = This parameter is outside laboratory LCS/LCSD specified recovery limits.

r = This parameter is outside laboratory RPD specified recovery limits.
 s = This parameter is outside laboratory Blank Surrogate specified recovery limits.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director August 26, 2019

Monday, August 26, 2019 Criteria: CT: GAM, RC			Sample Criteria Exc	Sample Criteria Exceedances Report GCD89521 - TIGHE-DAS					
State:	СТ		0000021				RI	Analysis	
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units	
*** No Doto	to Diamlass ***								

*** No Data to Display ***

Phoenix Laboratories does not assume responsibility for the data contained in this exceedance report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

REASONABLE CONFIDENCE PROTOCOL LABORATORY ANALYSIS QA/QC CERTIFICATION FORM

Laboratory Name:	Phoenix Environmental Labs, Inc.	Client:	Tighe & l	Bond
Project Location:	150439020- BURR SCHOOL	Project N	umber:	
Laboratory Sample	ID(s): CD89521-CD89524	Sampling	g Date(s):	8/21/2019

List RCP Methods Used (e.g., 8260, 8270, et cetera) 6010, 8082, 8270, ETPH

_		
1	For each analytical method referenced in this laboratory report package, were all specified QA/QC performance criteria followed, including the requirement to explain any criteria falling outside of acceptable guidelines, as specified in the CT DEP method-specific Reasonable Confidence Protocol documents?	✓ Yes □ No
1A	Were the method specified preservation and holding time requirements met?	✓ Yes □ No
1B	VPH and EPH methods only:Was the VPH or EPH method conducted withoutsignificant modifications (see section 11.3 of respective RCP methods)	□ Yes □ No ✓ NA
2	Were all samples received by the laboratory in a condition consistent with that described on the associated Chain-of-Custody document(s)?	✓ Yes □ No
3	Were samples received at an appropriate temperature (< 6 Degrees C)?	✓ Yes □ No □ NA
4	Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents acheived? See Sections: ETPH Narration, SVOA Narration.	🗆 Yes 🗹 No
5	a) Were reporting limits specified or referenced on the chain-of-custody?	✓ Yes □ No
	b) Were these reporting limits met?	✓ Yes □ No
6	For each analytical method referenced in this laboratory report package, were results reported for all constituents identified in the method-specific analyte lists presented in the Reasonable Confidence Protocol documents?	🗆 Yes 🗹 No
7	Are project-specific matrix spikes and laboratory duplicates included in the data set?	🗌 Yes 🗹 No

Notes: For all questions to which the response was "No" (with the exception of question #7), additional information must be provided in an attached narrative. If the answer to question #1, #1A or 1B is "No", the data package does not meet the requirements for "Reasonable Confidence". This form may not be altered and all questions must be answered.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete.									
Authorized Signature: Roshun Wake Position: Project Manager									
Printed Name: Rashmi Makol	Date: Monday, August 26, 2019								
Name of Laboratory Phoenix Environmental Labs, Inc.									

This certification form is to be used for RCP methods only.

CTDEP RCP Laboratory Analysis QA/QC Certification Form - November 2007 Laboratory Quality Assurance and Quality Control Guidance Reasonable Confidence Protocols

RCP Certification Report

August 26, 2019

SDG I.D.: GCD89521

SDG Comments

Metals Analysis:

The client requested a shorter list of elements than the 6010 RCP list. Only Arsenic and Lead are reported as requested on the chain of custody.

8270 Semi-volatile Organics:

The client requested a short list for 8270 RCP Semivolatile. Only the PAH constituents are reported as requested on the chain-ofcustody.

ETPH Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? No. **QC Batch 493416 (Samples: CD89521, CD89522, CD89523, CD89524):** -----

The surrogate recovery in the blank is below the criteria. A low bias is possible. (% n-Pentacosane)

The surrogate recovery in the LCSD is below the criteria. The recovery of the target analytes is acceptable. No significant bias is suspected. (% n-Pentacosane)

The LCS/LCSD RPD exceeds the method criteria for the surrogate. The LCS/LCSD RPD for the target analyte is acceptable. No significant variability is suspected. (% n-Pentacosane)

Instrument:

AU-FID84 08/21/19-1

Jeff Bucko, Chemist 08/21/19

CD89523, CD89524

The initial calibration (ETPH820I) RSD for the compound list was less than 30% except for the following compounds: None. As per section 7.2.3, a discrimination check standard was run (821A003_1) and contained the following outliers: None. The continuing calibration %D for the compound list was less than 30% except for the following compounds: Samples: CD89523, CD89524

Preceding CC 821A029 - Pentacosane 40%H (30%) Succeeding CC 821A039 - None.

AU-XL2 08/20/19-1

Jeff Bucko, Chemist 08/20/19

CD89521, CD89522

The initial calibration (ETPH715I) RSD for the compound list was less than 30% except for the following compounds: None. As per section 7.2.3, a discrimination check standard was run (820A003_1) and contained the following outliers: None. The continuing calibration %D for the compound list was less than 30% except for the following compounds:None.

QC (Batch Specific):

Batch 493416 (CD89505)

CD89521, CD89522, CD89523, CD89524

All LCS recoveries were within 60 - 120 with the following exceptions: None.

All LCSD recoveries were within 60 - 120 with the following exceptions: % n-Pentacosane(40%)

All LCS/LCSD RPDs were less than 30% with the following exceptions: % n-Pentacosane(35.1%)

This batch consists of a Blank, LCS, LCSD and MS.

Additional surrogate criteria: LCS acceptance range is 60-120% MS acceptance range 50-150%. The ETPH/DRO LCS has been normalized based on the alkane calibration.

Certification Report

August 26, 2019

SDG I.D.: GCD89521

ICP Metals Narration

Were all QA/QC performance criteria specified in the analytical method achieved? Yes.

Instrument:

ARCOS 08/21/19 08:12

Cindy Pearce, Chemist 08/21/19

CD89521, CD89522, CD89523, CD89524

Additional criteria for CCV and ICSAB:

Sodium and Potassium are poor performing elements, the laboratory's in-house limits are 85-115% (CCV) and 70-130% (ICSAB). The linear range is defined daily by the calibration range.

The following Initial Calibration Verification (ICV) compounds did not meet criteria: None.

The following Continuing Calibration Verification (CCV) compounds did not meet criteria: None.

The following ICP Interference Check (ICSAB) compounds did not meet criteria: None.

QC (Batch Specific):

Batch 493448 (CD89583)

CD89521, CD89522, CD89523, CD89524

All LCS recoveries were within 75 - 125 with the following exceptions: None. All LCSD recoveries were within 75 - 125 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

PCB Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument:

AU-ECD24 08/21/19-1

Saadia Chudary, Chemist 08/21/19

CD89524

The initial calibration (PC719AI) RSD for the compound list was less than 20% except for the following compounds: None. The initial calibration (PC719BI) RSD for the compound list was less than 20% except for the following compounds: None. The continuing calibration %D for the compound list was less than 15% except for the following compounds:None.

AU-ECD29 08/21/19-1

Saadia Chudary, Chemist 08/21/19

CD89522

The initial calibration (PC703AI) RSD for the compound list was less than 20% except for the following compounds: None. The initial calibration (PC703BI) RSD for the compound list was less than 20% except for the following compounds: None. The continuing calibration %D for the compound list was less than 15% except for the following compounds:None.

AU-ECD3 08/22/19-1

Saadia Chudary, Chemist 08/22/19

CD89521

The initial calibration (PC822AI) RSD for the compound list was less than 20% except for the following compounds: None. The initial calibration (PC822BI) RSD for the compound list was less than 20% except for the following compounds: None. The continuing calibration %D for the compound list was less than 15% except for the following compounds:None.

AU-ECD5 08/21/19-1

Saadia Chudary, Chemist 08/21/19

CD89523

The initial calibration (PC813AI) RSD for the compound list was less than 20% except for the following compounds: None. The initial calibration (PC813BI) RSD for the compound list was less than 20% except for the following compounds: None. The continuing calibration %D for the compound list was less than 15% except for the following compounds:

RCP Certification Report

August 26, 2019

SDG I.D.: GCD89521

PCB Narration

Samples: CD89523 Preceding CC 821B056 - PCB 1260 21%H (%) Succeeding CC 821B075 - None.

QC (Batch Specific):

Batch 493423 (CD89511)

CD89521, CD89522, CD89523, CD89524

All LCS recoveries were within 40 - 140 with the following exceptions: None.

All LCSD recoveries were within 40 - 140 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

SVOA Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? No.

QC Batch 493418 (Samples: CD89521, CD89522, CD89523, CD89524): -----

The LCS/LCSD RPD exceeds the method criteria for one analyte and one surrogate. This analyte was not reported in the sample(s). No significant variability is suspected. (Naphthalene, % Nitrobenzene-d5) Instrument:

CHEM28 08/22/19-1

Matt Richard, Chemist 08/22/19

CD89521, CD89522, CD89523, CD89524

For 8270 full list, the DDT breakdown and pentachlorophenol & benzidine peak tailing were evaluated in the DFTPP tune and were found to be in control.

For 8270 BN list, benzidine peak tailing was evaluated in the DFTPP tune and was found to be in control.

Initial Calibration Evaluation (CHEM28/28_BN_0807):

100% of target compounds met criteria.

The following compounds had %RSDs >20%: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet a minimum response factors: None.

Continuing Calibration Verification (CHEM28/0822_04-28_BN_0807):

Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None.

100% of target compounds met criteria.

The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet minimum response factors: None.

QC (Batch Specific):

Batch 493418 (CD89652)

CD89521, CD89522, CD89523, CD89524

All LCS recoveries were within 30 - 130 with the following exceptions: None.

All LCSD recoveries were within 30 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: % Nitrobenzene-d5(31.1%), Naphthalene(36.0%)

RCP Certification Report

August 26, 2019

SDG I.D.: GCD89521

SVOA Narration

Additional 8270 criteria: 20% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 15-110%, for soils 30-130%)

Temperature Narration

The samples were received at 3.2C with cooling initiated. (Note acceptance criteria for relevant matrices is above freezing up to 6°C)

	Contact Options:	s section MUST be completed with ottle Quantities		20 10 10 10 10 10 10 10 10 10 10 10 10 10				Data Format Excel GISIKey Equils	3 Outlet 3 Data Package 3 Titer II Checklist 3 Phoenix Std Report Vother	Enviro Data • Surcharge Applies
Coolant: Temp2	Fax: Phone: Email: On File	Project P.O:						tification	S-1 GW-2 S-1 GW-2 S-2 GW-2 S-2 GW-2 S-3 GW-2 S-3 GW-2 SMART Other	ected: CT
	r 06040	burr School Tin Libey, Jim C		62 50 10 5 5				ert MA ert MCP Cert otection GW-1 dection GW-2 dection GW-2	bility =	samples were colle
TODY RECORD	3ox 370, Manchester, C1 3m Fax (860) 645-08 (860) 645-8726	50439020 - B rian Sirewich, J Tighe & Band	24 24 24 24 24 24 24 24 24 20 20 20 20 20 20 20 20 20 20 20 20 20	X X X X X X X X X X X X X X X X X X X				irect Exposure KrCP C Residential) C & Pri GW C Sw Pri	Other GA Mo GB Mo C Reside IC DF Other	State where
CHAIN OF CUST	Middle Turnpike, P.O. F iil: info@phoenixlabs.cc Client Services	Project: 19 Report to: 6 Invoice to: QUOTE #	Analysis Request	XXXX		, , , , , , , , , , , , , , , , , , ,		11me: RI 9 2 :45 □ 19 1 (0,1 (0	nd Time: y* ys* ys* dard	r ARGE APPLIES
	587 East Ema	e 1100	tion Date: <u>8121119</u> rww=Waste Water id w=Wipe OIL=OII	Date Time Sampled Samplec	1:55	51:8		Pate: And Bhull	Turparou 1 Day 3 Da Stan	• SURCH
	X atories, Inc.	Bond S : + St Suit CT 0645-	aformation - Identifica ater SW=Surface Water bludge S=Soil SD=Soi Other)	ample Sample tion Matrix	• v v	S		Capted by:	-Regulations:	
	OENL mental Labori	: Tigne 4 213 Cour Middletown	rater GW=Ground Wa	NLY Customer Si Identificat	2) BES 52	KH BES SH		domer 4	scial Requirements or Pricing	
	PHA	Customer Address:	Sampler's Signature- Matrix Code: DW=Drinking W RW=Raw Watei B=Bulk L=Liqui	PHOENIX USE OF	000	Ed53		Relinquished	Comments, Spe DAS	

Friday, September 06, 2019

Attn: Mr. James Olsen Tighe & Bond 213 Court St, Suite 1100 Middletown, CT 06457

Project ID:150439023 BURR ELEM SCHOOLSDG ID:GCD97460Sample ID#s:CD97460 - CD97464

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Sincerely yours,

Phyllis/Shiller Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #M-CT007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 UT Lab Registration #CT00007 VT Lab Registration #VT11301

Sample Id Cross Reference

September 06, 2019

SDG I.D.: GCD97460

Project ID: 150439023 BURR ELEM SCHOOL

Client Id	Lab Id	Matrix
BES S100 (2.25-2.5`)	CD97460	SOIL
BES S101 (2.5-2.75`)	CD97461	SOIL
BES S102 (2.5-2.75`)	CD97462	SOIL
BES S103 (1.5-2`)	CD97463	SOIL
BES S104 (1.5-1.75`)	CD97464	SOIL

Analysis Report

Project ID: Client ID:

FOR: Attn: Mr. James Olsen Tighe & Bond 213 Court St, Suite 1100 Middletown, CT 06457

September 06, 2019

150439023 BURR ELEM SCHOOL

BES S100 (2.25-2.5`)

Sample Information **Custody Information** Date Time Collected by: 09/04/19 12:25 Matrix: SOIL Received by: Location Code: **TIGHE-DAS** В 09/04/19 15:16 Rush Request: 24 Hour Analyzed by: see "By" below P.O.#:

Laboratory Data

SDG ID: GCD97460 Phoenix ID: CD97460

		RL/					
Parameter	Result	PQL	Unit	s Dilutio	on Date/Tin	ne By	Reference
Arsenic	2.56	0.73	mg/K	g 1	09/05/19	EK	SW6010D
Lead	6.70	0.37	mg/K	g 1	09/05/19	EK	SW6010D
Percent Solid	82		%		09/04/19	VT	SW846-%Solid
Soil Extraction for Pesticide	Completed				09/04/19	MM/UV	′ SW3545A
Soil Extraction SVOA PAH	Completed				09/04/19	NT/LV	SW3545A
Extraction of CT ETPH	Completed				09/04/19	GG/LL	SW3545A
Extraction for PCB	Completed				09/04/19	QQ/VT/S	BSW3540C
Total Metals Digest	Completed				09/04/19	JJ/AG	SW3050B
TPH by GC (Extractable	e Products	5)					
Ext. Petroleum H.C. (C9-C36)	ND	59	mg/K	g 1	09/05/19	JRB	CTETPH 8015D
Identification	ND		mg/K	g 1	09/05/19	JRB	CTETPH 8015D
QA/QC Surrogates							
% n-Pentacosane	50		%	1	09/05/19	JRB	50 - 150 %
PCB (Soxhlet SW35400	<u>;)</u>						
PCB-1016	ND	400	ug/K	g 10	09/05/19	SC	SW8082A
PCB-1221	ND	400	ug/K	g 10	09/05/19	SC	SW8082A
PCB-1232	ND	400	ug/K	g 10	09/05/19	SC	SW8082A
PCB-1242	ND	400	ug/K	g 10	09/05/19	SC	SW8082A
PCB-1248	ND	400	ug/K	g 10	09/05/19	SC	SW8082A
PCB-1254	ND	400	ug/K	g 10	09/05/19	SC	SW8082A
PCB-1260	ND	400	ug/K	g 10	09/05/19	SC	SW8082A
PCB-1262	ND	400	ug/K	g 10	09/05/19	SC	SW8082A
PCB-1268	ND	400	ug/K	g 10	09/05/19	SC	SW8082A
QA/QC Surrogates							
% DCBP	65		%	10	09/05/19	SC	30 - 150 %
% DCBP (Confirmation)	79		%	10	09/05/19	SC	30 - 150 %

Project ID: 150439023 BURR ELEM SCHOOL Client ID: BES S100 (2.25-2.5`)

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
% TCMX	74		%	10	09/05/19	SC	30 - 150 %
% TCMX (Confirmation)	80		%	10	09/05/19	SC	30 - 150 %
Pesticides							
4 4' -DDD	ND	16	ua/Ka	2	09/05/19	AW	SW8081B
4 4' -DDE	ND	1.6	ug/Kg	2	09/05/19	AW	SW8081B
4 4' -DDT	ND	1.6	ug/Kg	2	09/05/19	AW	SW8081B
-,001 2-BHC	ND	1.0	ug/Kg	2	09/05/19	AW	SW8081B
	ND	8.1	ug/Kg	2	09/05/19	AW	SW8081B
Aldrin	ND	1.6	ug/Kg	2	09/05/19	AW	SW8081B
h-BHC	ND	1.0	ug/Kg	2	09/05/19	AW	SW8081B
Chlordana	ND	41	ug/Kg	2	09/05/19	Δ\//	SW/8081B
	ND	16	ug/Kg	2	09/05/19		SW/8081B
Dialdrin	ND	1.0	ug/Kg	2	09/05/19		SW/8081B
	ND	4.1 8.1	ug/Kg	2	09/05/19		SW/8081B
	ND	0.1 9.1	ug/Kg	2	09/05/19		SW0001D
		0.1	ug/Kg	2	09/05/19		SW0001D
Endosulian sullate		0.1	ug/Kg	2	09/05/19		SW0001D
Endrin Endrin eldebude		0.1	ug/Kg	2	09/05/19		SW0001D
Endrin aldenyde		0.1	ug/Kg	2	09/05/19		SW0001D
	ND	0.1	ug/Kg	2	09/05/19	AVV	SW0001D
g-BHC	ND	1.0	ug/Kg	2	09/05/19		SW8081B
Heptachlor	ND	0.1	ug/Kg	2	09/05/19	AVV	SW0001D
Heptachlor epoxide	ND	8.1	ug/Kg	2	09/05/19	AVV	SW8081B
	ND	41	ug/Kg	2	09/05/19	AVV	SW8081B
loxaphene	ND	160	ug/Kg	2	09/05/19	AVV	SW8081B
QA/QC Surrogates			<i></i>	-			
% DCBP	57		%	2	09/05/19	AW	30 - 150 %
% DCBP (Confirmation)	62		%	2	09/05/19	AW	30 - 150 %
% ICMX	65		%	2	09/05/19	AW	30 - 150 %
% ICMX (Confirmation)	57		%	2	09/05/19	AW	30 - 150 %
Polynuclear Aromatic	<u>: HC</u>						
2-Methylnaphthalene	ND	280	ug/Kg	1	09/05/19	WB	SW8270D
Acenaphthene	ND	280	ug/Kg	1	09/05/19	WB	SW8270D
Acenaphthylene	ND	280	ug/Kg	1	09/05/19	WB	SW8270D
Anthracene	ND	280	ug/Kg	1	09/05/19	WB	SW8270D
Benz(a)anthracene	ND	280	ug/Kg	1	09/05/19	WB	SW8270D
Benzo(a)pyrene	ND	280	ug/Kg	1	09/05/19	WB	SW8270D
Benzo(b)fluoranthene	ND	280	ug/Kg	1	09/05/19	WB	SW8270D
Benzo(ghi)perylene	ND	280	ug/Kg	1	09/05/19	WB	SW8270D
Benzo(k)fluoranthene	ND	280	ug/Kg	1	09/05/19	WB	SW8270D
Chrysene	ND	280	ug/Kg	1	09/05/19	WB	SW8270D
Dibenz(a,h)anthracene	ND	280	ug/Kg	1	09/05/19	WB	SW8270D
Fluoranthene	ND	280	ug/Kg	1	09/05/19	WB	SW8270D
Fluorene	ND	280	ug/Kg	1	09/05/19	WB	SW8270D
Indeno(1,2,3-cd)pyrene	ND	280	ug/Kg	1	09/05/19	WB	SW8270D
Naphthalene	ND	280	ug/Kg	1	09/05/19	WB	SW8270D
Phenanthrene	ND	280	ug/Kg	1	09/05/19	WB	SW8270D
Pyrene	ND	280	ug/Kg	1	09/05/19	WB	SW8270D
QA/QC Surrogates							

Project ID: 150439023 BURR ELEM SCHOOL Client ID: BES S100 (2.25-2.5`)

Parameter	RL/ Result PQL	Units	Dilution	Date/Time	Ву	Reference	
% 2-Fluorobiphenyl	51	%	1	09/05/19	WB	30 - 130 %	
% Nitrobenzene-d5	49	%	1	09/05/19	WB	30 - 130 %	
% Terphenyl-d14	59	%	1	09/05/19	WB	30 - 130 %	

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director September 06, 2019 Reviewed and Released by: Greg Lawrence, Assistant Lab Director

Analysis Report

Project ID:

FOR: Attn: Mr. James Olsen Tighe & Bond 213 Court St, Suite 1100 Middletown, CT 06457

September 06, 2019

150439023 BURR ELEM SCHOOL

Sample Information **Custody Information** Date Time Collected by: 09/04/19 12:30 Matrix: SOIL Received by: Location Code: **TIGHE-DAS** В 09/04/19 15:16 Rush Request: 24 Hour Analyzed by: see "By" below P.O.#:

Laboratory Data

SDG ID: GCD97460 Phoenix ID: CD97461

Client ID: BES S101 (2	2.5-2.75`)						
Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Arsenic	3.01	0.73	mg/Kg	1	09/05/19	EK	SW6010D
Lead	7.42	0.36	mg/Kg	1	09/05/19	EK	SW6010D
Percent Solid	86		%		09/04/19	VT	SW846-%Solid
Soil Extraction for Pesticide	Completed				09/04/19	MM/U∖	′ SW3545A
Soil Extraction SVOA PAH	Completed				09/04/19	NT/LV	SW3545A
Extraction of CT ETPH	Completed				09/04/19	GG/LL	SW3545A
Extraction for PCB	Completed				09/04/19	QQ/VT/S	BSW3540C
Total Metals Digest	Completed				09/04/19	JJ/AG	SW3050B
TPH by GC (Extractable	e Product	<u>s)</u>					
Ext. Petroleum H.C. (C9-C36)	ND	58	mg/Kg	1	09/05/19	JRB	CTETPH 8015D
Identification	ND		mg/Kg	1	09/05/19	JRB	CTETPH 8015D
QA/QC Surrogates							
% n-Pentacosane	117		%	1	09/05/19	JRB	50 - 150 %
PCB (Soxhlet SW35400	<u>C)</u>						
PCB-1016	ND	380	ug/Kg	10	09/05/19	SC	SW8082A
PCB-1221	ND	380	ug/Kg	10	09/05/19	SC	SW8082A
PCB-1232	ND	380	ug/Kg	10	09/05/19	SC	SW8082A
PCB-1242	ND	380	ug/Kg	10	09/05/19	SC	SW8082A
PCB-1248	ND	380	ug/Kg	10	09/05/19	SC	SW8082A
PCB-1254	ND	380	ug/Kg	10	09/05/19	SC	SW8082A
PCB-1260	ND	380	ug/Kg	10	09/05/19	SC	SW8082A
PCB-1262	ND	380	ug/Kg	10	09/05/19	SC	SW8082A
PCB-1268	ND	380	ug/Kg	10	09/05/19	SC	SW8082A
QA/QC Surrogates							
% DCBP	81		%	10	09/05/19	SC	30 - 150 %
% DCBP (Confirmation)	90		%	10	09/05/19	SC	30 - 150 %

Project ID: 150439023 BURR ELEM SCHOOL Client ID: BES S101 (2.5-2.75`)

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
% TCMX	99		%	10	09/05/19	SC	30 - 150 %
% TCMX (Confirmation)	88		%	10	09/05/19	SC	30 - 150 %
Pesticides							
4 4' -DDD	ND	1.5	ua/Ka	2	09/05/19	AW	SW8081B
4 4' -DDE	ND	1.5	ug/Kg	2	09/05/19	AW	SW8081B
4 4' -DDT	ND	1.5	ug/Kg	2	09/05/19	AW	SW8081B
a-BHC	ND	1.5	ug/Kg	2	09/05/19	AW	SW8081B
Alachlor	ND	7.7	ug/Kg	2	09/05/19	AW	SW8081B
Aldrin	ND	1.5	ug/Kg	2	09/05/19	AW	SW8081B
b-BHC	ND	1.5	ug/Kg	2	09/05/19	AW	SW8081B
Chlordane	ND	.38	ug/Kg	2	09/05/19	AW	SW8081B
d-BHC	ND	1.5	ug/Kg	2	09/05/19	AW	SW8081B
Dieldrin	ND	3.8	ug/Kg	2	09/05/19	Δ\//	SW8081B
Endosulfan I	ND	77	ug/Kg	2	09/05/19	Δ\//	SW8081B
Endosulfan II	ND	7.7	ug/Kg	2	09/05/19	Δ\//	SW8081B
Endosulfan sulfate	ND	7.7	ug/Kg	2	09/05/19	Δ\Λ/	SW8081B
Endosulian sullate		7.7	ug/Kg	2	09/05/19		SW8081B
Endrin aldebyde		7.7	ug/Kg	2	09/05/19		SW/8081B
Endrin kotono		7.7	ug/Kg	2	09/05/19		SW/8081B
		1.7	ug/Kg	2	09/05/19		SW/8081B
y-billor Hoptachlor		7.7	ug/Kg	2	09/05/19		SW8081B
Heptachioi		7.7	ug/Kg	2	09/05/19		SW/8081B
	ND	29	ug/Kg	2	09/05/19		SW0001D
		150	ug/Kg	2	09/05/19		SW0001D SW0001B
	ND	150	ug/rtg	2	09/03/19	Avv	300001D
	101		0/	2	00/05/10	۸\ ۸ /	20 150 %
% DCBF	07		/0	2	09/05/19		30 - 150 %
	106		70 9/	2	09/05/19		30 - 150 %
% TOMA (Confirmation)	74		/0	2	09/05/19		30 - 150 %
	74		70	2	09/05/19	Avv	30 - 130 %
Polynuclear Aromatic	<u>: HC</u>	070	11.7		00/05/40		014/00705
2-Methylnaphthalene	ND	270	ug/Kg	1	09/05/19	WB	SW8270D
Acenaphthene	ND	270	ug/Kg	1	09/05/19	WB	SW8270D
Acenaphthylene	ND	270	ug/Kg	1	09/05/19	WB	SW8270D
Anthracene	ND	270	ug/Kg	1	09/05/19	WB	SW8270D
Benz(a)anthracene	ND	270	ug/Kg	1	09/05/19	WB	SW8270D
Benzo(a)pyrene	ND	270	ug/Kg	1	09/05/19	WB	SW8270D
Benzo(b)fluoranthene	ND	270	ug/Kg	1	09/05/19	WB	SW8270D
Benzo(ghi)perylene	ND	270	ug/Kg	1	09/05/19	WB	SW8270D
Benzo(k)fluoranthene	ND	270	ug/Kg	1	09/05/19	WB	SW8270D
Chrysene	ND	270	ug/Kg	1	09/05/19	WB	SW8270D
Dibenz(a,h)anthracene	ND	270	ug/Kg	1	09/05/19	WB	SW8270D
Fluoranthene	ND	270	ug/Kg	1	09/05/19	WB	SW8270D
Fluorene	ND	270	ug/Kg	1	09/05/19	WB	SW8270D
Indeno(1,2,3-cd)pyrene	ND	270	ug/Kg	1	09/05/19	WB	SW8270D
Naphthalene	ND	270	ug/Kg	1	09/05/19	WB	SW8270D
Phenanthrene	ND	270	ug/Kg	1	09/05/19	WB	SW8270D
Pyrene	ND	270	ug/Kg	1	09/05/19	WB	SW8270D
QA/QC Surrogates							

Project ID: 150439023 BURR ELEM SCHOOL Client ID: BES S101 (2.5-2.75`)

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
% 2-Fluorobiphenyl	62		%	1	09/05/19	WB	30 - 130 %
% Nitrobenzene-d5	65		%	1	09/05/19	WB	30 - 130 %
% Terphenyl-d14	62		%	1	09/05/19	WB	30 - 130 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director September 06, 2019 Reviewed and Released by: Greg Lawrence, Assistant Lab Director

Analysis Report

Project ID:

FOR: Attn: Mr. James Olsen Tighe & Bond 213 Court St, Suite 1100 Middletown, CT 06457

September 06, 2019

150439023 BURR ELEM SCHOOL

Sample Information **Custody Information** Date Time Collected by: 09/04/19 12:40 Matrix: SOIL Received by: Location Code: **TIGHE-DAS** В 09/04/19 15:16 Rush Request: 24 Hour Analyzed by: see "By" below P.O.#:

Laboratory Data

SDG ID: GCD97460 Phoenix ID: CD97462

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
Arsenic	2.70	0.81	mg/Kg	1	09/05/19	EK	SW6010D
Lead	8.30	0.41	mg/Kg	1	09/05/19	EK	SW6010D
Percent Solid	80		%		09/04/19	VT	SW846-%Solid
Soil Extraction for Pesticide	Completed				09/04/19	MM/UV	SW3545A
Soil Extraction SVOA PAH	Completed				09/04/19	NT/LV	SW3545A
Extraction of CT ETPH	Completed				09/04/19	GG/LL	SW3545A
Extraction for PCB	Completed				09/04/19	QQ/VT/SI	BSW3540C
Total Metals Digest	Completed				09/04/19	JJ/AG	SW3050B
TPH by GC (Extractabl	e Product	<u>s)</u>					
Ext. Petroleum H.C. (C9-C36)	ND	61	mg/Kg	1	09/05/19	JRB	CTETPH 8015D
Identification	ND		mg/Kg	1	09/05/19	JRB	CTETPH 8015D
QA/QC Surrogates							
% n-Pentacosane	71		%	1	09/05/19	JRB	50 - 150 %
PCB (Soxhlet SW3540	<u>C)</u>						
PCB-1016	ND	410	ug/Kg	10	09/05/19	SC	SW8082A
PCB-1221	ND	410	ug/Kg	10	09/05/19	SC	SW8082A
PCB-1232	ND	410	ug/Kg	10	09/05/19	SC	SW8082A
PCB-1242	ND	410	ug/Kg	10	09/05/19	SC	SW8082A
PCB-1248	ND	410	ug/Kg	10	09/05/19	SC	SW8082A
PCB-1254	ND	410	ug/Kg	10	09/05/19	SC	SW8082A
PCB-1260	ND	410	ug/Kg	10	09/05/19	SC	SW8082A
PCB-1262	ND	410	ug/Kg	10	09/05/19	SC	SW8082A
PCB-1268	ND	410	ug/Kg	10	09/05/19	SC	SW8082A
QA/QC Surrogates							
% DCBP	88		%	10	09/05/19	SC	30 - 150 %
% DCBP (Confirmation)	82		%	10	09/05/19	SC	30 - 150 %

Project ID: 150439023 BURR ELEM SCHOOL Client ID: BES S102 (2.5-2.75`)

% TCMX 83 % 10 patter is SC 30 - 150 % % TCMX Common Section 1 % 10 patter is SC 30 - 150 % Pesticides 4.4 - DDE ND 2.0 up/kg 2 patter is AW SW60815 4.4 - DDE ND 1.7 up/kg 2 patter is SW SW60818 4.4 - DDT ND 1.7 up/kg 2 patter is SW SW60818 Alchor ND 1.7 up/kg 2 patter is SW SW60818 Alchin ND 1.7 up/kg 2 patter is SW SW6818 Chordane ND 1.7 up/kg 2 patter is SW SW6818 Chordane ND 1.7 up/kg 2 patter is SW SW6818 Chordane ND 1.7 up/kg 2 patter is SW SW6818 Endosulfan II ND 8.3 up/kg patter is SW SW6818	Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
% TCMX (Confirmation) 81 % 10 09/05/19 %C 20 - 150 % Pesticides 4.4 - DDD ND 2.0 ug/Kg 2 09/05/19 AW SW8081B 4.4 - DDT ND 1.7 ug/Kg 2 09/05/19 AW SW8081B Alachior ND 1.7 ug/Kg 2 09/05/19 AW SW8081B Alachior ND 1.7 ug/Kg 2 09/05/19 AW SW8081B Chordane ND 1.7 ug/Kg 2 09/05/19 AW SW8081B Chordane ND 4.1 ug/Kg 2 09/05/19 AW SW8081B Endosulfan ND 8.3 ug/Kg 2 09/05/19 AW SW8081B Endosulfan ND 8.3 ug/Kg 2 09/05/19 AW SW8081B Endosulfan ND 8.3	% TCMX	83		%	10	09/05/19	SC	30 - 150 %
Pesticides View	% TCMX (Confirmation)	81		%	10	09/05/19	SC	30 - 150 %
4.4 - DDC ND 1.7 ug/kg 2 09/05/19 AW SW8081B 4.4 - DDC ND 2.0 ug/kg 2 09/05/19 AW SW8081B 4.4 - DDT ND 1.7 ug/kg 2 09/05/19 AW SW8081B a-BHC ND 1.7 ug/kg 2 09/05/19 AW SW8081B Alachior ND 8.3 ug/kg 2 09/05/19 AW SW8081B Alachior ND 1.7 ug/kg 2 09/05/19 AW SW8081B Chordane ND 1.7 ug/kg 2 09/05/19 AW SW8081B Chordane ND 1.7 ug/kg 2 09/05/19 AW SW8081B Chordane ND 1.7 ug/kg 2 09/05/19 AW SW8081B Endosulfan I ND 8.3 ug/kg 2 09/05/19 AW SW8081B Endosulfan I <td< td=""><td>Pesticides</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Pesticides							
Adv DD 2.0 up/Kg 2 0905/19 AW SW8081B 4.4 - DDT ND 1.7 up/Kg 2 0905/19 AW SW8081B Alachiar ND 1.7 up/Kg 2 0905/19 AW SW8081B Alachiar ND 8.3 up/Kg 2 0905/19 AW SW8081B Alachiar ND 1.7 up/Kg 2 0905/19 AW SW8081B Dieldrin ND 4.1 up/Kg 2 0905/19 AW SW8081B Endosulfan ND 4.1 up/Kg 2 0905/19 AW SW8081B Endosulfan sulfan ND 8.3 up/Kg 2 0905/19 AW SW8081B Endosulfan sulfan ND 8.3 up/Kg 2 0905/19 AW SW8081B Endrin ND 8.3 up/Kg 2 0905/19 AW SW8081B Endrin aldehyde	4 4' -DDD	ND	1.7	ua/Ka	2	09/05/19	AW	SW8081B
A, - DDT ND L up Kg 2 0905/19 AW SW8081B a-BHC ND 1.7 up/Kg 2 0905/19 AW SW8081B Alchior ND 1.7 up/Kg 2 0905/19 AW SW8081B Alchior ND 1.7 up/Kg 2 0905/19 AW SW8081B b-BHC ND 1.7 up/Kg 2 0905/19 AW SW8081B d-BHC ND 1.7 up/Kg 2 0905/19 AW SW8081B Endosulfan I ND 8.3 up/Kg 2 0905/19 AW SW8081B Endosulfan II ND 8.3 up/Kg 2 0905/19 AW SW8081B Endosulfan II ND 8.3 up/Kg 2 0905/19 AW SW8081B Endosulfan II ND 8.3 up/Kg 2 0905/19 AW SW8081B Endosulfan II ND <td>4 4' -DDE</td> <td>ND</td> <td>2.0</td> <td>ug/Kg</td> <td>2</td> <td>09/05/19</td> <td>AW</td> <td>SW8081B</td>	4 4' -DDE	ND	2.0	ug/Kg	2	09/05/19	AW	SW8081B
ABHC ND 1.7 ug/kg 2 0905/19 AW SW8081B Alachior ND 8.3 ug/kg 2 0905/19 AW SW8081B Alachior ND 1.7 ug/kg 2 0905/19 AW SW8081B b-BHC ND 1.7 ug/kg 2 0905/19 AW SW8081B c-BHC ND 4.1 ug/kg 2 0905/19 AW SW8081B Chiordane ND 4.1 ug/kg 2 0905/19 AW SW8081B Endosulfan I ND 8.3 ug/kg 2 0905/19 AW SW8081B Endosulfan II ND 8.3 ug/kg 2 0905/19 AW SW8081B Endrin latolehyde ND 8.3 ug/kg 2 0905/19 AW SW8081B Endrin latolehyde ND 8.3 ug/kg 2 0905/19 AW SW8081B Endrin kotone	4 4' -DDT	ND	1.7	ug/Kg	2	09/05/19	AW	SW8081B
Alachlor ND 8.3 ug/kg 2 09/05/19 AW SW8081B Aldrin ND 1.7 ug/kg 2 09/05/19 AW SW8081B Chlordane ND 1.7 ug/kg 2 09/05/19 AW SW8081B Chlordane ND 4.1 ug/kg 2 09/05/19 AW SW8081B d-BHC ND 1.7 ug/kg 2 09/05/19 AW SW8081B Endosulfan I ND 8.3 ug/kg 2 09/05/19 AW SW8081B Endosulfan ulfate ND 8.3 ug/kg 2 09/05/19 AW SW8081B Endrin ketone ND 8.3 ug/kg 2 09/05/19 AW SW8081B Endrin ketone ND 8.3 ug/kg 2 09/05/19 AW SW8081B Endrin ketone ND 8.3 ug/kg 2 09/05/19 AW SW8081B Endrin k	a-BHC	ND	1.7	ug/Kg	2	09/05/19	AW	SW8081B
Addin ND 1.7 ug/Kg 2 09/05/19 AW SW8081B b-BHC ND 1.7 ug/Kg 2 09/05/19 AW SW8081B d-BHC ND 1.7 ug/Kg 2 09/05/19 AW SW8081B d-BHC ND 4.1 ug/Kg 2 09/05/19 AW SW8081B Endosulfan I ND 8.3 ug/Kg 2 09/05/19 AW SW8081B Endosulfan II ND 8.3 ug/Kg 2 09/05/19 AW SW8081B Endosulfan II ND 8.3 ug/Kg 2 09/05/19 AW SW8081B Endrin aldehyde ND 8.3 ug/Kg 2 09/05/19 AW SW8081B Endrin aldehyde ND 8.3 ug/Kg 2 09/05/19 AW SW8081B Endrin ketone ND 8.3 ug/Kg 2 09/05/19 AW SW8081B Heptachlor e	Alachlor	ND	8.3	ug/Kg	2	09/05/19	AW	SW8081B
b-BHC ND 1.7 ug/kg 2 09/05/19 AW SW8081B Chlordane ND 41 ug/kg 2 09/05/19 AW SW8081B Chlordane ND 1.7 ug/kg 2 09/05/19 AW SW8081B Dieldrin ND 4.1 ug/kg 2 09/05/19 AW SW8081B Endosulfan II ND 8.3 ug/kg 2 09/05/19 AW SW8081B Endosulfan II ND 8.3 ug/kg 2 09/05/19 AW SW8081B Endrin altehyde ND 8.3 ug/kg 2 09/05/19 AW SW8081B Endrin ketone ND 8.3 ug/kg 2 09/05/19 AW SW8081B Endrin ketone ND 8.3 ug/kg 2 09/05/19 AW SW8081B Heptachlor ND 8.3 ug/kg 2 09/05/19 AW SW8081B Koda </td <td>Aldrin</td> <td>ND</td> <td>1.7</td> <td>ug/Kg</td> <td>2</td> <td>09/05/19</td> <td>AW</td> <td>SW8081B</td>	Aldrin	ND	1.7	ug/Kg	2	09/05/19	AW	SW8081B
Chiordane ND 41 ug/Kg 2 09/05/19 AW SW8081B d-BHC ND 1.7 ug/Kg 2 09/05/19 AW SW8081B Endosulfan I ND 8.3 ug/Kg 2 09/05/19 AW SW8081B Endosulfan I ND 8.3 ug/Kg 2 09/05/19 AW SW8081B Endosulfan I ND 8.3 ug/Kg 2 09/05/19 AW SW8081B Endrin ND 8.3 ug/Kg 2 09/05/19 AW SW8081B Endrin aldehyde ND 8.3 ug/Kg 2 09/05/19 AW SW8081B Endrin aldehyde ND 8.3 ug/Kg 2 09/05/19 AW SW8081B Heptachlor epoxide ND 8.3 ug/Kg 2 09/05/19 AW SW8081B Toxaphene ND 4.1 ug/Kg 2 09/05/19 AW SW8081B T	b-BHC	ND	1.7	ua/Ka	2	09/05/19	AW	SW8081B
Outcome Topological Section Section Section OBIGHT ND 1.7 ug/Kg 2 09/05/19 AW SW8081B Dieldrin ND 8.3 ug/Kg 2 09/05/19 AW SW8081B Endosulfan II ND 8.3 ug/Kg 2 09/05/19 AW SW8081B Endosulfan II ND 8.3 ug/Kg 2 09/05/19 AW SW8081B Endrin ND 8.3 ug/Kg 2 09/05/19 AW SW8081B Endrin ketone ND 8.3 ug/Kg 2 09/05/19 AW SW8081B Endrin ketone ND 8.3 ug/Kg 2 09/05/19 AW SW8081B Endrin ketone ND 1.7 ug/Kg 2 09/05/19 AW SW8081B Endrin ketone ND 8.3 ug/Kg 2 09/05/19 AW SW8081B Toxaphene ND 10	Chlordane	ND	41	ua/Ka	2	09/05/19	AW	SW8081B
Dicklim ND 4.1 ug/Kg 2 09/05/19 AW SW8081B Endosulfan I ND 8.3 ug/Kg 2 09/05/19 AW SW8081B Endosulfan II ND 8.3 ug/Kg 2 09/05/19 AW SW8081B Endosulfan sulfate ND 8.3 ug/Kg 2 09/05/19 AW SW8081B Endrin ND 8.3 ug/Kg 2 09/05/19 AW SW8081B Endrin kletone ND 8.3 ug/Kg 2 09/05/19 AW SW8081B Heptachlor ND 8.3 ug/Kg 2 09/05/19 AW SW8081B Toxaphene ND 1.7 ug/Kg 2 09/05/19 AW SW8081B Toxaphene ND 17 ug/Kg 2 09/05/19 AW SW8081B Mctoxychlor ND 41 ug/Kg 2 09/05/19 AW 30 - 150 % MCC	d-BHC	ND	1.7	ua/Ka	2	09/05/19	AW	SW8081B
Bartonian ND Bartonian Bartonian Bartonian Bartonian Endosulfan I ND 8.3 ug/Kg 2 09/05/19 AW SW8081B Endosulfan sulfate ND 8.3 ug/Kg 2 09/05/19 AW SW8081B Endrin ND 8.3 ug/Kg 2 09/05/19 AW SW8081B Endrin aldehyde ND 8.3 ug/Kg 2 09/05/19 AW SW8081B Endrin ketone ND 8.3 ug/Kg 2 09/05/19 AW SW8081B Heptachlor ND 8.3 ug/Kg 2 09/05/19 AW SW8081B Methoxychlor ND 4.1 ug/Kg 2 09/05/19 AW SW8081B Methoxychlor ND 4.1 ug/Kg 2 09/05/19 AW SW8081B Methoxychlor ND 1/7 ug/Kg 2 09/05/19 AW 30 - 150 % % DCBP	Dieldrin	ND	4.1	ua/Ka	2	09/05/19	AW	SW8081B
Laboration ND Base Base Base Base Base Endosulfan III ND 8.3 ug/Kg 2 09/05/19 AW SW8081B Endosulfan sulfate ND 8.3 ug/Kg 2 09/05/19 AW SW8081B Endrin aldehyde ND 8.3 ug/Kg 2 09/05/19 AW SW8081B Endrin ketone ND 8.3 ug/Kg 2 09/05/19 AW SW8081B Endrin ketone ND 8.3 ug/Kg 2 09/05/19 AW SW8081B Heptachlor ND 8.3 ug/Kg 2 09/05/19 AW SW8081B Heptachlor ND 8.3 ug/Kg 2 09/05/19 AW SW8081B Methoxychlor ND 4.1 ug/Kg 2 09/05/19 AW SW8081B Mothoxychlor ND 4.1 ug/Kg 2 09/05/19 AW 30 - 150 % MCAC <td>Endosulfan I</td> <td>ND</td> <td>8.3</td> <td>ua/Ka</td> <td>2</td> <td>09/05/19</td> <td>AW</td> <td>SW8081B</td>	Endosulfan I	ND	8.3	ua/Ka	2	09/05/19	AW	SW8081B
Laboutinin ND Ra Byte Description ND Ra Byte Endosulfan sulfate ND 8.3 ug/Kg 2 09/05/19 AW SW8081B Endrin ND 8.3 ug/Kg 2 09/05/19 AW SW8081B Endrin ketone ND 8.3 ug/Kg 2 09/05/19 AW SW8081B Endrin ketone ND 8.3 ug/Kg 2 09/05/19 AW SW8081B Heptachlor ND 8.3 ug/Kg 2 09/05/19 AW SW8081B Heptachlor epoxide ND 8.3 ug/Kg 2 09/05/19 AW SW8081B Methoxychlor ND 41 ug/Kg 2 09/05/19 AW SW8081B Methoxychlor ND 170 ug/Kg 2 09/05/19 AW 30 - 150 % % DCBP SS 9 % 2 09/05/19 AW 30 - 150 % %	Endosulfan II	ND	8.3	ug/Kg	2	09/05/19	AW	SW8081B
Endotion ND 8.0 op/Kg 2 0.905/19 AW SW8081B Endrin ND 8.3 ug/Kg 2 0.905/19 AW SW8081B Endrin ND 8.3 ug/Kg 2 0.905/19 AW SW8081B Endrin ND 8.3 ug/Kg 2 0.905/19 AW SW8081B GBHC ND 8.3 ug/Kg 2 0.905/19 AW SW8081B Heptachlor Poxide ND 8.3 ug/Kg 2 0.905/19 AW SW8081B Toxaphene ND 170 ug/Kg 2 0.905/19 AW SW8081B Coxaphene ND 170 ug/Kg 2 0.905/19 AW 30 - 150 % ØLCBP S0 54 % 2 0.905/19 AW 30 - 150 % % DCBP S0 X % 2 0.905/19 AW 30 - 150 % % TCMX <t< td=""><td>Endosulfan sulfate</td><td>ND</td><td>8.3</td><td>ug/Kg</td><td>2</td><td>09/05/19</td><td>AW</td><td>SW8081B</td></t<>	Endosulfan sulfate	ND	8.3	ug/Kg	2	09/05/19	AW	SW8081B
Lindini ND R3 ug/Kg 2 04/05/19 AW SW8081B Endrin ketone ND 8.3 ug/Kg 2 04/05/19 AW SW8081B g-BHC ND 1.7 ug/Kg 2 04/05/19 AW SW8081B Heptachlor ND 8.3 ug/Kg 2 04/05/19 AW SW8081B Heptachlor ND 8.3 ug/Kg 2 04/05/19 AW SW8081B Methoxychlor ND 4.1 ug/Kg 2 04/05/19 AW SW8081B GAOC Surrogates ND 170 ug/Kg 2 04/05/19 AW S0-150 % % DCBP SP % 2 09/05/19 AW 30-150 % % TCMX 54 % 2 09/05/19 AW 30-150 % % TCMX (Confirmation) 51 % 2 09/05/19 AW 30-150 % Acenaphthylene ND 290 ug/Kg </td <td>Endrin</td> <td>ND</td> <td>8.3</td> <td>ug/Kg</td> <td>2</td> <td>09/05/19</td> <td>AW</td> <td>SW8081B</td>	Endrin	ND	8.3	ug/Kg	2	09/05/19	AW	SW8081B
Link inductive ND 8.3 ug/Kg 2 09/05/19 AW SW8081B g-BHC ND 1.7 ug/Kg 2 09/05/19 AW SW8081B Heptachlor epoxide ND 8.3 ug/Kg 2 09/05/19 AW SW8081B Heptachlor epoxide ND 8.3 ug/Kg 2 09/05/19 AW SW8081B Toxaphene ND 4.1 ug/Kg 2 09/05/19 AW SW8081B GAQC Surrogates	Endrin aldebyde	ND	8.3	ug/Kg	2	09/05/19	AW	SW8081B
Lindin Kolono ND 1.7 ug/Kg 2 09/05/19 AW SW8081B Heptachlor ND 8.3 ug/Kg 2 09/05/19 AW SW8081B Heptachlor epoxide ND 8.3 ug/Kg 2 09/05/19 AW SW8081B Methoxychlor ND 41 ug/Kg 2 09/05/19 AW SW8081B Toxaphene ND 170 ug/Kg 2 09/05/19 AW SW8081B GAOC Surrogates	Endrin ketone	ND	8.3	ug/Kg	2	09/05/19	AW	SW8081B
g b 10 ND ND <th< td=""><td>a-BHC</td><td>ND</td><td>17</td><td>ug/Ka</td><td>2</td><td>09/05/19</td><td>AW</td><td>SW8081B</td></th<>	a-BHC	ND	17	ug/Ka	2	09/05/19	AW	SW8081B
Inclusion Inclusion <thinclusion< th=""> <thinclusion< th=""> <thi< td=""><td>Hentachlor</td><td>ND</td><td>8.3</td><td>ug/Kg</td><td>2</td><td>09/05/19</td><td>AW</td><td>SW8081B</td></thi<></thinclusion<></thinclusion<>	Hentachlor	ND	8.3	ug/Kg	2	09/05/19	AW	SW8081B
Inclusion operation Inc. Inc. <thinc.< th=""> Inc. <thinc.< th=""> Inc. Inc.<td>Hentachlor epoxide</td><td>ND</td><td>8.3</td><td>ug/Kg</td><td>2</td><td>09/05/19</td><td>AW</td><td>SW8081B</td></thinc.<></thinc.<>	Hentachlor epoxide	ND	8.3	ug/Kg	2	09/05/19	AW	SW8081B
Mach of Volume ND 170 ug/Kg 2 050516 NW SW8051B OXACC Surrogates V V 2 09/05/19 AW SW8051B OLDEP (Confirmation) 53 % 2 09/05/19 AW 30 - 150 % % DCBP (Confirmation) 53 % 2 09/05/19 AW 30 - 150 % % TCMX (Confirmation) 51 % 2 09/05/19 AW 30 - 150 % Accnaphthalene ND 290 ug/Kg 1 09/05/19 AW 30 - 150 % Accnaphthene ND 290 ug/Kg 1 09/05/19 AW SW8270D Accanaphthene ND 290 ug/Kg 1 09/05/19 WB SW8270D Accnaphthene ND 290 ug/Kg 1 09/05/19 WB SW8270D Accnaphthene ND 290 ug/Kg 1 09/05/19 WB SW8270D Accnaphthene ND <th< td=""><td>Methoxychlor</td><td>ND</td><td>41</td><td>ug/Ka</td><td>2</td><td>09/05/19</td><td>AW</td><td>SW8081B</td></th<>	Methoxychlor	ND	41	ug/Ka	2	09/05/19	AW	SW8081B
DATE Description Description <thdescription< th=""> <thde< td=""><td>Toxaphene</td><td>ND</td><td>170</td><td>ug/Kg</td><td>2</td><td>09/05/19</td><td>AW</td><td>SW8081B</td></thde<></thdescription<>	Toxaphene	ND	170	ug/Kg	2	09/05/19	AW	SW8081B
Workson Spectral % 2 09/05/19 AW 30 - 150 % % DCBP (Confirmation) 53 % 2 09/05/19 AW 30 - 150 % % TCMX 54 % 2 09/05/19 AW 30 - 150 % % TCMX (Confirmation) 51 % 2 09/05/19 AW 30 - 150 % Polynuclear Aromatic HC % 2 09/05/19 AW 30 - 150 % 2-Methylnaphthalene ND 290 ug/Kg 1 09/05/19 WB SW8270D Acenaphthylene ND 290 ug/Kg 1 09/05/19 WB SW8270D Anthracene ND 290 ug/Kg 1 09/05/19 WB SW8270D Benz(a)pyrene ND 290 ug/Kg 1 09/05/19 WB SW8270D Benzo(b)fluoranthene ND 290 ug/Kg 1 09/05/19 WB SW8270D Benzo(a)pyrene ND 290	OA/OC Surrogates			~ <u>9</u> , 1.9	-			01100012
Bobb Bobb <th< td=""><td>% DCBP</td><td>59</td><td></td><td>%</td><td>2</td><td>09/05/19</td><td>AW</td><td>30 - 150 %</td></th<>	% DCBP	59		%	2	09/05/19	AW	30 - 150 %
% TCMX 54 % 2 09/05/19 AW 30 - 150 % % TCMX (Confirmation) 51 % 2 09/05/19 AW 30 - 150 % Polynuclear Aromatic HC V 2-Methylnaphthalene ND 290 ug/Kg 1 09/05/19 WB SW8270D Acenaphthene ND 290 ug/Kg 1 09/05/19 WB SW8270D Acenaphthene ND 290 ug/Kg 1 09/05/19 WB SW8270D Acenaphthylene ND 290 ug/Kg 1 09/05/19 WB SW8270D Anthracene ND 290 ug/Kg 1 09/05/19 WB SW8270D Benz(a)anthracene ND 290 ug/Kg 1 09/05/19 WB SW8270D Benzo(ghi)perylene ND 290 ug/Kg 1 09/05/19 WB SW8270D Benzo(ghi)perylene ND 290 ug/Kg 1 09/05/19 WB	% DCBP (Confirmation)	53		%	2	09/05/19	AW	30 - 150 %
% TCMX (Confirmation) 51 % 2 09/05/19 AW 30 - 150 % Polynuclear Aromatic HC 2 2-Methylnaphthalene ND 290 ug/Kg 1 09/05/19 WB SW8270D Acenaphthene ND 290 ug/Kg 1 09/05/19 WB SW8270D Acenaphthylene ND 290 ug/Kg 1 09/05/19 WB SW8270D Actenaphthylene ND 290 ug/Kg 1 09/05/19 WB SW8270D Anthracene ND 290 ug/Kg 1 09/05/19 WB SW8270D Benz(a)anthracene ND 290 ug/Kg 1 09/05/19 WB SW8270D Benzo(ghi)perylene ND 290 ug/Kg 1 09/05/19 WB SW8270D Benzo(ghi)perylene ND 290 ug/Kg 1 09/05/19 WB SW8270D Benzo(k)fluoranthene ND 290 ug/Kg 1 0	% TCMX	54		%	2	09/05/19	AW	30 - 150 %
Polynuclear Aromatic HC 2-Methylnaphthalene ND 290 ug/Kg 1 09/05/19 WB SW8270D Acenaphthene ND 290 ug/Kg 1 09/05/19 WB SW8270D Acenaphthene ND 290 ug/Kg 1 09/05/19 WB SW8270D Acenaphthylene ND 290 ug/Kg 1 09/05/19 WB SW8270D Anthracene ND 290 ug/Kg 1 09/05/19 WB SW8270D Benzo(a)anthracene ND 290 ug/Kg 1 09/05/19 WB SW8270D Benzo(a)pyrene ND 290 ug/Kg 1 09/05/19 WB SW8270D Benzo(ghi)perylene ND 290 ug/Kg 1 09/05/19 WB SW8270D Chrysene ND 290 ug/Kg 1 09/05/19 WB SW8270D Dibenz(a,h)anthracene ND 290 ug/Kg 1 <	% TCMX (Confirmation)	51		%	2	09/05/19	AW	30 - 150 %
Point Creat Arron ratio 2-Methylnaphthalene ND 290 ug/Kg 1 09/05/19 WB SW8270D Acenaphthene ND 290 ug/Kg 1 09/05/19 WB SW8270D Acenaphthylene ND 290 ug/Kg 1 09/05/19 WB SW8270D Anthracene ND 290 ug/Kg 1 09/05/19 WB SW8270D Benz(a)anthracene ND 290 ug/Kg 1 09/05/19 WB SW8270D Benzo(a)pyrene ND 290 ug/Kg 1 09/05/19 WB SW8270D Benzo(b)fluoranthene ND 290 ug/Kg 1 09/05/19 WB SW8270D Benzo(k)fluoranthene ND 290 ug/Kg 1 09/05/19 WB SW8270D Chrysene ND 290 ug/Kg 1 09/05/19 WB SW8270D Dibenz(a,h)anthracene ND 290 ug/Kg	Polynuclear Aromatic L							
Z-IntertryIntaplintabilitie ND 290 ug/Kg 1 09/05/19 WB SW8270D Acenaphthene ND 290 ug/Kg 1 09/05/19 WB SW8270D Acenaphthylene ND 290 ug/Kg 1 09/05/19 WB SW8270D Anthracene ND 290 ug/Kg 1 09/05/19 WB SW8270D Benz(a)anthracene ND 290 ug/Kg 1 09/05/19 WB SW8270D Benzo(a)pyrene ND 290 ug/Kg 1 09/05/19 WB SW8270D Benzo(b)fluoranthene ND 290 ug/Kg 1 09/05/19 WB SW8270D Benzo(k)fluoranthene ND 290 ug/Kg 1 09/05/19 WB SW8270D Chrysene ND 290 ug/Kg 1 09/05/19 WB SW8270D Dibenz(a,h)anthracene ND 290 ug/Kg 1 09/05/19 WB	2 Methylpenethologo		200	ua/Ka	1	00/05/10	\//D	SW(9270D
Accenaphthene ND 290 ug/kg 1 09/05/19 WB SW8270D Acenaphthylene ND 290 ug/kg 1 09/05/19 WB SW8270D Anthracene ND 290 ug/kg 1 09/05/19 WB SW8270D Benz(a)anthracene ND 290 ug/kg 1 09/05/19 WB SW8270D Benzo(a)pyrene ND 290 ug/kg 1 09/05/19 WB SW8270D Benzo(b)fluoranthene ND 290 ug/kg 1 09/05/19 WB SW8270D Benzo(ghi)perylene ND 290 ug/kg 1 09/05/19 WB SW8270D Benzo(k)fluoranthene ND 290 ug/kg 1 09/05/19 WB SW8270D Chrysene ND 290 ug/kg 1 09/05/19 WB SW8270D Dibenz(a,h)anthracene ND 290 ug/kg 1 09/05/19 WB SW			290	ug/Kg	1	09/05/19		SW0270D
Actimaphilitylene ND 290 ug/Kg 1 09/05/19 WB SW8270D Anthracene ND 290 ug/Kg 1 09/05/19 WB SW8270D Benz(a)anthracene ND 290 ug/Kg 1 09/05/19 WB SW8270D Benzo(a)pyrene ND 290 ug/Kg 1 09/05/19 WB SW8270D Benzo(b)fluoranthene ND 290 ug/Kg 1 09/05/19 WB SW8270D Benzo(ghi)perylene ND 290 ug/Kg 1 09/05/19 WB SW8270D Benzo(k)fluoranthene ND 290 ug/Kg 1 09/05/19 WB SW8270D Chrysene ND 290 ug/Kg 1 09/05/19 WB SW8270D Dibenz(a,h)anthracene ND 290 ug/Kg 1 09/05/19 WB SW8270D Fluorene ND 290 ug/Kg 1 09/05/19 WB SW82	Acenaphthylana		290	ug/Kg	1	09/05/19		SW0270D
AntimaceneND290ug/Kg109/05/19WBSW8270DBenz(a)anthraceneND290ug/Kg109/05/19WBSW8270DBenzo(a)pyreneND290ug/Kg109/05/19WBSW8270DBenzo(b)fluorantheneND290ug/Kg109/05/19WBSW8270DBenzo(ghi)peryleneND290ug/Kg109/05/19WBSW8270DBenzo(k)fluorantheneND290ug/Kg109/05/19WBSW8270DChryseneND290ug/Kg109/05/19WBSW8270DDibenz(a,h)anthraceneND290ug/Kg109/05/19WBSW8270DFluoreneND290ug/Kg109/05/19WBSW8270DIndeno(1,2,3-cd)pyreneND290ug/Kg109/05/19WBSW8270DNaphthaleneND290ug/Kg109/05/19WBSW8270DPhenanthreneND290ug/Kg109/05/19WBSW8270DNp290ug/Kg109/05/19WBSW8270DND290ug/Kg109/05/19WBSW8270DND290ug/Kg109/05/19WBSW8270DNp290ug/Kg109/05/19WBSW8270DND290ug/Kg109/05/19WBSW8270DND290ug/Kg1 <td>Acteriaphilipiene</td> <td></td> <td>290</td> <td>ug/Kg</td> <td>1</td> <td>09/05/19</td> <td></td> <td>SW0270D</td>	Acteriaphilipiene		290	ug/Kg	1	09/05/19		SW0270D
Benz(a)antimatene ND 230 ug/kg 1 05/05/19 WB SW0270D Benzo(a)pyrene ND 290 ug/Kg 1 09/05/19 WB SW0270D Benzo(b)fluoranthene ND 290 ug/Kg 1 09/05/19 WB SW8270D Benzo(ghi)perylene ND 290 ug/Kg 1 09/05/19 WB SW8270D Benzo(k)fluoranthene ND 290 ug/Kg 1 09/05/19 WB SW8270D Chrysene ND 290 ug/Kg 1 09/05/19 WB SW8270D Dibenz(a,h)anthracene ND 290 ug/Kg 1 09/05/19 WB SW8270D Fluoranthene ND 290 ug/Kg 1 09/05/19 WB SW8270D Fluorene ND 290 ug/Kg 1 09/05/19 WB SW8270D Indeno(1,2,3-cd)pyrene ND 290 ug/Kg 1 09/05/19 WB <	Antinacene		290	ug/Kg	1	09/05/19		SW0270D
Benzo(a)pyreneND290ug/Kg109/05/19WBSW8270DBenzo(b)fluorantheneND290ug/Kg109/05/19WBSW8270DBenzo(k)fluorantheneND290ug/Kg109/05/19WBSW8270DChryseneND290ug/Kg109/05/19WBSW8270DDibenz(a,h)anthraceneND290ug/Kg109/05/19WBSW8270DFluorantheneND290ug/Kg109/05/19WBSW8270DFluoreneND290ug/Kg109/05/19WBSW8270DFluoreneND290ug/Kg109/05/19WBSW8270DFluoreneND290ug/Kg109/05/19WBSW8270DNaphthaleneND290ug/Kg109/05/19WBSW8270DPhenanthreneND290ug/Kg109/05/19WBSW8270DPyreneND290ug/Kg109/05/19WBSW8270D			290	ug/Kg	1	09/05/19		SW0270D
Benzo(b)Indofantinene ND 230 ug/Kg 1 09/05/19 WB SW8270D Benzo(ghi)perylene ND 290 ug/Kg 1 09/05/19 WB SW8270D Benzo(k)fluoranthene ND 290 ug/Kg 1 09/05/19 WB SW8270D Chrysene ND 290 ug/Kg 1 09/05/19 WB SW8270D Dibenz(a,h)anthracene ND 290 ug/Kg 1 09/05/19 WB SW8270D Fluoranthene ND 290 ug/Kg 1 09/05/19 WB SW8270D Fluorene ND 290 ug/Kg 1 09/05/19 WB SW8270D Indeno(1,2,3-cd)pyrene ND 290 ug/Kg 1 09/05/19 WB SW8270D Naphthalene ND 290 ug/Kg 1 09/05/19 WB SW8270D Phenanthrene ND 290 ug/Kg 1 09/05/19 WB SW82	Benzo(a)pyrene		290	ug/Kg	1	09/05/19		SW0270D
Benzol(gin)peryene ND 230 ug/Kg 1 09/05/19 WB SW0270D Benzo(k)fluoranthene ND 290 ug/Kg 1 09/05/19 WB SW0270D Chrysene ND 290 ug/Kg 1 09/05/19 WB SW8270D Dibenz(a,h)anthracene ND 290 ug/Kg 1 09/05/19 WB SW8270D Fluoranthene ND 290 ug/Kg 1 09/05/19 WB SW8270D Fluorene ND 290 ug/Kg 1 09/05/19 WB SW8270D Indeno(1,2,3-cd)pyrene ND 290 ug/Kg 1 09/05/19 WB SW8270D Naphthalene ND 290 ug/Kg 1 09/05/19 WB SW8270D Phenanthrene ND 290 ug/Kg 1 09/05/19 WB SW8270D Pyrene ND 290 ug/Kg 1 09/05/19 WB SW8270D </td <td>Benzo(db)huoranthene</td> <td>ND</td> <td>290</td> <td>ug/Kg</td> <td>1</td> <td>09/05/19</td> <td>WB</td> <td>SW(8270D</td>	Benzo(db)huoranthene	ND	290	ug/Kg	1	09/05/19	WB	SW(8270D
Benzo(k)Indofantinene ND 230 ug/Kg 1 09/05/19 WB SW8270D Chrysene ND 290 ug/Kg 1 09/05/19 WB SW8270D Dibenz(a,h)anthracene ND 290 ug/Kg 1 09/05/19 WB SW8270D Fluoranthene ND 290 ug/Kg 1 09/05/19 WB SW8270D Fluorene ND 290 ug/Kg 1 09/05/19 WB SW8270D Indeno(1,2,3-cd)pyrene ND 290 ug/Kg 1 09/05/19 WB SW8270D Naphthalene ND 290 ug/Kg 1 09/05/19 WB SW8270D Phenanthrene ND 290 ug/Kg 1 09/05/19 WB SW8270D Pyrene ND 290 ug/Kg 1 09/05/19 WB SW8270D	Benzo(gni)perylene		290	ug/Kg	1	09/05/19		SW0270D
Onlysene ND 230 ug/Kg 1 09/05/19 WB SW8270D Dibenz(a,h)anthracene ND 290 ug/Kg 1 09/05/19 WB SW8270D Fluoranthene ND 290 ug/Kg 1 09/05/19 WB SW8270D Fluorene ND 290 ug/Kg 1 09/05/19 WB SW8270D Indeno(1,2,3-cd)pyrene ND 290 ug/Kg 1 09/05/19 WB SW8270D Naphthalene ND 290 ug/Kg 1 09/05/19 WB SW8270D Phenanthrene ND 290 ug/Kg 1 09/05/19 WB SW8270D Pyrene ND 290 ug/Kg 1 09/05/19 WB SW8270D	Chrycopp		290	ug/Kg	1	09/05/19		SW0270D
Dibenz(a,n)antifiadene ND 230 ug/Kg 1 09/05/19 WB SW8270D Fluoranthene ND 290 ug/Kg 1 09/05/19 WB SW8270D Fluorene ND 290 ug/Kg 1 09/05/19 WB SW8270D Indeno(1,2,3-cd)pyrene ND 290 ug/Kg 1 09/05/19 WB SW8270D Naphthalene ND 290 ug/Kg 1 09/05/19 WB SW8270D Phenanthrene ND 290 ug/Kg 1 09/05/19 WB SW8270D Pyrene ND 290 ug/Kg 1 09/05/19 WB SW8270D			290	ug/Kg	1	09/05/19		SW0270D
ND 290 ug/Kg 1 09/05/19 WB SW8270D Indeno(1,2,3-cd)pyrene ND 290 ug/Kg 1 09/05/19 WB SW8270D Naphthalene ND 290 ug/Kg 1 09/05/19 WB SW8270D Phenanthrene ND 290 ug/Kg 1 09/05/19 WB SW8270D Pyrene ND 290 ug/Kg 1 09/05/19 WB SW8270D			200	ug/rtg	1	09/05/19	W/R	SW(8270D
ND 290 ug/Kg 1 09/05/19 WB SW8270D Indeno(1,2,3-cd)pyrene ND 290 ug/Kg 1 09/05/19 WB SW8270D Naphthalene ND 290 ug/Kg 1 09/05/19 WB SW8270D Phenanthrene ND 290 ug/Kg 1 09/05/19 WB SW8270D Pyrene ND 290 ug/Kg 1 09/05/19 WB SW8270D	Fluorana		200	uy/ry	1	09/05/19		SW(8270D
Naphthalene ND 290 ug/Kg 1 09/05/19 WB SW8270D Phenanthrene ND 290 ug/Kg 1 09/05/19 WB SW8270D Pyrene ND 290 ug/Kg 1 09/05/19 WB SW8270D Pyrene ND 290 ug/Kg 1 09/05/19 WB SW8270D			200	ug/rtg	1	09/05/19	W/R	SW(8270D
Naprilialene ND 290 ug/Kg 1 09/05/19 WB SW8270D Phenanthrene ND 290 ug/Kg 1 09/05/19 WB SW8270D Pyrene ND 290 ug/Kg 1 09/05/19 WB SW8270D	Nanhthalana		200	uy/ry	1	09/05/19		SW(8270D
Princhammene ND 290 ug/Kg 1 09/05/19 WB SW62/0D Pyrene ND 290 ug/Kg 1 09/05/19 WB SW8270D	Dhananthrana		200	ug/rtg	1	09/05/19	W/R	SW(8270D
Fyrene ND 200 ug/rg i 00/00/10 ND 30/02/0D			200	ug/rtg	1	09/05/19	W/R	SW(8270D
QA/QC Surrogates	QA/QC Surrogates		200	49/149		00,00,10		

Project ID: 150439023 BURR ELEM SCHOOL Client ID: BES S102 (2.5-2.75`)

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
% 2-Fluorobiphenyl	49		%	1	09/05/19	WB	30 - 130 %
% Nitrobenzene-d5	55		%	1	09/05/19	WB	30 - 130 %
% Terphenyl-d14	50		%	1	09/05/19	WB	30 - 130 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director September 06, 2019 Reviewed and Released by: Greg Lawrence, Assistant Lab Director

Analysis Report

Project ID: Client ID:

FOR: Attn: Mr. James Olsen Tighe & Bond 213 Court St, Suite 1100 Middletown, CT 06457

September 06, 2019

150439023 BURR ELEM SCHOOL

BES S103 (1.5-2`)

Sample Informa	ation	Custody Inform	nation	Date	<u>Time</u>
Matrix:	SOIL	Collected by:		09/04/19	12:45
Location Code:	TIGHE-DAS	Received by:	В	09/04/19	15:16
Rush Request:	24 Hour	Analyzed by:	see "By" below		
P.O.#:					000074

Laboratory Data

SDG ID: GCD97460 Phoenix ID: CD97463

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference
Arsenic	4.17	0.74	mg/Kg	1	09/05/19	EK	SW6010D
Lead	10.9	0.37	mg/Kg	1	09/05/19	EK	SW6010D
Percent Solid	80		%		09/04/19	VT	SW846-%Solid
Soil Extraction for Pesticide	Completed				09/04/19	MM/UV	SW3545A
Soil Extraction SVOA PAH	Completed				09/04/19	NT/LV	SW3545A
Extraction of CT ETPH	Completed				09/04/19	GG/LL	SW3545A
Extraction for PCB	Completed				09/04/19	QQ/VT/S	BSW3540C
Total Metals Digest	Completed				09/04/19	JJ/AG	SW3050B
TPH by GC (Extractable	Products)					
Ext. Petroleum H.C. (C9-C36)	ND	61	mg/Kg	1	09/05/19	JRB	CTETPH 8015D
Identification	ND		mg/Kg	1	09/05/19	JRB	CTETPH 8015D
QA/QC Surrogates							
% n-Pentacosane	73		%	1	09/05/19	JRB	50 - 150 %
PCB (Soxhlet SW3540C	:)						
PCB-1016	ND	410	ug/Kg	10	09/05/19	SC	SW8082A
PCB-1221	ND	410	ug/Kg	10	09/05/19	SC	SW8082A
PCB-1232	ND	410	ug/Kg	10	09/05/19	SC	SW8082A
PCB-1242	ND	410	ug/Kg	10	09/05/19	SC	SW8082A
PCB-1248	ND	410	ug/Kg	10	09/05/19	SC	SW8082A
PCB-1254	ND	410	ug/Kg	10	09/05/19	SC	SW8082A
PCB-1260	ND	410	ug/Kg	10	09/05/19	SC	SW8082A
PCB-1262	ND	410	ug/Kg	10	09/05/19	SC	SW8082A
PCB-1268	ND	410	ug/Kg	10	09/05/19	SC	SW8082A
QA/QC Surrogates							
% DCBP	81		%	10	09/05/19	SC	30 - 150 %
% DCBP (Confirmation)	71		%	10	09/05/19	SC	30 - 150 %

Project ID: 150439023 BURR ELEM SCHOOL Client ID: BES S103 (1.5-2`)

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
% TCMX	73		%	10	09/05/19	SC	30 - 150 %
% TCMX (Confirmation)	72		%	10	09/05/19	SC	30 - 150 %
,							
Pesticides							
4,4' -DDD	ND	1.7	ug/Kg	2	09/05/19	AW	SW8081B
4,4' -DDE	ND	1.7	ug/Kg	2	09/05/19	AW	SW8081B
4,4' -DDT	ND	1.7	ug/Kg	2	09/05/19	AW	SW8081B
a-BHC	ND	1.7	ug/Kg	2	09/05/19	AW	SW8081B
Alachlor	ND	8.3	ug/Kg	2	09/05/19	AW	SW8081B
Aldrin	ND	1.7	ug/Kg	2	09/05/19	AW	SW8081B
b-BHC	ND	1.7	ug/Kg	2	09/05/19	AW	SW8081B
Chlordane	ND	41	ug/Kg	2	09/05/19	AW	SW8081B
d-BHC	ND	1.7	ug/Kg	2	09/05/19	AW	SW8081B
Dieldrin	ND	4.1	ug/Kg	2	09/05/19	AW	SW8081B
Endosulfan I	ND	8.3	ug/Kg	2	09/05/19	AW	SW8081B
Endosulfan II	ND	8.3	ug/Kg	2	09/05/19	AW	SW8081B
Endosulfan sulfate	ND	8.3	ug/Kg	2	09/05/19	AW	SW8081B
Endrin	ND	8.3	ug/Kg	2	09/05/19	AW	SW8081B
Endrin aldehyde	ND	8.3	ug/Kg	2	09/05/19	AW	SW8081B
Endrin ketone	ND	8.3	ug/Kg	2	09/05/19	AW	SW8081B
g-BHC	ND	1.7	ug/Kg	2	09/05/19	AW	SW8081B
Heptachlor	ND	8.3	ug/Kg	2	09/05/19	AW	SW8081B
Heptachlor epoxide	ND	8.3	ug/Kg	2	09/05/19	AW	SW8081B
Methoxychlor	ND	41	ug/Kg	2	09/05/19	AW	SW8081B
Toxaphene	ND	170	ug/Kg	2	09/05/19	AW	SW8081B
QA/QC Surrogates							
% DCBP	77		%	2	09/05/19	AW	30 - 150 %
% DCBP (Confirmation)	69		%	2	09/05/19	AW	30 - 150 %
% TCMX	69		%	2	09/05/19	AW	30 - 150 %
% TCMX (Confirmation)	66		%	2	09/05/19	AW	30 - 150 %
Polynuclear Aromatic	<u>: HC</u>						
2-Methylnaphthalene	ND	290	ug/Kg	1	09/05/19	WB	SW8270D
Acenaphthene	ND	290	ug/Kg	1	09/05/19	WB	SW8270D
Acenaphthylene	ND	290	ug/Kg	1	09/05/19	WB	SW8270D
Anthracene	ND	290	ug/Kg	1	09/05/19	WB	SW8270D
Benz(a)anthracene	ND	290	ug/Kg	1	09/05/19	WB	SW8270D
Benzo(a)pyrene	ND	290	ug/Kg	1	09/05/19	WB	SW8270D
Benzo(b)fluoranthene	ND	290	ug/Kg	1	09/05/19	WB	SW8270D
Benzo(ghi)perylene	ND	290	ug/Kg	1	09/05/19	WB	SW8270D
Benzo(k)fluoranthene	ND	290	ug/Kg	1	09/05/19	WB	SW8270D
Chrysene	ND	290	ug/Kg	1	09/05/19	WB	SW8270D
Dibenz(a,h)anthracene	ND	290	ug/Kg	1	09/05/19	WB	SW8270D
Fluoranthene	ND	290	ug/Kg	1	09/05/19	WB	SW8270D
Fluorene	ND	290	ug/Kg	1	09/05/19	WB	SW8270D
Indeno(1,2,3-cd)pyrene	ND	290	ug/Kg	1	09/05/19	WB	SW8270D
Naphthalene	ND	290	ug/Kg	1	09/05/19	WB	SW8270D
Phenanthrene	ND	290	ug/Kg	1	09/05/19	WB	SW8270D
Pyrene	ND	290	ug/Kg	1	09/05/19	WB	SW8270D
QA/QC Surrogates							

Project ID: 150439023 BURR ELEM SCHOOL Client ID: BES S103 (1.5-2`)

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
% 2-Fluorobiphenyl	48		%	1	09/05/19	WB	30 - 130 %
% Nitrobenzene-d5	42		%	1	09/05/19	WB	30 - 130 %
% Terphenyl-d14	52		%	1	09/05/19	WB	30 - 130 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director September 06, 2019 Reviewed and Released by: Greg Lawrence, Assistant Lab Director

Analysis Report

Project ID:

FOR: Attn: Mr. James Olsen Tighe & Bond 213 Court St, Suite 1100 Middletown, CT 06457

September 06, 2019

150439023 BURR ELEM SCHOOL

Sample Information **Custody Information** Date Time Collected by: 09/04/19 Matrix: SOIL 13:00 Received by: Location Code: **TIGHE-DAS** В 09/04/19 15:16 Rush Request: 24 Hour Analyzed by: see "By" below P.O.#:

Laboratory Data

SDG ID: GCD97460 Phoenix ID: CD97464

Client ID: BES S104 (?	1.5-1.75`)						
Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Arsenic	4.09	0.76	mg/Kg	1	09/05/19	EK	SW6010D
Lead	12.8	0.38	mg/Kg	1	09/05/19	EK	SW6010D
Percent Solid	77		%		09/04/19	VT	SW846-%Solid
Soil Extraction for Pesticide	Completed				09/04/19	MM/U∨	′ SW3545A
Soil Extraction SVOA PAH	Completed				09/04/19	NT/LV	SW3545A
Extraction of CT ETPH	Completed				09/04/19	GG/LL	SW3545A
Extraction for PCB	Completed				09/04/19	QQ/VT/S	BSW3540C
Total Metals Digest	Completed				09/04/19	JJ/AG	SW3050B
TPH by GC (Extractable	e Product	<u>s)</u>					
Ext. Petroleum H.C. (C9-C36)	ND	63	mg/Kg	1	09/05/19	JRB	CTETPH 8015D
Identification	ND		mg/Kg	1	09/05/19	JRB	CTETPH 8015D
QA/QC Surrogates							
% n-Pentacosane	71		%	1	09/05/19	JRB	50 - 150 %
PCB (Soxhlet SW35400	<u>C)</u>						
PCB-1016	ND	420	ug/Kg	10	09/05/19	SC	SW8082A
PCB-1221	ND	420	ug/Kg	10	09/05/19	SC	SW8082A
PCB-1232	ND	420	ug/Kg	10	09/05/19	SC	SW8082A
PCB-1242	ND	420	ug/Kg	10	09/05/19	SC	SW8082A
PCB-1248	ND	420	ug/Kg	10	09/05/19	SC	SW8082A
PCB-1254	ND	420	ug/Kg	10	09/05/19	SC	SW8082A
PCB-1260	ND	420	ug/Kg	10	09/05/19	SC	SW8082A
PCB-1262	ND	420	ug/Kg	10	09/05/19	SC	SW8082A
PCB-1268	ND	420	ug/Kg	10	09/05/19	SC	SW8082A
QA/QC Surrogates							
% DCBP	72		%	10	09/05/19	SC	30 - 150 %
% DCBP (Confirmation)	77		%	10	09/05/19	SC	30 - 150 %

Project ID: 150439023 BURR ELEM SCHOOL Client ID: BES S104 (1.5-1.75`)

Parameter	Result	RL/ POI	Units	Dilution	Date/Time	Bv	Reference
	74		0/	40	00/05/40	2,	
% TCMX	71		%	10	09/05/19	50	30 - 150 %
% TCMX (Confirmation)	70		70	10	09/05/19	30	30 - 150 %
Pesticides							
4.4' -DDD	ND	1.7	ug/Kg	2	09/05/19	AW	SW8081B
4.4' -DDE	ND	1.7	ug/Kg	2	09/05/19	AW	SW8081B
4.4' -DDT	ND	1.7	ug/Kg	2	09/05/19	AW	SW8081B
a-BHC	ND	1.7	ug/Kg	2	09/05/19	AW	SW8081B
Alachlor	ND	8.6	ug/Kg	2	09/05/19	AW	SW8081B
Aldrin	ND	1.7	ug/Kg	2	09/05/19	AW	SW8081B
b-BHC	ND	1.7	ug/Kg	2	09/05/19	AW	SW8081B
Chlordane	ND	43	ug/Kg	2	09/05/19	AW	SW8081B
d-BHC	ND	1.7	ug/Kg	2	09/05/19	AW	SW8081B
Dieldrin	ND	4.3	ug/Kg	2	09/05/19	AW	SW8081B
Endosulfan I	ND	8.6	ug/Kg	2	09/05/19	AW	SW8081B
Endosulfan II	ND	8.6	ug/Kg	2	09/05/19	AW	SW8081B
Endosulfan sulfate	ND	8.6	ua/Ka	2	09/05/19	AW	SW8081B
Endrin	ND	8.6	ug/Kg	2	09/05/19	AW	SW8081B
Endrin aldehvde	ND	8.6	ug/Kg	2	09/05/19	AW	SW8081B
Endrin ketone	ND	8.6	ug/Kg	2	09/05/19	AW	SW8081B
a-BHC	ND	1.7	ua/Ka	2	09/05/19	AW	SW8081B
Heptachlor	ND	8.6	ug/Kg	2	09/05/19	AW	SW8081B
Heptachlor epoxide	ND	8.6	ug/Kg	2	09/05/19	AW	SW8081B
Methoxychlor	ND	43	ua/Ka	2	09/05/19	AW	SW8081B
Toxaphene	ND	170	ug/Kg	2	09/05/19	AW	SW8081B
QA/QC Surrogates		-	- 5- 5				
% DCBP	58		%	2	09/05/19	AW	30 - 150 %
% DCBP (Confirmation)	54		%	2	09/05/19	AW	30 - 150 %
% TCMX	53		%	2	09/05/19	AW	30 - 150 %
% TCMX (Confirmation)	52		%	2	09/05/19	AW	30 - 150 %
_							
Polynuclear Aromatic	<u>HC</u>			_			
2-Methylnaphthalene	ND	300	ug/Kg	1	09/05/19	WB	SW8270D
Acenaphthene	ND	300	ug/Kg	1	09/05/19	WB	SW8270D
Acenaphthylene	ND	300	ug/Kg	1	09/05/19	WB	SW8270D
Anthracene	ND	300	ug/Kg	1	09/05/19	WB	SW8270D
Benz(a)anthracene	ND	300	ug/Kg	1	09/05/19	WB	SW8270D
Benzo(a)pyrene	ND	300	ug/Kg	1	09/05/19	WB	SW8270D
Benzo(b)fluoranthene	ND	300	ug/Kg	1	09/05/19	WB	SW8270D
Benzo(ghi)perylene	ND	300	ug/Kg	1	09/05/19	WB	SW8270D
Benzo(k)fluoranthene	ND	300	ug/Kg	1	09/05/19	WB	SW8270D
Chrysene	ND	300	ug/Kg	1	09/05/19	WB	SW8270D
Dibenz(a,h)anthracene	ND	300	ug/Kg	1	09/05/19	WB	SW8270D
Fluoranthene	ND	300	ug/Kg	1	09/05/19	WB	SW8270D
Fluorene	ND	300	ug/Kg	1	09/05/19	WB	SW8270D
Indeno(1,2,3-cd)pyrene	ND	300	ug/Kg	1	09/05/19	WB	SW8270D
Naphthalene	ND	300	ug/Kg	1	09/05/19	WB	SW8270D
Phenanthrene	ND	300	ug/Kg	1	09/05/19	WB	SW8270D
Pyrene	ND	300	ug/Kg	1	09/05/19	WB	SW8270D
QA/QC Surrogates							

Project ID: 150439023 BURR ELEM SCHOOL Client ID: BES S104 (1.5-1.75`)

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference	
% 2-Fluorobiphenyl	54		%	1	09/05/19	WB	30 - 130 %	
% Nitrobenzene-d5	51		%	1	09/05/19	WB	30 - 130 %	
% Terphenyl-d14	65		%	1	09/05/19	WB	30 - 130 %	

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director September 06, 2019 Reviewed and Released by: Greg Lawrence, Assistant Lab Director

QA/QC Report

September 06, 2019

QA/QC Data

SDG I.D.: GCD97460

Parameter	Blank	Blk RL	Sample Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
QA/QC Batch 495216 (mg/kg), C ICP Metals - Soil	2C Sam	ple No:	CD9716 ⁻	1 (CD97	460, C[097461	, CD974	162, CE	097463	, CD974	64)		
Arsenic	BRL	0.67	4.00	3.83	4.30	116	115	0.9	91.1			75 - 125	30
Lead	BRL	0.33	20.3	26.4	26.1	111	113	1.8	94.5			75 - 125	30

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

September 06, 2019

QA/QC Data

SDG I.D.: GCD97460

r

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
QA/QC Batch 495175 (mg/Kg), 0	2C Sam	ple No: CD97040 (CD97460, C	D97461	, CD974	462, CD	97463	. CD974	64)		
TPH by GC (Extractable P	roduc	ts) - Soil		, -	, .					
Ext. Petroleum H.C. (C9-C36)	ND	50	80	85	6.1	78	53	38.2	60 - 120	30
% n-Pentacosane	66	%	68	74	8.5	89	98	9.6	50 - 150	30
Comment:										
Additional surrogate criteria: LCS a normalized based on the alkane ca	cceptand libration.	ce range is 60-120% MS acceptanc	e range	50-150%	5. The ET	PH/DR	O LCS h	as beer	า	
QA/QC Batch 495224 (ug/Kg), C	C Sam	ple No: CD97107 10X (CD9746	0, CD9	7461, CI	D97462	, CD97	463, CE	097464	1)	
Polychlorinated Biphenyls	- Soil									
PCB-1016	ND	170	86	90	4.5	65	73	11.6	40 - 140	30
PCB-1221	ND	170							40 - 140	30
PCB-1232	ND	170							40 - 140	30
PCB-1242	ND	170							40 - 140	30
PCB-1248	ND	170							40 - 140	30
PCB-1254	ND	170							40 - 140	30
PCB-1260	ND	170	85	104	20.1	75	88	16.0	40 - 140	30
PCB-1262	ND	170							40 - 140	30
PCB-1268	ND	170							40 - 140	30
% DCBP (Surrogate Rec)	95	%	88	109	21.3	77	89	14.5	30 - 150	30
% DCBP (Surrogate Rec) (Confirm	89	%	90	96	6.5	74	79	6.5	30 - 150	30
% TCMX (Surrogate Rec)	87	%	85	104	20.1	74	85	13.8	30 - 150	30
% TCMX (Surrogate Rec) (Confirm	89	%	88	99	11.8	73	83	12.8	30 - 150	30
QA/QC Batch 495173 (ug/Kg), C	C Sam	ple No: CD96871 2X (CD97460	, CD974	461, CD	97462,	CD974	63, CD9	97464)		
Pesticides - Soil										
4.4' -DDD	ND	1.7	84	91	8.0	78	83	6.2	40 - 140	30
4.4' -DDE	ND	1.7	77	84	8.7	71	76	6.8	40 - 140	30
4.4' -DDT	ND	1.7	79	84	6.1	73	77	5.3	40 - 140	30
a-BHC	ND	1.0	83	90	8.1	78	82	5.0	40 - 140	30
Alachlor	ND	3.3	NA	NA	NC	NA	NA	NC	40 - 140	30
Aldrin	ND	1.0	82	89	8.2	77	80	3.8	40 - 140	30
b-BHC	ND	1.0	112	117	4.4	105	121	14.2	40 - 140	30
Chlordane	ND	33	85	92	7.9	80	83	3.7	40 - 140	30
d-BHC	ND	3.3	82	90	9.3	77	80	3.8	40 - 140	30
Dieldrin	ND	1.0	87	94	7.7	81	85	4.8	40 - 140	30
Endosulfan I	ND	3.3	94	103	9.1	89	94	5.5	40 - 140	30
Endosulfan II	ND	3.3	97	103	6.0	89	95	6.5	40 - 140	30
Endosulfan sulfate	ND	3.3	100	106	5.8	92	99	7.3	40 - 140	30
Endrin	ND	3.3	78	83	6.2	71	74	4.1	40 - 140	30
Endrin aldehvde	ND	3.3	97	105	7.9	92	101	9.3	40 - 140	30
Endrin ketone	ND	3.3	101	108	6.7	93	101	8.2	40 - 140	30
a-BHC	ND	1.0	83	90	8.1	78	81	3.8	40 - 140	30
Heptachlor	ND	3.3	79	84	6.1	74	78	5.3	40 - 140	30
	-		-			•	-			

QA/QC Data

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
Heptachlor epoxide	ND	3.3	80	86	7.2	75	79	5.2	40 - 140	30	
Methoxychlor	ND	3.3	87	92	5.6	79	83	4.9	40 - 140	30	
Toxaphene	ND	130	NA	NA	NC	NA	NA	NC	40 - 140	30	
% DCBP	77	%	80	81	1.2	77	85	9.9	30 - 150	30	
% DCBP (Confirmation)	91	%	89	90	1.1	81	86	6.0	30 - 150	30	
% TCMX	79	%	81	93	13.8	77	83	7.5	30 - 150	30	
% TCMX (Confirmation)	75	%	74	77	4.0	68	72	5.7	30 - 150	30	
QA/QC Batch 495186 (ug/kg), C	2C Sam	ole No: CD97063 (CD97460	, CD97461	, CD974	62, CD9	97463,	CD974	64)			
Polynuclear Aromatic HC	- Soil										
2-Methylnaphthalene	ND	230	57	55	3.6	57	44	25.7	30 - 130	30	
Acenaphthene	ND	230	65	63	3.1	63	46	31.2	30 - 130	30	r
Acenaphthylene	ND	230	61	58	5.0	59	44	29.1	30 - 130	30	
Anthracene	ND	230	64	65	1.6	61	45	30.2	30 - 130	30	
Benz(a)anthracene	ND	230	67	70	4.4	65	49	28.1	30 - 130	30	
Benzo(a)pyrene	ND	230	73	74	1.4	67	49	31.0	30 - 130	30	r
Benzo(b)fluoranthene	ND	230	69	70	1.4	66	49	29.6	30 - 130	30	
Benzo(ghi)perylene	ND	230	63	60	4.9	57	43	28.0	30 - 130	30	
Benzo(k)fluoranthene	ND	230	70	70	0.0	62	47	27.5	30 - 130	30	
Chrysene	ND	230	62	64	3.2	61	45	30.2	30 - 130	30	
Dibenz(a,h)anthracene	ND	230	68	68	0.0	65	48	30.1	30 - 130	30	
Fluoranthene	ND	230	64	64	0.0	61	46	28.0	30 - 130	30	
Fluorene	ND	230	64	64	0.0	63	46	31.2	30 - 130	30	r
Indeno(1,2,3-cd)pyrene	ND	230	73	72	1.4	67	50	29.1	30 - 130	30	
Naphthalene	ND	230	56	52	7.4	56	44	24.0	30 - 130	30	
Phenanthrene	ND	230	64	64	0.0	62	45	31.8	30 - 130	30	r
Pyrene	ND	230	63	63	0.0	61	46	28.0	30 - 130	30	
% 2-Fluorobiphenyl	60	%	58	55	5.3	56	41	30.9	30 - 130	30	r
% Nitrobenzene-d5	59	%	57	56	1.8	60	45	28.6	30 - 130	30	
% Terphenyl-d14	57	%	54	56	3.6	53	39	30.4	30 - 130	30	

Comment:

Additional 8270 criteria: 20% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 15-110%, for soils 30-130%)

r = This parameter is outside laboratory RPD specified recovery limits.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director September 06, 2019

Friday, September 06, 2019 Criteria: CT: GAM, RC			Sample Criter	Sample Criteria Exceedances Report GCD97460 - TIGHE-DAS				
State:	CT	Phoonix Analyta	Critorio	Popult	+ DI	Critorio	RL	Analysis
Sampino	Acoue	FILOEIIIX Allalyte	Cillena	Result		Ciliena	Cillena	Units

*** No Data to Display ***

Phoenix Laboratories does not assume responsibility for the data contained in this exceedance report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

REASONABLE CONFIDENCE PROTOCOL LABORATORY ANALYSIS QA/QC CERTIFICATION FORM

Laboratory Name:	Phoenix Environmental Labs, Inc.	Client:	Tighe & I	Bond
Project Location:	150439023 BURR ELEM SCHOOL	Project N	umber:	
Laboratory Sample	ID (s): CD97460-CD97464	Sampling	g Date(s):	9/4/2019

List RCP Methods Used (e.g., 8260, 8270, et cetera) 6010, 8081, 8082, 8270, ETPH

1	For each analytical method referenced in this laboratory report package, were all specified QA/QC performance criteria followed, including the requirement to explain any criteria falling outside of acceptable guidelines, as specified in the CT DEP method-specific Reasonable Confidence Protocol documents?	✔ Yes □ No
1A	Were the method specified preservation and holding time requirements met?	✓ Yes □ No
1B	VPH and EPH methods only:Was the VPH or EPH method conducted withoutsignificant modifications (see section 11.3 of respective RCP methods)	□ Yes □ No ☑ NA
2	Were all samples received by the laboratory in a condition consistent with that described on the associated Chain-of-Custody document(s)?	✓ Yes □ No
3	Were samples received at an appropriate temperature (< 6 Degrees C)?	✓ Yes □ No □ NA
4	Were all QA/QC performance criteria specified in the CTDEP Reasonable Confidence Protocol documents achieved?	✓ Yes □ No
5	a) Were reporting limits specified or referenced on the chain-of-custody?	✓ Yes □ No
	b) Were these reporting limits met?	✓ Yes □ No
6	For each analytical method referenced in this laboratory report package, were results reported for all constituents identified in the method-specific analyte lists presented in the Reasonable Confidence Protocol documents?	🗌 Yes 🗹 No
7	Are project-specific matrix spikes and laboratory duplicates included in the data set?	🗆 Yes 🗹 No

Notes: For all questions to which the response was "No" (with the exception of question #7), additional information must be provided in an attached narrative. If the answer to question #1, #1A or 1B is "No", the data package does not meet the requirements for "Reasonable Confidence". This form may not be altered and all questions must be answered.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete.									
Authorized Signature:	Position: Assistant Lab Director								
Printed Name: Greg Lawrence	Date: Friday, September 06, 2019								
Name of Laboratory Phoenix Environmental Labs, Inc.									

This certification form is to be used for RCP methods only.

CTDEP RCP Laboratory Analysis QA/QC Certification Form - November 2007 Laboratory Quality Assurance and Quality Control Guidance Reasonable Confidence Protocols

RCP Certification Report

September 06, 2019

SDG I.D.: GCD97460

SDG Comments

Metals Analysis:

The client requested a shorter list of elements than the 6010 RCP list. Only Arsenic and Lead are reported as requested on the chain of custody.

8270 Semi-volatile Organics:

The client requested a short list for 8270 RCP Semivolatile. Only the PAH constituents are reported as requested on the chain-ofcustody.

ETPH Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument:

AU-FID1 09/04/19-1

Jeff Bucko, Chemist 09/04/19

Jeff Bucko, Chemist 09/04/19

CD97461

The initial calibration (ETPH808I) RSD for the compound list was less than 30% except for the following compounds: None. As per section 7.2.3, a discrimination check standard was run (904A003_1) and contained the following outliers: None. The continuing calibration %D for the compound list was less than 30% except for the following compounds: Samples: CD97461

Preceding CC 904A028 - Pentacosane 37%H (30%) Succeeding CC 904A034 - Pentacosane 36%H (30%)

AU-XL2 09/04/19-1

CD97460, CD97462, CD97463, CD97464

The initial calibration (ETPH715I) RSD for the compound list was less than 30% except for the following compounds: None. As per section 7.2.3, a discrimination check standard was run (904A003_1) and contained the following outliers: None. The continuing calibration %D for the compound list was less than 30% except for the following compounds:None.

QC (Batch Specific):

Batch 495175 (CD97040)

CD97460, CD97461, CD97462, CD97463, CD97464

All LCS recoveries were within 60 - 120 with the following exceptions: None.

All LCSD recoveries were within 60 - 120 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

Additional surrogate criteria: LCS acceptance range is 60-120% MS acceptance range 50-150%. The ETPH/DRO LCS has been normalized based on the alkane calibration.

ICP Metals Narration

Were all QA/QC performance criteria specified in the analytical method achieved? Yes.

Instrument:

ARCOS 09/04/19 08:35

Emily Kolominskaya, Chemist 09/04/19

CD97460, CD97461, CD97462, CD97463, CD97464

Additional criteria for CCV and ICSAB:

Sodium and Potassium are poor performing elements, the laboratory's in-house limits are 85-115% (CCV) and 70-130% (ICSAB). The linear range is defined daily by the calibration range.

The following Initial Calibration Verification (ICV) compounds did not meet criteria: None.

Certification Report

September 06, 2019

SDG I.D.: GCD97460

ICP Metals Narration

The following Continuing Calibration Verification (CCV) compounds did not meet criteria: None. The following ICP Interference Check (ICSAB) compounds did not meet criteria: None.

QC (Batch Specific):

Batch 495216 (CD97161)

CD97460, CD97461, CD97462, CD97463, CD97464

All LCS recoveries were within 75 - 125 with the following exceptions: None. All LCSD recoveries were within 75 - 125 with the following exceptions: None. All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

PCB Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument:

AU-ECD48 09/05/19-1

Saadia Chudary, Chemist 09/05/19

CD97460, CD97461

The initial calibration (PC828AI) RSD for the compound list was less than 20% except for the following compounds: None. The initial calibration (PC828BI) RSD for the compound list was less than 20% except for the following compounds: None. The continuing calibration %D for the compound list was less than 15% except for the following compounds:None.

AU-ECD6 09/05/19-1

Saadia Chudary, Chemist 09/05/19

CD97462, CD97463

The initial calibration (PC816AI) RSD for the compound list was less than 20% except for the following compounds: None. The initial calibration (PC816BI) RSD for the compound list was less than 20% except for the following compounds: None. The continuing calibration %D for the compound list was less than 15% except for the following compounds:None.

AU-ECD8 09/05/19-1

Saadia Chudary, Chemist 09/05/19

CD97464

The initial calibration (PC830AI) RSD for the compound list was less than 20% except for the following compounds: None. The initial calibration (PC830BI) RSD for the compound list was less than 20% except for the following compounds: None. The continuing calibration %D for the compound list was less than 15% except for the following compounds:None.

QC (Batch Specific):

Batch 495224 (CD97107)

CD97460, CD97461, CD97462, CD97463, CD97464

All LCS recoveries were within 40 - 140 with the following exceptions: None.

All LCSD recoveries were within 40 - 140 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

PEST Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument:

AU-ECD35 09/04/19-1

Adam Werner, Chemist 09/04/19

RCP Certification Report

September 06, 2019

SDG I.D.: GCD97460

PEST Narration

CD97462, CD97463, CD97464

The initial calibration (PS823AI) RSD for the compound list was less than 20% except for the following compounds: None. The initial calibration (PS823BI) RSD for the compound list was less than 20% except for the following compounds: None. The Endrin and DDT breakdown does not exceed 15% except for the following compounds:None.

The Endrin and DDT breakdown does not exceed the maximum of 20% except for the following compounds:None. The continuing calibration %D for the compound list was less than 20% except for the following compounds:

Samples: CD97462, CD97463, CD97464

Preceding CC 904A070 - Endrin aldehyde 26%H (20%)

Succeeding CC 904A094 - Methoxychlor -21%L (20%)

A low "1A" standard was run after the samples to demonstrate capability to detect any compounds outside of the CC acceptance criteria. All reported samples were ND for the affected compounds.

AU-ECD4 09/05/19-1

Adam Werner, Chemist 09/05/19

CD97460, CD97461

The initial calibration (PS822AI) RSD for the compound list was less than 20% except for the following compounds: None. The initial calibration (PS822BI) RSD for the compound list was less than 20% except for the following compounds: None. The Endrin and DDT breakdown does not exceed 15% except for the following compounds:None.

The Endrin and DDT breakdown does not exceed the maximum of 20% except for the following compounds:None.

The continuing calibration %D for the compound list was less than 20% except for the following compounds: Samples: CD97460, CD97461

Preceding CC 905A004 - b-BHC 25%H (20%), Endosulfan sulfate 21%H (20%) Succeeding CC 905A022 - b-BHC 24%H (20%), Endrin aldehyde 21%H (20%)

QC (Batch Specific):

Batch 495173 (CD96871)

CD97460, CD97461, CD97462, CD97463, CD97464

All LCS recoveries were within 40 - 140 with the following exceptions: None.

All LCSD recoveries were within 40 - 140 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

SVOA Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument:

CHEM05 09/04/19-1

Matt Richard, Chemist 09/04/19

CD97460, CD97461, CD97462, CD97463, CD97464

For 8270 full list, the DDT breakdown and pentachlorophenol & benzidine peak tailing were evaluated in the DFTPP tune and were found to be in control.

For 8270 BN list, benzidine peak tailing was evaluated in the DFTPP tune and was found to be in control.

Initial Calibration Evaluation (CHEM05/5_bn_0820):

100% of target compounds met criteria.

The following compounds had %RSDs >20%: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet a minimum response factors: None.

Continuing Calibration Verification (CHEM05/0904_06-5_bn_0820):

RCP Certification Report

September 06, 2019

SDG I.D.: GCD97460

SVOA Narration

Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None. 100% of target compounds met criteria.

The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet minimum response factors: None.

QC (Batch Specific):

Batch 495186 (CD97063)

CD97460, CD97461, CD97462, CD97463, CD97464

All LCS recoveries were within 30 - 130 with the following exceptions: None.

All LCSD recoveries were within 30 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

Additional 8270 criteria: 20% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 15-110%, for soils 30-130%)

Temperature Narration

The samples were received at 2.0C with cooling initiated.

(Note acceptance criteria for relevant matrices is above freezing up to 6°C)

Cooler: Yes No Cooler: PKT CE No Temp(U°C Pg L of L Data Deliver/Contact Options: On file Project P.O:	Inis section MUST be completed with Bottle Quantities.	10000000000000000000000000000000000000			WKA eSMART Data Format WKA eSMART Data Format WKA eSMART CALE MW-2 Data Format W-2 Data Package WW-2 S-3 GW-3 MW-2 S-3 GW-3 MW-2 Data Package WW-2 S-3 GW-3 MW-2 S-3 GW-3 MW-3 S-3 GW-3 MW-3 S-3 GW-3 MW-3 S-3 GW-3 MW-3 S
CT 06040 CT 06040 0823 0823 (Email: Email: Elem, School P	Value of the	C 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	л —		MA MA Cert MA Protection GW-1 M Protection GW-1 M Protection GW-1 S-1 GW-1 Mobility S-1 GW-1 S-1 GW-1 Mobility S-1 S-1 GW-1 S-2 <
IN OF CUSTODY RECORI Turnpike, P.O. Box 370, Manchester, @phoenixlabs.com Fax (860) 645- ent Services (860) 645-8726 Project: 150434023-80vr Report to: 7.2, Oteo, 7.1, 1.1	QUOTE #	CONTRACTOR OF THE CONTRACTOR O	×		e: RI (Residential) e: RI (Residential) Direct Expositie (Comm/Industrial) Direct Exposure GA Leachability Direct Exposure GA Leachability CB Leachability CB Leachability CB CB CGW CB CGW
CHAI 587 East Middle Email: info	H/4	te Water e OIL =Oil Time Sampled	12:25 X 12:30 12:40 12:40	> 00 :1	Date: Tim Date: Tim QUULQA 19 Tynnaround Tim 10ays 3 Days* Standard • SURCHARGE L • SURCHARGE L
STIMU .	If cation	ater WW =Wast solid W =Wipp ple Date x	h)b	->	
HINIX Contest Inc. Tight and Bood	Middletown CT 061	r GW=Ground Water SW=Surface V E=Sediment SL=Sludge S=Soil SD: =(Other) Customer Sample Sami Identification Matri	BES S100 (2.25-2.5') 5 BES S101 (2.5-2.75') BES S102 (2.5-2.75') BES S102 (1.5-2')	A (ST-1-2-1) 4	Requirements or Regulations:
PHK Environme Customer: Address:	Signature Signature	Matrix Code: DW=Drinkting Wate RW=Raw Water SI B=Bulk L=Liquid X PHOENIX USE ONLY SAMPLE #	(1)4[1) (1)4[2)	haure	Relined Ished by Comments, Special

Eastern Analytical Services, Inc.

Phone (914) 592-8380

4 Westchester Plaza Elmsford, New York 10523-1610 http://www.EASInc.com Fax (914) 592-8956

September 09, 2019

Mr. James T. Olsen Tighe & Bond 53 Southampton Road Westfield, MA 01085

RE: CPN 150439023 - Burr Elementary School EAS Batch No. 1907390

Dear Mr. Olsen:

Enclosed please find the laboratory results for the 5 bulk sample(s) received by Eastern Analytical Services, Inc. September 06, 2019. The analysis was performed in accordance with EPA/600/R-93/116 and NYS-DOH Item 198.1.

Thank you for allowing EAS, Inc. to provide Tighe & Bond with professional analytical services. If you have any questions or require additional information or assistance, please feel free to contact me at the number above or e-mail Lab@EASInc.com.

Sincerely,

EASTERN ANALYTICAL SERVICES, INC.

Paul Stascavage Laboratory Director

PS:om

Enclosures

Electronically Transmitted September 07, 2019

			TAC.			
EAS Batch No.	1907390	Eastern	Eastern Analytical Services, Inc.			
			Bulk Sample Results			
		RE: CPN 1	50439023 - Burr Elementa	ry School		
Date Collected Collected By : Date Received Date Analyzed Analyzed By : Signature : Analytical Met NVLAP Lab C NYS Lab No.	 1: 09/06/2019 Brian Sirowic : 09/06/2019 1: 09/07/2019 Ghayath Elias Chod: 40 CFR Part 7 Code: 101646-0 10851 	³ 763, Sub. E, App. E/N	Client: YS-DOH 198.1 (PLM)	Tighe & Bond 53 Southampton Road Westfield, MA 01085		
Sample ID Nu	mber	BES \$100	BES S101	BES \$102	BES S103	
Layer Number						
Lab ID Numbe	er	2642351	2642352	2642353	2642354	
Sample Locatio	on	Not Given	Not Given	Not Given	Not Given	
Sample Descri	ption	Not Given	Not Given	Not Given	Not Given	
Method of Qua	antification	Visual Estimation	Visual Estimation	Visual Estimation	Visual Estimation	
Appearance	Layered	No	No	No	No	
	Homogenous	No	No	No	No	
	Fibrous Color	Yes Brown	No Brown	No Brown	No Brown	
Sample Treatm	nent	Homogenized	Homogenized	Homogenized	Homogenized	
Asbestos	% Amosite	0.0	0.0	0.0	0.0	
Content	% Chrysotile	0.0	0.0	0.0	0.0	
	% Other % Total Asbestos	0.0	0.0	0.0	0.0	
Other Eihnere	% Eihanna Class	0.0	0.0	0.0	0.0	
Materials	% Cellulose	0.0	0.0	0.0	0.0	
Present	% Other	0.0	0.0	0.0	0.0	
1100011	% Unidentified	0.0	0.0	0.0	0.0	
Non-Fibrous	% Silicates	30.0	30.0	30.0	30.0	
Materials	% Carbonates	20.0	20.0	20.0	20.0	
Present	% Other	0.0	0.0	0.0	0.0	
	% Unidentified	48.0	49.0	49.0	49.0	

Results Applicable To Those Items Tested. Report Cannot be Reproduced, Except Entirely, Without Written Approval of the Laboratory. Liability Limited To Cost Of Analysis. This Report Must Not be Used by the Client to Claim Product Endorsement by NVLAP or Any Agency of the US Government. These Results Can Not Be Used To Claim That NOB Items Tested Are Non-Asbestos Containing. Overall Lab Accuracy ± 17%. Samples received in acceptable condition unless otherwise noted. AIHA Accreditation No. 100263 Rhode Island DOH No. AAL-072 Massachusetts DOL No. A A 000072 Connecticut DOH No. PH-0622 Maine DEP No. LA-024 Vermont DOH No. AL-709936

 -	
 -	
 \rightarrow =	R

EAS Batch No. 1907390

Page 2 of 2

Eastern Analytical Services, Inc. Bulk Sample Results RE: CPN 150439023 - Burr Elementary School

Date Collected Collected By : Date Received Date Analyzed Analyzed By : Signature : Analytical Met NVLAP Lab C NYS Lab No.	: 09/06/2019 Brian Sirowic : 09/06/2019 : 09/07/2019 Ghayath Elias thod : 40 CFR Part 7 Code : 101646-0 10851	h '63, Sub. E, App. E/NYS-DOH 198	Client: 8.1 (PLM)	Tighe & Bond 53 Southampton Road Westfield, MA 01085
Sample ID Nur	mber	BES S104		
Layer Number				
Lab ID Numbe	er	2642355		
Sample Location	on	Not Given		
Sample Descri	ption	Not Given		
Method of Qua	antification	Visual Estimation		
Appearance	Layered Homogenous	No No		
	Fibrous Color	No Brown		
Sample Treatm	nent	Homogenized		
Asbestos	% Amosite	0.0		
Content	% Chrysotile	0.0		
	% Other % Total Asbestos	0.0 0.0		
Other Fibrous	% Fibrous Glass	0.0		
Materials	% Cellulose	2.0		
Present	% Other	0.0		
	% Unidentified	0.0		
Non-Fibrous	% Silicates	30.0		
Materials	% Carbonates	20.0		
Present	% Other	0.0		
	% Unidentified	48.0		

 Results Applicable To Those Items Tested. Report Cannot be Reproduced, Except Entirely, Without Written Approval of the Laboratory.

 Liability Limited To Cost Of Analysis. This Report Must Not be Used by the Claim to Claim Product Endorsement by NVLAP or Any Agency of the US Government.

 These Results Can Not Be Used To Claim That NOB Items Tested Are Non-Asbestos Containing. Overall Lab Accuracy ± 17%. Samples received in acceptable condition unless otherwise noted.

 AIHA Accreditation No. 100263
 Rhode Island DOH No. AAL-072
 Massachusetts DOL No. A A 000072
 Connecticut DOH No. PH-0622
 Maine DEP No. LA-024
 Vermont DOH No. AL-709936

Eastern Analytical Services, Inc. Chain of Custody Form

EAS Client:	Tighe & Bond 53 Southempton Bood	EAS Batch No.	1907390
	Westfield, MA 01085	Turn-Around:	12 Hr
		Shipped Via:	Walk In
Analyte:	% Asb	State of Origin:	СТ
No. of Samples	5	Sample Disposition:	Standard x
Received:			Return
No. of Samples Analyzed:	5		

Client Project RE: CPN 150439023 - Burr Elementary School Number/Name:

Lab ID Numbers: 2642351-2642355

Collected By:	Brian Sirowich	Signature	Date: 09/06/2019	
Received By:	Ghayath Elias	J.C.	Date: 09/06/2019	Time: 1627
Logged In By:	Ghayath Elias	3-A	Date: 09/06/2019	
Prepped By:	Joseph B. LaPuebla	J. E. 2. 2-1-	Date: 09/06/2019	
Analyzed By :	Ghayath Elias	J.C.	Date: 09/07/2019	Time: 1130
Re-Analyzed By:	Ghayath Elias	J.C.	Date: 09/07/2019	
Checked By:	Damien Warner	DE M	Date: 09/07/2019	
E-Transmitted By:	Damien Warner	QE.M.	Date: 09/07/2019	Time: 1903
Logged Out By:			Date:	

			Easter 4 West	n Analytica tchester Plaza - H www.EAS 914-592	al Servi Elmsford, N Inc.com -8380	ces, II 1Y 1052	nc. 3			
				CHAIN OF (CUSTODY	2642: 2642:	351 BES 352 BES	5100 5101	BES	5102 ²⁶⁴²³⁵³ 5103 ²⁶⁴²³⁵⁴ 51042642355
EAS Client:	<u>Tighe a</u> 53 Sout Westfie	nd Bond hampton Ro ld. MA 0108	ad		No. of Sa Turn-	mples: _	<u>5</u> Побнт Р	@12Hr []	0€ - 24Hr □	B0Hr
Analyte:	Asbesta PLM NOB NOB NOB NOB Air 7 Air A Air 7 Wate Other	PLM Only TEM Only PLM/TEM TEM/PLM 400 (PCM) HERA (TEM) r (TEM)	Lead Solid Dust Air Water Other TCLP Pb Onl 8 RCR	Fungi Spore Trap Tape Lift Other Analyte	Around Shipped Via: State of Origin: Sample Dispositio	US N US N Fedf UPS Drop NY RI			SDay SDay ilk In Exp urier her A D M Other (Ro	IA Sturn)
Client Projec Name/Numb	er:	150439023	- Burr	Elementa	(y Soh	0001			$\frac{1}{\alpha}$	<u> </u>
Sampled By:		Brian Sirow Name (P	vich rint or Type)	4	<u>SF</u>	nature				<u>/4</u>
Submitted By	y:	Ian Adomei Name (P	t rint or Type)		<u>Jn</u> Sig	nature	đ		9/6/10 Date	<u> </u>
Comments:		E-mail resu jtolsen@tig	lts to bsiro ghebond.co	wich@tighebond	l.com, JLL	ibby@tig	hebond.cc	m, and		
Account Nu Received B Logged-In I Prepped By Analyzed B Re-Analyze	umber: _ By: _ By: _ 3y: _ ed By:	G . N Name (Pfint	F(DRY USE (DNLY	Date	6'19 1 	6:27 Time	· · · · · · · · · · · · · · · · · · ·
Checked By	y: _							 		

Non-Friable Organically Bound (NOB) Materials - This term refers to a wide variety of building materials, such as vinyl or asphalt floor tile, resilient floor covering, mastic, asphalt shingle, roofing material, caulk, putty, etc.. Polarized Light Microscopy (PLM) analysis has limitations when NOB materials are encountered. These limitations, such as the inability to detect thin or extremely short fibers (less than 1 micrometer in length) generated during the milling process and/or the difficulty of separating asbestos fibers and bundles from the resinous matrix, may lead to false negatives or underestimates of the amount of asbestos fibers present in the sample. Recently, NYS DOH added **Ceiling Tiles with Cellulose** to the list of materials to be analyzed via the NOB methods. For these reasons, when analysis by PLM yields negative results for the presence of asbestos in NOB materials, The State of New York Department of Health (DOH) has issued the following requirements as of April 8, 2011: NOBs and ceiling tiles with cellulose must be analyzed by both of the gravimetric matrix reduction methods (ELAP Item 198.6 and 198.4) to be deemed negative for asbestos.

EAS is approved by the NYS-DOH to perform analysis of NOB materials via Transmission Electron Microscopy (ELAP Item 198.4). The superior resolution of Transmission Electron Microscopy can detect the presence of asbestos fibers well beyond the range of PLM. In addition, the use of selected-area electron diffraction (SAED) and energy-dispersive spectroscopy (EDS) can positively identify asbestos fibers in the sample. NOB samples determined to contain less than 1% asbestos via the TEM method, must also be analyzed via PLM (198.6) to verify the absence of large amphibole fibers which may not have been successfully transferred to the EM Grids.

The State of New Jersey recently adopted amendments to their regulations requiring gravimetric reduction followed by PLM and TEM analysis for NOB building materials. The regulations can be found at http://wd.doi.state.ni.us/labor/lsse/laws/Asbestos_law.html#5a39.

Recently (April 3, 2011), Maine DEP revised their regulations to require gravimetric reduction of NOBs https://www1.maine.gov/dep/waste/asbestos/documents/asbbulksampanalysisprotocolsformYenabled.pdf.

Vermiculite - As of July 9, 2013, NYS has issued new guidance on Vermiculite loose bulk materials and insulation materials which contain Vermiculite. The following quotes have been taken from their guidance letter: "If material is attic fill, block fill or other loose bulk vermiculite materials, it must be designated and treated as ACM. No approved analytical method currently exists to reliably confirm such vermiculite material as non-ACM." "Where thermal systems insulation (TSI), *, or other presumed ACM (PACM) or miscellaneous suspect ACM contain 10% vermiculite or less, certified laboratories may use ELAP Certification Manual Item 198.1 to determine the asbestos content of the material. Where TSI, *, or other PACM or miscellaneous suspect ACM contain greater than 10% vermiculite, Item 198.6 may be used to evaluate the asbestos content of the material; provided, however, that any test results using this method must be reported with the following conspicuous disclaimer:"

"This method does not remove vermiculite and may underestimate the level of asbestos present in a sample containing greater than 10% vermiculite."

See the EPA website at https://www.epa.gov/asbestos/protect-your-family-asbestos-contaminated-vermiculite-insulation

* Surfacing Material Containing Vermiculite - As of May 6, 2016, NYS has issued new guidance regarding Surfacing Material containing vermiculite (essentially expanding the previous requirements for spray-on fireproofing to apply to all surfacing materials). If a surfacing material contains *any* vermiculite, it must be analyzed via NYS-DOH Method 198.8 (or RJ Lee Group Method 055) to be deemed negative for asbestos.

Surface Wipe Samples - Due to the fact that a large percentage of asbestos fibers released from deteriorating asbestos-containing materials or from improperly performed abatement activities are on the order of 5 micrometers or less and are near or below the resolution of a Polarized Light Microscope, Eastern Analytical Services, Inc. recommends that negative surface wipe samples be confirmed utilizing Transmission Electron Microscopy.

Point Counting - New York State Department of Health regulations require quantification of asbestos via the "Stratified Point Count" Method for all bulk samples originating from New York State. Please indicate the state of origin on the Chain of Custody form for all samples submitted to the laboratory. There is no additional charge for quantification using this method.

Layered Samples - NESHAP policy regarding layered bulk samples has changed. In the past, laboratories were required to analyze individual layers of multi-layered bulk samples separately, but report the results in terms of quantity of asbestos for the composite sample. This policy change requires that the layers be analyzed separately and reported as such. Additionally, materials are to be characterized as asbestos or non-asbestos based on the results of the individual layers.

As a result of this policy, EAS will be reporting the results of the individual layers of multi-layered bulk samples submitted for asbestos analysis UNLESS COMPOSITE RESULTS ARE SPECIFICALLY REQUESTED BY THE CLIENT. Additional layers for all bulk samples will be billed as separate samples.

If you have any questions concerning the above, please feel free to contact EAS.

Eastern Analytical Services, Inc.

Phone (914) 592-8380

Fax (914) 592-8956

4 Westchester Plaza Elmsford, New York 10523-1610 Federal ID #11-2753797

CLIENT

Tighe & Bond 53 Southampton Road Westfield, MA 01085 INVOICE Nº 1024430

DATE 09/09/2019

P.O. NUMBER

TERMS 1%/10, Net 30, 1.5% Int 30+

EAS Batch No. 1907390

040136

Account No.

DATE	DESCRIPTION	PRICE
09/07/2019	Analytical Services (12 Hr Turn-Around)	
	RE: CPN 150439023 - Burr Elementary School	
	Fiber Identification Polarized Light Microscopy	
	5 Samples @ \$13.00 /Sample	\$65.00
	Total	\$65.00
æ	Please Reference Invoice Number with Payment	

Friday, September 03, 2021

Attn: Brian Sirowich Tighe & Bond 213 Court St, Suite 1100 Middletown, CT 06457

Project ID: BURR ELEMENTARY SCHOOL SDG ID: GCJ12755 Sample ID#s: CJ12755 - CJ12767

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

Enclosed are revised Analysis Report pages. Please replace and discard the original pages. If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Sincerely yours,

XI.le

Phyllis/Shiller Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #M-CT007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 UT Lab Registration #CT00007 VT Lab Registration #VT11301

Sample Id Cross Reference

September 03, 2021

SDG I.D.: GCJ12755

Project ID: BURR ELEMENTARY SCHOOL

Client Id		Motrix
		IVIALITIX
BES201 (0-0.5)	CJ12755	SOIL
BES202 (0-0.5)	CJ12756	SOIL
BES203 (0-0.5)	CJ12757	SOIL
BES204 (0-0.5)	CJ12758	SOIL
BES205 (0-0.5)	CJ12759	SOIL
BES206 (0-0.5)	CJ12760	SOIL
BES207 (0-0.5)	CJ12761	SOIL
BES208 (0-0.5)	CJ12762	SOIL
BES209 (0-0.5)	CJ12763	SOIL
BES210 (0-0.5)	CJ12764	SOIL
BES BACK 1 (0-0.5)	CJ12765	SOIL
BES BACK 2 (0-0.5)	CJ12766	SOIL
BES BACK 3 (0-0.5)	CJ12767	SOIL

Analysis Report

FOR: Attn: Brian Sirowich Tighe & Bond 213 Court St, Suite 1100 Middletown, CT 06457

September 03, 2021

Sample Information		Custody Inform	<u>Date</u>	<u>Time</u>	
Matrix:	SOIL	Collected by:		08/24/21	10:05
Location Code:	TIGHE-DAS	Received by:	CP	08/24/21	16:50
Rush Request:	96 Hour	Analyzed by:	see "By" below		
P.O.#:	150439 BURR	l ekenetem	Data		CC 1127

Laboratory Data

SDG ID: GCJ12755 Phoenix ID: CJ12755

Project ID: BURR ELEMENTARY SCHOOL Client ID: BES201 (0-0.5)

Deremeter	Decult	RL/	Linito	Dilution	Data/Tima	D./	Deference
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	71		%		08/24/21	JS	SW846-%Solid
Only Enter sting for Destinist	Ormalated				00/05/04		014/05 40
Soll Extraction for Pesticide	Completed				08/25/21	R/YE	SVV3546
SPLP Extraction for Organics	Completed				08/31/21	AB	SW1312
SPLP Pesticides Ext.	Completed				09/01/21	CC/N	SW3510C
Pesticides							
4,4' -DDD	ND	1.8	ug/Kg	2	08/27/21	AW	SW8081B
4,4' -DDE	20	9.2	ug/Kg	2	08/27/21	AW	SW8081B
4,4' -DDT	13	9.2	ug/Kg	2	08/27/21	AW	SW8081B
a-BHC	ND	1.8	ug/Kg	2	08/27/21	AW	SW8081B
Alachlor	ND	9.2	ug/Kg	2	08/27/21	AW	SW8081B
Aldrin	ND	1.8	ug/Kg	2	08/27/21	AW	SW8081B
b-BHC	ND	1.8	ug/Kg	2	08/27/21	AW	SW8081B
Chlordane	ND	46	ug/Kg	2	08/27/21	AW	SW8081B
d-BHC	ND	1.8	ug/Kg	2	08/27/21	AW	SW8081B
Dieldrin	19	4.6	ug/Kg	2	08/27/21	AW	SW8081B
Endosulfan I	ND	9.2	ug/Kg	2	08/27/21	AW	SW8081B
Endosulfan II	ND	9.2	ug/Kg	2	08/27/21	AW	SW8081B
Endosulfan sulfate	ND	9.2	ug/Kg	2	08/27/21	AW	SW8081B
Endrin	ND	9.2	ug/Kg	2	08/27/21	AW	SW8081B
Endrin aldehyde	ND	9.2	ug/Kg	2	08/27/21	AW	SW8081B
Endrin ketone	ND	9.2	ug/Kg	2	08/27/21	AW	SW8081B
g-BHC	ND	1.8	ug/Kg	2	08/27/21	AW	SW8081B
Heptachlor	ND	9.2	ug/Kg	2	08/27/21	AW	SW8081B
Heptachlor epoxide	ND	9.2	ug/Kg	2	08/27/21	AW	SW8081B
Methoxychlor	ND	46	ug/Kg	2	08/27/21	AW	SW8081B
Toxaphene	ND	180	ug/Kg	2	08/27/21	AW	SW8081B

Project ID: BURR ELEMENTARY SCHOOL Client ID: BES201 (0-0.5)

DI /

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
QA/QC Surrogates							
% DCBP	84		%	2	08/27/21	AW	30 - 150 %
% DCBP (Confirmation)	98		%	2	08/27/21	AW	30 - 150 %
% TCMX	80		%	2	08/27/21	AW	30 - 150 %
% TCMX (Confirmation)	95		%	2	08/27/21	AW	30 - 150 %
SPLP Pesticides							
4,4' -DDD	ND	0.005	ug/L	1	09/03/21	KCA	SW8081B
4,4' -DDE	ND	0.005	ug/L	1	09/03/21	KCA	SW8081B
4,4' -DDT	ND	0.005	ug/L	1	09/03/21	KCA	SW8081B
a-BHC	ND	0.005	ug/L	1	09/03/21	KCA	SW8081B
Alachlor	ND	0.009	ug/L	1	09/03/21	KCA	SW8081B
Aldrin	ND	0.003	ug/L	1	09/03/21	KCA	SW8081B
b-BHC	ND	0.005	ug/L	1	09/03/21	KCA	SW8081B
Chlordane	ND	0.047	ug/L	1	09/03/21	KCA	SW8081B
d-BHC	ND	0.005	ug/L	1	09/03/21	KCA	SW8081B
Dieldrin	0.007	0.002	ug/L	1	09/03/21	KCA	SW8081B
Endosulfan I	ND	0.005	ug/L	1	09/03/21	KCA	SW8081B
Endosulfan II	ND	0.005	ug/L	1	09/03/21	KCA	SW8081B
Endosulfan sulfate	ND	0.005	ug/L	1	09/03/21	KCA	SW8081B
Endrin	ND	0.005	ug/L	1	09/03/21	KCA	SW8081B
Endrin aldehyde	ND	0.005	ug/L	1	09/03/21	KCA	SW8081B
Endrin Ketone	ND	0.005	ug/L	1	09/03/21	KCA	SW8081B
g-BHC	ND	0.005	ug/L	1	09/03/21	KCA	SW8081B
Heptachlor	ND	0.005	ug/L	1	09/03/21	KCA	SW8081B
Heptachlor epoxide	ND	0.005	ug/L	1	09/03/21	KCA	SW8081B
Methoxychlor	ND	0.005	ug/L	1	09/03/21	KCA	SW8081B
Toxaphene	ND	0.19	ug/L	1	09/03/21	KCA	SW8081B
QA/QC Surrogates							
%DCBP (Surrogate Rec)	83		%	1	09/03/21	KCA	30 - 150 %
%DCBP (Surrogate Rec) (Confirmation)	67		%	1	09/03/21	KCA	30 - 150 %
%TCMX (Surrogate Rec)	76		%	1	09/03/21	KCA	30 - 150 %
%TCMX (Surrogate Rec) (Confirmation)	75		%	1	09/03/21	KCA	30 - 150 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director September 03, 2021 Reviewed and Released by: Greg Lawrence, Assistant Lab Director

Analysis Report

FOR: Attn: Brian Sirowich Tighe & Bond 213 Court St, Suite 1100 Middletown, CT 06457

September 03, 2021

Sample Information		Custody Inform	Custody Information				
Matrix:	SOIL	Collected by:		08/24/21	10:07		
Location Code:	TIGHE-DAS	Received by:	CP	08/24/21	16:50		
Rush Request:	Standard	Analyzed by:	see "By" below				
P.O.#:	150439 BURR	l ekenetem	Data		CC 1127		

Laboratory Data

SDG ID: GCJ12755 Phoenix ID: CJ12756

Project ID: BURR ELEMENTARY SCHOOL Client ID: BES202 (0-0.5)

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference
Percent Solid	75		%		08/24/21	JS	SW846-%Solid
Extraction for PCB	Completed				08/24/21	X/KL	SW3540C
PCB (Soxhlet SW3540C)						
PCB-1016	ND	220	ug/Kg	5	08/25/21	SC	SW8082A
PCB-1221	ND	220	ug/Kg	5	08/25/21	SC	SW8082A
PCB-1232	ND	220	ug/Kg	5	08/25/21	SC	SW8082A
PCB-1242	ND	220	ug/Kg	5	08/25/21	SC	SW8082A
PCB-1248	ND	220	ug/Kg	5	08/25/21	SC	SW8082A
PCB-1254	ND	220	ug/Kg	5	08/25/21	SC	SW8082A
PCB-1260	ND	220	ug/Kg	5	08/25/21	SC	SW8082A
PCB-1262	ND	220	ug/Kg	5	08/25/21	SC	SW8082A
PCB-1268	ND	220	ug/Kg	5	08/25/21	SC	SW8082A
QA/QC Surrogates							
% DCBP	84		%	5	08/25/21	SC	30 - 150 %
% DCBP (Confirmation)	83		%	5	08/25/21	SC	30 - 150 %
% TCMX	78		%	5	08/25/21	SC	30 - 150 %
% TCMX (Confirmation)	79		%	5	08/25/21	SC	30 - 150 %

Project ID: BURR ELEMENTARY SCHOOL					Pł	noeni	x I.D.: CJ127	56
Client ID: BES202 (0	0-0.5)							
		RL/						
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference	

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director September 03, 2021 Reviewed and Released by: Greg Lawrence, Assistant Lab Director

Analysis Report

FOR: Attn: Brian Sirowich Tighe & Bond 213 Court St, Suite 1100 Middletown, CT 06457

September 03, 2021

Sample Information **Custody Information** Date Time Collected by: 08/24/21 10:10 Matrix: SOIL Received by: Location Code: **TIGHE-DAS** CP 08/24/21 16:50 Rush Request: 96 Hour Analyzed by: see "By" below P.O.#: 150439 BURR

Laboratory Data

SDG ID: GCJ12755 Phoenix ID: CJ12757

Project ID: BURR ELEMENTARY SCHOOL Client ID: BES203 (0-0.5)

	D "	RL/					-	D (
Parameter	Result	PQL	Un	nits	Dilution	Date/Time	Ву	Reference
Arsenic	5.10	0.88	mg	/Kg	1	08/25/21	TH	SW6010D
Lead	16.2	0.44	mg	/Kg	1	08/25/21	TH	SW6010D
SPLP Arsenic	< 0.004	0.004	mç	g/L	1	09/01/21	CPP	SW6010D
SPLP Lead	< 0.010	0.010	mç	g/L	1	09/01/21	CPP	SW6010D
SPLP Metals Digestion	Completed					09/01/21	CG/CG	SW3010A
Percent Solid	72		9	6		08/24/21	JS	SW846-%Solid
Extraction of ETPH	Completed					08/24/21	I/E	SW3546
Soil Extraction for Pesticide	Completed					08/25/21	R/YE	SW3546
Soil Extraction for SVOA PAH	Completed					08/24/21	I/Y/K	SW3546
Extraction for PCB	Completed					08/24/21	X/KL	SW3540C
SPLP Extraction for Metals	Completed					08/31/21	AB	SW1312
SPLP Extraction for Organics	Completed					08/31/21	AB	SW1312
SPLP Pesticides Ext.	Completed					09/01/21	CC/N	SW3510C
Total Metals Digest	Completed					08/24/21	B/AG/BF	SW3050B
TPH by GC (Extractable	Products	<u>;)</u>						
Ext. Petroleum H.C. (C9-C36)	ND	68	mg	/Kg	1	08/25/21	KCA	CTETPH 8015D
Identification	ND		mg	/Kg	1	08/25/21	KCA	CTETPH 8015D
QA/QC Surrogates								
% COD (surr)	58		9	6	1	08/25/21	KCA	50 - 150 %
% Terphenyl (surr)	69		9	6	1	08/25/21	KCA	50 - 150 %
PCB (Soxhlet SW3540C	<u>;)</u>							
PCB-1016	ND	230	ug/	′Kg	5	08/25/21	SC	SW8082A
PCB-1221	ND	230	ug/	′Kg	5	08/25/21	SC	SW8082A
PCB-1232	ND	230	ug/	′Kg	5	08/25/21	SC	SW8082A
PCB-1242	ND	230	ug/	′Kg	5	08/25/21	SC	SW8082A

Project ID: BURR ELEMENTARY SCHOOL Client ID: BES203 (0-0.5)

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
PCB-1248	ND	230	ug/Kg	5	08/25/21	SC	SW8082A
PCB-1254	ND	230	ug/Kg	5	08/25/21	SC	SW8082A
PCB-1260	ND	230	ug/Kg	5	08/25/21	SC	SW8082A
PCB-1262	ND	230	ug/Kg	5	08/25/21	SC	SW8082A
PCB-1268	ND	230	ug/Kg	5	08/25/21	SC	SW8082A
QA/QC Surrogates							
% DCBP	48		%	5	08/25/21	SC	30 - 150 %
% DCBP (Confirmation)	46		%	5	08/25/21	SC	30 - 150 %
% TCMX	45		%	5	08/25/21	SC	30 - 150 %
% TCMX (Confirmation)	46		%	5	08/25/21	SC	30 - 150 %
Pesticides							
4,4' -DDD	7.1	1.8	ug/Kg	2	08/27/21	AW	SW8081B
4,4' -DDE	27	9.1	ug/Kg	2	08/27/21	AW	SW8081B
4,4' -DDT	43	9.1	ug/Kg	2	08/27/21	AW	SW8081B
a-BHC	ND	1.8	ug/Kg	2	08/27/21	AW	SW8081B
Alachlor	ND	9.1	ug/Kg	2	08/27/21	AW	SW8081B
Aldrin	ND	1.8	ug/Kg	2	08/27/21	AW	SW8081B
b-BHC	ND	1.8	ug/Kg	2	08/27/21	AW	SW8081B
Chlordane	ND	45	ug/Kg	2	08/27/21	AW	SW8081B
d-BHC	ND	2.0	ug/Kg	2	08/27/21	AW	SW8081B
Dieldrin	12	4.5	ug/Kg	2	08/27/21	AW	SW8081B
Endosulfan I	ND	9.1	ug/Kg	2	08/27/21	AW	SW8081B
Endosulfan II	ND	9.1	ug/Kg	2	08/27/21	AW	SW8081B
Endosulfan sulfate	ND	9.1	ug/Kg	2	08/27/21	AW	SW8081B
Endrin	ND	9.1	ug/Kg	2	08/27/21	AW	SW8081B
Endrin aldehyde	ND	9.1	ug/Kg	2	08/27/21	AW	SW8081B
Endrin ketone	ND	9.1	ug/Kg	2	08/27/21	AW	SW8081B
g-BHC	ND	1.8	ug/Kg	2	08/27/21	AW	SW8081B
Heptachlor	ND	9.1	ug/Kg	2	08/27/21	AW	SW8081B
Heptachlor epoxide	ND	9.1	ug/Kg	2	08/27/21	AW	SW8081B
Methoxychlor	ND	45	ug/Kg	2	08/27/21	AW	SW8081B
Toxaphene	ND	180	ug/Kg	2	08/27/21	AW	SW8081B
QA/QC Surrogates							
% DCBP	75		%	2	08/27/21	AW	30 - 150 %
% DCBP (Confirmation)	84		%	2	08/27/21	AW	30 - 150 %
% TCMX	74		%	2	08/27/21	AW	30 - 150 %
% TCMX (Confirmation)	81		%	2	08/27/21	AW	30 - 150 %
SPLP Pesticides							
4,4' -DDD	ND	0.005	ug/L	1	09/03/21	KCA	SW8081B
4,4' -DDE	ND	0.005	ug/L	1	09/03/21	KCA	SW8081B
4,4' -DDT	ND	0.005	ug/L	1	09/03/21	KCA	SW8081B
a-BHC	ND	0.005	ug/L	1	09/03/21	KCA	SW8081B
Alachlor	ND	0.010	ug/L	1	09/03/21	KCA	SW8081B
Aldrin	ND	0.003	ug/L	1	09/03/21	KCA	SW8081B
b-BHC	ND	0.005	ug/L	1	09/03/21	KCA	SW8081B
Chlordane	ND	0.050	ug/L	1	09/03/21	KCA	SW8081B
d-BHC	ND	0.005	ug/L	1	09/03/21	KCA	SW8081B
Dieldrin	ND	0.002	ug/L	1	09/03/21	KCA	SW8081B

Project ID: BURR ELEMENTARY SCHOOL Client ID: BES203 (0-0.5)

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Endosulfan I	ND	0.005	ug/L	1	09/03/21	KCA	SW8081B
Endosulfan II	ND	0.005	ug/L	1	09/03/21	KCA	SW8081B
Endosulfan sulfate	ND	0.005	ug/L	1	09/03/21	KCA	SW8081B
Endrin	ND	0.005	ug/L	1	09/03/21	KCA	SW8081B
Endrin aldehyde	ND	0.005	ug/L	1	09/03/21	KCA	SW8081B
Endrin Ketone	ND	0.005	ug/L	1	09/03/21	KCA	SW8081B
g-BHC	ND	0.005	ug/L	1	09/03/21	KCA	SW8081B
Heptachlor	ND	0.005	ug/L	1	09/03/21	KCA	SW8081B
Heptachlor epoxide	ND	0.005	ug/L	1	09/03/21	KCA	SW8081B
Methoxychlor	ND	0.005	ug/L	1	09/03/21	KCA	SW8081B
Toxaphene	ND	0.20	ug/L	1	09/03/21	KCA	SW8081B
QA/QC Surrogates							
%DCBP (Surrogate Rec)	91		%	1	09/03/21	KCA	30 - 150 %
%DCBP (Surrogate Rec) (Confirmation)	64		%	1	09/03/21	KCA	30 - 150 %
%TCMX (Surrogate Rec)	82		%	1	09/03/21	KCA	30 - 150 %
%TCMX (Surrogate Rec) (Confirmation)	84		%	1	09/03/21	KCA	30 - 150 %
Polynuclear Aromatic	HC						
2-Methylnaphthalene	ND	320	ug/Kg	1	08/25/21	WB	SW8270D
Acenaphthene	ND	320	ug/Kg	1	08/25/21	WB	SW8270D
Acenaphthylene	ND	320	ug/Kg	1	08/25/21	WB	SW8270D
Anthracene	ND	320	ug/Kg	1	08/25/21	WB	SW8270D
Benz(a)anthracene	ND	320	ug/Kg	1	08/25/21	WB	SW8270D
Benzo(a)pyrene	ND	320	ug/Kg	1	08/25/21	WB	SW8270D
Benzo(b)fluoranthene	ND	320	ug/Kg	1	08/25/21	WB	SW8270D
Benzo(ghi)perylene	ND	320	ug/Kg	1	08/25/21	WB	SW8270D
Benzo(k)fluoranthene	ND	320	ug/Kg	1	08/25/21	WB	SW8270D
Chrysene	ND	320	ug/Kg	1	08/25/21	WB	SW8270D
Dibenz(a,h)anthracene	ND	320	ug/Kg	1	08/25/21	WB	SW8270D
Fluoranthene	ND	320	ug/Kg	1	08/25/21	WB	SW8270D
Fluorene	ND	320	ug/Kg	1	08/25/21	WB	SW8270D
Indeno(1,2,3-cd)pyrene	ND	320	ug/Kg	1	08/25/21	WB	SW8270D
Naphthalene	ND	320	ug/Kg	1	08/25/21	WB	SW8270D
Phenanthrene	ND	320	ug/Kg	1	08/25/21	WB	SW8270D
Pyrene	ND	320	ug/Kg	1	08/25/21	WB	SW8270D
QA/QC Surrogates							
% 2-Fluorobiphenyl	79		%	1	08/25/21	WB	30 - 130 %
% Nitrobenzene-d5	72		%	1	08/25/21	WB	30 - 130 %
% Terphenyl-d14	91		%	1	08/25/21	WB	30 - 130 %

Project ID: BURR ELEMENTARY SCHOOL					Pł	noeni	x I.D.: CJ1275	7
Client ID: BES203 (0	-0.5)							
		RL/						
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference	
								_

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director September 03, 2021 Reviewed and Released by: Greg Lawrence, Assistant Lab Director

Analysis Report

FOR: Attn: Brian Sirowich Tighe & Bond 213 Court St, Suite 1100 Middletown, CT 06457

September 03, 2021

Sample Information		Custody Inform	Custody Information				
Matrix:	SOIL	Collected by:		08/24/21	10:12		
Location Code:	TIGHE-DAS	Received by:	CP	08/24/21	16:50		
Rush Request:	Standard	Analyzed by:	see "By" below				
P.O.#:	150439 BURR	l ekenetem	Data		CC 1127		

Laboratory Data

SDG ID: GCJ12755 Phoenix ID: CJ12758

Project ID: BURR ELEMENTARY SCHOOL Client ID: BES204 (0-0.5)

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference
Percent Solid	74		%		08/24/21	JS	SW846-%Solid
Extraction for PCB	Completed				08/24/21	X/KL	SW3540C
PCB (Soxhlet SW3540C)						
PCB-1016	ND	220	ug/Kg	5	08/25/21	SC	SW8082A
PCB-1221	ND	220	ug/Kg	5	08/25/21	SC	SW8082A
PCB-1232	ND	220	ug/Kg	5	08/25/21	SC	SW8082A
PCB-1242	ND	220	ug/Kg	5	08/25/21	SC	SW8082A
PCB-1248	ND	220	ug/Kg	5	08/25/21	SC	SW8082A
PCB-1254	ND	220	ug/Kg	5	08/25/21	SC	SW8082A
PCB-1260	ND	220	ug/Kg	5	08/25/21	SC	SW8082A
PCB-1262	ND	220	ug/Kg	5	08/25/21	SC	SW8082A
PCB-1268	ND	220	ug/Kg	5	08/25/21	SC	SW8082A
QA/QC Surrogates							
% DCBP	87		%	5	08/25/21	SC	30 - 150 %
% DCBP (Confirmation)	86		%	5	08/25/21	SC	30 - 150 %
% TCMX	87		%	5	08/25/21	SC	30 - 150 %
% TCMX (Confirmation)	87		%	5	08/25/21	SC	30 - 150 %

Project ID: BURR ELEMENTARY SCHOOL					Pł	noeni	x I.D.: CJ1275	8
Client ID: BES204 (0)-0.5)							
		RL/						
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference	
								_

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director September 03, 2021 Reviewed and Released by: Greg Lawrence, Assistant Lab Director

Analysis Report

FOR: Attn: Brian Sirowich Tighe & Bond 213 Court St, Suite 1100 Middletown, CT 06457

September 03, 2021

Sample Information		Custody Inform	Custody Information				
Matrix:	SOIL	Collected by:		08/24/21	10:15		
Location Code:	TIGHE-DAS	Received by:	CP	08/24/21	16:50		
Rush Request:	96 Hour	Analyzed by:	see "By" below				
P.O.#:	150439 BURR	l ekenetem	Data		CC 1127		

Laboratory Data

SDG ID: GCJ12755 Phoenix ID: CJ12759

Project ID: BURR ELEMENTARY SCHOOL Client ID: BES205 (0-0.5)

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	73		%		08/24/21	JS	SW846-%Solid
Soil Extraction for Pesticide	Completed				08/25/21	R/YE	SW3546
SPLP Extraction for Organics	Completed				08/31/21	AB	SW1312
SPLP Pesticides Ext.	Completed				09/01/21	CC/N	SW3510C
Pesticides							
4,4' -DDD	ND	1.8	ug/Kg	2	08/27/21	AW	SW8081B
4,4' -DDE	4.2	1.8	ug/Kg	2	08/27/21	AW	SW8081B
4,4' -DDT	8.0	1.8	ug/Kg	2	08/27/21	AW	SW8081B
a-BHC	ND	1.8	ug/Kg	2	08/27/21	AW	SW8081B
Alachlor	ND	8.9	ug/Kg	2	08/27/21	AW	SW8081B
Aldrin	ND	1.8	ug/Kg	2	08/27/21	AW	SW8081B
b-BHC	ND	1.8	ug/Kg	2	08/27/21	AW	SW8081B
Chlordane	ND	45	ug/Kg	2	08/27/21	AW	SW8081B
d-BHC	ND	1.8	ug/Kg	2	08/27/21	AW	SW8081B
Dieldrin	7.3	4.5	ug/Kg	2	08/27/21	AW	SW8081B
Endosulfan I	ND	8.9	ug/Kg	2	08/27/21	AW	SW8081B
Endosulfan II	ND	8.9	ug/Kg	2	08/27/21	AW	SW8081B
Endosulfan sulfate	ND	8.9	ug/Kg	2	08/27/21	AW	SW8081B
Endrin	ND	8.9	ug/Kg	2	08/27/21	AW	SW8081B
Endrin aldehyde	ND	8.9	ug/Kg	2	08/27/21	AW	SW8081B
Endrin ketone	ND	8.9	ug/Kg	2	08/27/21	AW	SW8081B
g-BHC	ND	1.8	ug/Kg	2	08/27/21	AW	SW8081B
Heptachlor	ND	8.9	ug/Kg	2	08/27/21	AW	SW8081B
Heptachlor epoxide	ND	8.9	ug/Kg	2	08/27/21	AW	SW8081B
Methoxychlor	ND	45	ug/Kg	2	08/27/21	AW	SW8081B
Toxaphene	ND	180	ug/Kg	2	08/27/21	AW	SW8081B

Project ID: BURR ELEMENTARY SCHOOL Client ID: BES205 (0-0.5)

DI /

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
QA/QC Surrogates							
% DCBP	76		%	2	08/27/21	AW	30 - 150 %
% DCBP (Confirmation)	85		%	2	08/27/21	AW	30 - 150 %
% TCMX	68		%	2	08/27/21	AW	30 - 150 %
% TCMX (Confirmation)	80		%	2	08/27/21	AW	30 - 150 %
SPLP Pesticides							
4,4' -DDD	ND	0.005	ug/L	1	09/03/21	KCA	SW8081B
4,4' -DDE	ND	0.005	ug/L	1	09/03/21	KCA	SW8081B
4,4' -DDT	ND	0.005	ug/L	1	09/03/21	KCA	SW8081B
a-BHC	ND	0.005	ug/L	1	09/03/21	KCA	SW8081B
Alachlor	ND	0.010	ug/L	1	09/03/21	KCA	SW8081B
Aldrin	ND	0.003	ug/L	1	09/03/21	KCA	SW8081B
b-BHC	ND	0.005	ug/L	1	09/03/21	KCA	SW8081B
Chlordane	ND	0.048	ug/L	1	09/03/21	KCA	SW8081B
d-BHC	ND	0.005	ug/L	1	09/03/21	KCA	SW8081B
Dieldrin	ND	0.002	ug/L	1	09/03/21	KCA	SW8081B
Endosulfan I	ND	0.005	ug/L	1	09/03/21	KCA	SW8081B
Endosulfan II	ND	0.005	ug/L	1	09/03/21	KCA	SW8081B
Endosulfan sulfate	ND	0.005	ug/L	1	09/03/21	KCA	SW8081B
Endrin	ND	0.005	ug/L	1	09/03/21	KCA	SW8081B
Endrin aldehyde	ND	0.005	ug/L	1	09/03/21	KCA	SW8081B
Endrin Ketone	ND	0.005	ug/L	1	09/03/21	KCA	SW8081B
g-BHC	ND	0.005	ug/L	1	09/03/21	KCA	SW8081B
Heptachlor	ND	0.005	ug/L	1	09/03/21	KCA	SW8081B
Heptachlor epoxide	ND	0.005	ug/L	1	09/03/21	KCA	SW8081B
Methoxychlor	ND	0.005	ug/L	1	09/03/21	KCA	SW8081B
Toxaphene	ND	0.19	ug/L	1	09/03/21	KCA	SW8081B
QA/QC Surrogates							
%DCBP (Surrogate Rec)	95		%	1	09/03/21	KCA	30 - 150 %
%DCBP (Surrogate Rec) (Confirmation)	63		%	1	09/03/21	KCA	30 - 150 %
%TCMX (Surrogate Rec)	97		%	1	09/03/21	KCA	30 - 150 %
%TCMX (Surrogate Rec) (Confirmation)	83		%	1	09/03/21	KCA	30 - 150 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director September 03, 2021 Reviewed and Released by: Greg Lawrence, Assistant Lab Director

Analysis Report

FOR: Attn: Brian Sirowich Tighe & Bond 213 Court St, Suite 1100 Middletown, CT 06457

September 03, 2021

Sample Information		Custody Inform	Custody Information				
Matrix:	SOIL	Collected by:		08/24/21	10:18		
Location Code:	TIGHE-DAS	Received by:	CP	08/24/21	16:50		
Rush Request:	Standard	Analyzed by:	see "By" below				
P.O.#:	150439 BURR		Data		CC 1127		

Laboratory Data

SDG ID: GCJ12755 Phoenix ID: CJ12760

Project ID: BURR ELEMENTARY SCHOOL Client ID: BES206 (0-0.5)

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	65		%		08/24/21	JS	SW846-%Solid
Extraction for PCB	Completed				08/24/21	X/KL	SW3540C
PCB (Soxhlet SW35400	C)						
PCB-1016	ND	250	ug/Kg	5	08/25/21	SC	SW8082A
PCB-1221	ND	250	ug/Kg	5	08/25/21	SC	SW8082A
PCB-1232	ND	250	ug/Kg	5	08/25/21	SC	SW8082A
PCB-1242	ND	250	ug/Kg	5	08/25/21	SC	SW8082A
PCB-1248	ND	250	ug/Kg	5	08/25/21	SC	SW8082A
PCB-1254	ND	250	ug/Kg	5	08/25/21	SC	SW8082A
PCB-1260	ND	250	ug/Kg	5	08/25/21	SC	SW8082A
PCB-1262	ND	250	ug/Kg	5	08/25/21	SC	SW8082A
PCB-1268	ND	250	ug/Kg	5	08/25/21	SC	SW8082A
QA/QC Surrogates							
% DCBP	93		%	5	08/25/21	SC	30 - 150 %
% DCBP (Confirmation)	91		%	5	08/25/21	SC	30 - 150 %
% TCMX	96		%	5	08/25/21	SC	30 - 150 %
% TCMX (Confirmation)	96		%	5	08/25/21	SC	30 - 150 %

Project ID: BURR ELE Client ID: BES206 (0	EMENTARY SCI 1-0.5)	HOOL			Pł	noeni	x I.D.: CJ1276	0
Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference	

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director September 03, 2021 Reviewed and Released by: Greg Lawrence, Assistant Lab Director

Analysis Report

FOR: Attn: Brian Sirowich Tighe & Bond 213 Court St, Suite 1100 Middletown, CT 06457

September 03, 2021

Sample Information		Custody Inform	Custody Information				
Matrix:	SOIL	Collected by:		08/24/21	10:20		
Location Code:	TIGHE-DAS	Received by:	CP	08/24/21	16:50		
Rush Request:	Standard	Analyzed by:	see "By" below				
P.O.#:	150439 BURR		Data		CC 1127		

Laboratory Data

SDG ID: GCJ12755 Phoenix ID: CJ12761

Project ID: BURR ELEMENTARY SCHOOL Client ID: BES207 (0-0.5)

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	72		%		08/24/21	JS	SW846-%Solid
Extraction for PCB	Completed				08/24/21	X/KL	SW3540C
PCB (Soxhlet SW3540C)						
PCB-1016	ND	220	ug/Kg	5	08/25/21	SC	SW8082A
PCB-1221	ND	220	ug/Kg	5	08/25/21	SC	SW8082A
PCB-1232	ND	220	ug/Kg	5	08/25/21	SC	SW8082A
PCB-1242	ND	220	ug/Kg	5	08/25/21	SC	SW8082A
PCB-1248	ND	220	ug/Kg	5	08/25/21	SC	SW8082A
PCB-1254	ND	220	ug/Kg	5	08/25/21	SC	SW8082A
PCB-1260	ND	220	ug/Kg	5	08/25/21	SC	SW8082A
PCB-1262	ND	220	ug/Kg	5	08/25/21	SC	SW8082A
PCB-1268	ND	220	ug/Kg	5	08/25/21	SC	SW8082A
QA/QC Surrogates							
% DCBP	90		%	5	08/25/21	SC	30 - 150 %
% DCBP (Confirmation)	90		%	5	08/25/21	SC	30 - 150 %
% TCMX	90		%	5	08/25/21	SC	30 - 150 %
% TCMX (Confirmation)	90		%	5	08/25/21	SC	30 - 150 %

Project ID: BURR ELI	Phoenix I.D.: CJ127				1			
Client ID: BES207 (0	0-0.5)							
		RL/						
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference	
								-

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director September 03, 2021 Reviewed and Released by: Greg Lawrence, Assistant Lab Director

Analysis Report

FOR: Attn: Brian Sirowich Tighe & Bond 213 Court St, Suite 1100 Middletown, CT 06457

September 03, 2021

Sample Information		Custody Inform	Custody Information				
Matrix:	SOIL	Collected by:		08/24/21	10:22		
Location Code:	TIGHE-DAS	Received by:	CP	08/24/21	16:50		
Rush Request:	Standard	Analyzed by:	see "By" below				
P.O.#:	150439 BURR	l ekenetem	Data		CC 1127		

Laboratory Data

SDG ID: GCJ12755 Phoenix ID: CJ12762

Project ID: BURR ELEMENTARY SCHOOL Client ID: BES208 (0-0.5)

Parameter	Result	RL/ POI	Linits	Dilution	Date/Time	Bv	Reference
	Result	T QL	Office	Bliddon	Dute/Time	Dy	
Arsenic	3.98	0.93	mg/Kg	1	08/25/21	TH	SW6010D
Lead	13.4	0.47	mg/Kg	1	08/25/21	TH	SW6010D
Percent Solid	64		%		08/24/21	JS	SW846-%Solid
Extraction of ETPH	Completed				08/24/21	I/E	SW3546
Soil Extraction for Pesticide	Completed				08/25/21	R/YE	SW3546
Soil Extraction for SVOA PAH	Completed				08/24/21	I/Y/K	SW3546
Extraction for PCB	Completed				08/24/21	X/KL	SW3540C
Total Metals Digest	Completed				08/24/21	B/AG/BF	- SW3050B
TPH by GC (Extractable	e Products)					
Ext. Petroleum H.C. (C9-C36)	ND	77	mg/Kg	1	08/25/21	KCA	CTETPH 8015D
Identification	ND		mg/Kg	1	08/25/21	KCA	CTETPH 8015D
QA/QC Surrogates							
% COD (surr)	68		%	1	08/25/21	KCA	50 - 150 %
% Terphenyl (surr)	74		%	1	08/25/21	KCA	50 - 150 %
PCB (Soxhlet SW35400	<u>)</u>						
PCB-1016	ND	260	ug/Kg	5	08/25/21	SC	SW8082A
PCB-1221	ND	260	ug/Kg	5	08/25/21	SC	SW8082A
PCB-1232	ND	260	ug/Kg	5	08/25/21	SC	SW8082A
PCB-1242	ND	260	ug/Kg	5	08/25/21	SC	SW8082A
PCB-1248	ND	260	ug/Kg	5	08/25/21	SC	SW8082A
PCB-1254	ND	260	ug/Kg	5	08/25/21	SC	SW8082A
PCB-1260	ND	260	ug/Kg	5	08/25/21	SC	SW8082A
PCB-1262	ND	260	ug/Kg	5	08/25/21	SC	SW8082A
PCB-1268	ND	260	ug/Kg	5	08/25/21	SC	SW8082A
QA/QC Surrogates							

Project ID: BURR ELEMENTARY SCHOOL Client ID: BES208 (0-0.5)

Parameter Result PQL Units Dilution Date/Time By Reference % DCBP 85 % 5 08252:1 SC 30 - 160 % % DCBY 7% 5 08252:1 SC 30 - 160 % % TCMX 76 % 5 08252:1 SC 30 - 160 % % TCMX 76 % 5 08252:1 SC 30 - 160 % Pesticides 44 - DDT ND 2.0 ug/Kg 2 08272:1 AW SW0081B 4.4 - DDT ND 2.0 ug/Kg 2 08272:1 AW SW0081B Adchor ND 2.0 ug/Kg 2 08272:1 AW SW0081B Alchor ND 2.0 ug/Kg 2 08272:1 AW SW0081B Alchor ND 2.0 ug/Kg 2 08272:1 AW SW0081B Alchor ND 2.0 ug/Kg			RL/					
% DGBP 95 % 5 08252(1) SC 30 - 160 % % DGBP (Confirmation) 75 % 5 08252(1) SC 30 - 150 % % TOMX (Confirmation) 75 % 5 08252(1) SC 30 - 150 % % TOMX (Confirmation) 76 % 5 08252(1) SC 30 - 150 % # Confirmation) 76 % 5 08252(1) SC 30 - 150 % # Confirmation) 76 % 5 08272(1) AW SW0801B # 4 - DDT ND 2.0 upKg 2 08272(1) AW SW0801B # 4 - DDT ND 2.0 upKg 2 08272(1) AW SW0801B # Alchior ND 2.0 upKg 2 08272(1) AW SW0801B # Confirmation ND 2.0 upKg 2 08272(1) AW SW0801B # Confirmation ND 10 upKg 2 <td< th=""><th>Parameter</th><th>Result</th><th>PQL</th><th>Units</th><th>Dilution</th><th>Date/Time</th><th>Ву</th><th>Reference</th></td<>	Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
% DCBA (Confirmation) 84 % 5 08/25/21 SC 30 - 160 % % TCMX (Confirmation) 76 % 5 08/25/21 SC 30 - 160 % Pesticides	% DCBP	85		%	5	08/25/21	SC	30 - 150 %
% TCMX 76 % 5 08/25/21 SC 30 - 150 % % TCMX (Confirmation) 76 % 5 08/25/21 SC 30 - 150 % Pesticides % 5 08/25/21 AC DD 4.4 - DDE ND 2.0 ug/Kg 2 08/27/21 AW SW8061B 4.4 - DDE ND 2.0 ug/Kg 2 08/27/21 AW SW8061B a BHC ND 2.0 ug/Kg 2 08/27/21 AW SW8061B Alachlor ND 2.0 ug/Kg 2 08/27/21 AW SW8061B Alachlor ND 2.0 ug/Kg 2 08/27/21 AW SW8061B Chordane ND 5.1 ug/Kg 2 08/27/21 AW SW8061B Endosulfan I ND 0 ug/Kg 2 08/27/21 AW SW8061B Endosulfan I ND 10 ug/Kg </td <td>% DCBP (Confirmation)</td> <td>84</td> <td></td> <td>%</td> <td>5</td> <td>08/25/21</td> <td>SC</td> <td>30 - 150 %</td>	% DCBP (Confirmation)	84		%	5	08/25/21	SC	30 - 150 %
% TCMX (Confirmation) 76 % 5 08/25/21 % SC 30 - 150 % Pesticides	% TCMX	76		%	5	08/25/21	SC	30 - 150 %
Pesticides 4.4 - DDD ND 2.0 ug/kg 2 0827721 AW SW8081B 4.4 - DDT ND 2.0 ug/kg 2 0827721 AW SW8081B 4.4 - DDT ND 2.0 ug/kg 2 0827721 AW SW8081B Alchior ND 2.0 ug/kg 2 0827721 AW SW8081B Alchior ND 2.0 ug/kg 2 0827721 AW SW8081B Alchior ND 2.0 ug/kg 2 0827721 AW SW8081B Dickirin ND 5.1 ug/kg 2 0827721 AW SW8081B Dickirin ND 1.0 ug/kg 2 0827721 AW SW8081B Endosulfan ND 1.0 ug/kg 2 0827721 AW SW8081B Endosulfan Sulfate ND 1.0 ug/kg 2 0827721 AW SW8081B <	% TCMX (Confirmation)	76		%	5	08/25/21	SC	30 - 150 %
4.4 - DDD ND 2.0 ug/Kg 2 062721 AW SW8081B 4.4 - DDE ND 2.0 ug/Kg 2 0627721 AW SW8081B a-BHC ND 2.0 ug/Kg 2 0627721 AW SW8081B a-BHC ND 2.0 ug/Kg 2 0627721 AW SW8081B Alachior ND 2.0 ug/Kg 2 0627721 AW SW8081B Aldrin ND 2.0 ug/Kg 2 0627721 AW SW8081B Chordane ND 2.0 ug/Kg 2 0627721 AW SW8081B Chordane ND 10 ug/Kg 2 0627721 AW SW8081B Endosulfan II ND 10 ug/Kg 2 0627721 AW SW8081B Endosulfan sulfate ND 10 ug/Kg 2 0627721 AW SW8081B Endosulfan sulfate ND	Pesticides							
A.4 - DDE ND 2.0 ug/Kg 2 08/27/21 AW SW8081B A4 - DDT ND 2.0 ug/Kg 2 08/27/21 AW SW8081B Alachior ND 2.0 ug/Kg 2 08/27/21 AW SW8081B Alachior ND 10 ug/Kg 2 08/27/21 AW SW8081B Adrin ND 2.0 ug/Kg 2 08/27/21 AW SW8081B Chiordane ND 5.1 ug/Kg 2 08/27/21 AW SW8081B Endosulfan ND 5.1 ug/Kg 2 08/27/21 AW SW8081B Endosulfan sulfate ND 10 ug/Kg 2 08/27/21 AW SW8081B Endosulfan sulfate ND 10 ug/Kg 2 08/27/21 AW SW8081B Endosulfan sulfate ND 10 ug/Kg 2 08/27/21 AW SW8081B Endosu	4,4' -DDD	ND	2.0	ug/Kg	2	08/27/21	AW	SW8081B
a, 4, -DDT ND 2.0 ug/Kg 2 08/27/21 AW SW8081B a-BHC ND 2.0 ug/Kg 2 08/27/21 AW SW8081B Alchinor ND 1.0 ug/Kg 2 08/27/21 AW SW8081B Alchino ND 2.0 ug/Kg 2 08/27/21 AW SW8081B b-BHC ND 2.0 ug/Kg 2 08/27/21 AW SW8081B chondane ND 5.1 ug/Kg 2 08/27/21 AW SW8081B Endosulfan I ND 10 ug/Kg 2 08/27/21 AW SW8081B Endosulfan I ND 10 ug/Kg 2 08/27/21 AW SW8081B Endrin sulfate ND 10 ug/Kg 2 08/27/21 AW SW8081B Endrin aldehyde ND 10 ug/Kg 2 08/27/21 AW SW8081B Endrin aldehyde ND 10 ug/Kg 2 08/27/21 AW SW8081B	4,4' -DDE	ND	2.0	ug/Kg	2	08/27/21	AW	SW8081B
a-BHC ND 2.0 ug/Kg 2 08/27/21 AW SW80818 Alachior ND 10 ug/Kg 2 08/27/21 AW SW80818 Alachior ND 2.0 ug/Kg 2 08/27/21 AW SW80818 b-BHC ND 2.0 ug/Kg 2 08/27/21 AW SW80818 c-BHC ND 2.0 ug/Kg 2 08/27/21 AW SW80818 d-BHC ND 5.1 ug/Kg 2 08/27/21 AW SW80818 Endosulfan II ND 10 ug/Kg 2 08/27/21 AW SW80818 Endrin aldehyde ND 10 ug/Kg 2 08/27/21 AW SW80818 Endrin aldehyde ND 10 ug/Kg 2 08/27/21 AW SW80818 Endrin aldehyde ND 10 ug/Kg 2 08/27/21 AW SW80818 Endrin aldehyde	4,4' -DDT	ND	2.0	ug/Kg	2	08/27/21	AW	SW8081B
Alachlor ND 10 ug/Kg 2 08/27/21 AW SW8081B Aldrin ND 2.0 ug/Kg 2 08/27/21 AW SW8081B Chlordane ND 5.1 ug/Kg 2 08/27/21 AW SW8081B Chlordane ND 5.1 ug/Kg 2 08/27/21 AW SW8081B Chlordane ND 5.1 ug/Kg 2 08/27/21 AW SW8081B Endosulfan I ND 10 ug/Kg 2 08/27/21 AW SW8081B Endosulfan Sulfate ND 10 ug/Kg 2 08/27/21 AW SW8081B Endrin Aldehyde ND 10 ug/Kg 2 08/27/21 AW SW8081B Endrin ketone ND 10 ug/Kg 2 08/27/21 AW SW8081B Endrin ketone ND 10 ug/Kg 2 08/27/21 AW SW8081B Endrin ketone ND 10 ug/Kg 2 08/27/21 AW SW8081B	a-BHC	ND	2.0	ug/Kg	2	08/27/21	AW	SW8081B
Aldrin ND 2.0 ug/Kg 2 08/27/21 AW SW8081B b-BHC ND 2.0 ug/Kg 2 08/27/21 AW SW8081B c-BHC ND 5.1 ug/Kg 2 08/27/21 AW SW8081B Dieldrin ND 5.1 ug/Kg 2 08/27/21 AW SW8081B Endosulfan I ND 10 ug/Kg 2 08/27/21 AW SW8081B Endosulfan II ND 10 ug/Kg 2 08/27/21 AW SW8081B Endosulfan sulfate ND 10 ug/Kg 2 08/27/21 AW SW8081B Endrin ladehyde ND 10 ug/Kg 2 08/27/21 AW SW8081B Endrin ladehyde ND 10 ug/Kg 2 08/27/21 AW SW8081B Endrin ketone ND 10 ug/Kg 2 08/27/21 AW SW8081B Endrin ketone ND 51 ug/Kg 2 08/27/21 AW SW8081B	Alachlor	ND	10	ug/Kg	2	08/27/21	AW	SW8081B
b-BHC ND 2.0 ug/kg 2 08/27/21 AW SW8081B Chiordane ND 51 ug/kg 2 08/27/21 AW SW8081B Dieldrin ND 5.1 ug/kg 2 08/27/21 AW SW8081B Endosulfan I ND 10 ug/kg 2 08/27/21 AW SW8081B Endosulfan II ND 10 ug/kg 2 08/27/21 AW SW8081B Endosulfan sulfate ND 10 ug/kg 2 08/27/21 AW SW8081B Endrin ketone ND 10 ug/kg 2 08/27/21 AW SW8081B Endrin ketone ND 10 ug/kg 2 08/27/21 AW SW8081B Endrin ketone ND 10 ug/kg 2 08/27/21 AW SW8081B Endrin ketone ND 10 ug/kg 2 08/27/21 AW SW8081B Stop	Aldrin	ND	2.0	ug/Kg	2	08/27/21	AW	SW8081B
Chlordane ND 51 ug/kg 2 08/27/21 AW SW8081B d-BHC ND 2.0 ug/kg 2 08/27/21 AW SW8081B Endosulfan I ND 5.1 ug/kg 2 08/27/21 AW SW8081B Endosulfan I ND 10 ug/kg 2 08/27/21 AW SW8081B Endosulfan U ND 10 ug/kg 2 08/27/21 AW SW8081B Endrin ND 10 ug/kg 2 08/27/21 AW SW8081B Endrin latlehyde ND 10 ug/kg 2 08/27/21 AW SW8081B Endrin latlehyde ND 10 ug/kg 2 08/27/21 AW SW8081B Heptachlor epoxide ND 10 ug/kg 2 08/27/21 AW SW8081B Methoxychlor ND 51 ug/kg 2 08/27/21 AW SW8081B Ozo	b-BHC	ND	2.0	ug/Kg	2	08/27/21	AW	SW8081B
d-BHC ND 2.0 ug/Kg 2 0827/21 AW SW8081B Dieldrin ND 5.1 ug/Kg 2 0827/21 AW SW8081B Endosulfan II ND 10 ug/Kg 2 0827/21 AW SW8081B Endosulfan II ND 10 ug/Kg 2 0827/21 AW SW8081B Endrin ND 10 ug/Kg 2 0827/21 AW SW8081B Endrin aldehyde ND 10 ug/Kg 2 0827/21 AW SW8081B Endrin ketone ND 10 ug/Kg 2 0827/21 AW SW8081B Heptachlor Pox 10 ug/Kg 2 0827/21 AW SW8081B Methoxychlor ND 10 ug/Kg 2 0827/21 AW SW8081B Toxaphere ND 200 ug/Kg 2 0827/21 AW SW8081B Cocaptorination)	Chlordane	ND	51	ug/Kg	2	08/27/21	AW	SW8081B
Dieldrin ND 5.1 ug/Kg 2 08/27/21 AW SW8081B Endosulfan II ND 10 ug/Kg 2 08/27/21 AW SW8081B Endosulfan II ND 10 ug/Kg 2 08/27/21 AW SW8081B Endosulfan sulfate ND 10 ug/Kg 2 08/27/21 AW SW8081B Endrin aldehyde ND 10 ug/Kg 2 08/27/21 AW SW8081B Endrin katone ND 10 ug/Kg 2 08/27/21 AW SW8081B Heptachlor epoxide ND 10 ug/Kg 2 08/27/21 AW SW8081B Heptachlor epoxide ND 51 ug/Kg 2 08/27/21 AW SW8081B Methoxychlor ND 51 ug/Kg 2 08/27/21 AW SW8081B Toxaphene ND 50 ug/Kg 2 08/27/21 AW 30 - 150 %	d-BHC	ND	2.0	ug/Kg	2	08/27/21	AW	SW8081B
Endosulfan I ND 10 ug/Kg 2 08/27/21 AW SW8081B Endosulfan II ND 10 ug/Kg 2 08/27/21 AW SW8081B Endosulfan sulfate ND 10 ug/Kg 2 08/27/21 AW SW8081B Endrin ND 10 ug/Kg 2 08/27/21 AW SW8081B Endrin ladehyde ND 10 ug/Kg 2 08/27/21 AW SW8081B Endrin ladehyde ND 10 ug/Kg 2 08/27/21 AW SW8081B Heptachlor ND 10 ug/Kg 2 08/27/21 AW SW8081B Methoxychlor ND 51 ug/Kg 2 08/27/21 AW SW8081B OZGE W DCBP 83 % 2 08/27/21 AW SW 50%6 MCX Confirmation) 91 % 2 08/27/21 AW 30 - 150 % %	Dieldrin	ND	5.1	ug/Kg	2	08/27/21	AW	SW8081B
Endosulfan II ND 10 ug/Kg 2 08/27/21 AW SW8081B Endosulfan sulfate ND 10 ug/Kg 2 08/27/21 AW SW8081B Endrin ND 10 ug/Kg 2 08/27/21 AW SW8081B Endrin aldehyde ND 10 ug/Kg 2 08/27/21 AW SW8081B Endrin ketone ND 10 ug/Kg 2 08/27/21 AW SW8081B Heptachlor ND 10 ug/Kg 2 08/27/21 AW SW8081B Toxaphene ND 51 ug/Kg 2 08/27/21 AW SW8081B QACC Surrogates w Sw8081B Sw8081B Sw8081B GACS Vg/Kg 2 08/27/21 AW SW8081B GACS Vg/Kg 2 08/27/21 AW Sw8081B GACS Vg/Kg 2 08/27/21 AW Sw150% <	Endosulfan I	ND	10	ug/Kg	2	08/27/21	AW	SW8081B
Endosulfan sulfate ND 10 ug/Kg 2 08/27/21 AW SW8081B Endrin ND 10 ug/Kg 2 08/27/21 AW SW8081B Endrin aldehyde ND 10 ug/Kg 2 08/27/21 AW SW8081B Endrin ketone ND 10 ug/Kg 2 08/27/21 AW SW8081B Behto ND 10 ug/Kg 2 08/27/21 AW SW8081B Heptachlor epoxide ND 10 ug/Kg 2 08/27/21 AW SW8081B Methoxychlor ND 51 ug/Kg 2 08/27/21 AW SW8081B QACC Surcogats * % 2 08/27/21 AW SW6081B % DCBP 83 % 2 08/27/21 AW SW6081B GACC Surcogats * % 2 08/27/21 AW 30 - 150 % % DCBP 83 %	Endosulfan II	ND	10	ug/Kg	2	08/27/21	AW	SW8081B
Endrin ND 10 ug/Kg 2 08/27/21 AW SW8081B Endrin aldehyde ND 10 ug/Kg 2 08/27/21 AW SW8081B Endrin ketone ND 10 ug/Kg 2 08/27/21 AW SW8081B g-BHC ND 2.0 ug/Kg 2 08/27/21 AW SW8081B Heptachlor ND 10 ug/Kg 2 08/27/21 AW SW8081B Methoxychlor ND 51 ug/Kg 2 08/27/21 AW SW8081B Methoxychlor ND 200 ug/Kg 2 08/27/21 AW SW8081B Methoxychlor ND 200 ug/Kg 2 08/27/21 AW SW8081B Motospace ND 200 ug/Kg 2 08/27/21 AW SW8081B Motospace ND 30 10 30/27/21 AW 30 - 150 % MCAS DCSP	Endosulfan sulfate	ND	10	ug/Kg	2	08/27/21	AW	SW8081B
Endrin aldehyde ND 10 ug/Kg 2 08/27/21 AW SW8081B Endrin ketone ND 10 ug/Kg 2 08/27/21 AW SW8081B g-BHC ND 2.0 ug/Kg 2 08/27/21 AW SW8081B Heptachlor ND 10 ug/Kg 2 08/27/21 AW SW8081B Heptachlor epoxide ND 10 ug/Kg 2 08/27/21 AW SW8081B Toxaphene ND 200 ug/Kg 2 08/27/21 AW SW8081B QAQC Surrogates 30 51 ug/Kg 2 08/27/21 AW 30 - 150 % % DCBP 63 % 2 08/27/21 AW 30 - 150 % % TCMX 75 % 2 08/27/21 AW 30 - 150 % % TCMX (Confirmation) 90 360 ug/Kg 1 08/25/21 WB SW8270D Acenaphthylanphtalene </td <td>Endrin</td> <td>ND</td> <td>10</td> <td>ug/Kg</td> <td>2</td> <td>08/27/21</td> <td>AW</td> <td>SW8081B</td>	Endrin	ND	10	ug/Kg	2	08/27/21	AW	SW8081B
Endrin ketone ND 10 ug/Kg 2 08/27/21 AW SW8081B g-BHC ND 2.0 ug/Kg 2 08/27/21 AW SW8081B Heptachlor ND 10 ug/Kg 2 08/27/21 AW SW8081B Heptachlor epoxide ND 10 ug/Kg 2 08/27/21 AW SW8081B Methoxychlor ND 51 ug/Kg 2 08/27/21 AW SW8081B OXAge Surrogates 3 10 0.9/Kg 2 08/27/21 AW SW8081B OLOS P 63 % 2 08/27/21 AW 30 - 150 % & DCBP (Confirmation) 91 % 2 08/27/21 AW 30 - 150 % % TCMX 75 % 2 08/27/21 AW 30 - 150 % % TCMX (Confirmation) 90 % 2 08/27/21 AW 30 - 150 % Acenaphthylene ND 360	Endrin aldehyde	ND	10	ug/Kg	2	08/27/21	AW	SW8081B
g-BHC ND 2.0 ug/Kg 2 08/27/21 AW SW8081B Heptachlor ND 10 ug/Kg 2 08/27/21 AW SW8081B Heptachlor epoxide ND 10 ug/Kg 2 08/27/21 AW SW8081B Methoxychlor ND 51 ug/Kg 2 08/27/21 AW SW8081B Toxaphene ND 200 ug/Kg 2 08/27/21 AW SW8081B GACC Surrogates	Endrin ketone	ND	10	ug/Kg	2	08/27/21	AW	SW8081B
Heptachlor ND 10 ug/kg 2 08/27/21 AW SW8081B Heptachlor epoxide ND 10 ug/kg 2 08/27/21 AW SW8081B Methoxychlor ND 51 ug/kg 2 08/27/21 AW SW8081B Toxaphene ND 200 ug/kg 2 08/27/21 AW SW8081B GAQC Surrogates	g-BHC	ND	2.0	ug/Kg	2	08/27/21	AW	SW8081B
Heptachlor epoxide ND 10 ug/kg 2 08/27/21 AW SW8081B Methoxychlor ND 51 ug/kg 2 08/27/21 AW SW8081B Toxaphene ND 200 ug/kg 2 08/27/21 AW SW8081B QAQC Surrogates	Heptachlor	ND	10	ug/Kg	2	08/27/21	AW	SW8081B
Methoxychlor ND 51 ug/Kg 2 08/27/21 AW SW8081B Toxaphene ND 200 ug/Kg 2 08/27/21 AW SW8081B GACQC Surrogates AW 30 - 150 % % DCBP (Confirmation) 91 % 2 08/27/21 AW 30 - 150 % % TCMX 75 % 2 08/27/21 AW 30 - 150 % % TCMX (Confirmation) 90 % 2 08/27/21 AW 30 - 150 % Polynuclear Aromatic HC % 2 08/27/21 AW 30 - 150 % 2-Methylnaphthalene ND 360 ug/Kg 1 08/25/21 WB SW8270D Acenaphthylene ND 360 ug/Kg 1 08/25/21 WB SW8270D Benz(a)anthracene ND 360 ug/Kg 1 08/25/21 WB SW8270D Benzo(b)fluoranthene ND 360 u	Heptachlor epoxide	ND	10	ug/Kg	2	08/27/21	AW	SW8081B
Toxaphene ND 200 ug/Kg 2 08/27/21 AW SW8081B GA/QC Surrogates	Methoxychlor	ND	51	ug/Kg	2	08/27/21	AW	SW8081B
OACC Surrogates % DCBP 83 % 2 08/27/21 AW 30 - 150 % % DCBP (Confirmation) 91 % 2 08/27/21 AW 30 - 150 % % TCMX 75 % 2 08/27/21 AW 30 - 150 % % TCMX (Confirmation) 90 % 2 08/27/21 AW 30 - 150 % % TCMX (Confirmation) 90 % 2 08/27/21 AW 30 - 150 % % TCMX (Confirmation) 90 % 2 08/27/21 AW 30 - 150 % Polynuclear Aromatic HC ND 360 ug/Kg 1 08/25/21 WB SW8270D Acenaphthene ND 360 ug/Kg 1 08/25/21 WB SW8270D Benzo(a)pyrene ND 360 ug/Kg 1 08/25/21 WB SW8270D Benzo(gh)pyrene ND 360 ug/Kg 1 08/25/21 WB SW8270D Benzo(gh)pyrene	Toxaphene	ND	200	ug/Kg	2	08/27/21	AW	SW8081B
% DCBP 83 % 2 08/27/21 AW 30 - 150 % % DCBP (Confirmation) 91 % 2 08/27/21 AW 30 - 150 % % TCMX 75 % 2 08/27/21 AW 30 - 150 % % TCMX (Confirmation) 90 % 2 08/27/21 AW 30 - 150 % POlynuclear Aromatic HC	QA/QC Surrogates							
% DCBP (Confirmation) 91 % 2 08/27/21 AW 30 - 150 % % TCMX 75 % 2 08/27/21 AW 30 - 150 % % TCMX (Confirmation) 90 % 2 08/27/21 AW 30 - 150 % Polynuclear Aromatic HC Acenaphthone ND 360 ug/Kg 1 08/25/21 WB SW8270D Acenaphthene ND 360 ug/Kg 1 08/25/21 WB SW8270D Acenaphthene ND 360 ug/Kg 1 08/25/21 WB SW8270D Acenaphthylene ND 360 ug/Kg 1 08/25/21 WB SW8270D Anthracene ND 360 ug/Kg 1 08/25/21 WB SW8270D Benzo(a)pyrene ND 360 ug/Kg 1 08/25/21 WB SW8270D Benzo(ghi)perylene ND 360 ug/Kg 1 08/25/21 WB SW8270D Benzo(k)fluoranthene ND 360 ug/Kg 1 08/25/21 WB	% DCBP	83		%	2	08/27/21	AW	30 - 150 %
% TCMX 75 % 2 08/27/21 AW 30 - 150 % % TCMX (Confirmation) 90 % 2 08/27/21 AW 30 - 150 % Polynuclear Aromatic HC V 360 ug/Kg 1 08/25/21 WB SW8270D Acenaphthene ND 360 ug/Kg 1 08/25/21 WB SW8270D Acenaphthene ND 360 ug/Kg 1 08/25/21 WB SW8270D Acenaphthene ND 360 ug/Kg 1 08/25/21 WB SW8270D Anthracene ND 360 ug/Kg 1 08/25/21 WB SW8270D Benz(a)anthracene ND 360 ug/Kg 1 08/25/21 WB SW8270D Benzo(b/fluoranthene ND 360 ug/Kg 1 08/25/21 WB SW8270D Benzo(k/fluoranthene ND 360 ug/Kg 1 08/25/21 WB SW8270D Benzo(k/fluoranthene ND 360 ug/Kg 1 08/25/21 WB	% DCBP (Confirmation)	91		%	2	08/27/21	AW	30 - 150 %
% TCMX (Confirmation) 90 % 2 08/27/21 AW 30 - 150 % Polynuclear Aromatic HC X <t< td=""><td>% TCMX</td><td>75</td><td></td><td>%</td><td>2</td><td>08/27/21</td><td>AW</td><td>30 - 150 %</td></t<>	% TCMX	75		%	2	08/27/21	AW	30 - 150 %
Polynuclear Aromatic HC2-MethylnaphthaleneND360ug/Kg108/25/21WBSW8270DAcenaphtheneND360ug/Kg108/25/21WBSW8270DAcenaphthyleneND360ug/Kg108/25/21WBSW8270DAnthraceneND360ug/Kg108/25/21WBSW8270DBenz(a)anthraceneND360ug/Kg108/25/21WBSW8270DBenzo(a)pyreneND360ug/Kg108/25/21WBSW8270DBenzo(b)fluorantheneND360ug/Kg108/25/21WBSW8270DBenzo(b)fluorantheneND360ug/Kg108/25/21WBSW8270DBenzo(k)fluorantheneND360ug/Kg108/25/21WBSW8270DChryseneND360ug/Kg108/25/21WBSW8270DDibenz(a,h)anthraceneND360ug/Kg108/25/21WBSW8270DFluorantheneND360ug/Kg108/25/21WBSW8270DFluorantheneND360ug/Kg108/25/21WBSW8270DIndeno(1,2,3-cd)pyreneND360ug/Kg108/25/21WBSW8270DNaphthaleneND360ug/Kg108/25/21WBSW8270DIndeno(1,2,3-cd)pyreneND360ug/Kg108/25/21WBSW8270D <td>% TCMX (Confirmation)</td> <td>90</td> <td></td> <td>%</td> <td>2</td> <td>08/27/21</td> <td>AW</td> <td>30 - 150 %</td>	% TCMX (Confirmation)	90		%	2	08/27/21	AW	30 - 150 %
2-Methylnaphthalene ND 360 ug/Kg 1 08/25/21 WB SW8270D Acenaphthene ND 360 ug/Kg 1 08/25/21 WB SW8270D Acenaphthylene ND 360 ug/Kg 1 08/25/21 WB SW8270D Anthracene ND 360 ug/Kg 1 08/25/21 WB SW8270D Benz(a)anthracene ND 360 ug/Kg 1 08/25/21 WB SW8270D Benzo(a)pyrene ND 360 ug/Kg 1 08/25/21 WB SW8270D Benzo(b)fluoranthene ND 360 ug/Kg 1 08/25/21 WB SW8270D Benzo(ghi)perylene ND 360 ug/Kg 1 08/25/21 WB SW8270D Chrysene ND 360 ug/Kg 1 08/25/21 WB SW8270D Dibenz(a,h)anthracene ND 360 ug/Kg 1 08/25/21 WB SW82	Polynuclear Aromatic	c HC						
Acenaphthene ND 360 ug/Kg 1 08/25/21 WB SW8270D Acenaphthylene ND 360 ug/Kg 1 08/25/21 WB SW8270D Anthracene ND 360 ug/Kg 1 08/25/21 WB SW8270D Benz(a)anthracene ND 360 ug/Kg 1 08/25/21 WB SW8270D Benz(a)anthracene ND 360 ug/Kg 1 08/25/21 WB SW8270D Benzo(a)pyrene ND 360 ug/Kg 1 08/25/21 WB SW8270D Benzo(b)fluoranthene ND 360 ug/Kg 1 08/25/21 WB SW8270D Benzo(ghi)perylene ND 360 ug/Kg 1 08/25/21 WB SW8270D Benzo(k)fluoranthene ND 360 ug/Kg 1 08/25/21 WB SW8270D Chrysene ND 360 ug/Kg 1 08/25/21 WB SW8270D	2-Methylnaphthalene	ND	360	ug/Kg	1	08/25/21	WB	SW8270D
Acenaphthylene ND 360 ug/Kg 1 08/25/21 WB SW8270D Anthracene ND 360 ug/Kg 1 08/25/21 WB SW8270D Benz(a)anthracene ND 360 ug/Kg 1 08/25/21 WB SW8270D Benzo(a)pyrene ND 360 ug/Kg 1 08/25/21 WB SW8270D Benzo(a)pyrene ND 360 ug/Kg 1 08/25/21 WB SW8270D Benzo(b)fluoranthene ND 360 ug/Kg 1 08/25/21 WB SW8270D Benzo(ghi)perylene ND 360 ug/Kg 1 08/25/21 WB SW8270D Benzo(k)fluoranthene ND 360 ug/Kg 1 08/25/21 WB SW8270D Chrysene ND 360 ug/Kg 1 08/25/21 WB SW8270D Dibenz(a,h)anthracene ND 360 ug/Kg 1 08/25/21 WB S	Acenaphthene	ND	360	ug/Kg	1	08/25/21	WB	SW8270D
Anthracene ND 360 ug/Kg 1 08/25/21 WB SW8270D Benz(a)anthracene ND 360 ug/Kg 1 08/25/21 WB SW8270D Benzo(a)pyrene ND 360 ug/Kg 1 08/25/21 WB SW8270D Benzo(a)pyrene ND 360 ug/Kg 1 08/25/21 WB SW8270D Benzo(b)fluoranthene ND 360 ug/Kg 1 08/25/21 WB SW8270D Benzo(ghi)perylene ND 360 ug/Kg 1 08/25/21 WB SW8270D Benzo(k)fluoranthene ND 360 ug/Kg 1 08/25/21 WB SW8270D Chrysene ND 360 ug/Kg 1 08/25/21 WB SW8270D Dibenz(a,h)anthracene ND 360 ug/Kg 1 08/25/21 WB SW8270D Fluoranthene ND 360 ug/Kg 1 08/25/21 WB SW8	Acenaphthylene	ND	360	ug/Kg	1	08/25/21	WB	SW8270D
Benz(a)anthracene ND 360 ug/Kg 1 08/25/21 WB SW8270D Benzo(a)pyrene ND 360 ug/Kg 1 08/25/21 WB SW8270D Benzo(b)fluoranthene ND 360 ug/Kg 1 08/25/21 WB SW8270D Benzo(b)fluoranthene ND 360 ug/Kg 1 08/25/21 WB SW8270D Benzo(ghi)perylene ND 360 ug/Kg 1 08/25/21 WB SW8270D Benzo(k)fluoranthene ND 360 ug/Kg 1 08/25/21 WB SW8270D Chrysene ND 360 ug/Kg 1 08/25/21 WB SW8270D Dibenz(a,h)anthracene ND 360 ug/Kg 1 08/25/21 WB SW8270D Fluoranthene ND 360 ug/Kg 1 08/25/21 WB SW8270D Fluorene ND 360 ug/Kg 1 08/25/21 WB <td< td=""><td>Anthracene</td><td>ND</td><td>360</td><td>ug/Kg</td><td>1</td><td>08/25/21</td><td>WB</td><td>SW8270D</td></td<>	Anthracene	ND	360	ug/Kg	1	08/25/21	WB	SW8270D
Benzo(a)pyrene ND 360 ug/kg 1 08/25/21 WB SW8270D Benzo(b)fluoranthene ND 360 ug/Kg 1 08/25/21 WB SW8270D Benzo(ghi)perylene ND 360 ug/Kg 1 08/25/21 WB SW8270D Benzo(ghi)perylene ND 360 ug/Kg 1 08/25/21 WB SW8270D Benzo(k)fluoranthene ND 360 ug/Kg 1 08/25/21 WB SW8270D Chrysene ND 360 ug/Kg 1 08/25/21 WB SW8270D Dibenz(a,h)anthracene ND 360 ug/Kg 1 08/25/21 WB SW8270D Fluoranthene ND 360 ug/Kg 1 08/25/21 WB SW8270D Fluorene ND 360 ug/Kg 1 08/25/21 WB SW8270D Indeno(1,2,3-cd)pyrene ND 360 ug/Kg 1 08/25/21 WB	Benz(a)anthracene	ND	360	ug/Kg	1	08/25/21	WB	SW8270D
Benzo(b)fluoranthene ND 360 ug/Kg 1 08/25/21 WB SW8270D Benzo(ghi)perylene ND 360 ug/Kg 1 08/25/21 WB SW8270D Benzo(k)fluoranthene ND 360 ug/Kg 1 08/25/21 WB SW8270D Chrysene ND 360 ug/Kg 1 08/25/21 WB SW8270D Dibenz(a,h)anthracene ND 360 ug/Kg 1 08/25/21 WB SW8270D Fluoranthene ND 360 ug/Kg 1 08/25/21 WB SW8270D Fluoranthene ND 360 ug/Kg 1 08/25/21 WB SW8270D Fluorene ND 360 ug/Kg 1 08/25/21 WB SW8270D Indeno(1,2,3-cd)pyrene ND 360 ug/Kg 1 08/25/21 WB SW8270D Naphthalene ND 360 ug/Kg 1 08/25/21 WB SW827	Benzo(a)pyrene	ND	360	ug/Kg	1	08/25/21	WB	SW8270D
Benzo (ghi) perylene ND 360 ug/Kg 1 08/25/21 WB SW8270D Benzo (k) fluoranthene ND 360 ug/Kg 1 08/25/21 WB SW8270D Chrysene ND 360 ug/Kg 1 08/25/21 WB SW8270D Dibenz (a,h) anthracene ND 360 ug/Kg 1 08/25/21 WB SW8270D Fluoranthene ND 360 ug/Kg 1 08/25/21 WB SW8270D Fluoranthene ND 360 ug/Kg 1 08/25/21 WB SW8270D Fluorene ND 360 ug/Kg 1 08/25/21 WB SW8270D Indeno(1,2,3-cd)pyrene ND 360 ug/Kg 1 08/25/21 WB SW8270D Naphthalene ND 360 ug/Kg 1 08/25/21 WB SW8270D Naphthalene ND 360 ug/Kg 1 08/25/21 WB SW8270D<	Benzo(b)fluoranthene	ND	360	ug/Kg	1	08/25/21	WB	SW8270D
Benzo(k)fluoranthene ND 360 ug/Kg 1 08/25/21 WB SW8270D Chrysene ND 360 ug/Kg 1 08/25/21 WB SW8270D Dibenz(a,h)anthracene ND 360 ug/Kg 1 08/25/21 WB SW8270D Fluoranthene ND 360 ug/Kg 1 08/25/21 WB SW8270D Fluorene ND 360 ug/Kg 1 08/25/21 WB SW8270D Indeno(1,2,3-cd)pyrene ND 360 ug/Kg 1 08/25/21 WB SW8270D Naphthalene ND 360 ug/Kg 1 08/25/21 WB SW8270D Naphthalene ND 360 ug/Kg 1 08/25/21 WB SW8270D	Benzo(ghi)perylene	ND	360	ug/Kg	1	08/25/21	WB	SW8270D
ND 360 ug/Kg 1 08/25/21 WB SW8270D Dibenz(a,h)anthracene ND 360 ug/Kg 1 08/25/21 WB SW8270D Fluoranthene ND 360 ug/Kg 1 08/25/21 WB SW8270D Fluoranthene ND 360 ug/Kg 1 08/25/21 WB SW8270D Fluorene ND 360 ug/Kg 1 08/25/21 WB SW8270D Indeno(1,2,3-cd)pyrene ND 360 ug/Kg 1 08/25/21 WB SW8270D Naphthalene ND 360 ug/Kg 1 08/25/21 WB SW8270D Naphthalene ND 360 ug/Kg 1 08/25/21 WB SW8270D	Benzo(k)fluoranthene	ND	360	ug/Kg	1	08/25/21	WB	SW8270D
Dibenz(a,h)anthracene ND 360 ug/Kg 1 08/25/21 WB SW8270D Fluoranthene ND 360 ug/Kg 1 08/25/21 WB SW8270D Fluorene ND 360 ug/Kg 1 08/25/21 WB SW8270D Indeno(1,2,3-cd)pyrene ND 360 ug/Kg 1 08/25/21 WB SW8270D Naphthalene ND 360 ug/Kg 1 08/25/21 WB SW8270D Naphthalene ND 360 ug/Kg 1 08/25/21 WB SW8270D	Chrysene	ND	360	ug/Kg	1	08/25/21	WB	SW8270D
Fluoranthene ND 360 ug/Kg 1 08/25/21 WB SW8270D Fluorene ND 360 ug/Kg 1 08/25/21 WB SW8270D Indeno(1,2,3-cd)pyrene ND 360 ug/Kg 1 08/25/21 WB SW8270D Naphthalene ND 360 ug/Kg 1 08/25/21 WB SW8270D	Dibenz(a,h)anthracene	ND	360	ug/Kg	1	08/25/21	WB	SW8270D
Fluorene ND 360 ug/Kg 1 08/25/21 WB SW8270D Indeno(1,2,3-cd)pyrene ND 360 ug/Kg 1 08/25/21 WB SW8270D Naphthalene ND 360 ug/Kg 1 08/25/21 WB SW8270D Naphthalene ND 360 ug/Kg 1 08/25/21 WB SW8270D	Fluoranthene	ND	360	ug/Kg	1	08/25/21	WB	SW8270D
Indeno(1,2,3-cd)pyrene ND 360 ug/Kg 1 08/25/21 WB SW8270D Naphthalene ND 360 ug/Kg 1 08/25/21 WB SW8270D Dependent trape ND 360 ug/Kg 1 08/25/21 WB SW8270D	Fluorene	ND	360	ug/Kg	1	08/25/21	WB	SW8270D
Naphthalene ND 360 ug/Kg 1 08/25/21 WB SW8270D Dependent transport ND 260 1/27/22 02/25/21 WB SW8270D	Indeno(1,2,3-cd)pyrene	ND	360	ug/Kg	1	08/25/21	WB	SW8270D
	Naphthalene	ND	360	ug/Kg	1	08/25/21	WB	SW8270D
Phenantinene איז טאט טאט טאט טער איז טארארא טאנא איז איז טאט טאט טאט טאט איז איז איז איז איז איז איז איז איז א	Phenanthrene	ND	360	ug/Kg	1	08/25/21	WB	SW8270D

Project ID: BURR ELEMENTARY SCHOOL Client ID: BES208 (0-0.5)

		RL/						
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference	
Pyrene	ND	360	ug/Kg	1	08/25/21	WB	SW8270D	
QA/QC Surrogates								
% 2-Fluorobiphenyl	71		%	1	08/25/21	WB	30 - 130 %	
% Nitrobenzene-d5	61		%	1	08/25/21	WB	30 - 130 %	
% Terphenyl-d14	90		%	1	08/25/21	WB	30 - 130 %	

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director September 03, 2021 Reviewed and Released by: Greg Lawrence, Assistant Lab Director

Analysis Report

FOR: Attn: Brian Sirowich Tighe & Bond 213 Court St, Suite 1100 Middletown, CT 06457

September 03, 2021

Sample Information		Custody Inform	Custody Information				
Matrix:	SOIL	Collected by:		08/24/21	10:25		
Location Code:	TIGHE-DAS	Received by:	CP	08/24/21	16:50		
Rush Request:	Standard	Analyzed by:	see "By" below				
P.O.#:	150439 BURR	l ekenetem	Data		CC 1127		

Laboratory Data

SDG ID: GCJ12755 Phoenix ID: CJ12763

Project ID: BURR ELEMENTARY SCHOOL Client ID: BES209 (0-0.5)

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	78		%		08/24/21	JS	SW846-%Solid
Extraction for PCB	Completed				08/24/21	X/KL	SW3540C
PCB (Soxhlet SW3540	<u>C)</u>						
PCB-1016	ND	210	ug/Kg	5	08/25/21	SC	SW8082A
PCB-1221	ND	210	ug/Kg	5	08/25/21	SC	SW8082A
PCB-1232	ND	210	ug/Kg	5	08/25/21	SC	SW8082A
PCB-1242	ND	210	ug/Kg	5	08/25/21	SC	SW8082A
PCB-1248	ND	210	ug/Kg	5	08/25/21	SC	SW8082A
PCB-1254	ND	210	ug/Kg	5	08/25/21	SC	SW8082A
PCB-1260	ND	210	ug/Kg	5	08/25/21	SC	SW8082A
PCB-1262	ND	210	ug/Kg	5	08/25/21	SC	SW8082A
PCB-1268	ND	210	ug/Kg	5	08/25/21	SC	SW8082A
QA/QC Surrogates							
% DCBP	92		%	5	08/25/21	SC	30 - 150 %
% DCBP (Confirmation)	90		%	5	08/25/21	SC	30 - 150 %
% TCMX	86		%	5	08/25/21	SC	30 - 150 %
% TCMX (Confirmation)	87		%	5	08/25/21	SC	30 - 150 %

Project ID: BURR ELE	Phoenix I.D.				63			
Client ID: BES209 (0-								
		RL/						
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference	

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director September 03, 2021 Reviewed and Released by: Greg Lawrence, Assistant Lab Director

Analysis Report

FOR: Attn: Brian Sirowich Tighe & Bond 213 Court St, Suite 1100 Middletown, CT 06457

September 03, 2021

Sample Information **Custody Information** Date Time Collected by: 08/24/21 Matrix: SOIL 10:27 Received by: Location Code: **TIGHE-DAS** CP 08/24/21 16:50 Rush Request: Standard Analyzed by: see "By" below 150439 BURR P.O.#:

Laboratory Data

SDG ID: GCJ12755 Phoenix ID: CJ12764

Project ID: BURR ELEMENTARY SCHOOL Client ID: BES210 (0-0.5)

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
Percent Solid	66		%		08/24/21	JS	SW846-%Solid
Soil Extraction for Pesticide	Completed				08/25/21	R/YE	SW3546
<u>Pesticides</u>							
4,4' -DDD	ND	2.0	ug/Kg	2	08/27/21	AW	SW8081B
4,4' -DDE	ND	2.0	ug/Kg	2	08/27/21	AW	SW8081B
4,4' -DDT	ND	3.0	ug/Kg	2	08/27/21	AW	SW8081B
a-BHC	ND	2.0	ug/Kg	2	08/27/21	AW	SW8081B
Alachlor	ND	9.9	ug/Kg	2	08/27/21	AW	SW8081B
Aldrin	ND	2.0	ug/Kg	2	08/27/21	AW	SW8081B
b-BHC	ND	2.0	ug/Kg	2	08/27/21	AW	SW8081B
Chlordane	ND	49	ug/Kg	2	08/27/21	AW	SW8081B
d-BHC	ND	2.0	ug/Kg	2	08/27/21	AW	SW8081B
Dieldrin	ND	4.9	ug/Kg	2	08/27/21	AW	SW8081B
Endosulfan I	ND	9.9	ug/Kg	2	08/27/21	AW	SW8081B
Endosulfan II	ND	9.9	ug/Kg	2	08/27/21	AW	SW8081B
Endosulfan sulfate	ND	9.9	ug/Kg	2	08/27/21	AW	SW8081B
Endrin	ND	9.9	ug/Kg	2	08/27/21	AW	SW8081B
Endrin aldehyde	ND	9.9	ug/Kg	2	08/27/21	AW	SW8081B
Endrin ketone	ND	9.9	ug/Kg	2	08/27/21	AW	SW8081B
g-BHC	ND	2.0	ug/Kg	2	08/27/21	AW	SW8081B
Heptachlor	ND	9.9	ug/Kg	2	08/27/21	AW	SW8081B
Heptachlor epoxide	ND	9.9	ug/Kg	2	08/27/21	AW	SW8081B
Methoxychlor	ND	49	ug/Kg	2	08/27/21	AW	SW8081B
Toxaphene	ND	200	ug/Kg	2	08/27/21	AW	SW8081B
QA/QC Surrogates							
% DCBP	81		%	2	08/27/21	AW	30 - 150 %

Project ID: BURR ELEMENTARY SCHOOL Client ID: BES210 (0-0.5)

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
% DCBP (Confirmation)	81		%	2	08/27/21	AW	30 - 150 %
% TCMX	73		%	2	08/27/21	AW	30 - 150 %
% TCMX (Confirmation)	81		%	2	08/27/21	AW	30 - 150 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director September 03, 2021 Reviewed and Released by: Greg Lawrence, Assistant Lab Director

Analysis Report

FOR: Attn: Brian Sirowich Tighe & Bond 213 Court St, Suite 1100 Middletown, CT 06457

September 03, 2021

Sample Information		Custody Inform	Custody Information				
Matrix:	SOIL	Collected by:		08/24/21	10:30		
Location Code:	TIGHE-DAS	Received by:	CP	08/24/21	16:50		
Rush Request:	Standard	Analyzed by:	see "By" below				
P.O.#:	150439 BURR		Data		CC 1127		

Laboratory Data

SDG ID: GCJ12755 Phoenix ID: CJ12765

Project ID: BURR ELEMENTARY SCHOOL Client ID: BES BACK 1 (0-0.5)

_		RL/				_	- /
Parameter	Result	PQL	Units	Dilution	n Date/Time	Ву	Reference
Arsenic	3.67	0.93	mg/Kg	ı 1	08/25/21	TH	SW6010D
Lead	12.0	0.46	mg/Kg	ı 1	08/25/21	ΤН	SW6010D
Percent Solid	76		%		08/24/21	JS	SW846-%Solid
Extraction of ETPH	Completed				08/24/21	I/E	SW3546
Soil Extraction for Pesticide	Completed				08/25/21	R/YE	SW3546
Soil Extraction for SVOA PAH	Completed				08/24/21	I/Y/K	SW3546
Total Metals Digest	Completed				08/24/21	B/AG/B	= SW3050B
TPH by GC (Extractable	Products	<u>.)</u>					
Ext. Petroleum H.C. (C9-C36)	ND	66	mg/Kg	ı 1	08/25/21	KCA	CTETPH 8015D
Identification	ND		mg/Kg	ı 1	08/25/21	KCA	CTETPH 8015D
QA/QC Surrogates							
% COD (surr)	63		%	1	08/25/21	KCA	50 - 150 %
% Terphenyl (surr)	77		%	1	08/25/21	KCA	50 - 150 %
Pesticides							
4,4' -DDD	ND	1.7	ug/Kg	2	08/27/21	AW	SW8081B
4,4' -DDE	ND	1.7	ug/Kg	2	08/27/21	AW	SW8081B
4,4' -DDT	ND	1.7	ug/Kg	2	08/27/21	AW	SW8081B
a-BHC	ND	1.7	ug/Kg	2	08/27/21	AW	SW8081B
Alachlor	ND	8.6	ug/Kg	2	08/27/21	AW	SW8081B
Aldrin	ND	1.7	ug/Kg	2	08/27/21	AW	SW8081B
b-BHC	ND	1.7	ug/Kg	2	08/27/21	AW	SW8081B
Chlordane	ND	43	ug/Kg	2	08/27/21	AW	SW8081B
d-BHC	ND	1.7	ug/Kg	2	08/27/21	AW	SW8081B
Dieldrin	ND	4.3	ug/Kg	2	08/27/21	AW	SW8081B
Endosulfan I	ND	8.6	ug/Kg	2	08/27/21	AW	SW8081B

Project ID: BURR ELEMENTARY SCHOOL Client ID: BES BACK 1 (0-0.5)

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Endosulfan II	ND	8.6	ug/Kg	2	08/27/21	AW	SW8081B
Endosulfan sulfate	ND	8.6	ug/Kg	2	08/27/21	AW	SW8081B
Endrin	ND	8.6	ug/Kg	2	08/27/21	AW	SW8081B
Endrin aldehyde	ND	8.6	ug/Kg	2	08/27/21	AW	SW8081B
Endrin ketone	ND	8.6	ug/Kg	2	08/27/21	AW	SW8081B
g-BHC	ND	1.7	ug/Kg	2	08/27/21	AW	SW8081B
Heptachlor	ND	8.6	ug/Kg	2	08/27/21	AW	SW8081B
Heptachlor epoxide	ND	8.6	ug/Kg	2	08/27/21	AW	SW8081B
Methoxychlor	ND	43	ug/Kg	2	08/27/21	AW	SW8081B
Toxaphene	ND	170	ug/Kg	2	08/27/21	AW	SW8081B
QA/QC Surrogates							
% DCBP	78		%	2	08/27/21	AW	30 - 150 %
% DCBP (Confirmation)	81		%	2	08/27/21	AW	30 - 150 %
% TCMX	71		%	2	08/27/21	AW	30 - 150 %
% TCMX (Confirmation)	81		%	2	08/27/21	AW	30 - 150 %
Polynuclear Aromatic	c HC						
2-Methylnaphthalene	ND	310	ug/Kg	1	08/25/21	WB	SW8270D
Acenaphthene	ND	310	ug/Kg	1	08/25/21	WB	SW8270D
Acenaphthylene	ND	310	ug/Kg	1	08/25/21	WB	SW8270D
Anthracene	ND	310	ug/Kg	1	08/25/21	WB	SW8270D
Benz(a)anthracene	ND	310	ug/Kg	1	08/25/21	WB	SW8270D
Benzo(a)pyrene	ND	310	ug/Kg	1	08/25/21	WB	SW8270D
Benzo(b)fluoranthene	ND	310	ug/Kg	1	08/25/21	WB	SW8270D
Benzo(ghi)perylene	ND	310	ug/Kg	1	08/25/21	WB	SW8270D
Benzo(k)fluoranthene	ND	310	ug/Kg	1	08/25/21	WB	SW8270D
Chrysene	ND	310	ug/Kg	1	08/25/21	WB	SW8270D
Dibenz(a,h)anthracene	ND	310	ug/Kg	1	08/25/21	WB	SW8270D
Fluoranthene	ND	310	ug/Kg	1	08/25/21	WB	SW8270D
Fluorene	ND	310	ug/Kg	1	08/25/21	WB	SW8270D
Indeno(1,2,3-cd)pyrene	ND	310	ug/Kg	1	08/25/21	WB	SW8270D
Naphthalene	ND	310	ug/Kg	1	08/25/21	WB	SW8270D
Phenanthrene	ND	310	ug/Kg	1	08/25/21	WB	SW8270D
Pyrene	ND	310	ug/Kg	1	08/25/21	WB	SW8270D
QA/QC Surrogates							
% 2-Fluorobiphenyl	79		%	1	08/25/21	WB	30 - 130 %
% Nitrobenzene-d5	74		%	1	08/25/21	WB	30 - 130 %
% Terphenyl-d14	94		%	1	08/25/21	WB	30 - 130 %

Project ID: BURR ELE		Pł	noeniz	x I.D.: CJ1276	35			
Client ID: BES BACH								
		RL/						
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference	
								-

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis effici

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director September 03, 2021 Reviewed and Released by: Greg Lawrence, Assistant Lab Director

Analysis Report

FOR: Attn: Brian Sirowich Tighe & Bond 213 Court St, Suite 1100 Middletown, CT 06457

September 03, 2021

Sample Information		Custody Inform	Custody Information				
Matrix:	SOIL	Collected by:		08/24/21	10:32		
Location Code:	TIGHE-DAS	Received by:	CP	08/24/21	16:50		
Rush Request:	Standard	Analyzed by:	see "By" below				
P.O.#:	150439 BURR	Labaratan	Data		CC 1127		

Laboratory Data

SDG ID: GCJ12755 Phoenix ID: CJ12766

Project ID: BURR ELEMENTARY SCHOOL Client ID: BES BACK 2 (0-0.5)

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference
Arsenic	3.57	0.98	mg/Kg	1	08/25/21	TH	SW6010D
Lead	12.1	0.49	mg/Kg	1	08/25/21	TH	SW6010D
Percent Solid	73		%		08/24/21	JS	SW846-%Solid
Extraction of ETPH	Completed				08/24/21	I/E	SW3546
Soil Extraction for Pesticide	Completed				08/25/21	R/YE	SW3546
Soil Extraction for SVOA PAH	Completed				08/24/21	I/Y/K	SW3546
Total Metals Digest	Completed				08/24/21	B/AG/BF	SW3050B
TPH by GC (Extractable	e Products)					
Ext. Petroleum H.C. (C9-C36)	ND	67	mg/Kg	1	08/25/21	KCA	CTETPH 8015D
Identification	ND		mg/Kg	1	08/25/21	KCA	CTETPH 8015D
QA/QC Surrogates							
% COD (surr)	60		%	1	08/25/21	KCA	50 - 150 %
% Terphenyl (surr)	75		%	1	08/25/21	KCA	50 - 150 %
Pesticides							
4,4' -DDD	ND	1.8	ug/Kg	2	08/27/21	AW	SW8081B
4,4' -DDE	ND	1.8	ug/Kg	2	08/27/21	AW	SW8081B
4,4' -DDT	ND	1.8	ug/Kg	2	08/27/21	AW	SW8081B
a-BHC	ND	1.8	ug/Kg	2	08/27/21	AW	SW8081B
Alachlor	ND	9.0	ug/Kg	2	08/27/21	AW	SW8081B
Aldrin	ND	1.8	ug/Kg	2	08/27/21	AW	SW8081B
b-BHC	ND	1.8	ug/Kg	2	08/27/21	AW	SW8081B
Chlordane	ND	45	ug/Kg	2	08/27/21	AW	SW8081B
d-BHC	ND	1.8	ug/Kg	2	08/27/21	AW	SW8081B
Dieldrin	ND	4.5	ug/Kg	2	08/27/21	AW	SW8081B
Endosulfan I	ND	9.0	ug/Kg	2	08/27/21	AW	SW8081B

Project ID: BURR ELEMENTARY SCHOOL Client ID: BES BACK 2 (0-0.5)

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Endosulfan II	ND	9.0	ug/Kg	2	08/27/21	AW	SW8081B
Endosulfan sulfate	ND	9.0	ug/Kg	2	08/27/21	AW	SW8081B
Endrin	ND	9.0	ug/Kg	2	08/27/21	AW	SW8081B
Endrin aldehyde	ND	9.0	ug/Kg	2	08/27/21	AW	SW8081B
Endrin ketone	ND	9.0	ug/Kg	2	08/27/21	AW	SW8081B
g-BHC	ND	1.8	ug/Kg	2	08/27/21	AW	SW8081B
Heptachlor	ND	9.0	ug/Kg	2	08/27/21	AW	SW8081B
Heptachlor epoxide	ND	9.0	ug/Kg	2	08/27/21	AW	SW8081B
Methoxychlor	ND	45	ug/Kg	2	08/27/21	AW	SW8081B
Toxaphene	ND	180	ug/Kg	2	08/27/21	AW	SW8081B
QA/QC Surrogates							
% DCBP	83		%	2	08/27/21	AW	30 - 150 %
% DCBP (Confirmation)	91		%	2	08/27/21	AW	30 - 150 %
% TCMX	74		%	2	08/27/21	AW	30 - 150 %
% TCMX (Confirmation)	88		%	2	08/27/21	AW	30 - 150 %
Polynuclear Aromatic	: HC						
2-Methylnaphthalene	ND	320	ug/Kg	1	08/25/21	WB	SW8270D
Acenaphthene	ND	320	ug/Kg	1	08/25/21	WB	SW8270D
Acenaphthylene	ND	320	ug/Kg	1	08/25/21	WB	SW8270D
Anthracene	ND	320	ug/Kg	1	08/25/21	WB	SW8270D
Benz(a)anthracene	ND	320	ug/Kg	1	08/25/21	WB	SW8270D
Benzo(a)pyrene	ND	320	ug/Kg	1	08/25/21	WB	SW8270D
Benzo(b)fluoranthene	ND	320	ug/Kg	1	08/25/21	WB	SW8270D
Benzo(ghi)perylene	ND	320	ug/Kg	1	08/25/21	WB	SW8270D
Benzo(k)fluoranthene	ND	320	ug/Kg	1	08/25/21	WB	SW8270D
Chrysene	ND	320	ug/Kg	1	08/25/21	WB	SW8270D
Dibenz(a,h)anthracene	ND	320	ug/Kg	1	08/25/21	WB	SW8270D
Fluoranthene	ND	320	ug/Kg	1	08/25/21	WB	SW8270D
Fluorene	ND	320	ug/Kg	1	08/25/21	WB	SW8270D
Indeno(1,2,3-cd)pyrene	ND	320	ug/Kg	1	08/25/21	WB	SW8270D
Naphthalene	ND	320	ug/Kg	1	08/25/21	WB	SW8270D
Phenanthrene	ND	320	ug/Kg	1	08/25/21	WB	SW8270D
Pyrene	ND	320	ug/Kg	1	08/25/21	WB	SW8270D
QA/QC Surrogates							
% 2-Fluorobiphenyl	71		%	1	08/25/21	WB	30 - 130 %
% Nitrobenzene-d5	70		%	1	08/25/21	WB	30 - 130 %
% Terphenyl-d14	93		%	1	08/25/21	WB	30 - 130 %

Project ID: BURR ELE		Pł	noeni	x I.D.: CJ127	66			
Client ID: BES BACH								
		RL/						
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference	

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate

CA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director September 03, 2021 Reviewed and Released by: Greg Lawrence, Assistant Lab Director

Analysis Report

FOR: Attn: Brian Sirowich Tighe & Bond 213 Court St, Suite 1100 Middletown, CT 06457

September 03, 2021

Sample Informa	ation	Custody Inform	Date	<u>Time</u>	
Matrix:	SOIL	Collected by:		08/24/21	10:35
Location Code:	TIGHE-DAS	Received by:	CP	08/24/21	16:50
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:	150439 BURR	Labaratam	Data		CC 1127

Laboratory Data

SDG ID: GCJ12755 Phoenix ID: CJ12767

Project ID: BURR ELEMENTARY SCHOOL Client ID: BES BACK 3 (0-0.5)

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Arsenic	4.09	0.89	mg/Kg	1	08/25/21	TH	SW6010D
Lead	13.6	0.44	mg/Kg	1	08/25/21	TH	SW6010D
Percent Solid	73		%		08/24/21	JS	SW846-%Solid
Extraction of ETPH	Completed				08/24/21	I/E	SW3546
Soil Extraction for Pesticide	Completed				08/25/21	R/YE	SW3546
Soil Extraction for SVOA PAH	Completed				08/24/21	I/Y/K	SW3546
Total Metals Digest	Completed				08/24/21	B/AG/BF	SW3050B
TPH by GC (Extractable	e Products)					
Ext. Petroleum H.C. (C9-C36)	ND	68	mg/Kg	1	08/25/21	KCA	CTETPH 8015D
Identification	ND		mg/Kg	1	08/25/21	KCA	CTETPH 8015D
QA/QC Surrogates							
% COD (surr)	67		%	1	08/25/21	KCA	50 - 150 %
% Terphenyl (surr)	74		%	1	08/25/21	KCA	50 - 150 %
Pesticides							
4,4' -DDD	ND	1.8	ug/Kg	2	08/27/21	AW	SW8081B
4,4' -DDE	ND	1.8	ug/Kg	2	08/27/21	AW	SW8081B
4,4' -DDT	ND	1.8	ug/Kg	2	08/27/21	AW	SW8081B
a-BHC	ND	1.8	ug/Kg	2	08/27/21	AW	SW8081B
Alachlor	ND	8.9	ug/Kg	2	08/27/21	AW	SW8081B
Aldrin	ND	1.8	ug/Kg	2	08/27/21	AW	SW8081B
b-BHC	ND	1.8	ug/Kg	2	08/27/21	AW	SW8081B
Chlordane	ND	45	ug/Kg	2	08/27/21	AW	SW8081B
d-BHC	ND	1.8	ug/Kg	2	08/27/21	AW	SW8081B
Dieldrin	ND	4.5	ug/Kg	2	08/27/21	AW	SW8081B
Endosulfan I	ND	8.9	ug/Kg	2	08/27/21	AW	SW8081B

Project ID: BURR ELEMENTARY SCHOOL Client ID: BES BACK 3 (0-0.5)

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Endosulfan II	ND	8.9	ug/Kg	2	08/27/21	AW	SW8081B
Endosulfan sulfate	ND	8.9	ug/Kg	2	08/27/21	AW	SW8081B
Endrin	ND	8.9	ug/Kg	2	08/27/21	AW	SW8081B
Endrin aldehyde	ND	8.9	ug/Kg	2	08/27/21	AW	SW8081B
Endrin ketone	ND	8.9	ug/Kg	2	08/27/21	AW	SW8081B
g-BHC	ND	1.8	ug/Kg	2	08/27/21	AW	SW8081B
Heptachlor	ND	8.9	ug/Kg	2	08/27/21	AW	SW8081B
Heptachlor epoxide	ND	8.9	ug/Kg	2	08/27/21	AW	SW8081B
Methoxychlor	ND	45	ug/Kg	2	08/27/21	AW	SW8081B
Toxaphene	ND	180	ug/Kg	2	08/27/21	AW	SW8081B
QA/QC Surrogates							
% DCBP	89		%	2	08/27/21	AW	30 - 150 %
% DCBP (Confirmation)	90		%	2	08/27/21	AW	30 - 150 %
% TCMX	79		%	2	08/27/21	AW	30 - 150 %
% TCMX (Confirmation)	89		%	2	08/27/21	AW	30 - 150 %
Polynuclear Aromatic	: HC						
2-Methylnaphthalene	ND	310	ug/Kg	1	08/25/21	WB	SW8270D
Acenaphthene	ND	310	ug/Kg	1	08/25/21	WB	SW8270D
Acenaphthylene	ND	310	ug/Kg	1	08/25/21	WB	SW8270D
Anthracene	ND	310	ug/Kg	1	08/25/21	WB	SW8270D
Benz(a)anthracene	ND	310	ug/Kg	1	08/25/21	WB	SW8270D
Benzo(a)pyrene	ND	310	ug/Kg	1	08/25/21	WB	SW8270D
Benzo(b)fluoranthene	ND	310	ug/Kg	1	08/25/21	WB	SW8270D
Benzo(ghi)perylene	ND	310	ug/Kg	1	08/25/21	WB	SW8270D
Benzo(k)fluoranthene	ND	310	ug/Kg	1	08/25/21	WB	SW8270D
Chrysene	ND	310	ug/Kg	1	08/25/21	WB	SW8270D
Dibenz(a,h)anthracene	ND	310	ug/Kg	1	08/25/21	WB	SW8270D
Fluoranthene	ND	310	ug/Kg	1	08/25/21	WB	SW8270D
Fluorene	ND	310	ug/Kg	1	08/25/21	WB	SW8270D
Indeno(1,2,3-cd)pyrene	ND	310	ug/Kg	1	08/25/21	WB	SW8270D
Naphthalene	ND	310	ug/Kg	1	08/25/21	WB	SW8270D
Phenanthrene	ND	310	ug/Kg	1	08/25/21	WB	SW8270D
Pyrene	ND	310	ug/Kg	1	08/25/21	WB	SW8270D
QA/QC Surrogates							
% 2-Fluorobiphenyl	83		%	1	08/25/21	WB	30 - 130 %
% Nitrobenzene-d5	76		%	1	08/25/21	WB	30 - 130 %
% Terphenyl-d14	95		%	1	08/25/21	WB	30 - 130 %

Project ID: BURR ELE		Phoenix I.D.: CJ1276						
Client ID: BES BACK 3 (0-0.5)								
		RL/						
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference	
								_

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate

CA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director September 03, 2021 Reviewed and Released by: Greg Lawrence, Assistant Lab Director

QA/QC Report

September 03, 2021

QA/QC Data

Parameter	Blank	Blk RL	Sample Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
QA/QC Batch 589163 (mg/kg), C	2C Sam	ple No:	CJ11612	2 (CJ127	57, CJ1	2762,	CJ1276	5, CJ12	2766, C	J12767)		
ICP Metals - Soil													
Arsenic	BRL	0.67	1.76	1.62	NC	111	113	1.8	97.1			75 - 125	35
Lead	BRL	0.33	58.6	60.3	2.90	113	116	2.6	108			75 - 125	35
Comment:													
Additional Criteria: LCS acceptance	e range i	s 80-120	% MS acc	eptance r	ange 75	-125%.							
QA/QC Batch 590128 (mg/L), Q	C Samp	le No: C	CJ16586	(CJ1275	7)								
ICP Metals - SPLP Extrac	tion												
Arsenic	BRL	0.004	0.004	0.005	NC	101	96.7	4.4	98.6			80 - 120	20
Lead	BRL	0.010	<0.010	<0.010	NC	103	98.2	4.8	101			80 - 120	20
Comment:													
Additional Criteria: LCS acceptance	e range i	s 80-120	% MS acc	eptance r	ange 75	-125%.							

SDG I.D.: GCJ12755

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

September 03, 2021

QA/QC Data

SDG I.D.: GCJ12755

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
QA/QC Batch 589164 (mg/Kg), (2C San	nple No: CJ11616 (CJ12757, CJ	12762,	CJ1276	5, CJ12	2766, C	J12767)		
TPH by GC (Extractable F	roduc	ts) - Soil								
Ext. Petroleum H.C. (C9-C36)	ND	50	103	113	9.3	78	81	3.8	60 - 120	30
% COD (surr)	92	%	90	94	4.3	97	84	14.4	50 - 150	30
% Terphenyl (surr) Comment:	88	%	57	51	11.1	74	65	12.9	50 - 150	30
Additional surrogate criteria: LCS a normalized based on the alkane ca	cceptan	ce range is 60-120% MS acceptance	e range	50-150%	5. The El	[PH/DR	O LCS h	as beer	۱	
QA/QC Batch 589100 (ug/Kg), C CJ12763)	2C Sam	ple No: CJ11320 10X (CJ12756	, CJ12 ⁻	757, CJ1	12758, (CJ1276	60, CJ12	2761, C	;J12762	ı
Polychlorinated Biphenyls	- Soil									
PCB-1016	ND	170	77	99	25.0	96	94	2.1	40 - 140	30
PCB-1221	ND	170							40 - 140	30
PCB-1232	ND	170							40 - 140	30
PCB-1242	ND	170							40 - 140	30
PCB-1248	ND	170							40 - 140	30
PCB-1254	ND	170							40 - 140	30
PCB-1260	ND	170	77	99	25.0	99	99	0.0	40 - 140	30
PCB-1262	ND	170							40 - 140	30
PCB-1268	ND	170							40 - 140	30
% DCBP (Surrogate Rec)	106	%	83	106	24.3	103	102	1.0	30 - 150	30
% DCBP (Surrogate Rec) (Confirm	104	%	80	103	25.1	100	98	2.0	30 - 150	30
% TCMX (Surrogate Rec)	100	%	77	101	27.0	97	96	1.0	30 - 150	30
% TCMX (Surrogate Rec) (Confirm	101	%	79	104	27.3	101	97	4.0	30 - 150	30
OA/OC Batch 590132 (ug/L), OC	Samp	le No: CJ13191 (CJ12755, CJ12	757. C	J12759))					
Pesticides			, -	,						
	ND	0.003	8/	01	8.0				40 - 140	20
4 4' - DDE		0.003	03	0/	1 1				40 - 140	20
		0.003	73	74	53				40 - 140	20
a-BHC		0.002	8/	90	6.9				40 - 140	20
Alachlor		0.005		NA	NC				40 - 140	20
Aldrin		0.003	83	83	0.0				40 - 140	20
h-BHC		0.002	7/	7/	0.0				40 - 140	20
Chlordane		0.050	74	74	2.6				40 - 140	20
d-BHC		0.005	13	/0	2.0				40 - 140	20
Dieldrin		0.003	43	102	3.0				40 - 140	20
Endosulfan I		0.002	77 00	02	3.0 2.2				40 - 140	20
Endosulfan II		0.005	70 01	7J 01	0.0				40 - 140	20
		0.005	71	71 01	0.0				40 - 140	20
Endrin		0.005	02	01	1.1				40 - 140	20
		0.005	73 70	יד רר	4.Z				40 - 140	20
Endrin katona		0.005	70	75	7.0 5.5				40 - 140	20
	ND	0.000	11	75	0.0				40 - 140	20

QA/QC Data

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
g-BHC	ND	0.002	101	100	1.0				40 - 140	20	
Heptachlor	ND	0.005	82	80	2.5				40 - 140	20	
Heptachlor epoxide	ND	0.005	85	90	5.7				40 - 140	20	
Methoxychlor	ND	0.005	78	85	8.6				40 - 140	20	
Toxaphene	ND	0.20	NA	NA	NC				40 - 140	20	
% DCBP	70	%	57	63	10.0				30 - 150	20	
% DCBP (Confirmation)	107	%	86	80	7.2				30 - 150	20	
% TCMX	90	%	77	83	7.5				30 - 150	20	
% TCMX (Confirmation)	97	%	90	94	4.3				30 - 150	20	
0											

Comment:

A LCS and LCS duplicate were performed instead of a MS and MSD. Alpha and gamma chlordane were spiked and analyzed instead of technical chlordane. Gamma chlordane recovery is reported as chlordane in the LCS and LCSD

QA/QC Batch 589335 (ug/Kg), QC Sample No: CJ14101 2X (CJ12755, CJ12757, CJ12759, CJ12762, CJ12764, CJ12765, CJ12766, CJ12767)

Pesticides - Soil										
4,4' -DDD	ND	1.7	91	103	12.4	74	86	15.0	40 - 140	30
4,4' -DDE	ND	1.7	92	101	9.3	79	87	9.6	40 - 140	30
4,4' -DDT	ND	1.7	91	100	9.4	83	90	8.1	40 - 140	30
a-BHC	ND	1.0	89	93	4.4	69	79	13.5	40 - 140	30
Alachlor	ND	3.3	NA	NA NA	NC	NA	NA	NC	40 - 140	30
Aldrin	ND	1.0	91	101	10.4	72	82	13.0	40 - 140	30
b-BHC	ND	1.0	11	5 127	9.9	101	96	5.1	40 - 140	30
Chlordane	ND	33	99	106	6.8	82	92	11.5	40 - 140	30
d-BHC	ND	3.3	97	101	4.0	78	83	6.2	40 - 140	30
Dieldrin	ND	1.0	97	107	9.8	77	83	7.5	40 - 140	30
Endosulfan I	ND	3.3	98	110	11.5	80	89	10.7	40 - 140	30
Endosulfan II	ND	3.3	10	3 110	6.6	83	90	8.1	40 - 140	30
Endosulfan sulfate	ND	3.3	92	101	9.3	77	87	12.2	40 - 140	30
Endrin	ND	3.3	10	0 110	9.5	84	92	9.1	40 - 140	30
Endrin aldehyde	ND	3.3	91	100	9.4	77	79	2.6	40 - 140	30
Endrin ketone	ND	3.3	88	99	11.8	73	84	14.0	40 - 140	30
g-BHC	ND	1.0	89	97	8.6	74	78	5.3	40 - 140	30
Heptachlor	ND	3.3	90	98	8.5	73	85	15.2	40 - 140	30
Heptachlor epoxide	ND	3.3	86	94	8.9	71	75	5.5	40 - 140	30
Methoxychlor	ND	3.3	84	93	10.2	72	81	11.8	40 - 140	30
Toxaphene	ND	130	NA	NA NA	NC	NA	NA	NC	40 - 140	30
% DCBP	105	%	10	0 107	6.8	84	91	8.0	30 - 150	30
% DCBP (Confirmation)	76	%	72	79	9.3	57	63	10.0	30 - 150	30
% TCMX	99	%	97	103	6.0	82	83	1.2	30 - 150	30
% TCMX (Confirmation)	84	%	84	89	5.8	71	77	8.1	30 - 150	30
QA/QC Batch 589143 (u	g/kg), QC Samp	le No:	CJ12773 (CJ12757, CJ12762	2, CJ127	65, CJ12	2766, C	J12767))		
Polynuclear Aromat	<u>ic HC - Soil</u>									
2-Methylnaphthalene	ND	230	72	76	5.4	64	69	7.5	40 - 140	30
Acenaphthene	ND	230	78	83	6.2	71	72	1.4	30 - 130	30
Acenaphthylene	ND	230	72	76	5.4	63	64	1.6	40 - 140	30
Anthracene	ND	230	79	82	3.7	78	75	3.9	40 - 140	30
Benz(a)anthracene	ND	230	77	81	5.1	83	66	22.8	40 - 140	30
Benzo(a)pyrene	ND	230	76	82	7.6	77	63	20.0	40 - 140	30
Benzo(b)fluoranthene	ND	230	92	99	7.3	96	74	25.9	40 - 140	30
Benzo(ghi)perylene	ND	230	87	93	6.7	48	52	8.0	40 - 140	30
Benzo(k)fluoranthene	ND	230	90	95	5.4	81	71	13.2	40 - 140	30
Chrysene	ND	230	82	84	2.4	86	70	20.5	40 - 140	30

QA/QC Data

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
Dibenz(a,h)anthracene	ND	230	88	96	8.7	52	57	9.2	40 - 140	30
Fluoranthene	ND	230	82	83	1.2	93	74	22.8	40 - 140	30
Fluorene	ND	230	83	86	3.6	74	76	2.7	40 - 140	30
Indeno(1,2,3-cd)pyrene	ND	230	89	97	8.6	52	53	1.9	40 - 140	30
Naphthalene	ND	230	69	75	8.3	62	68	9.2	40 - 140	30
Phenanthrene	ND	230	79	83	4.9	88	69	24.2	40 - 140	30
Pyrene	ND	230	84	85	1.2	97	78	21.7	30 - 130	30
% 2-Fluorobiphenyl	83	%	81	88	8.3	71	74	4.1	30 - 130	30
% Nitrobenzene-d5	82	%	74	78	5.3	62	72	14.9	30 - 130	30
% Terphenyl-d14	93	%	88	91	3.4	79	79	0.0	30 - 130	30
Comment:										

Additional 8270 criteria: 20% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 15-110%, for soils 30-130%)

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director September 03, 2021

Friday, September 03, 2021

Criteria: CT: GAM, RC

State: CT

Sample Criteria Exceedances Report

GCJ12755 - TIGHE-DAS

SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	RL Criteria	Analysis Units
CJ12755	\$PEST_SMR	4,4' -DDT	CT / RSR GA,GAA (mg/kg) / APS Organics	13	9.2	3	3	ug/Kg
CJ12755	\$PEST_SMR	4,4' -DDE	CT / RSR GA,GAA (mg/kg) / APS Organics	20	9.2	3	3	ug/Kg
CJ12755	\$PEST_SMR	Dieldrin	CT / RSR GA,GAA (mg/kg) / Pesticides/TPH	19	4.6	7	7	ug/Kg
CJ12757	\$PEST_SMR	4,4' -DDT	CT / RSR GA,GAA (mg/kg) / APS Organics	43	9.1	3	3	ug/Kg
CJ12757	\$PEST_SMR	4,4' -DDE	CT / RSR GA,GAA (mg/kg) / APS Organics	27	9.1	3	3	ug/Kg
CJ12757	\$PEST_SMR	4,4' -DDD	CT / RSR GA,GAA (mg/kg) / APS Organics	7.1	1.8	3	3	ug/Kg
CJ12757	\$PEST_SMR	Dieldrin	CT / RSR GA,GAA (mg/kg) / Pesticides/TPH	12	4.5	7	7	ug/Kg
CJ12759	\$PEST_SMR	4,4' -DDT	CT / RSR GA,GAA (mg/kg) / APS Organics	8.0	1.8	3	3	ug/Kg
CJ12759	\$PEST_SMR	4,4' -DDE	CT / RSR GA,GAA (mg/kg) / APS Organics	4.2	1.8	3	3	ug/Kg
CJ12759	\$PEST_SMR	Dieldrin	CT / RSR GA,GAA (mg/kg) / Pesticides/TPH	7.3	4.5	7	7	ug/Kg

Phoenix Laboratories does not assume responsibility for the data contained in this exceedance report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

D1

. . .

REASONABLE CONFIDENCE PROTOCOL LABORATORY ANALYSIS QA/QC CERTIFICATION FORM

Laboratory Name:	Phoenix Environmental Labs, Inc.	(
Project Location:	BURR ELEMENTARY SCHOOL	1
Laboratory Sample	ID (s): CJ12755-CJ12767	

Client: Tighe & Bond Project Number: Sampling Date(s): 8/24/2021

List RCP Methods Used (e.g., 8260, 8270, et cetera) 1311/1312, 6010, 8081, 8082, 8270, ETPH

1	For each analytical method referenced in this laboratory report package, were all specified QA/QC performance criteria followed, including the requirement to explain any criteria falling outside of acceptable guidelines, as specified in the CT DEP method-specific Reasonable Confidence Protocol documents?	✔ Yes □ No
1A	Were the method specified preservation and holding time requirements met?	✓ Yes □ No
1B	VPH and EPH methods only:Was the VPH or EPH method conducted withoutsignificant modifications (see section 11.3 of respective RCP methods)	□ Yes □ No ☑ NA
2	Were all samples received by the laboratory in a condition consistent with that described on the associated Chain-of-Custody document(s)?	✓ Yes □ No
3	Were samples received at an appropriate temperature (< 6 Degrees C)?	✓ Yes □ No □ NA
4	Were all QA/QC performance criteria specified in the CTDEP Reasonable Confidence Protocol documents achieved?	✓ Yes □ No
5	a) Were reporting limits specified or referenced on the chain-of-custody?b) Were these reporting limits met?	✓ Yes □ No
6	For each analytical method referenced in this laboratory report package, were results reported for all constituents identified in the method-specific analyte lists presented in the Reasonable Confidence Protocol documents?	☐ Yes ♥ No
7	Are project-specific matrix spikes and laboratory duplicates included in the data set?	🗆 Yes 🗹 No

Notes: For all questions to which the response was "No" (with the exception of question #7), additional information must be provided in an attached narrative. If the answer to question #1, #1A or 1B is "No", the data package does not meet the requirements for "Reasonable Confidence". This form may not be altered and all questions must be answered.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete.	
Authorized Signature:	Position: Assistant Lab Director
Printed Name: Greg Lawrence	Date: Friday, September 03, 2021
Name of Laboratory Phoenix Environmental Labs, Inc.	

This certification form is to be used for RCP methods only.

CTDEP RCP Laboratory Analysis QA/QC Certification Form - November 2007 Laboratory Quality Assurance and Quality Control Guidance Reasonable Confidence Protocols

RCP Certification Report

September 03, 2021

SDG I.D.: GCJ12755

SDG Comments

Metals Analysis: CJ12757, CJ12762, CJ12765, CJ12766, CJ12767 -

The client requested a site specific list of elements which is shorter than the 6010 RCP list. The following analytes from the 6010 RCP Metals list were not reported: Antimony, Barium, Beryllium, Cadmium, Chromium, Copper, Nickel, Selenium, Silver, Thallium, Vanadium, Zinc.

8270 Semi-volatile Organics: CJ12757, CJ12762, CJ12765, CJ12766, CJ12767 -The client requested a short list for 8270 RCP Semivolatile. Only the PAH constituents are reported as requested on the chain-ofcustody.

ETPH Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument:

AU-XL2 08/25/21-1

Adam Werner, Chemist 08/25/21

CJ12757 (1X), CJ12762 (1X), CJ12765 (1X), CJ12766 (1X), CJ12767 (1X)

The initial calibration (ETPH704I) RSD for the compound list was less than 30% except for the following compounds: None. As per section 7.2.3, a discrimination check standard was run (825A003_1) and contained the following outliers: None. The continuing calibration %D for the compound list was less than 30% except for the following compounds:None.

QC (Batch Specific):

Batch 589164 (CJ11616)

CJ12757, CJ12762, CJ12765, CJ12766, CJ12767

All LCS recoveries were within 60 - 120 with the following exceptions: None.

All LCSD recoveries were within 60 - 120 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

Additional surrogate criteria: LCS acceptance range is 60-120% MS acceptance range 50-150%. The ETPH/DRO LCS has been normalized based on the alkane calibration.

ICP Metals Narration

Were all QA/QC performance criteria specified in the analytical method achieved? Yes.

Instrument:

ARCOS 09/01/21 08:24 Cindy Pearce, Chemist 09/01/21

CJ12757

Additional criteria for CCV and ICSAB:

Sodium and Potassium are poor performing elements, the laboratory's in-house limits are 85-115% (CCV) and 70-130% (ICCAR). The linear reaction delivery the calibration reaction

(ICSAB). The linear range is defined daily by the calibration range. The following Initial Calibration Verification (ICV) compounds did not meet criteria: None.

The following Continuing Calibration Verification (CCV) compounds did not meet criteria: None.

The following ICP Interference Check (ICSAB) compounds did not meet criteria: None.

ARCOS-2 08/25/21 07:56

<u>5</u> Tina Hall, Chemist 08/25/21

CJ12757, CJ12762, CJ12765, CJ12766, CJ12767

The linear range is defined daily by the calibration range. The following Initial Calibration Verification (ICV) compounds did not meet criteria: None. The following Continuing Calibration Verification (CCV) compounds did not meet criteria: None.

NY # 11301

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Certification Report

September 03, 2021

SDG I.D.: GCJ12755

ICP Metals Narration

The following ICP Interference Check (ICSAB) compounds did not meet criteria: None.

QC (Batch Specific):

Batch 589163 (CJ11612)

CJ12757, CJ12762, CJ12765, CJ12766, CJ12767

All LCS recoveries were within 75 - 125 with the following exceptions: None. All LCSD recoveries were within 75 - 125 with the following exceptions: None. All LCS/LCSD RPDs were less than 35% with the following exceptions: None. Additional Criteria: LCS acceptance range is 80-120% MS acceptance range 75-125%.

Batch 590128 (CJ16586)

CJ12757

All LCS recoveries were within 80 - 120 with the following exceptions: None. All LCSD recoveries were within 80 - 120 with the following exceptions: None. All LCS/LCSD RPDs were less than 20% with the following exceptions: None. Additional Criteria: LCS acceptance range is 80-120% MS acceptance range 75-125%.

PCB Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument:

AU-ECD29 08/25/21-1

Saadia Chudary, Chemist 08/25/21

CJ12756 (5X), CJ12757 (5X), CJ12758 (5X), CJ12760 (5X), CJ12761 (5X), CJ12762 (5X), CJ12763 (5X)

The initial calibration (PC824AI) RSD for the compound list was less than 20% except for the following compounds: None. The initial calibration (PC824BI) RSD for the compound list was less than 20% except for the following compounds: None. The continuing calibration %D for the compound list was less than 15% except for the following compounds:None.

QC (Batch Specific):

Batch 589100 (CJ11320)

CJ12756, CJ12757, CJ12758, CJ12760, CJ12761, CJ12762, CJ12763

All LCS recoveries were within 40 - 140 with the following exceptions: None.

All LCSD recoveries were within 40 - 140 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

PEST Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument:

AU-ECD35 09/02/21-1 Keith Aloisa, Chemist 09/02/21

CJ12755 (1X), CJ12757 (1X), CJ12759 (1X)

The initial calibration (PS0902AI) RSD for the compound list was less than 20% except for the following compounds: None. The initial calibration (PS0902BI) RSD for the compound list was less than 20% except for the following compounds: None. The Endrin and DDT breakdown does not exceed 15% except for the following compounds:None.

The Endrin and DDT breakdown does not exceed the maximum of 20% except for the following compounds:None.

RCP Certification Report

September 03, 2021

SDG I.D.: GCJ12755

PEST Narration

The continuing calibration %D for the compound list was less than 20% except for the following compounds:None.

AU-ECD4 08/26/21-1

Adam Werner, Chemist 08/26/21

CJ12755 (2X), CJ12757 (2X), CJ12759 (2X), CJ12762 (2X), CJ12764 (2X), CJ12765 (2X), CJ12766 (2X), CJ12767 (2X)

The initial calibration (PS0825AI) RSD for the compound list was less than 20% except for the following compounds: None. The initial calibration (PS0825BI) RSD for the compound list was less than 20% except for the following compounds: None.

The Endrin and DDT breakdown does not exceed 15% except for the following compounds:None.

The Endrin and DDT breakdown does not exceed the maximum of 20% except for the following compounds:None.

The continuing calibration %D for the compound list was less than 20% except for the following compounds:None.

QC (Batch Specific):

Batch 589335 (CJ14101)

CJ12755, CJ12757, CJ12759, CJ12762, CJ12764, CJ12765, CJ12766, CJ12767

All LCS recoveries were within 40 - 140 with the following exceptions: None.

All LCSD recoveries were within 40 - 140 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

Batch 590132 (CJ13191)

CJ12755, CJ12757, CJ12759

All LCS recoveries were within 40 - 140 with the following exceptions: None.

All LCSD recoveries were within 40 - 140 with the following exceptions: None.

All LCS/LCSD RPDs were less than 20% with the following exceptions: None.

A LCS and LCS duplicate were performed instead of a MS and MSD. Alpha and gamma chlordane were spiked and analyzed instead of technical chlordane. Gamma chlordane recovery is reported as chlordane in the LCS and LCSD

SVOA Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument:

CHEM22 08/24/21-1

Matt Richard, Chemist 08/24/21

CJ12757 (1X), CJ12762 (1X), CJ12765 (1X), CJ12766 (1X), CJ12767 (1X)

Initial Calibration Evaluation (CHEM22/22_BN_0728):

100% of target compounds met criteria.

The following compounds had %RSDs >20%: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet a minimum response factors: None.

Continuing Calibration Verification (CHEM22/0824_05-22_BN_0728):

Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None.

100% of target compounds met criteria.

The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet minimum response factors: None.

QC (Batch Specific):

RCP Certification Report

September 03, 2021

SDG I.D.: GCJ12755

SVOA Narration

Batch 589143 (CJ12773)

CJ12757, CJ12762, CJ12765, CJ12766, CJ12767

All LCS recoveries were within 40 - 140 with the following exceptions: None.

All LCSD recoveries were within 40 - 140 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

Additional 8270 criteria: 20% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 15-110%, for soils 30-130%)

Temperature Narration

The samples were received at 1.7C with cooling initiated. (Note acceptance criteria for relevant matrices is above freezing up to 6°C)

Coolart. IPK O ICE No No Coolart. IPK O ICE No No Coolant. O Coolart. O Coolart. Data Delivery/Contact Options:	Project P.O: ノブび43T びUF Y This section MUST be completed with Bottle Quantities.		20 the state of th						Data Format Excel S-1 10% CALC CIS/Key	GW-2 □S-1 GW-3 <u>Data Package</u> GW-2 □S-2 GW-3 □ Tier II Checklist GW-2 □S-3 GW-3 □ Tier II Checklist GW-2 □S-3 GW-3 □ Full Data Package*	I: LT * SURCHARGE APPLIES
ECORD T anchester, CT 06040 E (860) 645-0823 E-axi 5-8726 E-mail:	lementay Serbert P Jull L Bud Rave		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						CT CT RCP Cert MA MCP Certification GW-1 MCP GW-2 SW SW Protection	V GA Mobility S-1 GW-1 S-1 G V GB Mobility S-1 GW-1 S-1 G V GB Mobility S-2 GW-1 S-2 G V V S-3 GW-1 S-3 G Other S-3 GW-1 S-3 G	State where samples were collected
CHAIN OF CUSTODY R T East Middle Tumpike, P.O. Box 370, Me Email: into@phoenixlabs.com Fax Client Services (860) 64	Project: $\mathcal{B}_{\mathcal{A}\mathcal{I}\mathcal{L}}$ Report to: $\mathcal{B}_{\mathcal{A}\mathcal{L}\mathcal{A}\mathcal{S}}$ Invoice to: $\mathcal{T}_{\mathcal{A}\mathcal{S}}$ QUOTE # $\mathcal{A}_{\mathcal{A}\mathcal{S}}$	A 4 Analysis Request ater IL=Oil	Time Public Public A	VUT X XXXXX	× × × 2/0	120 X XX XX XX	VALUE X VALUE X VAL		ate: Time: R S2:2 Communication Direct Exposure Direct Exposure	urnaround Time: 1 Day* 2 Days* 3 Days* C Standard 0 bjectives	Other Other SURCHARGE APPLIES Objectives
PHOENIX Se	stomer: Tigh + 1542 Inc ddress: 1400 Bpt Ave Shelf-un, CT	Ider's Alight Sample Anormation - Identification fure Date: Date: Solicade Code: Dinking Water GW=Ground Water SW=Surface Water WW=Waste W taw Water SE=Sediment SL=Sludge S=Soil SD=Solid W=Wipe OII k L=Liquid X =(Other)	MARLE # Customer Sample Sample Date AMPLE # Identification Matrix Sampled 3 TSS Ø155 J0.0.5 S/J4 1	150 55542 (0.0) (10 10 10 10 10 10 10 10 10 10 10 10 10 1	158 055247 (0.1.5)	1 (1.2.1) 80.67/10 000 10 10 10 10 10 10 10 10 10 10 10	1 (2) A Crock Liour V V W	authead by: Accepted by: 0	bi RL LO' My KG	sD are considered site samples and will be billed as such in accordance \mathcal{L}

Sarah Bell

From:	Jill L. Libby < <u>JLLibby@tigheBond.com></u>
Sent:	Tuesday, August 31, 2021 11:30 AM
To:	Sarah Bell
Cc:	Brian Sirowich
Subject:	Burr Add-ons

Sarah,

Could I please submit the following samples for 5-day TAT?

SPLP Lead and SPLP Arsenic

BES203	0-0.5 ft	8/24/21	CJ12757

SPLP Pesticides

BES205	0-0.5 ft	8/24/21	CJ12759
BES203	0-0.5 ft	8/24/21	CJ12757
BES201	0-0.5 ft	8/24/21	CJ12755

Thanks, Jill

Jill Libby Project Environmental Scientist II

Tighe & Bond | One University Avenue, Suite 100 | Westwood, MA 02090 | Cell: 315-436-8260 (cell) www.tighebond.com | Follow us on: Twitter Facebook LinkedIn

In the Bond

Friday, December 17, 2021

Attn: Brian Sirowich Tighe & Bond 213 Court St, Suite 1100 Middletown, CT 06457

Project ID: FAIRFIELD ATHLETIC FIELDS BURR ELEM. SDG ID: GCJ93594 Sample ID#s: CJ93594 - CJ93598

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

Enclosed are revised Analysis Report pages. Please replace and discard the original pages. If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Sincerely yours,

XI.lle

Phyllis/Shiller Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #M-CT007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 UT Lab Registration #CT00007 VT Lab Registration #VT11301

Sample Id Cross Reference

December 17, 2021

SDG I.D.: GCJ93594

Project ID: FAIRFIELD ATHLETIC FIELDS BURR ELEM.

Client Id	Lab Id	Matrix
BES-201 (0.5-1)	CJ93594	SOIL
BES-201A (0-0.5)	CJ93595	SOIL
BES-201B (0-0.5)	CJ93596	SOIL
BES-201C (0-0.5)	CJ93597	SOIL
BES-201D (0-0.5)	CJ93598	SOIL

Analysis Report

FOR: Attn: Brian Sirowich Tighe & Bond 213 Court St, Suite 1100 Middletown, CT 06457

December 17, 2021

Sample Information		Custody Inform	Date	Time	
Matrix:	SOIL	Collected by:		12/08/21	16:20
Location Code:	TIGHE-DAS	Received by:	CP	12/09/21	11:13
Rush Request:	48 Hour	Analyzed by:	see "By" below		
P.O.#:	15-0439-058				

Laboratory Data

SDG ID: GCJ93594 Phoenix ID: CJ93594

Project ID:	FAIRFIELD ATHLETIC FIELDS BURR ELEM.
Client ID:	BES-201 (0.5-1)

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Arsenic	4.18	0.82	mg/Kg	1	12/10/21	TH	SW6010D
Lead	13.7	0.41	mg/Kg	1	12/10/21	TH	SW6010D
Percent Solid	84		%		12/09/21	Q	SW846-%Solid
Soil Extraction for Pesticide	Completed				12/09/21	O/Y	SW3545A
Extraction of ETPH	Completed				12/09/21	B/L	SW3546
Soil Extraction for SVOA PAH	Completed				12/09/21	B/Y	SW3546
Extraction for PCB	Completed				12/09/21	X/JS/Q	SW3540C
Total Metals Digest	Completed				12/09/21	P/AG	SW3050B
TPH by GC (Extractable	Products	<u>5)</u>					
Ext. Petroleum H.C. (C9-C36)	ND	59	mg/Kg	1	12/10/21	JRB	CTETPH 8015D
Identification	ND		mg/Kg	1	12/10/21	JRB	CTETPH 8015D
QA/QC Surrogates							
% COD (surr)	87		%	1	12/10/21	JRB	50 - 150 %
% Terphenyl (surr)	105		%	1	12/10/21	JRB	50 - 150 %
PCB (Soxhlet SW35400	<u>;)</u>						
PCB-1016	ND	390	ug/Kg	10	12/10/21	SC	SW8082A
PCB-1221	ND	390	ug/Kg	10	12/10/21	SC	SW8082A
PCB-1232	ND	390	ug/Kg	10	12/10/21	SC	SW8082A
PCB-1242	ND	390	ug/Kg	10	12/10/21	SC	SW8082A
PCB-1248	ND	390	ug/Kg	10	12/10/21	SC	SW8082A
PCB-1254	ND	390	ug/Kg	10	12/10/21	SC	SW8082A
PCB-1260	ND	390	ug/Kg	10	12/10/21	SC	SW8082A
PCB-1262	ND	390	ug/Kg	10	12/10/21	SC	SW8082A
PCB-1268	ND	390	ug/Kg	10	12/10/21	SC	SW8082A
QA/QC Surrogates							

Project ID: FAIRFIELD ATHLETIC FIELDS BURR ELEM. Client ID: BES-201 (0.5-1)

Parameter Result PQL Units Dilution Date/Time By Reference % DCBP 95 % 10 12/10/21 SC 30 - 150 % % DCBY 00 % 10 12/10/21 SC 30 - 150 % % TCMX 80 % 10 12/10/21 SC 30 - 150 % % TCMX 00 % 10 12/10/21 AW SW8081B 4.4 -DDE ND 1.6 ug/Kg 2 12/10/21 AW SW8081B 3.eHC ND 1.6 ug/Kg 2 12/10/21 AW SW8081B 3.eHC ND 1.6 ug/Kg 2 12/10/21 AW SW8081B 3.ehchor ND 1.6 ug/Kg 2 12/10/21 AW SW8081B 3.ehchor ND 1.6 ug/Kg 2 12/10/21 AW SW8081B 3.ehchor ND 1.6 <tdug kg<="" td=""> 2 12/10/21<th></th><th></th><th>RL/</th><th></th><th></th><th></th><th></th><th></th></tdug>			RL/					
% DGBP 95 % 10 12/1021 SC 30 - 150 % % DGBP (Confirmation) 81 10 12/1021 SC 30 - 150 % % TOMX (Confirmation) 80 % 10 12/1021 SC 30 - 150 % # Confirmation) 80 % 10 12/1021 SC 30 - 150 % # Confirmation) 80 % 10 12/1021 AW SW8081B # Confirmation) ND 1.6 upKg 2 12/1021 AW SW8081B # A - DDT ND 1.6 upKg 2 12/1021 AW SW8081B # Adachor ND 1.6 upKg 2 12/1021 AW SW8081B Adachor ND 1.6 upKg 2 12/1021 AW SW8081B Chordane ND 3.9 upKg 2 12/1021 AW SW8081B Chordane ND 7.9 upKg 2 12/1021 AW SW8081B Endosulfan I ND 7.9 upKg 2 12/1021	Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
% DCBR (Confirmation) 91 % 10 12/10/21 SC 30 - 160 % % TCMX (Confirmation) 80 % 10 12/10/21 SC 30 - 160 % Pesticides	% DCBP	95		%	10	12/10/21	SC	30 - 150 %
% TCMX B0 % 10 12/10/21 SC 30 - 150 % % TCMX (Confirmation) B0 % 10 12/10/21 SC 30 - 150 % Pesticides % 10 12/10/21 AW SW8081B 4.4 - DDD ND 1.6 up/Kg 2 12/10/21 AW SW8081B 4.4 - DDT ND 1.6 up/Kg 2 12/10/21 AW SW8081B Alachlor ND 1.6 up/Kg 2 12/10/21 AW SW8081B Alachlor ND 1.6 up/Kg 2 12/10/21 AW SW8081B Aldrin ND 1.6 up/Kg 2 12/10/21 AW SW8081B Chordane ND 3.9 up/Kg 2 12/10/21 AW SW8081B Endosulfan I ND 7.9 up/Kg 2 12/10/21 AW SW8081B Endosulfan I ND 7.9	% DCBP (Confirmation)	91		%	10	12/10/21	SC	30 - 150 %
% TCMX (Confirmation) 80 % 10 12/1021 % SC 30 - 150 % Pesticides	% TCMX	80		%	10	12/10/21	SC	30 - 150 %
Pesticides 4.4 - DDD ND 1.8 ug/kg 2 12/1021 AW SW8081B 4.4 - DDT ND 1.6 ug/kg 2 12/1021 AW SW8081B 4.4 - DDT ND 1.6 ug/kg 2 12/1021 AW SW8081B a-BHC ND 1.6 ug/kg 2 12/1021 AW SW8081B Alchin ND 7.9 ug/kg 2 12/1021 AW SW8081B Alchin ND 1.6 ug/kg 2 12/1021 AW SW8081B Dickin ND 3.9 ug/kg 2 12/1021 AW SW8081B Dickin ND 7.9 ug/kg 2 12/1021 AW SW8081B Endosulfan ND 7.9 ug/kg 2 12/1021 AW SW8081B Endosulfan sulfate ND 7.9 ug/kg 2 12/1021 AW SW8081B	% TCMX (Confirmation)	80		%	10	12/10/21	SC	30 - 150 %
4.4 - DDD ND 1.6 ugKg 2 12/10/21 AW SW8081B 4.4 - DDE ND 1.6 ugKg 2 12/10/21 AW SW8081B a-BHC ND 1.6 ugKg 2 12/10/21 AW SW8081B a-BHC ND 1.6 ugKg 2 12/10/21 AW SW8081B Alachior ND 7.9 ugKg 2 12/10/21 AW SW8081B Aldrin ND 1.6 ugKg 2 12/10/21 AW SW8081B Chordane ND 3.9 ugKg 2 12/10/21 AW SW8081B Endosulfan I ND 7.9 ugKg 2 12/10/21 AW SW8081B Endosulfan sulfate ND 7.9 ugKg 2 12/10/21 AW SW8081B Endosulfan sulfate ND 7.9 ugKg 2 12/10/21 AW SW8081B Endosulfan sulfate	Pesticides							
4,4 - DDE ND 1.6 ug/Kg 2 121021 AW SW8081B A4 - DDT ND 1.6 ug/Kg 2 121021 AW SW8081B Alachior ND 1.6 ug/Kg 2 121021 AW SW8081B Alachior ND 7.9 ug/Kg 2 121021 AW SW8081B Adrin ND 1.6 ug/Kg 2 121021 AW SW8081B Chiordane ND 3.9 ug/Kg 2 121021 AW SW8081B Endosulfan ND 7.9 ug/Kg 2 121021 AW SW8081B Endosulfan III ND 7.9 ug/Kg 2 121021 AW SW8081B Endosulfan Sulfare ND 7.9 ug/Kg 2 121021 AW SW8081B Endosulfan Sulfare ND 7.9 ug/Kg 2 121021 AW SW8081B Endosulfan Sulfare Sulfare	4.4' -DDD	ND	1.6	ug/Kg	2	12/10/21	AW	SW8081B
A, 4 - DDT ND 1.6 ug/Kg 2 12/10/21 AW SW8081B a-BHC ND 1.6 ug/Kg 2 12/10/21 AW SW8091B Alcrin ND 1.6 ug/Kg 2 12/10/21 AW SW8091B Aldrin ND 1.6 ug/Kg 2 12/10/21 AW SW8091B b-BHC ND 1.6 ug/Kg 2 12/10/21 AW SW8091B c-BHC ND 1.6 ug/Kg 2 12/10/21 AW SW8091B Endosulfan I ND 7.9 ug/Kg 2 12/10/21 AW SW8091B Endosulfan I ND 7.9 ug/Kg 2 12/10/21 AW SW8091B Endosulfan I ND 7.9 ug/Kg 2 12/10/21 AW SW8091B Enddin ladehyde ND 7.9 ug/Kg 2 12/10/21 AW SW8091B Endrin keone	4.4' -DDE	ND	1.6	ug/Kg	2	12/10/21	AW	SW8081B
aBHC ND 1.6 ug/Kg 2 12/10/21 AW SW80818 Alachior ND 7.9 ug/Kg 2 12/10/21 AW SW80818 Alachior ND 1.6 ug/Kg 2 12/10/21 AW SW80818 b-BHC ND 1.6 ug/Kg 2 12/10/21 AW SW80818 Chordane ND 3.9 ug/Kg 2 12/10/21 AW SW80818 Endosulfan ND 7.9 ug/Kg 2 12/10/21 AW SW80818 Endosulfan II ND 7.9 ug/Kg 2 12/10/21 AW SW80818 Endosulfan sulfate ND 7.9 ug/Kg 2 12/10/21 AW SW80818 Endrin aldehyde ND 7.9 ug/Kg 2 12/10/21 AW SW80818 Endrin aldehyde ND 7.9 ug/Kg 2 12/10/21 AW SW80818 Endrin ke	4.4' -DDT	ND	1.6	ug/Kg	2	12/10/21	AW	SW8081B
Alachior ND 7.9 ug/Kg 2 12/10/21 AW SW8081B Aldrin ND 1.6 ug/Kg 2 12/10/21 AW SW8081B Chlordane ND 1.6 ug/Kg 2 12/10/21 AW SW8081B Chlordane ND 3.9 ug/Kg 2 12/10/21 AW SW8081B d-BHC ND 1.6 ug/Kg 2 12/10/21 AW SW8081B Endosulfan I ND 7.9 ug/Kg 2 12/10/21 AW SW8081B Endosulfan I ND 7.9 ug/Kg 2 12/10/21 AW SW8081B Endosulfan sulfate ND 7.9 ug/Kg 2 12/10/21 AW SW8081B Endrin ketone ND 7.9 ug/Kg 2 12/10/21 AW SW8081B Endrin ketone ND 7.9 ug/Kg 2 12/10/21 AW SW8081B g-BHC <td>a-BHC</td> <td>ND</td> <td>1.6</td> <td>ug/Kg</td> <td>2</td> <td>12/10/21</td> <td>AW</td> <td>SW8081B</td>	a-BHC	ND	1.6	ug/Kg	2	12/10/21	AW	SW8081B
Aldrin ND 1.6 ug/Kg 2 12/10/21 AW SW8081B b-BHC ND 1.6 ug/Kg 2 12/10/21 AW SW8081B c-BHC ND 1.6 ug/Kg 2 12/10/21 AW SW8081B c-BHC ND 1.6 ug/Kg 2 12/10/21 AW SW8081B Dieldrin ND 7.9 ug/Kg 2 12/10/21 AW SW8081B Endosulfan I ND 7.9 ug/Kg 2 12/10/21 AW SW8081B Endosulfan sulfate ND 7.9 ug/Kg 2 12/10/21 AW SW8081B Endrin latehyde ND 7.9 ug/Kg 2 12/10/21 AW SW8081B Endrin latehyde ND 7.9 ug/Kg 2 12/10/21 AW SW8081B Endrin latehyde ND 7.9 ug/Kg 2 12/10/21 AW SW8081B Endrin ketone ND 7.9 ug/Kg 2 12/10/21 AW SW8081B	Alachlor	ND	7.9	ug/Kg	2	12/10/21	AW	SW8081B
b-BHC ND 1.6 ug/kg 2 12/10/21 AW SW8081B Chiordane ND 39 ug/kg 2 12/10/21 AW SW8081B Dieldrin ND 3.9 ug/kg 2 12/10/21 AW SW8081B Endosulfan ND 7.9 ug/kg 2 12/10/21 AW SW8081B Endosulfan II ND 7.9 ug/kg 2 12/10/21 AW SW8081B Endosulfan sulfate ND 7.9 ug/kg 2 12/10/21 AW SW8081B Endrin ketone ND 7.9 ug/kg 2 12/10/21 AW SW8081B Endrin ketone ND 7.9 ug/kg 2 12/10/21 AW SW8081B Endrin ketone ND 7.9 ug/kg 2 12/10/21 AW SW8081B Endrin ketone ND 7.9 ug/kg 2 12/10/21 AW SW8081B <td< td=""><td>Aldrin</td><td>ND</td><td>1.6</td><td>ug/Kg</td><td>2</td><td>12/10/21</td><td>AW</td><td>SW8081B</td></td<>	Aldrin	ND	1.6	ug/Kg	2	12/10/21	AW	SW8081B
Chlordane ND 39 ug/kg 2 12/10/21 AW SW8081B d-BHC ND 1.6 ug/kg 2 12/10/21 AW SW8081B Endosulfan I ND 3.9 ug/kg 2 12/10/21 AW SW8081B Endosulfan II ND 7.9 ug/kg 2 12/10/21 AW SW8081B Endosulfan II ND 7.9 ug/kg 2 12/10/21 AW SW8081B Endosulfan sulfate ND 7.9 ug/kg 2 12/10/21 AW SW8081B Endrin ladehyde ND 7.9 ug/kg 2 12/10/21 AW SW8081B Gj=HC ND 1.6 ug/kg 2 12/10/21 AW SW8081B Heptachlor epoxide ND 7.9 ug/kg 2 12/10/21 AW SW8081B Methoxychlor ND 160 ug/kg 2 12/10/21 AW SW8081B	b-BHC	ND	1.6	ug/Kg	2	12/10/21	AW	SW8081B
d-BHC ND 1.6 ug/kg 2 12/10/21 AW SW8081B Dieldrin ND 3.9 ug/kg 2 12/10/21 AW SW8081B Endosulfan I ND 7.9 ug/kg 2 12/10/21 AW SW8081B Endosulfan II ND 7.9 ug/kg 2 12/10/21 AW SW8081B Endosulfan sulfate ND 7.9 ug/kg 2 12/10/21 AW SW8081B Endrin aldehyde ND 7.9 ug/kg 2 12/10/21 AW SW8081B Endrin ketone ND 7.9 ug/kg 2 12/10/21 AW SW8081B GeBHC ND 7.9 ug/kg 2 12/10/21 AW SW8081B Heptachlor Poxide ND 7.9 ug/kg 2 12/10/21 AW SW8081B Toxaphene ND 160 ug/kg 2 12/10/21 AW SW807D	Chlordane	ND	39	ug/Kg	2	12/10/21	AW	SW8081B
Dieldrin ND 3.9 ug/kg 2 12/10/21 AW SW8081B Endosulfan I ND 7.9 ug/kg 2 12/10/21 AW SW8081B Endosulfan II ND 7.9 ug/kg 2 12/10/21 AW SW8081B Endosulfan sulfate ND 7.9 ug/kg 2 12/10/21 AW SW8081B Endrin aldehyde ND 7.9 ug/kg 2 12/10/21 AW SW8081B Endrin katone ND 7.9 ug/kg 2 12/10/21 AW SW8081B Endrin katone ND 7.9 ug/kg 2 12/10/21 AW SW8081B Heptachlor epoxide ND 7.9 ug/kg 2 12/10/21 AW SW8081B Toxaphene ND 7.9 ug/kg 2 12/10/21 AW SW8081B Toxaphene ND 7.9 ug/kg 1 12/10/21 AW S0 - 150 %	d-BHC	ND	1.6	ug/Kg	2	12/10/21	AW	SW8081B
Endosulfan I ND 7.9 ug/kg 2 12/1021 AW SW8081B Endosulfan II ND 7.9 ug/kg 2 12/1021 AW SW8081B Endosulfan sulfate ND 7.9 ug/kg 2 12/1021 AW SW8081B Endrin ND 7.9 ug/kg 2 12/1021 AW SW8081B Endrin aldehyde ND 7.9 ug/kg 2 12/1021 AW SW8081B Endrin ketone ND 7.9 ug/kg 2 12/1021 AW SW8081B GeBHC ND 7.9 ug/kg 2 12/1021 AW SW8081B Heptachlor epoxide ND 7.9 ug/kg 2 12/1021 AW SW8081B Toxaphene ND 160 ug/kg 2 12/1021 AW SW8081B OCASP Confirmation 71 % 2 12/1021 AW 30 - 150 % %	Dieldrin	ND	3.9	ug/Kg	2	12/10/21	AW	SW8081B
Endosulfan II ND 7.9 ug/Kg 2 12/10/21 AW SW8081B Endosulfan sulfate ND 7.9 ug/Kg 2 12/10/21 AW SW8081B Endrin ND 7.9 ug/Kg 2 12/10/21 AW SW8081B Endrin aldehyde ND 7.9 ug/Kg 2 12/10/21 AW SW8081B Endrin ketone ND 7.9 ug/Kg 2 12/10/21 AW SW8081B Heptachlor ND 7.9 ug/Kg 2 12/10/21 AW SW8081B Heptachlor epoxide ND 7.9 ug/Kg 2 12/10/21 AW SW8081B Toxaphene ND 39 ug/Kg 2 12/10/21 AW SW8081B GACC ND 39 ug/Kg 2 12/10/21 AW SW8081B GACC ND 7.9 ug/Kg 2 12/10/21 AW SW8081B GACA<	Endosulfan I	ND	7.9	ug/Kg	2	12/10/21	AW	SW8081B
Endosulfan sulfate ND 7.9 ug/Kg 2 12/10/21 AW SW8081B Endrin ND 7.9 ug/Kg 2 12/10/21 AW SW8081B Endrin aldehyde ND 7.9 ug/Kg 2 12/10/21 AW SW8081B Endrin ketone ND 7.9 ug/Kg 2 12/10/21 AW SW8081B Bendrin ketone ND 7.9 ug/Kg 2 12/10/21 AW SW8081B Heptachlor epoxide ND 7.9 ug/Kg 2 12/10/21 AW SW8081B Methoxychlor ND 39 ug/Kg 2 12/10/21 AW SW8081B OXGE W SU261P 68 % 2 12/10/21 AW SW8081B MCXA 64 % 2 12/10/21 AW 30 - 150 % YCTMX 64 % 2 12/10/21 AW 30 - 150 % Acenaphthene N	Endosulfan II	ND	7.9	ug/Kg	2	12/10/21	AW	SW8081B
Endrin ND 7.9 ug/kg 2 12/10/21 AW SW8081B Endrin aldehyde ND 7.9 ug/kg 2 12/10/21 AW SW8081B Endrin ketone ND 7.9 ug/kg 2 12/10/21 AW SW8081B Endrin ketone ND 7.9 ug/kg 2 12/10/21 AW SW8081B Bendrohlor epoxide ND 7.9 ug/kg 2 12/10/21 AW SW8081B Heptachlor epoxide ND 7.9 ug/kg 2 12/10/21 AW SW8081B Toxaphene ND 160 ug/kg 2 12/10/21 AW SW8081B GACC Surrogates	Endosulfan sulfate	ND	7.9	ug/Kg	2	12/10/21	AW	SW8081B
Endrin aldehyde ND 7.9 ug/Kg 2 12/10/21 AW SW8081B Endrin ketone ND 7.9 ug/Kg 2 12/10/21 AW SW8081B g-BHC ND 1.6 ug/Kg 2 12/10/21 AW SW8081B Heptachlor ND 7.9 ug/Kg 2 12/10/21 AW SW8081B Heptachlor epoxide ND 7.9 ug/Kg 2 12/10/21 AW SW8081B Toxaphene ND 7.9 ug/Kg 2 12/10/21 AW SW8081B QAQC Surrogates	Endrin	ND	7.9	ug/Kg	2	12/10/21	AW	SW8081B
Endrin ketone ND 7.9 ug/Kg 2 12/10/21 AW SW8081B g-BHC ND 1.6 ug/Kg 2 12/10/21 AW SW8081B Heptachlor ND 7.9 ug/Kg 2 12/10/21 AW SW8081B Methoxychlor ND 7.9 ug/Kg 2 12/10/21 AW SW8081B Toxaphene ND 160 ug/Kg 2 12/10/21 AW SW8081B <i>QACQ Surrogates</i> * 2 12/10/21 AW SW8081B <i>QACQ Surrogates</i> * % 2 12/10/21 AW 30 - 150 % % DCBP (Confirmation) 50 % 2 12/10/21 AW 30 - 150 % % DCMX (Confirmation) 71 % 2 12/10/21 AW 30 - 150 % % TCMX (Confirmation) 71 % 2 12/10/21 AW 30 - 150 % Acenaphthylnehne ND 280 ug/Kg <td>Endrin aldehyde</td> <td>ND</td> <td>7.9</td> <td>ug/Kg</td> <td>2</td> <td>12/10/21</td> <td>AW</td> <td>SW8081B</td>	Endrin aldehyde	ND	7.9	ug/Kg	2	12/10/21	AW	SW8081B
g-BHC ND 1.6 ug/Kg 2 12/10/21 AW SW8081B Heptachlor ND 7.9 ug/Kg 2 12/10/21 AW SW8081B Heptachlor epoxide ND 7.9 ug/Kg 2 12/10/21 AW SW8081B Methoxychlor ND 39 ug/Kg 2 12/10/21 AW SW8081B GACC Surrogates ND 160 ug/Kg 2 12/10/21 AW SW8081B GACC Surrogates * % 2 12/10/21 AW 30 - 150 % % DCBP (Confirmation) 50 % 2 12/10/21 AW 30 - 150 % % TCMX (Confirmation) 71 % 2 12/10/21 AW 30 - 150 % Acenaphthylene ND 280 ug/Kg 1 12/09/21 WB SW8270D Acthracene ND 280 ug/Kg 1 12/09/21 WB SW8270D Benzo(a)apyrene ND	Endrin ketone	ND	7.9	ug/Kg	2	12/10/21	AW	SW8081B
Heptachlor ND 7.9 ug/kg 2 12/10/21 AW SW8081B Heptachlor epoxide ND 7.9 ug/kg 2 12/10/21 AW SW8081B Methoxychlor ND 39 ug/kg 2 12/10/21 AW SW8081B Toxaphene ND 160 ug/kg 2 12/10/21 AW SW8081B GAQC Surrogates	q-BHC	ND	1.6	ug/Kg	2	12/10/21	AW	SW8081B
Heptachlor epoxide ND 7.9 ug/Kg 2 12/10/21 AW SW8081B Methoxychlor ND 39 ug/Kg 2 12/10/21 AW SW8081B Toxaphene ND 160 ug/Kg 2 12/10/21 AW SW8081B QAQC Surrogates	Heptachlor	ND	7.9	ug/Kg	2	12/10/21	AW	SW8081B
Methoxychlor ND 39 ug/Kg 2 12/10/21 AW SW8081B Toxaphene ND 160 ug/Kg 2 12/10/21 AW SW8081B GAZQC Surrogates	Heptachlor epoxide	ND	7.9	ug/Kg	2	12/10/21	AW	SW8081B
Toxaphene ND 160 ug/Kg 2 12/10/21 AW SW8081B GA/QC Surrogates	Methoxychlor	ND	39	ug/Kg	2	12/10/21	AW	SW8081B
OACC Surrogates % DCBP 68 % 2 12/10/21 AW 30 - 150 % % DCBP (Confirmation) 50 % 2 12/10/21 AW 30 - 150 % % DCBP (Confirmation) 50 % 2 12/10/21 AW 30 - 150 % % TCMX 64 % 2 12/10/21 AW 30 - 150 % % TCMX (Confirmation) 71 % 2 12/10/21 AW 30 - 150 % Polynuclear Aromatic HC % 2 12/10/21 AW 30 - 150 % Acenaphthene ND 280 ug/Kg 1 12/09/21 WB SW8270D Acenaphthylene ND 280 ug/Kg 1 12/09/21 WB SW8270D Benzo(a)pyrene ND 280 ug/Kg 1 12/09/21 WB SW8270D Benzo(ghi)perylene ND 280 ug/Kg 1 12/09/21 WB SW8270D Benzo(ghi)perylene ND<	Toxaphene	ND	160	ug/Kg	2	12/10/21	AW	SW8081B
% DCBP 68 % 2 12/10/21 AW 30 - 150 % % DCBP (Confirmation) 50 % 2 12/10/21 AW 30 - 150 % % TCMX 64 % 2 12/10/21 AW 30 - 150 % % TCMX (Confirmation) 71 % 2 12/10/21 AW 30 - 150 % Polynuclear Aromatic HC	QA/QC Surrogates							
% DCBP (Confirmation) 50 % 2 12/10/21 AW 30 - 150 % % TCMX 64 % 2 12/10/21 AW 30 - 150 % % TCMX (Confirmation) 71 % 2 12/10/21 AW 30 - 150 % Polynuclear Aromatic HC ND 280 ug/Kg 1 12/09/21 WB SW8270D Acenaphthene ND 280 ug/Kg 1 12/09/21 WB SW8270D Acenaphthene ND 280 ug/Kg 1 12/09/21 WB SW8270D Acenaphthylene ND 280 ug/Kg 1 12/09/21 WB SW8270D Benz(a)anthracene ND 280 ug/Kg 1 12/09/21 WB SW8270D Benzo(a)pyrene ND 280 ug/Kg 1 12/09/21 WB SW8270D Benzo(ghilperylene ND 280 ug/Kg 1 12/09/21 WB SW8270D Benzo(k)fluoranthene ND 280 ug/Kg 1 12/09/21 WB SW8270D	% DCBP	68		%	2	12/10/21	AW	30 - 150 %
% TCMX 64 % 2 12/10/21 AW 30 - 150 % % TCMX (Confirmation) 71 % 2 12/10/21 AW 30 - 150 % Polynuclear Aromatic HC V 280 ug/Kg 1 12/09/21 WB SW8270D Acenaphthene ND 280 ug/Kg 1 12/09/21 WB SW8270D Acenaphthylene ND 280 ug/Kg 1 12/09/21 WB SW8270D Acenaphthylene ND 280 ug/Kg 1 12/09/21 WB SW8270D Anthracene ND 280 ug/Kg 1 12/09/21 WB SW8270D Benz(a)anthracene ND 280 ug/Kg 1 12/09/21 WB SW8270D Benzo(ghi)perglene ND 280 ug/Kg 1 12/09/21 WB SW8270D Benzo(ghi)fuoranthene ND 280 ug/Kg 1 12/09/21 WB SW8270D Benzo(k)fluoranthene ND 280 ug/Kg 1 12/09/21 WB <	% DCBP (Confirmation)	50		%	2	12/10/21	AW	30 - 150 %
% TCMX (Confirmation) 71 % 2 12/10/21 AW 30 - 150 % Polynuclear Aromatic HC V <t< td=""><td>% TCMX</td><td>64</td><td></td><td>%</td><td>2</td><td>12/10/21</td><td>AW</td><td>30 - 150 %</td></t<>	% TCMX	64		%	2	12/10/21	AW	30 - 150 %
Polynuclear Aromatic HC2-MethylnaphthaleneND280ug/Kg112/09/21WBSW8270DAcenaphtheneND280ug/Kg112/09/21WBSW8270DAcenaphthyleneND280ug/Kg112/09/21WBSW8270DActenaphthyleneND280ug/Kg112/09/21WBSW8270DAnthraceneND280ug/Kg112/09/21WBSW8270DBenza(a)anthraceneND280ug/Kg112/09/21WBSW8270DBenzo(a)pyreneND280ug/Kg112/09/21WBSW8270DBenzo(b)fluorantheneND280ug/Kg112/09/21WBSW8270DBenzo(k)fluorantheneND280ug/Kg112/09/21WBSW8270DChryseneND280ug/Kg112/09/21WBSW8270DDibenz(a,h)anthraceneND280ug/Kg112/09/21WBSW8270DFluoreneND280ug/Kg112/09/21WBSW8270DFluoreneND280ug/Kg112/09/21WBSW8270DIndeno(1,2,3-cd)pyreneND280ug/Kg112/09/21WBSW8270DNaphthaleneND280ug/Kg112/09/21WBSW8270DNaphthaleneND280ug/Kg112/09/21WBSW8270DSt	% TCMX (Confirmation)	71		%	2	12/10/21	AW	30 - 150 %
2-Methylnaphthalene ND 280 ug/Kg 1 12/09/21 WB SW8270D Acenaphthene ND 280 ug/Kg 1 12/09/21 WB SW8270D Acenaphthylene ND 280 ug/Kg 1 12/09/21 WB SW8270D Anthracene ND 280 ug/Kg 1 12/09/21 WB SW8270D Benz(a)anthracene ND 280 ug/Kg 1 12/09/21 WB SW8270D Benzo(a)pyrene ND 280 ug/Kg 1 12/09/21 WB SW8270D Benzo(b)fluoranthene ND 280 ug/Kg 1 12/09/21 WB SW8270D Benzo(ghi)perylene ND 280 ug/Kg 1 12/09/21 WB SW8270D Chrysene ND 280 ug/Kg 1 12/09/21 WB SW8270D Dibenz(a,h)anthracene ND 280 ug/Kg 1 12/09/21 WB SW82	Polynuclear Aromatic	: HC						
Acenaphthene ND 280 ug/Kg 1 12/09/21 WB SW8270D Acenaphthylene ND 280 ug/Kg 1 12/09/21 WB SW8270D Anthracene ND 280 ug/Kg 1 12/09/21 WB SW8270D Benz(a)anthracene ND 280 ug/Kg 1 12/09/21 WB SW8270D Benz(a)anthracene ND 280 ug/Kg 1 12/09/21 WB SW8270D Benzo(a)pyrene ND 280 ug/Kg 1 12/09/21 WB SW8270D Benzo(b)fluoranthene ND 280 ug/Kg 1 12/09/21 WB SW8270D Benzo(k)fluoranthene ND 280 ug/Kg 1 12/09/21 WB SW8270D Chrysene ND 280 ug/Kg 1 12/09/21 WB SW8270D Dibenz(a,h)anthracene ND 280 ug/Kg 1 12/09/21 WB SW82	2-Methylnaphthalene	ND	280	ug/Kg	1	12/09/21	WB	SW8270D
Acenaphthylene ND 280 ug/Kg 1 12/09/21 WB SW8270D Anthracene ND 280 ug/Kg 1 12/09/21 WB SW8270D Benz(a)anthracene ND 280 ug/Kg 1 12/09/21 WB SW8270D Benzo(a)pyrene ND 280 ug/Kg 1 12/09/21 WB SW8270D Benzo(a)pyrene ND 280 ug/Kg 1 12/09/21 WB SW8270D Benzo(b)fluoranthene ND 280 ug/Kg 1 12/09/21 WB SW8270D Benzo(ghi)perylene ND 280 ug/Kg 1 12/09/21 WB SW8270D Benzo(k)fluoranthene ND 280 ug/Kg 1 12/09/21 WB SW8270D Chrysene ND 280 ug/Kg 1 12/09/21 WB SW8270D Dibenz(a,h)anthracene ND 280 ug/Kg 1 12/09/21 WB S	Acenaphthene	ND	280	ug/Kg	1	12/09/21	WB	SW8270D
Anthracene ND 280 ug/Kg 1 12/09/21 WB SW8270D Benz(a)anthracene ND 280 ug/Kg 1 12/09/21 WB SW8270D Benzo(a)pyrene ND 280 ug/Kg 1 12/09/21 WB SW8270D Benzo(a)pyrene ND 280 ug/Kg 1 12/09/21 WB SW8270D Benzo(b)fluoranthene ND 280 ug/Kg 1 12/09/21 WB SW8270D Benzo(ghi)perylene ND 280 ug/Kg 1 12/09/21 WB SW8270D Benzo(k)fluoranthene ND 280 ug/Kg 1 12/09/21 WB SW8270D Chrysene ND 280 ug/Kg 1 12/09/21 WB SW8270D Dibenz(a,h)anthracene ND 280 ug/Kg 1 12/09/21 WB SW8270D Fluoranthene ND 280 ug/Kg 1 12/09/21 WB SW8	Acenaphthylene	ND	280	ug/Kg	1	12/09/21	WB	SW8270D
Benz(a)anthracene ND 280 ug/Kg 1 12/09/21 WB SW8270D Benzo(a)pyrene ND 280 ug/Kg 1 12/09/21 WB SW8270D Benzo(b)fluoranthene ND 280 ug/Kg 1 12/09/21 WB SW8270D Benzo(b)fluoranthene ND 280 ug/Kg 1 12/09/21 WB SW8270D Benzo(ghi)perylene ND 280 ug/Kg 1 12/09/21 WB SW8270D Benzo(k)fluoranthene ND 280 ug/Kg 1 12/09/21 WB SW8270D Chrysene ND 280 ug/Kg 1 12/09/21 WB SW8270D Dibenz(a,h)anthracene ND 280 ug/Kg 1 12/09/21 WB SW8270D Fluoranthene ND 280 ug/Kg 1 12/09/21 WB SW8270D Fluorene ND 280 ug/Kg 1 12/09/21 WB <td< td=""><td>Anthracene</td><td>ND</td><td>280</td><td>ug/Kg</td><td>1</td><td>12/09/21</td><td>WB</td><td>SW8270D</td></td<>	Anthracene	ND	280	ug/Kg	1	12/09/21	WB	SW8270D
Benzo(a)pyrene ND 280 ug/Kg 1 12/09/21 WB SW8270D Benzo(b)fluoranthene ND 280 ug/Kg 1 12/09/21 WB SW8270D Benzo(ghi)perylene ND 280 ug/Kg 1 12/09/21 WB SW8270D Benzo(k)fluoranthene ND 280 ug/Kg 1 12/09/21 WB SW8270D Benzo(k)fluoranthene ND 280 ug/Kg 1 12/09/21 WB SW8270D Chrysene ND 280 ug/Kg 1 12/09/21 WB SW8270D Dibenz(a,h)anthracene ND 280 ug/Kg 1 12/09/21 WB SW8270D Fluoranthene ND 280 ug/Kg 1 12/09/21 WB SW8270D Indeno(1,2,3-cd)pyrene ND 280 ug/Kg 1 12/09/21 WB SW8270D Naphthalene ND 280 ug/Kg 1 12/09/21 WB	Benz(a)anthracene	ND	280	ug/Kg	1	12/09/21	WB	SW8270D
Benzo(b)fluoranthene ND 280 ug/Kg 1 12/09/21 WB SW8270D Benzo(ghi)perylene ND 280 ug/Kg 1 12/09/21 WB SW8270D Benzo(k)fluoranthene ND 280 ug/Kg 1 12/09/21 WB SW8270D Chrysene ND 280 ug/Kg 1 12/09/21 WB SW8270D Dibenz(a,h)anthracene ND 280 ug/Kg 1 12/09/21 WB SW8270D Fluoranthene ND 280 ug/Kg 1 12/09/21 WB SW8270D Fluorenthene ND 280 ug/Kg 1 12/09/21 WB SW8270D Fluorene ND 280 ug/Kg 1 12/09/21 WB SW8270D Indeno(1,2,3-cd)pyrene ND 280 ug/Kg 1 12/09/21 WB SW8270D Naphthalene ND 280 ug/Kg 1 12/09/21 WB SW827	Benzo(a)pyrene	ND	280	ug/Kg	1	12/09/21	WB	SW8270D
Benzo (ghi) perylene ND 280 ug/Kg 1 12/09/21 WB SW8270D Benzo (k) fluoranthene ND 280 ug/Kg 1 12/09/21 WB SW8270D Chrysene ND 280 ug/Kg 1 12/09/21 WB SW8270D Dibenz (a,h) anthracene ND 280 ug/Kg 1 12/09/21 WB SW8270D Fluoranthene ND 280 ug/Kg 1 12/09/21 WB SW8270D Fluorene ND 280 ug/Kg 1 12/09/21 WB SW8270D Indeno (1,2,3-cd) pyrene ND 280 ug/Kg 1 12/09/21 WB SW8270D Naphthalene ND 280 ug/Kg 1 12/09/21 WB SW8270D Naphthalene ND 280 ug/Kg 1 12/09/21 WB SW8270D Phenanthrene ND 280 ug/Kg 1 12/09/21 WB SW8270	Benzo(b)fluoranthene	ND	280	ug/Kg	1	12/09/21	WB	SW8270D
Benzo(k)fluoranthene ND 280 ug/Kg 1 12/09/21 WB SW8270D Chrysene ND 280 ug/Kg 1 12/09/21 WB SW8270D Dibenz(a,h)anthracene ND 280 ug/Kg 1 12/09/21 WB SW8270D Fluoranthene ND 280 ug/Kg 1 12/09/21 WB SW8270D Fluoranthene ND 280 ug/Kg 1 12/09/21 WB SW8270D Fluorene ND 280 ug/Kg 1 12/09/21 WB SW8270D Indeno(1,2,3-cd)pyrene ND 280 ug/Kg 1 12/09/21 WB SW8270D Naphthalene ND 280 ug/Kg 1 12/09/21 WB SW8270D Phenanthrene ND 280 ug/Kg 1 12/09/21 WB SW8270D	Benzo(ghi)perylene	ND	280	ug/Kg	1	12/09/21	WB	SW8270D
ND 280 ug/Kg 1 12/09/21 WB SW8270D Dibenz(a,h)anthracene ND 280 ug/Kg 1 12/09/21 WB SW8270D Fluoranthene ND 280 ug/Kg 1 12/09/21 WB SW8270D Fluorene ND 280 ug/Kg 1 12/09/21 WB SW8270D Indeno(1,2,3-cd)pyrene ND 280 ug/Kg 1 12/09/21 WB SW8270D Naphthalene ND 280 ug/Kg 1 12/09/21 WB SW8270D Phenanthrene ND 280 ug/Kg 1 12/09/21 WB SW8270D	Benzo(k)fluoranthene	ND	280	ug/Kg	1	12/09/21	WB	SW8270D
Dibenz(a,h)anthracene ND 280 ug/Kg 1 12/09/21 WB SW8270D Fluoranthene ND 280 ug/Kg 1 12/09/21 WB SW8270D Fluorene ND 280 ug/Kg 1 12/09/21 WB SW8270D Indeno(1,2,3-cd)pyrene ND 280 ug/Kg 1 12/09/21 WB SW8270D Naphthalene ND 280 ug/Kg 1 12/09/21 WB SW8270D Phenanthrene ND 280 ug/Kg 1 12/09/21 WB SW8270D	Chrysene	ND	280	ug/Kg	1	12/09/21	WB	SW8270D
Fluoranthene ND 280 ug/Kg 1 12/09/21 WB SW8270D Fluorene ND 280 ug/Kg 1 12/09/21 WB SW8270D Indeno(1,2,3-cd)pyrene ND 280 ug/Kg 1 12/09/21 WB SW8270D Naphthalene ND 280 ug/Kg 1 12/09/21 WB SW8270D Phenanthrene ND 280 ug/Kg 1 12/09/21 WB SW8270D	Dibenz(a,h)anthracene	ND	280	ug/Kg	1	12/09/21	WB	SW8270D
Fluorene ND 280 ug/Kg 1 12/09/21 WB SW8270D Indeno(1,2,3-cd)pyrene ND 280 ug/Kg 1 12/09/21 WB SW8270D Naphthalene ND 280 ug/Kg 1 12/09/21 WB SW8270D Phenanthrene ND 280 ug/Kg 1 12/09/21 WB SW8270D	Fluoranthene	ND	280	ug/Kg	1	12/09/21	WB	SW8270D
Indeno(1,2,3-cd)pyrene ND 280 ug/Kg 1 12/09/21 WB SW8270D Naphthalene ND 280 ug/Kg 1 12/09/21 WB SW8270D Phenanthrene ND 280 ug/Kg 1 12/09/21 WB SW8270D	Fluorene	ND	280	ug/Kg	1	12/09/21	WB	SW8270D
Naphthalene ND 280 ug/Kg 1 12/09/21 WB SW8270D Phenanthrene ND 280 ug/Kg 1 12/09/21 WB SW8270D	Indeno(1,2,3-cd)pyrene	ND	280	ug/Kg	1	12/09/21	WB	SW8270D
Phenanthrene ND 280 ug/Kg 1 12/09/21 W/R SW8270D	Naphthalene	ND	280	ug/Kg	1	12/09/21	WB	SW8270D
	Phenanthrene	ND	280	ug/Kg	1	12/09/21	WB	SW8270D

Project ID: FAIRFIELD ATHLETIC FIELDS BURR ELEM. Client ID: BES-201 (0.5-1)

		RL/				_	
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Pyrene	ND	280	ug/Kg	1	12/09/21	WB	SW8270D
QA/QC Surrogates							
% 2-Fluorobiphenyl	75		%	1	12/09/21	WB	30 - 130 %
% Nitrobenzene-d5	72		%	1	12/09/21	WB	30 - 130 %
% Terphenyl-d14	76		%	1	12/09/21	WB	30 - 130 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director December 17, 2021 Reviewed and Released by: Greg Lawrence, Assistant Lab Director

Analysis Report

FOR: Attn: Brian Sirowich Tighe & Bond 213 Court St, Suite 1100 Middletown, CT 06457

December 17, 2021

Sample Information		Custody Inform	Date	<u>Time</u>	
Matrix:	SOIL	Collected by:		12/08/21	16:21
Location Code:	TIGHE-DAS	Received by:	CP	12/09/21	11:13
Rush Request:	48 Hour	Analyzed by:	see "By" below		
P.O.#:	15-0439-058				

Laboratory Data

SDG ID: GCJ93594 Phoenix ID: CJ93595

Project ID:	FAIRFIELD ATHLETIC FIELDS BURR ELEM.
Client ID:	BES-201A (0-0.5)

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Arsenic	4.26	0.87	mg/Kg	1	12/10/21	TH	SW6010D
Lead	13.1	0.43	mg/Kg	1	12/10/21	TH	SW6010D
Percent Solid	77		%		12/09/21	Q	SW846-%Solid
Soil Extraction for Pesticide	Completed				12/09/21	O/L	SW3545A
Extraction of ETPH	Completed				12/09/21	B/L	SW3546
Soil Extraction for SVOA PAH	Completed				12/09/21	B/Y	SW3546
Extraction for PCB	Completed				12/09/21	X/JS/Q	SW3540C
Total Metals Digest	Completed				12/09/21	P/AG	SW3050B
TPH by GC (Extractable	e Products	<u>;)</u>					
Ext. Petroleum H.C. (C9-C36)	ND	64	mg/Kg	1	12/10/21	JRB	CTETPH 8015D
Identification	ND		mg/Kg	1	12/10/21	JRB	CTETPH 8015D
QA/QC Surrogates							
% COD (surr)	85		%	1	12/10/21	JRB	50 - 150 %
% Terphenyl (surr)	101		%	1	12/10/21	JRB	50 - 150 %
PCB (Soxhlet SW35400	<u> </u>						
PCB-1016	ND	430	ug/Kg	10	12/10/21	SC	SW8082A
PCB-1221	ND	430	ug/Kg	10	12/10/21	SC	SW8082A
PCB-1232	ND	430	ug/Kg	10	12/10/21	SC	SW8082A
PCB-1242	ND	430	ug/Kg	10	12/10/21	SC	SW8082A
PCB-1248	ND	430	ug/Kg	10	12/10/21	SC	SW8082A
PCB-1254	ND	430	ug/Kg	10	12/10/21	SC	SW8082A
PCB-1260	ND	430	ug/Kg	10	12/10/21	SC	SW8082A
PCB-1262	ND	430	ug/Kg	10	12/10/21	SC	SW8082A
PCB-1268	ND	430	ug/Kg	10	12/10/21	SC	SW8082A
QA/QC Surrogates							

Project ID: FAIRFIELD ATHLETIC FIELDS BURR ELEM. Client ID: BES-201A (0-0.5)

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference
% DCBP	98		%	10	12/10/21	SC	30 - 150 %
% DCBP (Confirmation)	93		%	10	12/10/21	SC	30 - 150 %
% TCMX	82		%	10	12/10/21	SC	30 - 150 %
% TCMX (Confirmation)	84		%	10	12/10/21	SC	30 - 150 %
Pesticides							
4,4' -DDD	ND	1.7	ug/Kg	2	12/11/21	AW	SW8081B
4,4' -DDE	ND	1.7	ug/Kg	2	12/11/21	AW	SW8081B
4.4' -DDT	ND	1.7	ug/Kg	2	12/11/21	AW	SW8081B
a-BHC	ND	1.7	ug/Kg	2	12/11/21	AW	SW8081B
Alachlor	ND	8.5	ug/Kg	2	12/11/21	AW	SW8081B
Aldrin	ND	1.7	ug/Kg	2	12/11/21	AW	SW8081B
b-BHC	ND	1.7	ug/Kg	2	12/11/21	AW	SW8081B
Chlordane	ND	43	ug/Kg	2	12/11/21	AW	SW8081B
d-BHC	ND	1.7	ug/Kg	2	12/11/21	AW	SW8081B
Dieldrin	ND	4.3	ug/Kg	2	12/11/21	AW	SW8081B
Endosulfan I	ND	8.5	ug/Kg	2	12/11/21	AW	SW8081B
Endosulfan II	ND	8.5	ug/Kg	2	12/11/21	AW	SW8081B
Endosulfan sulfate	ND	8.5	ug/Kg	2	12/11/21	AW	SW8081B
Endrin	ND	8.5	ug/Kg	2	12/11/21	AW	SW8081B
Endrin aldehyde	ND	8.5	ug/Kg	2	12/11/21	AW	SW8081B
Endrin ketone	ND	8.5	ug/Kg	2	12/11/21	AW	SW8081B
g-BHC	ND	1.7	ug/Kg	2	12/11/21	AW	SW8081B
Heptachlor	ND	8.5	ug/Kg	2	12/11/21	AW	SW8081B
Heptachlor epoxide	ND	8.5	ug/Kg	2	12/11/21	AW	SW8081B
Methoxychlor	ND	43	ug/Kg	2	12/11/21	AW	SW8081B
Toxaphene	ND	170	ug/Kg	2	12/11/21	AW	SW8081B
QA/QC Surrogates							
% DCBP	127		%	2	12/11/21	AW	30 - 150 %
% DCBP (Confirmation)	78		%	2	12/11/21	AW	30 - 150 %
% TCMX	65		%	2	12/11/21	AW	30 - 150 %
% TCMX (Confirmation)	85		%	2	12/11/21	AW	30 - 150 %
Polynuclear Aromatic	: HC						
2-Methylnaphthalene	ND	300	ug/Kg	1	12/10/21	WB	SW8270D
Acenaphthene	ND	300	ug/Kg	1	12/10/21	WB	SW8270D
Acenaphthylene	ND	300	ug/Kg	1	12/10/21	WB	SW8270D
Anthracene	ND	300	ug/Kg	1	12/10/21	WB	SW8270D
Benz(a)anthracene	ND	300	ug/Kg	1	12/10/21	WB	SW8270D
Benzo(a)pyrene	ND	300	ug/Kg	1	12/10/21	WB	SW8270D
Benzo(b)fluoranthene	ND	300	ug/Kg	1	12/10/21	WB	SW8270D
Benzo(ghi)perylene	ND	300	ug/Kg	1	12/10/21	WB	SW8270D
Benzo(k)fluoranthene	ND	300	ug/Kg	1	12/10/21	WB	SW8270D
Chrysene	ND	300	ug/Kg	1	12/10/21	WB	SW8270D
Dibenz(a,h)anthracene	ND	300	ug/Kg	1	12/10/21	WB	SW8270D
Fluoranthene	ND	300	ug/Kg	1	12/10/21	WB	SW8270D
Fluorene	ND	300	ug/Kg	1	12/10/21	WB	SW8270D
Indeno(1,2,3-cd)pyrene	ND	300	ug/Kg	1	12/10/21	WB	SW8270D
Naphthalene	ND	300	ug/Kg	1	12/10/21	WB	SW8270D
Phenanthrene	ND	300	ug/Kg	1	12/10/21	WB	SW8270D

Project ID: FAIRFIELD ATHLETIC FIELDS BURR ELEM. Client ID: BES-201A (0-0.5)

		RL/			Date/Time	-	Defenses	
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference	
Pyrene	ND	300	ug/Kg	1	12/10/21	WB	SW8270D	
QA/QC Surrogates								
% 2-Fluorobiphenyl	67		%	1	12/10/21	WB	30 - 130 %	
% Nitrobenzene-d5	65		%	1	12/10/21	WB	30 - 130 %	
% Terphenyl-d14	66		%	1	12/10/21	WB	30 - 130 %	

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director December 17, 2021 Reviewed and Released by: Greg Lawrence, Assistant Lab Director

Analysis Report

FOR: Attn: Brian Sirowich Tighe & Bond 213 Court St, Suite 1100 Middletown, CT 06457

December 17, 2021

Sample Information		Custody Inform	nation	Date	Time
Matrix:	SOIL	Collected by:		12/08/21	16:22
Location Code:	TIGHE-DAS	Received by:	CP	12/09/21	11:13
Rush Request:	48 Hour	Analyzed by:	see "By" below		
P.O.#:	15-0439-058				

Laboratory Data

SDG ID: GCJ93594 Phoenix ID: CJ93596

Project ID:	FAIRFIELD ATHLETIC FIELDS BURR ELEM.
Client ID:	BES-201B (0-0.5)

		RL/	_				_	
Parameter	Result	PQL	Ĺ	Jnits	Dilution	Date/Time	Ву	Reference
Arsenic	3.74	0.82	rr	ng/Kg	1	12/10/21	TH	SW6010D
Lead	11.9	0.41	m	וg/Kg	1	12/10/21	TH	SW6010D
Percent Solid	82			%		12/09/21	Q	SW846-%Solid
Soil Extraction for Pesticide	Completed					12/09/21	O/L	SW3545A
Extraction of ETPH	Completed					12/09/21	B/L	SW3546
Soil Extraction for SVOA PAH	Completed					12/09/21	B/Y	SW3546
Extraction for PCB	Completed					12/09/21	X/JS/Q	SW3540C
Total Metals Digest	Completed					12/09/21	P/AG	SW3050B
TPH by GC (Extractable	Products	5)						
Ext. Petroleum H.C. (C9-C36)	ND	59	r	ng/Kg	1	12/10/21	JRB	CTETPH 8015D
Identification	ND		r	ng/Kg	1	12/10/21	JRB	CTETPH 8015D
QA/QC Surrogates								
% COD (surr)	86			%	1	12/10/21	JRB	50 - 150 %
% Terphenyl (surr)	100			%	1	12/10/21	JRB	50 - 150 %
PCB (Soxhlet SW3540C	<u>;)</u>							
PCB-1016	ND	400	U	ıg/Kg	10	12/10/21	SC	SW8082A
PCB-1221	ND	400	U	ıg/Kg	10	12/10/21	SC	SW8082A
PCB-1232	ND	400	U	ıg/Kg	10	12/10/21	SC	SW8082A
PCB-1242	ND	400	U	ıg/Kg	10	12/10/21	SC	SW8082A
PCB-1248	ND	400	U	ıg/Kg	10	12/10/21	SC	SW8082A
PCB-1254	ND	400	U	ıg/Kg	10	12/10/21	SC	SW8082A
PCB-1260	ND	400	U	ıg/Kg	10	12/10/21	SC	SW8082A
PCB-1262	ND	400	U	ıg/Kg	10	12/10/21	SC	SW8082A
PCB-1268	ND	400	U	ıg/Kg	10	12/10/21	SC	SW8082A
QA/QC Surrogates								

Project ID: FAIRFIELD ATHLETIC FIELDS BURR ELEM. Client ID: BES-201B (0-0.5)

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
% DCBP	104		%	10	12/10/21	SC	30 - 150 %
% DCBP (Confirmation)	99		%	10	12/10/21	SC	30 - 150 %
% TCMX	74		%	10	12/10/21	SC	30 - 150 %
% TCMX (Confirmation)	75		%	10	12/10/21	SC	30 - 150 %
Pesticides							
4.4' -DDD	ND	1.6	ua/Ka	2	12/11/21	AW	SW8081B
4 4' -DDF	ND	1.6	ua/Ka	2	12/11/21	AW	SW8081B
4 4' -DDT	ND	1.6	ug/Kg	2	12/11/21	AW	SW8081B
a-BHC	ND	1.6	ug/Kg	2	12/11/21	AW	SW8081B
Alachlor	ND	8.0	ug/Kg	2	12/11/21	AW	SW8081B
Aldrin	ND	1.6	ug/Kg	2	12/11/21	AW	SW8081B
b-BHC	ND	1.6	ua/Ka	2	12/11/21	AW	SW8081B
Chlordane	ND	40	ug/Kg	2	12/11/21	AW	SW8081B
d-BHC	ND	1.6	ua/Ka	2	12/11/21	AW	SW8081B
Dieldrin	ND	4.0	ua/Ka	2	12/11/21	AW	SW8081B
Endosulfan I	ND	8.0	ug/Kg	2	12/11/21	AW	SW8081B
Endosulfan II	ND	8.0	ug/Kg	2	12/11/21	AW	SW8081B
Endosulfan sulfate	ND	8.0	ug/Kg	2	12/11/21	AW	SW8081B
Endosulari sullate	ND	8.0	ug/Kg	2	12/11/21	AW	SW8081B
Endrin aldebyde	ND	8.0	ug/Kg	2	12/11/21	AW	SW8081B
Endrin ketone	ND	8.0	ug/Kg	2	12/11/21	AW	SW8081B
a-BHC	ND	1.6	ug/Kg	2	12/11/21	AW	SW/8081B
Hentachlor	ND	8.0	ug/Kg	2	12/11/21	AW	SW8081B
Hentachlor enoxide	ND	8.0	ug/Kg	2	12/11/21	AW	SW8081B
Methoxychlor	ND	40	ug/Kg	2	12/11/21	AW	SW8081B
Toyanhene	ND	160	ug/Kg	2	12/11/21	AW	SW8081B
OA/OC Surrogates		100	ug/itg	2	12/11/21	,	OWOOOTD
% DCBP	60		%	2	12/11/21	AW	30 - 150 %
% DCBP (Confirmation)	41		%	2	12/11/21	AW	30 - 150 %
% TCMX	57		%	2	12/11/21	AW	30 - 150 %
% TCMX (Confirmation)	56		%	2	12/11/21	AW	30 - 150 %
Polynuclear Aromati	c HC						
2 Mathylapathalapa		280	ug/Kg	1	12/10/21	\//B	SW/8270D
		280	ug/Kg	1	12/10/21		SW0270D
Acenaphthylana		280	ug/Kg	1	12/10/21		SW0270D
Acting		280	ug/Kg	1	12/10/21		SW0270D
Antinacene Banz(a)anthrasana		280	ug/Kg	1	12/10/21		SW0270D
		280	ug/Kg	1	12/10/21		SW0270D
Benzo(a)pyrene		280	ug/Kg	1	12/10/21		SW0270D
Benzo(b)nuorantnene		280	ug/Kg	1	12/10/21		SW0270D
Benzo(gni)perylene	ND	280	ug/Kg	1	12/10/21		SW0270D
Benzo(k)fluoranthene	ND	280	ug/Kg	1	12/10/21		SW0270D
		280	ug/Kg	1	12/10/21		SW0270D
Dibenz(a,n)anthracene	ND	280	ug/Kg	1	12/10/21		SW0270D
		∠ðU 280	ug/Kg	1	12/10/21	VVB	SVVOZIUD
		∠80 280	ug/Kg	1	12/10/21	WB	SW0270D
Indeno(1,2,3-cd)pyrene	ND	280	ug/Kg	1	12/10/21	WB	SVV82/UD
Naphthalene	ND	280	ug/Kg	1	12/10/21	WB	SVV82/UD
Phenanthrene	ND	280	ug/Kg	1	12/10/21	WB	SW8270D

Project ID: FAIRFIELD ATHLETIC FIELDS BURR ELEM. Client ID: BES-201B (0-0.5)

		RL/						
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference	
Pyrene	ND	280	ug/Kg	1	12/10/21	WB	SW8270D	
QA/QC Surrogates								
% 2-Fluorobiphenyl	78		%	1	12/10/21	WB	30 - 130 %	
% Nitrobenzene-d5	76		%	1	12/10/21	WB	30 - 130 %	
% Terphenyl-d14	82		%	1	12/10/21	WB	30 - 130 %	

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director December 17, 2021 Reviewed and Released by: Greg Lawrence, Assistant Lab Director

Analysis Report

FOR: Attn: Brian Sirowich Tighe & Bond 213 Court St, Suite 1100 Middletown, CT 06457

December 17, 2021

Sample Information		Custody Inform	nation	Date	Time
Matrix:	SOIL	Collected by:		12/08/21	16:23
Location Code:	TIGHE-DAS	Received by:	CP	12/09/21	11:13
Rush Request:	48 Hour	Analyzed by:	see "By" below		
P.O.#:	15-0439-058				

Laboratory Data

SDG ID: GCJ93594 Phoenix ID: CJ93597

Project ID:	FAIRFIELD ATHLETIC FIELDS BURR ELEM.
Client ID:	BES-201C (0-0.5)

_		RL/				_	- /
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Arsenic	3.85	0.84	mg/Kg	1	12/10/21	TH	SW6010D
Lead	12.7	0.42	mg/Kg	1	12/10/21	TH	SW6010D
Percent Solid	83		%		12/09/21	Q	SW846-%Solid
Soil Extraction for Pesticide	Completed				12/09/21	O/L	SW3545A
Extraction of ETPH	Completed				12/09/21	B/L	SW3546
Soil Extraction for SVOA PAH	Completed				12/09/21	B/Y	SW3546
Extraction for PCB	Completed				12/09/21	X/JS/Q	SW3540C
Total Metals Digest	Completed				12/09/21	P/AG	SW3050B
TPH by GC (Extractable	e Products	<u>5)</u>					
Ext. Petroleum H.C. (C9-C36)	ND	59	mg/Kg	1	12/10/21	JRB	CTETPH 8015D
Identification	ND		mg/Kg	1	12/10/21	JRB	CTETPH 8015D
QA/QC Surrogates							
% COD (surr)	91		%	1	12/10/21	JRB	50 - 150 %
% Terphenyl (surr)	106		%	1	12/10/21	JRB	50 - 150 %
PCB (Soxhlet SW35400	<u>;)</u>						
PCB-1016	ND	400	ug/Kg	10	12/10/21	SC	SW8082A
PCB-1221	ND	400	ug/Kg	10	12/10/21	SC	SW8082A
PCB-1232	ND	400	ug/Kg	10	12/10/21	SC	SW8082A
PCB-1242	ND	400	ug/Kg	10	12/10/21	SC	SW8082A
PCB-1248	ND	400	ug/Kg	10	12/10/21	SC	SW8082A
PCB-1254	ND	400	ug/Kg	10	12/10/21	SC	SW8082A
PCB-1260	ND	400	ug/Kg	10	12/10/21	SC	SW8082A
PCB-1262	ND	400	ug/Kg	10	12/10/21	SC	SW8082A
PCB-1268	ND	400	ug/Kg	10	12/10/21	SC	SW8082A
QA/QC Surrogates							

Project ID: FAIRFIELD ATHLETIC FIELDS BURR ELEM. Client ID: BES-201C (0-0.5)

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
% DCBP	94		%	10	12/10/21	SC	30 - 150 %
% DCBP (Confirmation)	90		%	10	12/10/21	SC	30 - 150 %
% TCMX	38		%	10	12/10/21	SC	30 - 150 %
% TCMX (Confirmation)	40		%	10	12/10/21	SC	30 - 150 %
Pesticides							
4,4' -DDD	ND	1.6	ug/Kg	2	12/11/21	AW	SW8081B
4,4' -DDE	ND	1.6	ug/Kg	2	12/11/21	AW	SW8081B
4.4' -DDT	ND	1.6	ug/Kg	2	12/11/21	AW	SW8081B
a-BHC	ND	1.6	ug/Kg	2	12/11/21	AW	SW8081B
Alachlor	ND	8.0	ug/Kg	2	12/11/21	AW	SW8081B
Aldrin	ND	1.6	ug/Kg	2	12/11/21	AW	SW8081B
b-BHC	ND	1.6	ug/Kg	2	12/11/21	AW	SW8081B
Chlordane	ND	40	ug/Kg	2	12/11/21	AW	SW8081B
d-BHC	ND	1.6	ug/Kg	2	12/11/21	AW	SW8081B
Dieldrin	ND	4.0	ug/Kg	2	12/11/21	AW	SW8081B
Endosulfan I	ND	8.0	ug/Kg	2	12/11/21	AW	SW8081B
Endosulfan II	ND	8.0	ug/Kg	2	12/11/21	AW	SW8081B
Endosulfan sulfate	ND	8.0	ug/Kg	2	12/11/21	AW	SW8081B
Endrin	ND	8.0	ug/Kg	2	12/11/21	AW	SW8081B
Endrin aldehvde	ND	8.0	ug/Kg	2	12/11/21	AW	SW8081B
Endrin ketone	ND	8.0	ug/Kg	2	12/11/21	AW	SW8081B
a-BHC	ND	1.6	ug/Kg	2	12/11/21	AW	SW8081B
Heptachlor	ND	8.0	ug/Kg	2	12/11/21	AW	SW8081B
Heptachlor epoxide	ND	8.0	ug/Kg	2	12/11/21	AW	SW8081B
Methoxychlor	ND	40	ug/Kg	2	12/11/21	AW	SW8081B
Toxaphene	ND	160	ug/Kg	2	12/11/21	AW	SW8081B
QA/QC Surrogates							
% DCBP	68		%	2	12/11/21	AW	30 - 150 %
% DCBP (Confirmation)	49		%	2	12/11/21	AW	30 - 150 %
% TCMX	64		%	2	12/11/21	AW	30 - 150 %
% TCMX (Confirmation)	68		%	2	12/11/21	AW	30 - 150 %
Polynuclear Aromatic	C HC						
2-Methvlnaphthalene	ND	270	ug/Kg	1	12/10/21	WB	SW8270D
Acenaphthene	ND	270	ug/Kg	1	12/10/21	WB	SW8270D
Acenaphthylene	ND	270	ug/Kg	1	12/10/21	WB	SW8270D
Anthracene	ND	270	ug/Kg	1	12/10/21	WB	SW8270D
Benz(a)anthracene	ND	270	ug/Kg	1	12/10/21	WB	SW8270D
Benzo(a)pyrene	ND	270	ug/Kg	1	12/10/21	WB	SW8270D
Benzo(b)fluoranthene	ND	270	ug/Kg	1	12/10/21	WB	SW8270D
Benzo(ghi)pervlene	ND	270	ug/Kg	1	12/10/21	WB	SW8270D
Benzo(k)fluoranthene	ND	270	ug/Kg	1	12/10/21	WB	SW8270D
Chrysene	ND	270	ug/Kg	1	12/10/21	WB	SW8270D
Dibenz(a,h)anthracene	ND	270	ug/Kg	1	12/10/21	WB	SW8270D
Fluoranthene	ND	270	ug/Ka	1	12/10/21	WB	SW8270D
Fluorene	ND	270	ug/Ka	1	12/10/21	WB	SW8270D
Indeno(1,2,3-cd)pvrene	ND	270	ug/Kg	1	12/10/21	WB	SW8270D
Naphthalene	ND	270	ug/Kg	1	12/10/21	WB	SW8270D
Phenanthrene	ND	270	ug/Kg	1	12/10/21	WB	SW8270D

Project ID: FAIRFIELD ATHLETIC FIELDS BURR ELEM. Client ID: BES-201C (0-0.5)

		RL/						
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference	
Pyrene	ND	270	ug/Kg	1	12/10/21	WB	SW8270D	
QA/QC Surrogates								
% 2-Fluorobiphenyl	83		%	1	12/10/21	WB	30 - 130 %	
% Nitrobenzene-d5	82		%	1	12/10/21	WB	30 - 130 %	
% Terphenyl-d14	81		%	1	12/10/21	WB	30 - 130 %	

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director December 17, 2021 Reviewed and Released by: Greg Lawrence, Assistant Lab Director

Analysis Report

FOR: Attn: Brian Sirowich Tighe & Bond 213 Court St, Suite 1100 Middletown, CT 06457

December 17, 2021

Sample Information		Custody Inform	Custody Information					
Matrix:	SOIL	Collected by:		12/08/21	16:24			
Location Code:	TIGHE-DAS	Received by:	CP	12/09/21	11:13			
Rush Request:	24 Hour	Analyzed by:	see "By" below					
P.O.#:	15-0439-058	1 - 1						

Laboratory Data

SDG ID: GCJ93594 Phoenix ID: CJ93598

Project ID:	FAIRFIELD ATHLETIC FIELDS BURR ELEM.
Client ID:	BES-201D (0-0.5)

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
Arsenic	4.71	0.76	mg/Kg	1	12/10/21	TH	SW6010D
Lead	22.4	0.38	mg/Kg	1	12/10/21	ΤН	SW6010D
Percent Solid	82		%		12/09/21	Q	SW846-%Solid
Soil Extraction for Pesticide	Completed				12/09/21	O/L	SW3545A
Extraction of ETPH	Completed				12/09/21	B/L	SW3546
Soil Extraction for SVOA PAH	Completed				12/09/21	B/Y	SW3546
Extraction for PCB	Completed				12/09/21	X/JS/Q	SW3540C
SPLP Extraction for Organics	Completed				12/15/21	К	SW1312
SPLP Semivolatiles (SIM) Ext.	Completed				12/16/21	JS/JS	SW3510C/SW3520C
SPLP Pesticides Ext.	Completed				12/16/21	JS/JS	SW3510C
Total Metals Digest	Completed				12/09/21	P/AG	SW3050B
TPH by GC (Extractable	Products	<u>5)</u>					
Ext. Petroleum H.C. (C9-C36)	ND	300	mg/Kg	5	12/10/21	JRB	CTETPH 8015D
Identification	ND		mg/Kg	5	12/10/21	JRB	CTETPH 8015D
QA/QC Surrogates							
% COD (surr)	69		%	5	12/10/21	JRB	50 - 150 %
% Terphenyl (surr)	86		%	5	12/10/21	JRB	50 - 150 %
PCB (Soxhlet SW3540C	;)						
PCB-1016	ND	400	ug/Kg	10	12/10/21	SC	SW8082A
PCB-1221	ND	400	ug/Kg	10	12/10/21	SC	SW8082A
PCB-1232	ND	400	ug/Kg	10	12/10/21	SC	SW8082A
PCB-1242	ND	400	ug/Kg	10	12/10/21	SC	SW8082A
PCB-1248	ND	400	ug/Kg	10	12/10/21	SC	SW8082A
PCB-1254	ND	400	ug/Kg	10	12/10/21	SC	SW8082A
PCB-1260	ND	400	ug/Kg	10	12/10/21	SC	SW8082A

Project ID: FAIRFIELD ATHLETIC FIELDS BURR ELEM. Client ID: BES-201D (0-0.5)

	RL/					
Parameter Resu	lt PQL	Units	Dilution	Date/Time	Ву	Reference
PCB-1262 ND	400	ug/Kg	10	12/10/21	SC	SW8082A
PCB-1268 ND	400	ug/Kg	10	12/10/21	SC	SW8082A
QA/QC Surrogates						
% DCBP 94		%	10	12/10/21	SC	30 - 150 %
% DCBP (Confirmation) 88		%	10	12/10/21	SC	30 - 150 %
% TCMX 79		%	10	12/10/21	SC	30 - 150 %
% TCMX (Confirmation) 80		%	10	12/10/21	SC	30 - 150 %
Pesticides						
4,4' -DDD ND	1.6	ug/Kg	2	12/11/21	AW	SW8081B
4,4' -DDE 9.5	8.1	ug/Kg	2	12/11/21	AW	SW8081B
4,4' -DDT 10	8.1	ug/Kg	2	12/11/21	AW	SW8081B
a-BHC ND	1.6	ug/Kg	2	12/11/21	AW	SW8081B
Alachlor ND	8.1	ug/Kg	2	12/11/21	AW	SW8081B
Aldrin ND	1.6	ug/Kg	2	12/11/21	AW	SW8081B
b-BHC ND	1.6	ug/Kg	2	12/11/21	AW	SW8081B
Chlordane ND	40	ug/Kg	2	12/11/21	AW	SW8081B
d-BHC ND	1.6	ug/Kg	2	12/11/21	AW	SW8081B
Dieldrin ND	4.0	ug/Kg	2	12/11/21	AW	SW8081B
Endosulfan I ND	8.1	ug/Kg	2	12/11/21	AW	SW8081B
Endosulfan II ND	8.1	ug/Kg	2	12/11/21	AW	SW8081B
Endosulfan sulfate ND	8.1	ug/Kg	2	12/11/21	AW	SW8081B
Endrin ND	8.1	ug/Kg	2	12/11/21	AW	SW8081B
Endrin aldehyde ND	8.1	ug/Kg	2	12/11/21	AW	SW8081B
Endrin ketone ND	8.1	ug/Kg	2	12/11/21	AW	SW8081B
g-BHC ND	1.6	ug/Kg	2	12/11/21	AW	SW8081B
Heptachlor ND	8.1	ug/Kg	2	12/11/21	AW	SW8081B
Heptachlor epoxide ND	8.1	ug/Kg	2	12/11/21	AW	SW8081B
Methoxychlor ND	40	ug/Kg	2	12/11/21	AW	SW8081B
Toxaphene ND	160	ug/Kg	2	12/11/21	AW	SW8081B
QA/QC Surrogates						
% DCBP 54		%	2	12/11/21	AW	30 - 150 %
% DCBP (Confirmation) 39		%	2	12/11/21	AW	30 - 150 %
% TCMX 52		%	2	12/11/21	AW	30 - 150 %
% TCMX (Confirmation) 58		%	2	12/11/21	AW	30 - 150 %
SPLP Pesticides						
4,4' -DDD ND	0.005	ug/L	1	12/16/21	AW	SW8081B
4,4' -DDE ND	0.005	ug/L	1	12/16/21	AW	SW8081B
4,4' -DDT ND	0.005	ug/L	1	12/16/21	AW	SW8081B
a-BHC ND	0.005	ug/L	1	12/16/21	AW	SW8081B
Alachlor ND	0.010	ug/L	1	12/16/21	AW	SW8081B
Aldrin ND	0.003	ug/L	1	12/16/21	AW	SW8081B
b-BHC ND	0.005	ug/L	1	12/16/21	AW	SW8081B
Chlordane ND	0.050	ug/L	1	12/16/21	AW	SW8081B
d-BHC ND	0.005	ug/L	1	12/16/21	AW	SW8081B
Dieldrin ND	0.010	ug/L	1	12/16/21	AW	SW8081B
Endosulfan I ND	0.005	ug/L	1	12/16/21	AW	SW8081B
Endosulfan II ND	0.005	ug/L	1	12/16/21	AW	SW8081B
Endosulfan sulfate ND	0.005	ug/L	1	12/16/21	AW	SW8081B

Project ID: FAIRFIELD ATHLETIC FIELDS BURR ELEM. Client ID: BES-201D (0-0.5)

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference
Endrin	ND	0.005	ug/L	1	12/16/21	AW	SW8081B
Endrin aldehyde	ND	0.005	ug/L	1	12/16/21	AW	SW8081B
Endrin Ketone	ND	0.005	ug/L	1	12/16/21	AW	SW8081B
g-BHC	ND	0.005	ug/L	1	12/16/21	AW	SW8081B
Heptachlor	ND	0.005	ug/L	1	12/16/21	AW	SW8081B
Heptachlor epoxide	ND	0.005	ug/L	1	12/16/21	AW	SW8081B
Methoxychlor	ND	0.005	ug/L	1	12/16/21	AW	SW8081B
Toxaphene	ND	0.20	ug/L	1	12/16/21	AW	SW8081B
QA/QC Surrogates							
%DCBP (Surrogate Rec)	48		%	1	12/16/21	AW	30 - 150 %
%DCBP (Surrogate Rec) (Confirmation)	58		%	1	12/16/21	AW	30 - 150 %
%TCMX (Surrogate Rec)	85		%	1	12/16/21	AW	30 - 150 %
%TCMX (Surrogate Rec) (Confirmation)	82		%	1	12/16/21	AW	30 - 150 %
Polynuclear Aromatic I	HC						
2-Methylnaphthalene	ND	280	ug/Kg	1	12/10/21	WB	SW8270D
Acenaphthene	ND	280	ug/Kg	1	12/10/21	WB	SW8270D
Acenaphthylene	ND	280	ug/Kg	1	12/10/21	WB	SW8270D
Anthracene	ND	280	ug/Kg	1	12/10/21	WB	SW8270D
Benz(a)anthracene	830	280	ug/Kg	1	12/10/21	WB	SW8270D
Benzo(a)pyrene	1000	280	ug/Kg	1	12/10/21	WB	SW8270D
Benzo(b)fluoranthene	1100	280	ug/Kg	1	12/10/21	WB	SW8270D
Benzo(ghi)pervlene	770	280	ug/Kg	1	12/10/21	WB	SW8270D
Benzo(k)fluoranthene	880	280	ug/Kg	1	12/10/21	WB	SW8270D
Chrvsene	1100	280	ug/Kg	1	12/10/21	WB	SW8270D
Dibenz(a.h)anthracene	ND	280	ug/Kg	1	12/10/21	WB	SW8270D
Fluoranthene	1600	280	ug/Kg	1	12/10/21	WB	SW8270D
Fluorene	ND	280	ug/Kg	1	12/10/21	WB	SW8270D
Indeno(1.2.3-cd)pyrene	820	280	ug/Kg	1	12/10/21	WB	SW8270D
Naphthalene	ND	280	ug/Kg	1	12/10/21	WB	SW8270D
Phenanthrene	780	280	ug/Kg	1	12/10/21	WB	SW8270D
Pvrene	1500	280	ug/Kg	1	12/10/21	WB	SW8270D
QA/QC Surrogates			0 0				
% 2-Fluorobiphenvl	75		%	1	12/10/21	WB	30 - 130 %
% Nitrobenzene-d5	77		%	1	12/10/21	WB	30 - 130 %
% Terphenyl-d14	70		%	1	12/10/21	WB	30 - 130 %
SPLP Semivolatiles by	SIM						
2-Methylnaphthalene	ND	0.50	ug/L	1	12/16/21	WB	SW8270D (SIM)
Acenaphthene	ND	0.50	ug/L	1	12/16/21	WB	SW8270D (SIM)
Acenaphthylene	ND	0.30	ug/L	1	12/16/21	WB	SW8270D (SIM)
Anthracene	ND	0.50	ug/L	1	12/16/21	WB	SW8270D (SIM)
Benz(a)anthracene	ND	0.05	ug/L	1	12/16/21	WB	SW8270D (SIM)
Benzo(a)pyrene	ND	0.20	ua/L	1	12/16/21	WB	SW8270D (SIM)
Benzo(b)fluoranthene	ND	0.07	ug/L	1	12/16/21	WB	SW8270D (SIM)
Benzo(ghi)pervlene	ND	0.48	<u>-</u>	1	12/16/21	WB	SW8270D (SIM)
Benzo(k)fluoranthene	ND	0.30	ua/l	1	12/16/21	WB	SW8270D (SIM)
Chrysene	ND	0.50	ua/l	1	12/16/21	WB	SW8270D (SIM)
Dibenz(a h)anthracene	ND	0.10	un/l	1	12/16/21	WR	SW8270D (SIM)
Fluoranthene	ND	0.50	ua/l	1	12/16/21	WB	SW8270D (SIM)
			~- <u>9</u> , =	•	,, _,		· · · · · · · · · · · · · · · · · · ·

Project ID: FAIRFIELD ATHLETIC FIELDS BURR ELEM. Client ID: BES-201D (0-0.5)

Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference
Fluorene	ND	0.50	ug/L	1	12/16/21	WB	SW8270D (SIM)
Indeno(1,2,3-cd)pyrene	ND	0.10	ug/L	1	12/16/21	WB	SW8270D (SIM)
Naphthalene	ND	0.50	ug/L	1	12/16/21	WB	SW8270D (SIM)
Phenanthrene	ND	0.06	ug/L	1	12/16/21	WB	SW8270D (SIM)
Pyrene	ND	0.50	ug/L	1	12/16/21	WB	SW8270D (SIM)
QA/QC Surrogates							
% 2-Fluorobiphenyl	68		%	1	12/16/21	WB	30 - 130 %
% Nitrobenzene-d5	74		%	1	12/16/21	WB	30 - 130 %
% Terphenyl-d14	83		%	1	12/16/21	WB	30 - 130 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

DI /

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director December 17, 2021 Reviewed and Released by: Greg Lawrence, Assistant Lab Director

QA/QC Report

QA/QC Data

December 17, 2021

SDG I.D.: GCJ93594

Parameter	Blank	Blk RL	Sample Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	Rec Limits	RPD Limits
QA/QC Batch 603830 (mg/kg),	QC San	nple No:	CJ93594	4 (CJ935	594, CJ	93595,	CJ9359	6, CJ9:	3597, C	J93598)		
ICP Metals - Soil													
Arsenic	BRL	0.67	4.18	3.83	NC	90.2	88.4	2.0	83.3			75 - 125	35
Lead	BRL	0.33	13.7	13.0	5.20	92.1	89.7	2.6	89.7			75 - 125	35
Comment:													
Additional Criteria: LCS acceptar	nce range	is 80-120	0% MS acc	eptance	range 75	5-125%.							

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045

Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

December 17, 2021

QA/QC Data

SDG I.D.: GCJ93594

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
QA/QC Batch 603826 (mg/Kg), 0	2C Sam	nple No: CJ93594 (CJ93594, CJ9	93595,	CJ9359	6, CJ93	597, C	J93598)		
TPH by GC (Extractable P	roduc	ts) - Soil						•		
Ext. Petroleum H.C. (C9-C36)	ND	50	96	101	5.1	97	103	6.0	60 - 120	30
% COD (surr)	64	%	78	87	10.9	91	94	3.2	50 - 150	30
% Terphenyl (surr)	103	%	100	106	5.8	101	107	5.8	50 - 150	30
Comment:										
Additional surrogate criteria: LCS a normalized based on the alkane ca	cceptan	ce range is 60-120% MS acceptance	range	50-150%	. The ET	PH/DR	O LCS h	as beer	I	
QA/QC Batch 603835 (ug/Kg), Q	C Sam	ple No: CJ93594 10X (CJ93594,	CJ935	595, CJ9	3596, C	:J9359	7, CJ93	598)		
Polychlorinated Biphenyls	- Soil									
PCB-1016	ND	170	74	86	15.0	76	77	1.3	40 - 140	30
PCB-1221	ND	170							40 - 140	30
PCB-1232	ND	170							40 - 140	30
PCB-1242	ND	170							40 - 140	30
PCB-1248	ND	170							40 - 140	30
PCB-1254	ND	170							40 - 140	30
PCB-1260	ND	170	84	93	10.2	91	90	1.1	40 - 140	30
PCB-1262	ND	170							40 - 140	30
PCB-1268	ND	170							40 - 140	30
% DCBP (Surrogate Rec)	98	%	86	95	9.9	88	86	2.3	30 - 150	30
% DCBP (Surrogate Rec) (Confirm	81	%	76	92	19.0	95	92	3.2	30 - 150	30
% TCMX (Surrogate Rec)	89	%	75	83	10.1	67	72	7.2	30 - 150	30
% TCMX (Surrogate Rec) (Confirm	83	%	75	87	14.8	69	73	5.6	30 - 150	30
QA/QC Batch 604823 (ug/L), QC	Samp	e No: CJ93472 (CJ93598)								
Pesticides										
4,4' -DDD	ND	0.003	102	111	8.5				40 - 140	20
4,4' -DDE	ND	0.003	105	106	0.9				40 - 140	20
4,4' -DDT	ND	0.003	94	90	4.3				40 - 140	20
a-BHC	ND	0.002	94	113	18.4				40 - 140	20
Alachlor	ND	0.005	NA	NA	NC				40 - 140	20
Aldrin	ND	0.002	94	99	5.2				40 - 140	20
b-BHC	ND	0.002	115	133	14.5				40 - 140	20
Chlordane	ND	0.050	106	97	8.9				40 - 140	20
d-BHC	ND	0.005	42	41	2.4				40 - 140	20
Dieldrin	ND	0.002	99	110	10.5				40 - 140	20
Endosulfan I	ND	0.005	108	87	21.5				40 - 140	20
Endosulfan II	ND	0.005	114	131	13.9				40 - 140	20
Endosulfan sulfate	ND	0.005	97	98	1.0				40 - 140	20
Endrin	ND	0.005	109	114	4.5				40 - 140	20
Endrin aldehyde	ND	0.005	114	90	23.5				40 - 140	20
Endrin ketone	ND	0.005	109	96	12.7				40 - 140	20
g-BHC	ND	0.002	98	109	10.6				40 - 140	20

r

r

<u>QA/QC Data</u>

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
Heptachlor	ND	0.005	99	106	6.8				40 - 140	20
Heptachlor epoxide	ND	0.005	97	93	4.2				40 - 140	20
Methoxychlor	ND	0.005	108	94	13.9				40 - 140	20
Toxaphene	ND	0.20	NA	NA	NC				40 - 140	20
% DCBP	66	%	85	74	13.8				30 - 150	20
% DCBP (Confirmation)	76	%	69	83	18.4				30 - 150	20
% TCMX	76	%	90	93	3.3				30 - 150	20
% TCMX (Confirmation)	67	%	88	87	1.1				30 - 150	20
QA/QC Batch 603851 (ug/Kg), (2C Sam	ple No: CJ93594 2X (CJ93594,)	CJ9359	95, CJ93	3596, C.	J93597,	CJ935	98)		
Pesticides - Soil										
4,4' -DDD	ND	1.7	69	63	9.1				40 - 140	30
4,4' -DDE	ND	1.7	67	61	9.4				40 - 140	30
4,4' -DDT	ND	1.7	71	65	8.8				40 - 140	30
a-BHC	ND	1.0	80	71	11.9				40 - 140	30
Alachlor	ND	3.3	NA	NA	NC				40 - 140	30
Aldrin	ND	1.0	75	67	11.3				40 - 140	30
b-BHC	ND	1.0	85	77	9.9				40 - 140	30
Chlordane	ND	33	76	69	9.7				40 - 140	30
d-BHC	ND	3.3	65	58	11.4				40 - 140	30
Dieldrin	ND	1.0	75	67	11.3				40 - 140	30
Endosulfan I	ND	3.3	78	67	15.2				40 - 140	30
Endosulfan II	ND	3.3	80	73	9.2				40 - 140	30
Endosulfan sulfate	ND	3.3	77	72	6.7				40 - 140	30
Endrin	ND	3.3	62	55	12.0				40 - 140	30
Endrin aldehyde	ND	3.3	55	50	9.5				40 - 140	30
Endrin ketone	ND	3.3	71	67	5.8				40 - 140	30
g-BHC	ND	1.0	79	70	12.1				40 - 140	30
Heptachlor	ND	3.3	74	67	9.9				40 - 140	30
Heptachlor epoxide	ND	3.3	74	66	11.4				40 - 140	30
Methoxychlor	ND	3.3	61	58	5.0				40 - 140	30
Toxaphene	ND	130	NA	NA	NC				40 - 140	30
% DCBP	81	%	82	79	3.7				30 - 150	30
% DCBP (Confirmation)	65	%	66	62	6.3				30 - 150	30
% TCMX	84	%	81	77	5.1				30 - 150	30
% TCMX (Confirmation) Comment:	94	%	92	85	7.9				30 - 150	30
This batch consists of BLK, LCS a	nd LCSE)								
QA/QC Batch 603821 (ug/kg), C	2C Sam	ole No: CJ93594 (CJ93594, CJ9	35 9 5, C	CJ93596	5, CJ935	597, CJ	93598)			
Polynuclear Aromatic HC	- Soil									
2-Methylnaphthalene	ND	230	78	80	2.5	83	84	1.2	40 - 140	30
Acenaphthene	ND	230	83	86	3.6	91	89	2.2	30 - 130	30
Acenaphthylene	ND	230	77	79	2.6	83	81	2.4	40 - 140	30
Anthracene	ND	230	83	92	10.3	87	86	1.2	40 - 140	30
Benz(a)anthracene	ND	230	90	100	10.5	92	91	1.1	40 - 140	30
Benzo(a)pyrene	ND	230	84	91	8.0	85	81	4.8	40 - 140	30
Benzo(b)fluoranthene	ND	230	86	96	11.0	102	98	4.0	40 - 140	30
Benzo(ghi)perylene	ND	230	88	93	5.5	87	84	3.5	40 - 140	30
Benzo(k)fluoranthene	ND	230	81	88	8.3	97	94	3.1	40 - 140	30
Chrysene	ND	230	87	95	8.8	91	91	0.0	40 - 140	30
Dibenz(a,h)anthracene	ND	230	89	97	8.6	93	92	1.1	40 - 140	30
Fluoranthene	ND	230	73	80	9.2	73	74	1.4	40 - 140	30

QA/QC Data

SDG I.D.: GCJ93594

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
Fluorene	ND	230	87	92	5.6	95	95	0.0	40 - 140	30	
Indeno(1,2,3-cd)pyrene	ND	230	98	102	4.0	92	89	3.3	40 - 140	30	
Naphthalene	ND	230	78	81	3.8	85	84	1.2	40 - 140	30	
Phenanthrene	ND	230	83	93	11.4	91	90	1.1	40 - 140	30	
Pyrene	ND	230	72	82	13.0	75	76	1.3	30 - 130	30	
% 2-Fluorobiphenyl	75	%	76	78	2.6	85	82	3.6	30 - 130	30	
% Nitrobenzene-d5	73	%	69	75	8.3	78	79	1.3	30 - 130	30	
% Terphenyl-d14	74	%	72	82	13.0	73	74	1.4	30 - 130	30	
Comment:											

Additional 8270 criteria: 20% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 15-110%, for soils 30-130%)

QA/QC Batch 604822 (ug/L), QC Sample No: CJ93598 (CJ93598)

Semivolatiles by SIM,	<u> PAH - SP</u>	LP					
2-Methylnaphthalene	ND	0.50	56	54	3.6	30 - 130	20
Acenaphthene	ND	0.50	72	70	2.8	30 - 130	20
Acenaphthylene	ND	0.30	67	65	3.0	30 - 130	20
Anthracene	ND	0.50	75	71	5.5	30 - 130	20
Benz(a)anthracene	ND	0.05	84	79	6.1	30 - 130	20
Benzo(a)pyrene	ND	0.20	80	76	5.1	30 - 130	20
Benzo(b)fluoranthene	ND	0.07	82	75	8.9	30 - 130	20
Benzo(ghi)perylene	ND	0.48	74	71	4.1	30 - 130	20
Benzo(k)fluoranthene	ND	0.30	71	71	0.0	30 - 130	20
Chrysene	ND	0.50	75	70	6.9	30 - 130	20
Dibenz(a,h)anthracene	ND	0.10	82	77	6.3	30 - 130	20
Fluoranthene	ND	0.50	77	73	5.3	30 - 130	20
Fluorene	ND	0.50	75	73	2.7	30 - 130	20
Indeno(1,2,3-cd)pyrene	ND	0.10	82	77	6.3	30 - 130	20
Naphthalene	ND	0.50	59	57	3.4	30 - 130	20
Phenanthrene	ND	0.06	70	67	4.4	30 - 130	20
Pyrene	ND	0.50	79	75	5.2	30 - 130	20
% 2-Fluorobiphenyl	59	%	65	61	6.3	30 - 130	20
% Nitrobenzene-d5	63	%	75	71	5.5	30 - 130	20
% Terphenyl-d14	70	%	81	74	9.0	30 - 130	20
Comment:							

Additional 8270 criteria:20% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 15-110%, for soils 30-130%)

r = This parameter is outside laboratory RPD specified recovery limits.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director December 17, 2021

Friday, December 17, 2021

Criteria: CT: GAM, RC

State: CT

Sample Criteria Exceedances Report

GCJ93594 - TIGHE-DAS

SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	RL Criteria	Units
CJ93598	\$8100SMR	Benzo(b)fluoranthene	CT / RSR DEC RES (mg/kg) / Semivolatiles	1100	280	1000	1000	ug/Kg
CJ93598	\$8100SMR	Chrysene	CT / RSR GA,GAA (mg/kg) / APS Organics	1100	280	1000	1000	ug/Kg
CJ93598	\$8100SMR	Benzo(b)fluoranthene	CT / RSR GA,GAA (mg/kg) / Semivolatiles	1100	280	1000	1000	ug/Kg
CJ93598	\$PEST_SMR	4,4' -DDT	CT / RSR GA,GAA (mg/kg) / APS Organics	10	8.1	3	3	ug/Kg
CJ93598	\$PEST_SMR	4,4' -DDE	CT / RSR GA,GAA (mg/kg) / APS Organics	9.5	8.1	3	3	ug/Kg

Phoenix Laboratories does not assume responsibility for the data contained in this exceedance report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

D1

. . .

REASONABLE CONFIDENCE PROTOCOL LABORATORY ANALYSIS QA/QC CERTIFICATION FORM

Laboratory Name:	Phoenix Environmental Labs, Inc.	Client:	Tighe & I	Bond
Project Location:	FAIRFIELD ATHLETIC FIELDS BURR	Project N	umber:	
Laboratory Sample	ID(s): CJ93594-CJ93598	Sampling	g Date(s):	12/8/2021

List RCP Methods Used (e.g., 8260, 8270, et cetera) 1311/1312, 6010, 8081, 8082, 8270, ETPH

1	For each analytical method referenced in this laboratory report package, were all specified QA/QC performance criteria followed, including the requirement to explain any criteria falling outside of acceptable guidelines, as specified in the CT DEP method-specific Reasonable Confidence Protocol documents?	✓ Yes □ No
1A	Were the method specified preservation and holding time requirements met?	✓ Yes □ No
1B	VPH and EPH methods only:Was the VPH or EPH method conducted withoutsignificant modifications (see section 11.3 of respective RCP methods)	□ Yes □ No ☑ NA
2	Were all samples received by the laboratory in a condition consistent with that described on the associated Chain-of-Custody document(s)?	✓ Yes □ No
3	Were samples received at an appropriate temperature (< 6 Degrees C)?	✓ Yes □ No □ NA
4	Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents acheived? See Section: PEST Narration.	🗌 Yes 🗹 No
5	a) Were reporting limits specified or referenced on the chain-of-custody?	✓ Yes □ No
	b) Were these reporting limits met?	🗹 Yes 🗆 No
6	For each analytical method referenced in this laboratory report package, were results reported for all constituents identified in the method-specific analyte lists presented in the Reasonable Confidence Protocol documents?	🗌 Yes 🗹 No
7	Are project-specific matrix spikes and laboratory duplicates included in the data set?	✓ Yes □ No

Notes: For all questions to which the response was "No" (with the exception of question #7), additional information must be provided in an attached narrative. If the answer to question #1, #1A or 1B is "No", the data package does not meet the requirements for "Reasonable Confidence". This form may not be altered and all questions must be answered.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete.				
Authorized Signature:	Position: Assistant Lab Director			
Printed Name: Greg Lawrence	Date: Friday, December 17, 2021			
Name of Laboratory Phoenix Environmental Labs, Inc.				

This certification form is to be used for RCP methods only.

CTDEP RCP Laboratory Analysis QA/QC Certification Form - November 2007 Laboratory Quality Assurance and Quality Control Guidance Reasonable Confidence Protocols

RCP Certification Report

December 17, 2021

SDG I.D.: GCJ93594

SDG Comments

Metals Analysis:

The client requested a site specific list of elements which is shorter than the 6010 RCP list. The following analytes from the 6010 RCP Metals list were not reported: Antimony, Barium, Beryllium, Cadmium, Chromium, Copper, Nickel, Selenium, Silver, Thallium, Vanadium, Zinc.

8270 Semi-volatile Organics:

Only the PAH constituents are reported as requested on the chain-of-custody. In order to achieve the requested reporting levels for the target compounds, the sample was extracted and analyzed via 8270 selective ion monitoring (SIM).

ETPH Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument:

AU-FID11 12/10/21-1

Jeff Bucko, Chemist 12/10/21

CJ93598 (5X)

The initial calibration (ETPHO11I) RSD for the compound list was less than 30% except for the following compounds: None. As per section 7.2.3, a discrimination check standard was run (D10A003_1) and contained the following outliers: None. The continuing calibration %D for the compound list was less than 30% except for the following compounds:None.

AU-FID21 12/09/21-1 Jeff Bucko, Chemist 12/09/21

CJ93594 (1X), CJ93595 (1X), CJ93596 (1X), CJ93597 (1X)

The initial calibration (ET_1027I) RSD for the compound list was less than 30% except for the following compounds: None. As per section 7.2.3, a discrimination check standard was run (D09A004_1) and contained the following outliers: None. The continuing calibration %D for the compound list was less than 30% except for the following compounds:None.

QC (Site Specific):

Batch 603826 (CJ93594)

CJ93594, CJ93595, CJ93596, CJ93597, CJ93598

All LCS recoveries were within 60 - 120 with the following exceptions: None.

All LCSD recoveries were within 60 - 120 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

All MS recoveries were within 50 - 150 with the following exceptions: None.

All MSD recoveries were within 50 - 150 with the following exceptions: None.

All MS/MSD RPDs were less than 30% with the following exceptions: None.

Additional surrogate criteria: LCS acceptance range is 60-120% MS acceptance range 50-150%. The ETPH/DRO LCS has been normalized based on the alkane calibration.

ICP Metals Narration

Were all QA/QC performance criteria specified in the analytical method achieved? Yes.

Instrument:

ARCOS-2 12/09/21 09:00

Tina Hall, Chemist 12/09/21

CJ93594, CJ93595, CJ93596, CJ93597, CJ93598

The linear range is defined daily by the calibration range.

The following Initial Calibration Verification (ICV) compounds did not meet criteria: None.

The following Continuing Calibration Verification (CCV) compounds did not meet criteria: None.

Certification Report

December 17, 2021

SDG I.D.: GCJ93594

ICP Metals Narration

The following ICP Interference Check (ICSAB) compounds did not meet criteria: None.

QC (Site Specific):

Batch 603830 (CJ93594)

CJ93594, CJ93595, CJ93596, CJ93597, CJ93598

All LCS recoveries were within 75 - 125 with the following exceptions: None.

All LCSD recoveries were within 75 - 125 with the following exceptions: None.

All LCS/LCSD RPDs were less than 35% with the following exceptions: None.

All MS recoveries were within 75 - 125 with the following exceptions: None.

Additional Criteria: LCS acceptance range is 80-120% MS acceptance range 75-125%.

PCB Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument:

AU-ECD1 12/10/21-1

Saadia Chudary, Chemist 12/10/21

CJ93594 (10X), CJ93595 (10X), CJ93596 (10X), CJ93597 (10X), CJ93598 (10X)

The initial calibration (PC1201AI) RSD for the compound list was less than 20% except for the following compounds: None. The initial calibration (PC1201BI) RSD for the compound list was less than 20% except for the following compounds: None. The continuing calibration %D for the compound list was less than 15% except for the following compounds:None.

QC (Site Specific):

Batch 603835 (CJ93594)

CJ93594, CJ93595, CJ93596, CJ93597, CJ93598

All LCS recoveries were within 40 - 140 with the following exceptions: None. All LCSD recoveries were within 40 - 140 with the following exceptions: None. All LCS/LCSD RPDs were less than 30% with the following exceptions: None. All MS recoveries were within 40 - 140 with the following exceptions: None. All MSD recoveries were within 40 - 140 with the following exceptions: None. All MSD recoveries were less than 30% with the following exceptions: None.

PEST Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? No.

QC Batch 604823 (Samples: CJ93598): -----

The LCS/LCSD RPD exceeds the method criteria for one or more analytes, but these analytes were not reported in the sample(s). No significant variability is suspected. (Endosulfan I, Endrin aldehyde)

Instrument:

AU-ECD35 12/16/21-1

Adam Werner, Chemist 12/16/21

CJ93598 (1X)

The initial calibration (PS1206AI) RSD for the compound list was less than 20% except for the following compounds: None. The initial calibration (PS1206BI) RSD for the compound list was less than 20% except for the following compounds: None. The Endrin and DDT breakdown does not exceed 15% except for the following compounds:None.

RCP Certification Report

December 17, 2021

SDG I.D.: GCJ93594

PEST Narration

The Endrin and DDT breakdown does not exceed the maximum of 20% except for the following compounds:None. The continuing calibration %D for the compound list was less than 20% except for the following compounds: Samples: CJ93598

Preceding CC D16B004 - 4,4'-DDT -22%L (20%), Endosulfan II -27%L (20%)

Succeeding CC D16B020 - % DCBP -25%L (20%), Methoxychlor -24%L (20%)

A low "1A" standard was run after the samples to demonstrate capability to detect any compounds outside of the CC acceptance criteria. All reported samples were ND for the affected compounds.

AU-ECD7 12/09/21-1

Adam Werner, Chemist 12/09/21

CJ93594 (2X), CJ93595 (2X), CJ93596 (2X), CJ93597 (2X), CJ93598 (2X)

The initial calibration (PS1209AI) RSD for the compound list was less than 20% except for the following compounds: None. The initial calibration (PS1209BI) RSD for the compound list was less than 20% except for the following compounds: None. The Endrin and DDT breakdown does not exceed 15% except for the following compounds:None.

The Endrin and DDT breakdown does not exceed the maximum of 20% except for the following compounds:None. The continuing calibration %D for the compound list was less than 20% except for the following compounds: Samples: CJ93594

Preceding CC D09B084 - Endrin -24%L (20%)

Succeeding CC D09B111 - Endrin -24%L (20%), Methoxychlor -28%L (20%)

A low "1A" standard was run after the samples to demonstrate capability to detect any compounds outside of the CC acceptance criteria. All reported samples were ND for the affected compounds.

Samples: CJ93595, CJ93596, CJ93597, CJ93598

Preceding CC D09B111 - Endrin -24%L (20%), Methoxychlor -28%L (20%)

Succeeding CC D09B138 - Endrin -31%L (20%), Methoxychlor -37%L (20%)

A low "1A" standard was run after the samples to demonstrate capability to detect any compounds outside of the CC acceptance criteria. All reported samples were ND for the affected compounds.

QC (Batch Specific):

Batch 603851 (CJ93594)

CJ93594, CJ93595, CJ93596, CJ93597, CJ93598

All LCS recoveries were within 40 - 140 with the following exceptions: None. All LCSD recoveries were within 40 - 140 with the following exceptions: None. All LCS/LCSD RPDs were less than 30% with the following exceptions: None. This batch consists of BLK, LCS and LCSD

Batch 604823 (CJ93472)

CJ93598

All LCS recoveries were within 40 - 140 with the following exceptions: None.

All LCSD recoveries were within 40 - 140 with the following exceptions: None.

All LCS/LCSD RPDs were less than 20% with the following exceptions: Endosulfan I(21.5%), Endrin aldehyde(23.5%)

SVOA Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument:

CHEM28 12/09/21-1

Matt Richard, Chemist 12/09/21

CJ93594 (1X), CJ93595 (1X), CJ93596 (1X), CJ93597 (1X), CJ93598 (1X)

For 8270 full list, the DDT breakdown and pentachlorophenol & benzidine peak tailing were evaluated in the DFTPP tune and

RCP Certification Report

December 17, 2021

SDG I.D.: GCJ93594

SVOA Narration

were found to be in control. For 8270 BN list, benzidine peak tailing was evaluated in the DFTPP tune and was found to be in control.

Initial Calibration Evaluation (CHEM28/28_BN_1115):

100% of target compounds met criteria.

The following compounds had %RSDs >20%: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet a minimum response factors: None.

Continuing Calibration Verification (CHEM28/1209_03-28_BN_1115):

Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None.

100% of target compounds met criteria.

The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet minimum response factors: None.

QC (Batch Specific):

Batch 604822 (CJ93598)

CJ93598

All LCS recoveries were within 30 - 130 with the following exceptions: None.

All LCSD recoveries were within 30 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 20% with the following exceptions: None.

Additional 8270 criteria:20% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 15-110%, for soils 30-130%)

Additional 8270 criteria: 20% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 15-110%, for soils 30-130%)

QC (Site Specific):

Batch 603821 (CJ93594)

CJ93594, CJ93595, CJ93596, CJ93597, CJ93598

All LCS recoveries were within 40 - 140 with the following exceptions: None.

All LCSD recoveries were within 40 - 140 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

All MS recoveries were within 40 - 140 with the following exceptions: None.

All MSD recoveries were within 40 - 140 with the following exceptions: None.

All MS/MSD RPDs were less than 30% with the following exceptions: None.

Additional 8270 criteria: 20% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 15-110%, for soils 30-130%)

SVOASIM Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument:

CHEM27 12/16/21-1

Wes Bryon, Chemist 12/16/21

CJ93598 (1X, 1000X)

RCP Certification Report

December 17, 2021

SDG I.D.: GCJ93594

SVOASIM Narration

For 8270 BN list, benzidine peak tailing was evaluated in the DFTPP tune and was found to be in control.

Initial Calibration Evaluation (CHEM27/27_BNSIM18_1206): 100% of target compounds met criteria. The following compounds had %RSDs >20%: None. The following compounds did not meet recommended response factors: None.

The following compounds did not meet a minimum response factors: None.

Continuing Calibration Verification (CHEM27/1216_03-27_BNSIM18_1206):

Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None.

100% of target compounds met criteria.

The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet minimum response factors: None.

QC (Batch Specific):

Batch 604822 (CJ93598)

CJ93598

All LCS recoveries were within 30 - 130 with the following exceptions: None.

All LCSD recoveries were within 30 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 20% with the following exceptions: None.

Additional 8270 criteria:20% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 15-110%, for soils 30-130%)

QC (Site Specific):

Batch 603821 (CJ93594)

CJ93594, CJ93595, CJ93596, CJ93597, CJ93598

All LCS recoveries were within 40 - 140 with the following exceptions: None.

All LCSD recoveries were within 40 - 140 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

All MS recoveries were within 40 - 140 with the following exceptions: None.

All MSD recoveries were within 40 - 140 with the following exceptions: None.

All MS/MSD RPDs were less than 30% with the following exceptions: None.

Additional 8270 criteria:20% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 15-110%, for soils 30-130%)

Temperature Narration

The samples were received at 2.0C with cooling initiated. (Note acceptance criteria for relevant matrices is above freezing up to 6°C)
	v		Ċ	HAIN OF CUST	ODY REC	CORD	Coolant: IPK Coolant: IPK Temp Z. U ° C	
PHC			587 East Mi Email:	ddle Turnpike, P.O. Bo info@phoenixlabs.cor	ox 370, Manch m Fax (860	nester, CT 06040	Data Delivery/Con bx: none: 243-32	itact Options: 8 - 7313
				Client Services (860) 645-8	/76 IX	nail: burnwich 6-	Hak bund. (UM
Customer:	Tigh & Band	History IN.		Project:	interd Attic	the Freids, Burr Elementury	Project P.O: /	5-0439-055
Address:	713 Court Stree	+ 11th Floor		Report to: Bn	NUM SINGWICK,	Hurley Lungtord, MI Libby Cur	y Watts Thiss	ection MUST be
	Middletown, a	CT DO457		Invoice to:	Jur	e & Band Destherd	, C0	npleted with
						DAS Priciny	L BOT	le Quantities.
	Client Samule - Information -	. Identification				////////		
Sampler's	(marth)		12/2/2	Analysis			000	1400° 2050
Matrix Code: DW=Drinking Water RW=Raw Water SE B=Bulk L=Liquid X	r GW=Ground Water SW=Sur =Sediment SL=Sludge S=So	face Water WW=Wasi il SD=Solid W=Wip	e OIL =Oil	Isenbez				1.00 1.00
PHOENIX USE ONLY SAMPIF#	Customer Sample	Sample Date Matrix Sampled	Time	ACT STATIS		10 10 10 10 10 10 10 10 10 10 10 10 10 1	\$ 100 100 100 100 100 100 100 100 100 10	AND
gesgul	BES-201 (1.5-1)	12/5/41 >	VLD	X X X X				
92595	BES-201A (0-0.5)	12/2/21	12.91	× × ×			-	
93596	BES - 70 PR (0-0,5)	S 11/8/21	1211	х Х Х				
93597	BES-201C(0-0.5)	5 11/8/21	1013	$\times \times \times \times \times$				
93598	BES-2010 (0-0.5)	12/R/21 S	HCal	× × × ×	×			
		-						
Relinguished by:	Accepted by	2	Date:	Time: RI	<u> </u>	<u>11</u>		Data Format
have by S	Tyk & B.	ud Kidas	K/5/11		esidential)	K RCP Cert		Excel
KANW/W		- Lund	(-16/24	$ \alpha'\mathcal{V} \square \alpha $	mm/Industrial)	GW Protection		GIS/Key
den den Ser	2. Alaro	Phin	60/21		irect Exposure	SW Protection GW-2 GW-3		C EQUIS
Continents, Special	l Requirements or Regulations		Turnaround	i Time:		A GA Mobility S-1 GW-1	S-1 GW-2 S-1 GW-3	Data Package
			2 Day		iB Leachability	Residential DEC	s-2 GW-2 S-2 GW-3 s-3 GW-2 S-3 GW-3	Full Data Package*
			3 Days	•••••	5A-GW Dbjectives	I/C DEC SW Protectio		Phoenix Std Report
MSMSD are consider	red site samples and will be billed a	as such in accordance	Other		B-GW Dbjectives	State where samples were colle	cted: <u>CT</u>	* SURCHARGE APPLIES
with the prices quoted.			SURCHA					PEL-126 REV. 06/20

Sarah Bell

From:	Mark Paulsson <u><mpaulsson@tighebond.com></mpaulsson@tighebond.com></u>
Sent:	Wednesday, December 15, 2021 3:25 PM
To:	Sarah Bell
Cc:	Brian Sirowich; Jill L. Libby
Subject:	Sample Activation

Hi Sarah,

Would you be able to activate the following sample for SPLP PAHs and SPLP Pesticides, quickest TAT:

BES-201D 0.5-1' (T&B Sampling ID) CJ93598 (Lab Sample ID) GCJ93594 (Lab Report ID)

Thanks,

Mark

Mark E. Paulsson Project Environmental Scientist

o. 203.712.1106 | m. 203.216.3139

1000 Bridgeport Avenue, 3rd Floor, Shelton, CT 06484 w. tighebond.com | halvorsondesign.com

Monday, January 10, 2022

Attn: Mr. Brian Sirowich Tighe & Bond 213 Court St, Suite 1100 Middletown, CT 06457

Project ID: BURR ELEMENTARY SCHOOL SDG ID: GCK06455 Sample ID#s: CK06455 - CK06460

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

Enclosed are revised Analysis Report pages. Please replace and discard the original pages. If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Sincerely yours,

XI.le

Phyllis/Shiller Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #M-CT007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 UT Lab Registration #CT00007 VT Lab Registration #VT11301

Sample Id Cross Reference

January 10, 2022

SDG I.D.: GCK06455

Project ID: BURR ELEMENTARY SCHOOL

Client Id	Lab Id	Matrix
BES-301B (0.5)	CK06455	SOIL
BES-302B (0.5)	CK06456	SOIL
BES-303S (0.0-0.5)	CK06457	SOIL
BES-304S (0.0-0.5)	CK06458	SOIL
BES-305S (0.0-0.5)	CK06459	SOIL
BES-306S (0.0-0.5)	CK06460	SOIL

Analysis Report

January 10, 2022

FOR: Attn: Mr. Brian Sirowich Tighe & Bond 213 Court St, Suite 1100 Middletown, CT 06457

Sample Informa	ation	Custody Inforn	nation	<u>Date</u>	<u>Time</u>
Matrix:	SOIL	Collected by:		12/28/21	11:55
Location Code:	TIGHE-DAS	Received by:	LB	12/28/21	15:41
Rush Request:	24 Hour	Analyzed by:	see "By" below		
P.O.#:	150439BES	l ab avatam	Data		CCK064

² <u>Laboratory Data</u>

SDG ID: GCK06455 Phoenix ID: CK06455

Project ID: BURR ELEMENTARY SCHOOL Client ID: BES-301B (0.5)

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Arsenic	3.42	0.82	mg/Kg	1	12/29/21	EK	SW6010D
Lead	12.0	0.41	mg/Kg	1	12/29/21	EK	SW6010D
Percent Solid	86		%		12/28/21	С	SW846-%Solid
Soil Extraction for Pesticide	Completed				12/28/21	O/E	SW3545A
Extraction of ETPH	Completed				12/28/21	B/U/E	SW3546
Soil Extraction for SVOA PAH	Completed				12/28/21	R/U	SW3546
Extraction for PCB	Completed				12/28/21	SX/Q/C	SW3540C
SPLP Extraction for Organics	Completed				01/03/22	AB	SW1312
SPLP Pesticides Ext.	Completed				01/04/22	JS/JS	SW3510C
Total Metals Digest	Completed				12/28/21	B/P	SW3050B
TPH by GC (Extractable	e Products	5)					
Ext. Petroleum H.C. (C9-C36)	ND	56	mg/Kg	1	12/29/21	JRB	CTETPH 8015D
Identification	ND		mg/Kg	1	12/29/21	JRB	CTETPH 8015D
QA/QC Surrogates							
% COD (surr)	68		%	1	12/29/21	JRB	50 - 150 %
% Terphenyl (surr)	63		%	1	12/29/21	JRB	50 - 150 %
PCB (Soxhlet SW35400	<u>;)</u>						
PCB-1016	ND	190	ug/Kg	5	12/29/21	SC	SW8082A
PCB-1221	ND	190	ug/Kg	5	12/29/21	SC	SW8082A
PCB-1232	ND	190	ug/Kg	5	12/29/21	SC	SW8082A
PCB-1242	ND	190	ug/Kg	5	12/29/21	SC	SW8082A
PCB-1248	ND	190	ug/Kg	5	12/29/21	SC	SW8082A
PCB-1254	ND	190	ug/Kg	5	12/29/21	SC	SW8082A
PCB-1260	ND	190	ug/Kg	5	12/29/21	SC	SW8082A
PCB-1262	ND	190	ug/Kg	5	12/29/21	SC	SW8082A

Project ID: BURR ELEMENTARY SCHOOL Client ID: BES-301B (0.5)

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference
PCB-1268	ND	190	ug/Kg	5	12/29/21	SC	SW8082A
QA/QC Surrogates							
% DCBP	94		%	5	12/29/21	SC	30 - 150 %
% DCBP (Confirmation)	92		%	5	12/29/21	SC	30 - 150 %
% TCMX	81		%	5	12/29/21	SC	30 - 150 %
% TCMX (Confirmation)	82		%	5	12/29/21	SC	30 - 150 %
Pesticides							
4.4' -DDD	ND	1.5	ug/Kg	2	12/29/21	AW	SW8081B
4.4' -DDF	ND	1.5	ug/Kg	2	12/29/21	AW	SW8081B
4.4' -DDT	ND	1.5	ug/Kg	2	12/29/21	AW	SW8081B
a-BHC	ND	1.5	ua/Ka	2	12/29/21	AW	SW8081B
Alachlor	ND	7.5	ua/Ka	2	12/29/21	AW	SW8081B
Aldrin	ND	1.5	ua/Ka	2	12/29/21	AW	SW8081B
b-BHC	ND	1.5	ua/Ka	2	12/29/21	AW	SW8081B
Chlordane	ND	38	ua/Ka	2	12/29/21	AW	SW8081B
d-BHC	ND	15	ug/Kg	2	12/29/21	AW	SW8081B
Dieldrin	ND	3.8	ug/Kg	2	12/29/21	AW	SW8081B
Endosulfan I	ND	7.5	ug/Kg	2	12/29/21	AW	SW8081B
Endosulfan II	ND	7.5	ug/Kg	2	12/29/21	AW	SW8081B
Endosulfan sulfate	ND	7.5	ug/Kg	2	12/29/21	۵\۸/	SW8081B
Endrin	ND	7.5	ug/Kg	2	12/29/21	Δ\Λ/	SW8081B
Endrin aldebyde	ND	7.5	ug/Kg	2	12/29/21		SW/8081B
Endrin kotopo	ND	7.5	ug/Kg	2	12/20/21		SW/8081B
	ND	1.5	ug/Kg	2	12/20/21		SW/8081B
y-billor Hoptachlor	ND	7.5	ug/Kg	2	12/29/21		SW/8081B
Heptachiol		7.5	ug/Kg	2	12/29/21		SW0001D
		7.5	ug/Kg	2	12/29/21		SW0001D
		150	ug/Kg	2	12/29/21		SW0001D
	ND	150	ug/ng	2	12/29/21	Avv	300001B
	64		0/	2	12/20/21	A \ A /	20 150 %
% DCBP	64		70 0/	2	12/29/21		30 - 150 %
	61		70 0/	2	12/29/21		30 - 150 %
	50		70	2	12/29/21		30 - 150 %
% ICMX (Confirmation)	oc		70	2	12/29/21	Avv	30 - 150 %
SPLP Pesticides							
4,4' -DDD	ND	0.005	ug/L	1	01/04/22	AW	SW8081B
4,4' -DDE	ND	0.005	ug/L	1	01/04/22	AW	SW8081B
4,4' -DDT	ND	0.005	ug/L	1	01/04/22	AW	SW8081B
a-BHC	ND	0.005	ug/L	1	01/04/22	AW	SW8081B
Alachlor	ND	0.010	ug/L	1	01/04/22	AW	SW8081B
Aldrin	ND	0.003	ug/L	1	01/04/22	AW	SW8081B
b-BHC	ND	0.005	ug/L	1	01/04/22	AW	SW8081B
Chlordane	ND	0.050	ug/L	1	01/04/22	AW	SW8081B
d-BHC	ND	0.005	ug/L	1	01/04/22	AW	SW8081B
Dieldrin	ND	0.002	ug/L	1	01/04/22	AW	SW8081B
Endosulfan I	ND	0.005	ug/L	1	01/04/22	AW	SW8081B
Endosulfan II	ND	0.005	ug/L	1	01/04/22	AW	SW8081B
Endosulfan sulfate	ND	0.005	ug/L	1	01/04/22	AW	SW8081B
Endrin	ND	0.005	ug/L	1	01/04/22	AW	SW8081B

Project ID: BURR ELEMENTARY SCHOOL Client ID: BES-301B (0.5)

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference
Endrin aldehyde	ND	0.005	ug/L	1	01/04/22	AW	SW8081B
Endrin Ketone	ND	0.005	ug/L	1	01/04/22	AW	SW8081B
g-BHC	ND	0.005	ug/L	1	01/04/22	AW	SW8081B
Heptachlor	ND	0.005	ug/L	1	01/04/22	AW	SW8081B
Heptachlor epoxide	ND	0.005	ug/L	1	01/04/22	AW	SW8081B
Methoxychlor	ND	0.005	ug/L	1	01/04/22	AW	SW8081B
Toxaphene	ND	0.20	ug/L	1	01/04/22	AW	SW8081B
QA/QC Surrogates							
%DCBP (Surrogate Rec)	52		%	1	01/04/22	AW	30 - 150 %
%DCBP (Surrogate Rec) (Confirmation)	98		%	1	01/04/22	AW	30 - 150 %
%TCMX (Surrogate Rec)	78		%	1	01/04/22	AW	30 - 150 %
%TCMX (Surrogate Rec) (Confirmation)	105		%	1	01/04/22	AW	30 - 150 %
Polynuclear Aromatic H	C						
2-Methylnaphthalene	ND	270	ug/Kg	1	12/29/21	WB	SW8270D
Acenaphthene	ND	270	ug/Kg	1	12/29/21	WB	SW8270D
Acenaphthylene	ND	270	ug/Kg	1	12/29/21	WB	SW8270D
Anthracene	ND	270	ug/Kg	1	12/29/21	WB	SW8270D
Benz(a)anthracene	ND	270	ug/Kg	1	12/29/21	WB	SW8270D
Benzo(a)pyrene	ND	270	ug/Kg	1	12/29/21	WB	SW8270D
Benzo(b)fluoranthene	ND	270	ug/Kg	1	12/29/21	WB	SW8270D
Benzo(ghi)perylene	ND	270	ug/Kg	1	12/29/21	WB	SW8270D
Benzo(k)fluoranthene	ND	270	ug/Kg	1	12/29/21	WB	SW8270D
Chrysene	ND	270	ug/Kg	1	12/29/21	WB	SW8270D
Dibenz(a,h)anthracene	ND	270	ug/Kg	1	12/29/21	WB	SW8270D
Fluoranthene	ND	270	ug/Kg	1	12/29/21	WB	SW8270D
Fluorene	ND	270	ug/Kg	1	12/29/21	WB	SW8270D
Indeno(1,2,3-cd)pyrene	ND	270	ug/Kg	1	12/29/21	WB	SW8270D
Naphthalene	ND	270	ug/Kg	1	12/29/21	WB	SW8270D
Phenanthrene	ND	270	ug/Kg	1	12/29/21	WB	SW8270D
Pyrene	ND	270	ug/Kg	1	12/29/21	WB	SW8270D
QA/QC Surrogates							
% 2-Fluorobiphenyl	95		%	1	12/29/21	WB	30 - 130 %
% Nitrobenzene-d5	76		%	1	12/29/21	WB	30 - 130 %
% Terphenyl-d14	67		%	1	12/29/21	WB	30 - 130 %

Project ID: BURR ELE	MENTARY SC	HOOL			Pł	noeni	x I.D.: CK06	6455
Client ID: BES-301B	(0.5)							
		RL/						
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference	

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis, Shiller, Laboratory Director January 10, 2022 Reviewed and Released by: Greg Lawrence, Assistant Lab Director

Analysis Report

January 10, 2022

FOR: Attn: Mr. Brian Sirowich Tighe & Bond 213 Court St, Suite 1100 Middletown, CT 06457

Sample Informa	ation	Custody Inforn	nation	<u>Date</u>	<u>Time</u>
Matrix:	SOIL	Collected by:		12/28/21	12:00
Location Code:	TIGHE-DAS	Received by:	LB	12/28/21	15:41
Rush Request:	24 Hour	Analyzed by:	see "By" below		
P.O.#:	150439BES	l eberetem	Data		CCK064

Laboratory Data

SDG ID: GCK06455 Phoenix ID: CK06456

Project ID: BURR ELEMENTARY SCHOOL Client ID: BES-302B (0.5)

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Arsenic	3.34	0.85	mg/Kg	1	12/29/21	EK	SW6010D
Lead	13.5	0.43	mg/Kg	1	12/29/21	EK	SW6010D
Percent Solid	84		%		12/28/21	С	SW846-%Solid
Soil Extraction for Pesticide	Completed				12/28/21	O/E	SW3545A
Extraction of ETPH	Completed				12/28/21	B/U/E	SW3546
Soil Extraction for SVOA PAH	Completed				12/28/21	R/U	SW3546
Extraction for PCB	Completed				12/28/21	SX/Q/C	SW3540C
SPLP Extraction for Organics	Completed				01/03/22	AB	SW1312
SPLP Pesticides Ext.	Completed				01/04/22	JS/JS	SW3510C
Total Metals Digest	Completed				12/28/21	B/P	SW3050B
TPH by GC (Extractable	e Products	5)					
Ext. Petroleum H.C. (C9-C36)	ND	58	mg/Kg	1	12/29/21	JRB	CTETPH 8015D
Identification	ND		mg/Kg	1	12/29/21	JRB	CTETPH 8015D
QA/QC Surrogates							
% COD (surr)	75		%	1	12/29/21	JRB	50 - 150 %
% Terphenyl (surr)	69		%	1	12/29/21	JRB	50 - 150 %
PCB (Soxhlet SW35400	<u>)</u>						
PCB-1016	ND	200	ug/Kg	5	12/29/21	SC	SW8082A
PCB-1221	ND	200	ug/Kg	5	12/29/21	SC	SW8082A
PCB-1232	ND	200	ug/Kg	5	12/29/21	SC	SW8082A
PCB-1242	ND	200	ug/Kg	5	12/29/21	SC	SW8082A
PCB-1248	ND	200	ug/Kg	5	12/29/21	SC	SW8082A
PCB-1254	ND	200	ug/Kg	5	12/29/21	SC	SW8082A
PCB-1260	ND	200	ug/Kg	5	12/29/21	SC	SW8082A
PCB-1262	ND	200	ug/Kg	5	12/29/21	SC	SW8082A

Project ID: BURR ELEMENTARY SCHOOL Client ID: BES-302B (0.5)

Parameter Result PQL Units Dilution Date/Time By Reference PCB-1268 ND 200 ug/Kg 5 12/29/21 SC SW8082A QA/QC Surrogates SC 30-150 % % DCBP 83 % 5 12/29/21 SC 30-150 % % DCBP (Confirmation) 87 % 5 12/29/21 SC 30-150 % % TCMX 72 % 5 12/29/21 SC 30-150 % % TCMX (Confirmation) 82 % 5 12/29/21 SC 30-150 % Pesticides % 5 12/29/21 SC 30-150 % 4,4' -DDD ND 1.6 ug/Kg 2 12/29/21 AW SW8081B 4,4' -DDT ND 1.6 ug/Kg 2 12/29/21 AW SW8081B 4.4' -DDT ND 1.6 ug/Kg 2 12/29/21	
PCB-1268 ND 200 ug/Kg 5 12/29/21 SC SW8082A QA/QC Surrogates % 5 12/29/21 SC 30 - 150 % % DCBP 83 % 5 12/29/21 SC 30 - 150 % % DCBP (Confirmation) 87 % 5 12/29/21 SC 30 - 150 % % TCMX 72 % 5 12/29/21 SC 30 - 150 % % TCMX (Confirmation) 82 % 5 12/29/21 SC 30 - 150 % Pesticides 82 % 5 12/29/21 SC 30 - 150 % 4,4' -DDD ND 1.6 ug/Kg 2 12/29/21 AW SW8081B 4,4' -DDE ND 1.6 ug/Kg 2 12/29/21 AW SW8081B 4,4' -DDT ND 1.6 ug/Kg 2 12/29/21 AW SW8081B a-BHC ND 1.6 ug/Kg 2 12/29/21 AW SW8081B Alachlor ND 7.8 ug/Kg 2 12/29/21<	
QA/QC Surrogates % DCBP 83 % 5 12/29/21 SC 30 - 150 % % DCBP (Confirmation) 87 % 5 12/29/21 SC 30 - 150 % % TCMX 72 % 5 12/29/21 SC 30 - 150 % % TCMX (Confirmation) 82 % 5 12/29/21 SC 30 - 150 % % TCMX (Confirmation) 82 % 5 12/29/21 SC 30 - 150 % % TCMX (Confirmation) 82 % 5 12/29/21 SC 30 - 150 % % TCMX (Confirmation) 82 % % 5 12/29/21 SC 30 - 150 % #.4' -DDD ND 1.6 ug/Kg 2 12/29/21 AW SW8081B 4.4' -DDT ND 1.6 ug/Kg 2 12/29/21 AW SW8081B a-BHC ND 7.8 ug/Kg 2 12/29/21 AW SW8081B Aldrin ND 1.6	
% DCBP 83 % 5 12/29/21 SC 30 - 150 % % DCBP (Confirmation) 87 % 5 12/29/21 SC 30 - 150 % % TCMX 72 % 5 12/29/21 SC 30 - 150 % % TCMX (Confirmation) 82 % 5 12/29/21 SC 30 - 150 % Pesticides % 5 12/29/21 SC 30 - 150 % 4,4' -DDD ND 1.6 ug/Kg 2 12/29/21 AW SW8081B 4,4' -DDE ND 1.6 ug/Kg 2 12/29/21 AW SW8081B 4,4' -DDT ND 1.6 ug/Kg 2 12/29/21 AW SW8081B 4,4' -DDT ND 1.6 ug/Kg 2 12/29/21 AW SW8081B Alachlor ND 7.8 ug/Kg 2 12/29/21 AW SW8081B Aldrin ND 1.6 ug/Kg 2 12/29/21 AW SW8081B b-BHC ND 1.6 ug/Kg 2 <t< td=""><td></td></t<>	
% DCBP (Confirmation) 87 % 5 12/29/21 SC 30 - 150 % % TCMX 72 % 5 12/29/21 SC 30 - 150 % % TCMX (Confirmation) 82 % 5 12/29/21 SC 30 - 150 % Pesticides % 5 12/29/21 SC 30 - 150 % 4,4' -DDD ND 1.6 ug/Kg 2 12/29/21 AW SW8081B 4,4' -DDE ND 1.6 ug/Kg 2 12/29/21 AW SW8081B 4,4' -DDT ND 1.6 ug/Kg 2 12/29/21 AW SW8081B a-BHC ND 1.6 ug/Kg 2 12/29/21 AW SW8081B Alachlor ND 7.8 ug/Kg 2 12/29/21 AW SW8081B Aldrin ND 1.6 ug/Kg 2 12/29/21 AW SW8081B b-BHC ND 1.6 ug/Kg 2 12/29/21 AW SW8081B Chlordane ND 39 ug/Kg <	
% TCMX 72 % 5 12/29/21 SC 30 - 150 % % TCMX (Confirmation) 82 % 5 12/29/21 SC 30 - 150 % Pesticides % 5 12/29/21 SC 30 - 150 % 4,4' -DDD ND 1.6 ug/Kg 2 12/29/21 AW SW8081B 4,4' -DDE ND 1.6 ug/Kg 2 12/29/21 AW SW8081B 4,4' -DDT ND 1.6 ug/Kg 2 12/29/21 AW SW8081B a-BHC ND 1.6 ug/Kg 2 12/29/21 AW SW8081B Alachlor ND 1.6 ug/Kg 2 12/29/21 AW SW8081B Aldrin ND 7.8 ug/Kg 2 12/29/21 AW SW8081B b-BHC ND 1.6 ug/Kg 2 12/29/21 AW SW8081B Chlordane ND 39 ug/Kg 2 12/29/21 AW SW8081B	
% TCMX (Confirmation) 82 % 5 12/29/21 SC 30 - 150 % Pesticides 4,4' -DDD ND 1.6 ug/Kg 2 12/29/21 AW SW8081B 4,4' -DDE ND 1.6 ug/Kg 2 12/29/21 AW SW8081B 4,4' -DDT ND 1.6 ug/Kg 2 12/29/21 AW SW8081B a-BHC ND 1.6 ug/Kg 2 12/29/21 AW SW8081B Alachlor ND 1.6 ug/Kg 2 12/29/21 AW SW8081B Aldrin ND 7.8 ug/Kg 2 12/29/21 AW SW8081B b-BHC ND 1.6 ug/Kg 2 12/29/21 AW SW8081B b-BHC ND 1.6 ug/Kg 2 12/29/21 AW SW8081B Chlordane ND 39 ug/Kg 2 12/29/21 AW SW8081B	
Pesticides 4,4' -DDD ND 1.6 ug/Kg 2 12/29/21 AW SW8081B 4,4' -DDE ND 1.6 ug/Kg 2 12/29/21 AW SW8081B 4,4' -DDT ND 1.6 ug/Kg 2 12/29/21 AW SW8081B a-BHC ND 1.6 ug/Kg 2 12/29/21 AW SW8081B Alachlor ND 1.6 ug/Kg 2 12/29/21 AW SW8081B Aldrin ND 7.8 ug/Kg 2 12/29/21 AW SW8081B b-BHC ND 1.6 ug/Kg 2 12/29/21 AW SW8081B b-BHC ND 1.6 ug/Kg 2 12/29/21 AW SW8081B b-BHC ND 1.6 ug/Kg 2 12/29/21 AW SW8081B Chlordane ND 39 ug/Kg 2 12/29/21 AW SW8081B	
4,4' -DDD ND 1.6 ug/Kg 2 12/29/21 AW SW8081B 4,4' -DDE ND 1.6 ug/Kg 2 12/29/21 AW SW8081B 4,4' -DDT ND 1.6 ug/Kg 2 12/29/21 AW SW8081B 4,4' -DDT ND 1.6 ug/Kg 2 12/29/21 AW SW8081B a-BHC ND 1.6 ug/Kg 2 12/29/21 AW SW8081B Alachlor ND 7.8 ug/Kg 2 12/29/21 AW SW8081B Aldrin ND 1.6 ug/Kg 2 12/29/21 AW SW8081B b-BHC ND 1.6 ug/Kg 2 12/29/21 AW SW8081B Chlordane ND 39 ug/Kg 2 12/29/21 AW SW8081B	
4,4' -DDEND1.6ug/Kg212/29/21AWSW8081B4,4' -DDTND1.6ug/Kg212/29/21AWSW8081Ba-BHCND1.6ug/Kg212/29/21AWSW8081BAlachlorND7.8ug/Kg212/29/21AWSW8081BAldrinND1.6ug/Kg212/29/21AWSW8081Bb-BHCND1.6ug/Kg212/29/21AWSW8081BchlordaneND39ug/Kg212/29/21AWSW8081B	
A,4'-DDT ND 1.6 ug/Kg 2 12/29/21 AW SW8081B a-BHC ND 1.6 ug/Kg 2 12/29/21 AW SW8081B Alachlor ND 7.8 ug/Kg 2 12/29/21 AW SW8081B Aldrin ND 1.6 ug/Kg 2 12/29/21 AW SW8081B b-BHC ND 1.6 ug/Kg 2 12/29/21 AW SW8081B Chlordane ND 39 ug/Kg 2 12/29/21 AW SW8081B	
a-BHC ND 1.6 ug/Kg 2 12/29/21 AW SW8081B Alachlor ND 7.8 ug/Kg 2 12/29/21 AW SW8081B Aldrin ND 1.6 ug/Kg 2 12/29/21 AW SW8081B b-BHC ND 1.6 ug/Kg 2 12/29/21 AW SW8081B Chlordane ND 39 ug/Kg 2 12/29/21 AW SW8081B	
Alachlor ND 7.8 ug/Kg 2 12/29/21 AW SW8081B Aldrin ND 1.6 ug/Kg 2 12/29/21 AW SW8081B b-BHC ND 1.6 ug/Kg 2 12/29/21 AW SW8081B Chlordane ND 39 ug/Kg 2 12/29/21 AW SW8081B	
Aldrin ND 1.6 ug/Kg 2 12/29/21 AW SW8081B b-BHC ND 1.6 ug/Kg 2 12/29/21 AW SW8081B Chlordane ND 39 ug/Kg 2 12/29/21 AW SW8081B	
b-BHC ND 1.6 ug/Kg 2 12/29/21 AW SW8081B Chlordane ND 39 ug/Kg 2 12/29/21 AW SW8081B	
Chlordane ND 39 ug/Kg 2 12/29/21 AW SW8081B	
d-BHC ND 1.6 μα/Kg 2 12/29/21 AW SW8081B	
Dieldrin ND 3.9 ug/Kg 2 12/29/21 AW SW8081B	
Endosulfan I ND 7.8 ug/Kg 2 12/29/21 AW SW8081B	
Endosulfan II ND 7.8 $\mu a/Ka = 2$ 12/29/21 AW SW8081B	
Endosulfan sulfate ND 7.8 $\mu a/Ka = 2$ 12/29/21 AW SW8081B	
Endisinal suitate ND 7.8 ug/Kg 2 $12/29/21$ AW SW8081B	
Endrin aldebude ND 7.8 ug/Kg 2 $12/29/21$ AW SW0001D	
Endrin adenyde ND 7.6 dg/kg 2 $12/29/21$ AW SW6061D	
a PHC ND 1.6 ug/Kg 2 12/29/21 AW SW0001D	
G-DHC ND 1.0 ug/Kg 2 12/29/21 AW SW0001B Hoptophlor ND 7.8 ug/Kg 2 12/20/21 AW SW0001B	
Heptachlor apovide ND 7.6 ug/Kg 2 $12/29/21$ AW SW0081B	
Heplachiol epoxide ND 7.6 ug/Kg 2 12/29/21 AW SW6061B Mathewishler ND 30 ug/Kg 2 12/20/21 AW SW6061B	
Methoxychlor ND 39 ug/Kg 2 12/29/21 AW SW6061B Tawarkana ND 160 ug/Kg 2 12/20/21 AW SW6061B	
Toxaphene ND 160 ug/kg 2 12/29/21 AV SW6061B	
<u>QA/QC Surrogates</u>	
% DCBP 03 % 2 12/29/21 AW 30 - 150 % % DCBP (Confirmation) 69 % 2 12/29/21 AW 30 - 150 %	
% DCBP (Commination) 00 % 2 12/29/21 AW 30 - 150 % % TCMV 63 % 2 12/29/21 AW 30 - 150 %	
% TCMX 03 % 2 12/29/21 AW 30-150 %	
% ICMX (Confirmation) 62 % 2 12/29/21 AVV 30 - 150 %	
SPLP Pesticides	
4,4' -DDD ND 0.005 ug/L 1 01/04/22 AW SW8081B	
4,4' -DDE ND 0.005 ug/L 1 01/04/22 AW SW8081B	
4,4' -DDT ND 0.005 ug/L 1 01/04/22 AW SW8081B	
a-BHC ND 0.005 ug/L 1 01/04/22 AW SW8081B	
Alachlor ND 0.010 ug/L 1 01/04/22 AW SW8081B	
Aldrin ND 0.003 ug/L 1 01/04/22 AW SW8081B	
b-BHC ND 0.005 ug/L 1 01/04/22 AW SW8081B	
Chlordane ND 0.050 ug/L 1 01/04/22 AW SW8081B	
d-BHC ND 0.005 ug/L 1 01/04/22 AW SW8081B	
Dieldrin ND 0.002 ug/L 1 01/04/22 AW SW8081B	
Endosulfan I ND 0.005 ug/L 1 01/04/22 AW SW8081B	
Endosulfan II ND 0.005 ug/L 1 01/04/22 AW SW8081B	
Endosulfan sulfate ND 0.005 ug/L 1 01/04/22 AW SW8081B	
Endrin ND 0.005 ug/L 1 01/04/22 AW SW8081B	

Project ID: BURR ELEMENTARY SCHOOL Client ID: BES-302B (0.5)

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
Endrin aldehyde	ND	0.020	ug/L	1	01/04/22	AW	SW8081B
Endrin Ketone	ND	0.005	ug/L	1	01/04/22	AW	SW8081B
g-BHC	ND	0.005	ug/L	1	01/04/22	AW	SW8081B
Heptachlor	ND	0.005	ug/L	1	01/04/22	AW	SW8081B
Heptachlor epoxide	ND	0.005	ug/L	1	01/04/22	AW	SW8081B
Methoxychlor	ND	0.005	ug/L	1	01/04/22	AW	SW8081B
Toxaphene	ND	0.20	ug/L	1	01/04/22	AW	SW8081B
QA/QC Surrogates							
%DCBP (Surrogate Rec)	68		%	1	01/04/22	AW	30 - 150 %
%DCBP (Surrogate Rec) (Confirmation)	59		%	1	01/04/22	AW	30 - 150 %
%TCMX (Surrogate Rec)	129		%	1	01/04/22	AW	30 - 150 %
%TCMX (Surrogate Rec) (Confirmation)	87		%	1	01/04/22	AW	30 - 150 %
Polynuclear Aromatic HC	<u>;</u>						
2-Methylnaphthalene	ND	270	ug/Kg	1	12/29/21	WB	SW8270D
Acenaphthene	ND	270	ug/Kg	1	12/29/21	WB	SW8270D
Acenaphthylene	ND	270	ug/Kg	1	12/29/21	WB	SW8270D
Anthracene	ND	270	ug/Kg	1	12/29/21	WB	SW8270D
Benz(a)anthracene	ND	270	ug/Kg	1	12/29/21	WB	SW8270D
Benzo(a)pyrene	ND	270	ug/Kg	1	12/29/21	WB	SW8270D
Benzo(b)fluoranthene	ND	270	ug/Kg	1	12/29/21	WB	SW8270D
Benzo(ghi)perylene	ND	270	ug/Kg	1	12/29/21	WB	SW8270D
Benzo(k)fluoranthene	ND	270	ug/Kg	1	12/29/21	WB	SW8270D
Chrysene	ND	270	ug/Kg	1	12/29/21	WB	SW8270D
Dibenz(a,h)anthracene	ND	270	ug/Kg	1	12/29/21	WB	SW8270D
Fluoranthene	ND	270	ug/Kg	1	12/29/21	WB	SW8270D
Fluorene	ND	270	ug/Kg	1	12/29/21	WB	SW8270D
Indeno(1,2,3-cd)pyrene	ND	270	ug/Kg	1	12/29/21	WB	SW8270D
Naphthalene	ND	270	ug/Kg	1	12/29/21	WB	SW8270D
Phenanthrene	ND	270	ug/Kg	1	12/29/21	WB	SW8270D
Pyrene	ND	270	ug/Kg	1	12/29/21	WB	SW8270D
QA/QC Surrogates							
% 2-Fluorobiphenyl	98		%	1	12/29/21	WB	30 - 130 %
% Nitrobenzene-d5	84		%	1	12/29/21	WB	30 - 130 %
% Terphenyl-d14	70		%	1	12/29/21	WB	30 - 130 %

Project ID: BURR ELE	Phoenix I.D.: CK064				6456			
Client ID: BES-302B	(0.5)							
		RL/						
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference	

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis, Shiller, Laboratory Director January 10, 2022 Reviewed and Released by: Greg Lawrence, Assistant Lab Director

Analysis Report

January 10, 2022

FOR: Attn: Mr. Brian Sirowich Tighe & Bond 213 Court St, Suite 1100 Middletown, CT 06457

Sample Information		Custody Inforn	Custody Information					
Matrix:	SOIL	Collected by:		12/28/21	12:05			
Location Code:	TIGHE-DAS	Received by:	LB	12/28/21	15:41			
Rush Request:	24 Hour	Analyzed by:	see "By" below					
P.O.#:	150439BES	l eberetem	Data		CCK064			

Laboratory Data

SDG ID: GCK06455 Phoenix ID: CK06457

Project ID: BURR ELEMENTARY SCHOOL Client ID: BES-303S (0.0-0.5)

Parameter	Result	RL/ POI	Linits	Dilution	Date/Time	Bv	Reference
	Resource		Units	Bildton		By	
Arsenic	3.23	0.82	mg/Kg	1	12/29/21	EK	SW6010D
Lead	8.89	0.41	mg/Kg	1	12/29/21	EK	SW6010D
Percent Solid	76		%		12/28/21	С	SW846-%Solid
Soil Extraction for Pesticide	Completed				12/28/21	O/E	SW3545A
Extraction of ETPH	Completed				12/28/21	B/U/E	SW3546
Soil Extraction for SVOA PAH	Completed				12/28/21	R/U	SW3546
Extraction for PCB	Completed				12/28/21	SX/Q/C	SW3540C
SPLP Extraction for Organics	Completed				01/03/22	AB	SW1312
SPLP Pesticides Ext.	Completed				01/04/22	JS/JS	SW3510C
Total Metals Digest	Completed				12/28/21	B/P	SW3050B
TPH by GC (Extractable	e Products	5)					
Ext. Petroleum H.C. (C9-C36)	ND	64	mg/Kg	1	12/29/21	JRB	CTETPH 8015D
Identification	ND		mg/Kg	1	12/29/21	JRB	CTETPH 8015D
QA/QC Surrogates							
% COD (surr)	60		%	1	12/29/21	JRB	50 - 150 %
% Terphenyl (surr)	60		%	1	12/29/21	JRB	50 - 150 %
PCB (Soxhlet SW35400	<u>;)</u>						
PCB-1016	ND	220	ug/Kg	5	12/29/21	SC	SW8082A
PCB-1221	ND	220	ug/Kg	5	12/29/21	SC	SW8082A
PCB-1232	ND	220	ug/Kg	5	12/29/21	SC	SW8082A
PCB-1242	ND	220	ug/Kg	5	12/29/21	SC	SW8082A
PCB-1248	ND	220	ug/Kg	5	12/29/21	SC	SW8082A
PCB-1254	ND	220	ug/Kg	5	12/29/21	SC	SW8082A
PCB-1260	ND	220	ug/Kg	5	12/29/21	SC	SW8082A
PCB-1262	ND	220	ug/Kg	5	12/29/21	SC	SW8082A

Project ID: BURR ELEMENTARY SCHOOL Client ID: BES-303S (0.0-0.5)

Parameter Result PQL Units Dilution Date/Time By Reference PGB-1288 ND 220 up/kg 5 122921 SC 30 %DCBP 72 % 5 122921 SC 30 -150 % %DCBY (Confirmation) 66 % 5 122921 SC 30 -150 % %DCMX (Confirmation) 67 % 5 122921 SC 30 -150 % %TCMX (Confirmation) 67 % 5 122921 AV SW0081B 4.4 -DDE ND 1.7 up/kg 2 122921 AV SW0081B 4.4 -DDE ND 1.7 up/kg 2 122921 AV SW0081B Adchor ND 1.7 up/kg 2 122921 AV SW0081B Adchor ND 1.7 up/kg 2 122921 AV SW0081B Adchor ND 1.7 up/kg 2 <td< th=""><th></th><th></th><th>RL/</th><th></th><th></th><th></th><th></th><th></th></td<>			RL/					
PCB-128H ND 20 ug/kg 5 1229/21 SC SW008PA QAAC Surrecates NC 72 % 5 1229/21 SC 30 - 150 % % DCBP 72 % 5 1228/21 SC 30 - 150 % % TCMX (Confirmation) 66 % 5 1229/21 SC 30 - 150 % Pesticides 4 4 DD 1.7 ug/kg 2 1229/21 AW SW0081B 4.4 - DDT ND 1.7 ug/kg 2 1229/21 AW SW0081B Addrin ND 1.7 ug/kg 2 1229/21 AW SW0081B Addrin ND 6.6 ug/kg 2 1229/21 AW SW0081B Addrin ND 4.3 ug/kg 2 1229/21 AW SW0081B Chiordane ND 4.3 ug/kg 2 1229/21 AW SW0081B Endosulfan	Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference
QAUCESURCENEVISURCENESUR	PCB-1268	ND	220	ug/Kg	5	12/29/21	SC	SW8082A
% DCBP 72 % 5 12/29/21 SC 30 - 150 % % DCBP (contration) 66 % 5 12/29/21 SC 30 - 150 % % TCMX (confirmation) 66 % 5 12/29/21 SC 30 - 150 % 4 DDD ND 1.7 up/Kg 2 12/29/21 AW SW8081B 4.4 - DDE ND 1.7 up/Kg 2 12/29/21 AW SW8081B a-BHC ND 1.7 up/Kg 2 12/29/21 AW SW8081B Alachlor ND 8.6 up/Kg 2 12/29/21 AW SW8081B Alachlor ND 8.6 up/Kg 2 12/29/21 AW SW8081B Alachlor ND 1.7 up/Kg 2 12/29/21 AW SW8081B Chordane ND 4.3 up/Kg 2 12/29/21 AW SW8081B Endesulfan I ND 8.6	QA/QC Surrogates							
% DCBP (Confirmation) 68 % 5 12/29/21 SC 30 - 150 % % TCMX (Confirmation) 67 % 5 12/29/21 SC 30 - 150 % Pesticides	% DCBP	72		%	5	12/29/21	SC	30 - 150 %
% TCMX 66 % 5 12/29/21 SC 30 - 150 % Pesticides % 5 12/29/21 SC 30 - 150 % Pesticides % 5 12/29/21 AW SW8081B 4.4'-DD1 ND 1.7 ug/Kg 2 12/29/21 AW SW8081B 4.4'-DD1 ND 1.7 ug/Kg 2 12/29/21 AW SW8081B achtor ND 8.5 ug/Kg 2 12/29/21 AW SW8081B Adachor ND 8.5 ug/Kg 2 12/29/21 AW SW8081B Adachor ND 8.6 ug/Kg 2 12/29/21 AW SW8081B Chordane ND 1.7 ug/Kg 2 12/29/21 AW SW8081B Chordane ND 8.6 ug/Kg 2 12/29/21 AW SW8081B Endosultan II ND 8.6 ug/Kg	% DCBP (Confirmation)	68		%	5	12/29/21	SC	30 - 150 %
% TCMX (Confirmation) 67 % 5 122921 % C 8.0 - 150 % Pesticides 4.4 -DDD ND 1.7 ug/kg 2 122921 AW SW8081B 4.4 -DDT ND 1.7 ug/kg 2 122921 AW SW8081B aBCC ND 1.7 ug/kg 2 122921 AW SW8081B Alachior ND 1.7 ug/kg 2 122921 AW SW8081B Alachior ND 1.7 ug/kg 2 122921 AW SW8081B Aldrin ND 1.7 ug/kg 2 122921 AW SW8081B Dieldrin ND 4.3 ug/kg 2 122921 AW SW8081B Dieldrin ND 8.6 ug/kg 2 122921 AW SW8081B Endosulfan ull ND 8.6 ug/kg 2 122921 AW SW8081B Endosulfan sulfate ND 8.6 ug/kg 2 122921 AW SW8081B	% TCMX	66		%	5	12/29/21	SC	30 - 150 %
Pesticides 44'-DDD ND 1.7 ug/kg 2 122921 AW SW8081B 44'-DDE ND 1.7 ug/kg 2 122921 AW SW8081B a-BHC ND 1.7 ug/kg 2 122921 AW SW8081B a-BHC ND 1.7 ug/kg 2 122921 AW SW8081B Alchior ND 6.6 ug/kg 2 122921 AW SW8081B Chiordane ND 1.7 ug/kg 2 122921 AW SW8081B Chiordane ND 4.3 ug/kg 2 122921 AW SW8081B Chiordane ND 4.3 ug/kg 2 122921 AW SW8081B Endosulfan I ND 8.6 ug/kg 2 122921 AW SW8081B Endosulfan I ND 8.6 ug/kg 2 122921 AW SW8081B Endo	% TCMX (Confirmation)	67		%	5	12/29/21	SC	30 - 150 %
4.4 - DDD ND 1.7 ug/kg 2 122921 AW SW8081B 4.4 - DDE ND 1.7 ug/kg 2 122921 AW SW8081B a-BHC ND 1.7 ug/kg 2 122921 AW SW8081B a-BHC ND 1.7 ug/kg 2 122921 AW SW8081B Alachlor ND 8.6 ug/kg 2 122921 AW SW8081B Aldrin ND 1.7 ug/kg 2 122921 AW SW8081B b-BHC ND 1.7 ug/kg 2 122921 AW SW8081B c-Hordane ND 4.3 ug/kg 2 122921 AW SW8081B c-dedulfani ND 8.5 ug/kg 2 122921 AW SW8081B Endosulfan sulfate ND 8.6 ug/kg 2 122921 AW SW8081B Endosulfan sulfate ND	Pesticides							
Add - DDE ND 1.7 ug/Kg 2 1229/21 AW SW80818 4.4 - DDT ND 1.7 ug/Kg 2 1228/21 AW SW80818 a-BHC ND 1.7 ug/Kg 2 1228/21 AW SW80818 Alachlor ND 8.6 ug/Kg 2 1228/21 AW SW80818 Alachlor ND 1.7 ug/Kg 2 1228/21 AW SW80818 b-BHC ND 1.7 ug/Kg 2 1228/21 AW SW80818 chordane ND 4.3 ug/Kg 2 1228/21 AW SW80818 Dieldrin ND 8.6 ug/Kg 2 1228/21 AW SW80818 Endosulfan II ND 8.6 ug/Kg 2 1228/21 AW SW80818 Endosulfan kotone ND 8.6 ug/Kg 2 1228/21 AW SW80818 Endrin idebryde ND 8.6 ug/Kg 2 1228/21 AW SW80818	4.4' -DDD	ND	1.7	ug/Kg	2	12/29/21	AW	SW8081B
A.4 - DDT ND 1.7 ug/Kg 2 12/29/21 AW SW80818 a-BHC ND 1.7 ug/Kg 2 12/29/21 AW SW80818 Alachlor ND 8.6 ug/Kg 2 12/29/21 AW SW80818 Aldrin ND 1.7 ug/Kg 2 12/29/21 AW SW80818 b-BHC ND 1.7 ug/Kg 2 12/29/21 AW SW80818 Chordane ND 4.3 ug/Kg 2 12/29/21 AW SW80818 Endosulfan ND 8.6 ug/Kg 2 12/29/21 AW SW80818 Endosulfan sultate ND 8.6 ug/Kg 2 12/29/21 AW SW80818 Endrin aldehyde ND 8.6 ug/Kg 2 12/29/21 AW SW80818 Endrin aldehyde ND 8.6 ug/Kg 2 12/29/21 AW SW80818 Endrin aldehyde ND 8.6 ug/Kg 2 12/29/21 AW SW80818 <	4.4' -DDE	ND	1.7	ug/Kg	2	12/29/21	AW	SW8081B
aBHC ND 1.7 ug/Kg 2 122921 AW SW80818 Alachlor ND 8.6 ug/Kg 2 122921 AW SW80818 Alachlor ND 1.7 ug/Kg 2 1229211 AW SW80818 b-BHC ND 1.7 ug/Kg 2 1229211 AW SW80818 Chlordane ND 4.3 ug/Kg 2 1229211 AW SW80818 Chlordane ND 4.3 ug/Kg 2 1229211 AW SW80818 Endosulfan I ND 8.6 ug/Kg 2 1229211 AW SW80818 Endosulfan U ND 8.6 ug/Kg 2 1229211 AW SW80818 Endrin aldehyde ND 8.6 ug/Kg 2 1229211 AW SW80818 Endrin ketone ND 8.6 ug/Kg 2 1229211 AW SW80818 Endrin ketone <td< td=""><td>4.4' -DDT</td><td>ND</td><td>1.7</td><td>ug/Kg</td><td>2</td><td>12/29/21</td><td>AW</td><td>SW8081B</td></td<>	4.4' -DDT	ND	1.7	ug/Kg	2	12/29/21	AW	SW8081B
Alachlor ND 8.6 ug/Kg 2 12/29/21 AW SW8081B Aldrin ND 1.7 ug/Kg 2 12/29/21 AW SW8081B DeBrC ND 1.7 ug/Kg 2 12/29/21 AW SW8081B Chlordane ND 4.3 ug/Kg 2 12/29/21 AW SW8081B d-BHC ND 1.7 ug/Kg 2 12/29/21 AW SW8081B Endosulfan I ND 8.6 ug/Kg 2 12/29/21 AW SW8081B Endosulfan I ND 8.6 ug/Kg 2 12/29/21 AW SW8081B Endosulfan sulfate ND 8.6 ug/Kg 2 12/29/21 AW SW8081B Endrin aldehyde ND 8.6 ug/Kg 2 12/29/21 AW SW8081B Endrin aldehyde ND 8.6 ug/Kg 2 12/29/21 AW SW8081B g-BHC <td>a-BHC</td> <td>ND</td> <td>1.7</td> <td>ug/Kg</td> <td>2</td> <td>12/29/21</td> <td>AW</td> <td>SW8081B</td>	a-BHC	ND	1.7	ug/Kg	2	12/29/21	AW	SW8081B
Adrin ND 1.7 ug/kg 2 122921 AW SW8081B b-BHC ND 1.7 ug/kg 2 122921 AW SW8081B chlordane ND 4.3 ug/kg 2 122921 AW SW8081B Dieldrin ND 4.3 ug/kg 2 122921 AW SW8081B Endosulfan I ND 8.6 ug/kg 2 122921 AW SW8081B Endosulfan I ND 8.6 ug/kg 2 122921 AW SW8081B Endosulfan I ND 8.6 ug/kg 2 122921 AW SW8081B Endrin aldehyde ND 8.6 ug/kg 2 122921 AW SW8081B Endrin ketone ND 8.6 ug/kg 2 122921 AW SW8081B Endrin ketone ND 8.6 ug/kg 2 122921 AW SW8081B Endrin ketone <t< td=""><td>Alachlor</td><td>ND</td><td>8.6</td><td>ug/Kg</td><td>2</td><td>12/29/21</td><td>AW</td><td>SW8081B</td></t<>	Alachlor	ND	8.6	ug/Kg	2	12/29/21	AW	SW8081B
bHC ND 1.7 ug/kg 2 122921 AW SW8081B Chlordane ND 4.3 ug/kg 2 122921 AW SW8081B Obletdrin ND 4.3 ug/kg 2 122921 AW SW8081B Dieldrin ND 4.3 ug/kg 2 122921 AW SW8081B Endosulfan II ND 8.6 ug/kg 2 122921 AW SW8081B Endosulfan Sulfate ND 8.6 ug/kg 2 122921 AW SW8081B Endrin Alebyde ND 8.6 ug/kg 2 122921 AW SW8081B Endrin ketone ND 8.6 ug/kg 2 122921 AW SW8081B Endrin ketone ND 8.6 ug/kg 2 122921 AW SW8081B Endrin ketone ND 8.6 ug/kg 2 122921 AW SW8081B Endrin ketone	Aldrin	ND	1.7	ug/Kg	2	12/29/21	AW	SW8081B
Chiordane ND 43 ug/Kg 2 12/29/21 AW SW8081B d-BHC ND 1.7 ug/Kg 2 12/29/21 AW SW8081B Dieldrin ND 4.3 ug/Kg 2 12/29/21 AW SW8081B Endosulfan I ND 8.6 ug/Kg 2 12/29/21 AW SW8081B Endosulfan II ND 8.6 ug/Kg 2 12/29/21 AW SW8081B Endrin ND 8.6 ug/Kg 2 12/29/21 AW SW8081B Endrin aldehyde ND 8.6 ug/Kg 2 12/29/21 AW SW8081B Endrin hetone ND 8.6 ug/Kg 2 12/29/21 AW SW8081B Beptachlor ND 8.6 ug/Kg 2 12/29/21 AW SW8081B Methoxychlor ND 8.6 ug/Kg 2 12/29/21 AW SW8081B Toxaphene </td <td>b-BHC</td> <td>ND</td> <td>1.7</td> <td>ug/Kg</td> <td>2</td> <td>12/29/21</td> <td>AW</td> <td>SW8081B</td>	b-BHC	ND	1.7	ug/Kg	2	12/29/21	AW	SW8081B
Charlow D 1 ug/Kg 2 12/29/21 AW SW8081B Dieldrin ND 4.3 ug/Kg 2 12/29/21 AW SW8081B Endosulfan I ND 8.6 ug/Kg 2 12/29/21 AW SW8081B Endosulfan II ND 8.6 ug/Kg 2 12/29/21 AW SW8081B Endosulfan sulfate ND 8.6 ug/Kg 2 12/29/21 AW SW8081B Endrin aldehyde ND 8.6 ug/Kg 2 12/29/21 AW SW8081B Endrin ketone ND 8.6 ug/Kg 2 12/29/21 AW SW8081B Endrin ketone ND 8.6 ug/Kg 2 12/29/21 AW SW8081B Endrin ketone ND 8.6 ug/Kg 2 12/29/21 AW SW8081B Heptachlor epoxide ND 8.6 ug/Kg 2 12/29/21 AW SW8081B <tr< td=""><td>Chlordane</td><td>ND</td><td>43</td><td>ua/Ka</td><td>2</td><td>12/29/21</td><td>AW</td><td>SW8081B</td></tr<>	Chlordane	ND	43	ua/Ka	2	12/29/21	AW	SW8081B
Bildrin ND 4.3 ug/Kg 2 122921 AW SW8081B Endosulfan I ND 8.6 ug/Kg 2 122921 AW SW8081B Endosulfan II ND 8.6 ug/Kg 2 122921 AW SW8081B Endosulfan sulfate ND 8.6 ug/Kg 2 122921 AW SW8081B Endrin ND 8.6 ug/Kg 2 122921 AW SW8081B Endrin ladehyde ND 8.6 ug/Kg 2 122921 AW SW8081B Endrin ladehyde ND 8.6 ug/Kg 2 122921 AW SW8081B Endrin ketone ND 8.6 ug/Kg 2 122921 AW SW8081B Heptachlor ND 8.6 ug/Kg 2 122921 AW SW8081B Toxaphene ND 4.3 ug/Kg 2 122921 AW SW8081B Toxaphene	d-BHC	ND	1.7	ua/Ka	2	12/29/21	AW	SW8081B
Dottim ND ND <th< td=""><td>Dieldrin</td><td>ND</td><td>4.3</td><td>ua/Ka</td><td>2</td><td>12/29/21</td><td>AW</td><td>SW8081B</td></th<>	Dieldrin	ND	4.3	ua/Ka	2	12/29/21	AW	SW8081B
Lindoullari II ND And Ispace Ispace <thispace< th=""> Ispace Ispace<</thispace<>	Endosulfan I	ND	8.6	ua/Ka	2	12/29/21	AW	SW8081B
Lindsultarium ND 8.6 ug/Kg 2 12/28/21 AW SW8081B Endosulfan sulfate ND 8.6 ug/Kg 2 12/28/21 AW SW8081B Endrin ND 8.6 ug/Kg 2 12/28/21 AW SW8081B Endrin latdehyde ND 8.6 ug/Kg 2 12/29/21 AW SW8081B g-BHC ND 8.6 ug/Kg 2 12/29/21 AW SW8081B Heptachlor ND 8.6 ug/Kg 2 12/29/21 AW SW8081B Methoxychlor ND 8.6 ug/Kg 2 12/29/21 AW SW8081B Methoxychlor ND 4.3 ug/Kg 2 12/29/21 AW SW8081B Methoxychlor ND 1.70 ug/Kg 2 12/29/21 AW SW8081B Oxaphene ND 1.70 ug/Kg 2 12/29/21 AW 30 - 150 %	Endosulfan II	ND	86	ug/Kg	2	12/29/21	AW	SW8081B
Endotional bandle ND 8.6 ug/Kg 2 12/28/21 AW SW8081B Endrin aldehyde ND 8.6 ug/Kg 2 12/28/21 AW SW8081B Endrin aldehyde ND 8.6 ug/Kg 2 12/28/21 AW SW8081B Endrin ketone ND 8.6 ug/Kg 2 12/28/21 AW SW8081B g-BHC ND 8.6 ug/Kg 2 12/28/21 AW SW8081B Heptachlor epoxide ND 8.6 ug/Kg 2 12/28/21 AW SW8081B Methoxychlor ND 8.6 ug/Kg 2 12/28/21 AW SW8081B OXAC Surrocates ND 170 ug/Kg 2 12/28/21 AW SW8081B AVG Currotates Y 7 % 2 12/29/21 AW 30 - 150 % % TCMX 81 % 2 12/29/21 AW 30 - 150 % % TCMX (C	Endosulfan sulfate	ND	86	ug/Kg	2	12/29/21	AW	SW8081B
Lindim ND 8.6 ug/Kg 2 12/29/21 AW SW8001B Endrin aldehyde ND 8.6 ug/Kg 2 12/29/21 AW SW8001B Endrin ketone ND 8.6 ug/Kg 2 12/29/21 AW SW8001B g-BHC ND 8.6 ug/Kg 2 12/29/21 AW SW8001B Heptachlor epoxide ND 8.6 ug/Kg 2 12/29/21 AW SW8001B Methoxychlor ND 4.3 ug/Kg 2 12/29/21 AW SW8081B OXAGC Surrogates 30 170 ug/Kg 2 12/29/21 AW SW8081B OXAGC Surrogates 30 170 ug/Kg 2 12/29/21 AW 30 150 % % DCBF (Confirmation) 71 % 2 12/29/21 AW 30 150 % % TCMX 81 % 2 12/29/21 AW 30	Endrin	ND	8.6	ug/Kg	2	12/29/21	AW	SW8081B
Lindmandbrydd ND 8.6 ug/Kg 2 1.2.02.1 AW SW8081B g-BHC ND 1.7 ug/Kg 2 12/29/21 AW SW8081B Heptachlor ND 8.6 ug/Kg 2 12/29/21 AW SW8081B Heptachlor epoxide ND 8.6 ug/Kg 2 12/29/21 AW SW8081B Methoxychlor ND 8.6 ug/Kg 2 12/29/21 AW SW8081B Methoxychlor ND 4.3 ug/Kg 2 12/29/21 AW SW8081B AddCSurrogates 79 % 2 12/29/21 AW 30 - 150 % % DCBP (Confirmation) 71 % 2 12/29/21 AW 30 - 150 % % TCMX 81 % 2 12/29/21 AW 30 - 150 % % TCMX (Confirmation) 69 . % 2 12/29/21 AW SW8081B 4,4' -DDD	Endrin aldebyde	ND	8.6	ug/Kg	2	12/29/21	AW	SW8081B
Lindin Kelone ND 1.7 ug/Kg 2 1.22/21 AW SW8081B Heptachlor ND 8.6 ug/Kg 2 12/29/21 AW SW8081B Heptachlor epoxide ND 8.6 ug/Kg 2 12/29/21 AW SW8081B Methoxychlor ND 4.3 ug/Kg 2 12/29/21 AW SW8081B Toxaphene ND 170 ug/Kg 2 12/29/21 AW SW8081B GAVG Surrogates	Endrin ketone	ND	8.6	ug/Kg	2	12/29/21	Δ\\\/	SW/8081B
gbl C ND		ND	17	ug/Kg	2	12/29/21	Δ\\\/	SW/8081B
Inplactation ND 0.0 <th< td=""><td>Hentachlor</td><td>ND</td><td>8.6</td><td>ug/Kg</td><td>2</td><td>12/29/21</td><td></td><td>SW8081B</td></th<>	Hentachlor	ND	8.6	ug/Kg	2	12/29/21		SW8081B
Inclusion epotwole ND A3 ug/Kg 2 12/23/21 AW SW8081B Methoxychlor ND 43 ug/Kg 2 12/29/21 AW SW8081B OA/OC Surrogates	Hoptachlor opovido		8.6	ug/Kg	2	12/29/21		SW/8081B
Methody indition ND 1-3 ug/Ng 2 1223/21 AW Stressing Toxaphene ND 170 ug/Ng 2 12/29/21 AW SW8081B GAVAC Surrogates ************************************	Methowebler		43	ug/Kg	2	12/29/21		SW0001D SW/8081B
Inclusion ND			43	ug/Kg	2	12/29/21		SW0001B
Warder Surrogates 79 % 2 12/29/21 AW 30 - 150 % % DCBP (Confirmation) 71 % 2 12/29/21 AW 30 - 150 % % TCMX 81 % 2 12/29/21 AW 30 - 150 % % TCMX (Confirmation) 69 % 2 12/29/21 AW 30 - 150 % SPLP Pesticides % 2 12/29/21 AW 30 - 150 % 4,4' -DDD 69 % 2 12/29/21 AW 30 - 150 % 4,4' -DD ND 0.005 ug/L 1 01/04/22 AW SW8081B 4,4' -DDT ND 0.005 ug/L 1 01/04/22 AW SW8081B a-BHC ND 0.010 ug/L 1 01/04/22 AW SW8081B Alachlor ND 0.005 ug/L 1 01/04/22 AW SW8081B B-BHC ND 0.005 ug/L 1 01/04/22		ND	170	ug/rtg	2	12/29/21	Avv	3000010
% DCBP % 2 122/2/21 AW 30 - 150 % % DCBP (Confirmation) 71 % 2 12/29/21 AW 30 - 150 % % TCMX 81 % 2 12/29/21 AW 30 - 150 % % TCMX (Confirmation) 69 % 2 12/29/21 AW 30 - 150 % SPLP Pesticides % 2 12/29/21 AW 30 - 150 % 4,4' -DDD ND 0.005 ug/L 1 01/04/22 AW SW8081B 4,4' -DDT ND 0.005 ug/L 1 01/04/22 AW SW8081B 4,4' -DDT ND 0.005 ug/L 1 01/04/22 AW SW8081B 4,4' -DT ND 0.010 ug/L 1 01/04/22 AW SW8081B 4,4' -DT ND 0.005 ug/L 1 01/04/22 AW SW8081B Aldrin ND 0.005 ug/L 1 01/04/22		70		0/	2	12/20/21	۸۱۸/	20 150 %
% DGDF (continuation) 71 % 2 122321 AW 30 - 130 % % TCMX 81 % 2 12/29/21 AW 30 - 150 % % TCMX (Confirmation) 69 % 2 12/29/21 AW 30 - 150 % SPLP Pesticides 4,4' - DDD ND 0.005 ug/L 1 01/04/22 AW SW8081B 4,4' - DDE ND 0.005 ug/L 1 01/04/22 AW SW8081B 4,4' - DDT ND 0.005 ug/L 1 01/04/22 AW SW8081B a-BHC ND 0.005 ug/L 1 01/04/22 AW SW8081B Alachlor ND 0.005 ug/L 1 01/04/22 AW SW8081B Aldrin ND 0.005 ug/L 1 01/04/22 AW SW8081B b-BHC ND 0.005 ug/L 1 01/04/22 AW SW8081B d-BHC ND 0.005 ug/L 1 01/04/22 AW SW8081B b-BHC<	% DCBF	79		70 9/	2	12/29/21		30 150 %
% TCMX 61 % 2 122.92.1 AW 50.1.130 % % TCMX (Confirmation) 69 % 2 12/2.9/2.1 AW 30.1.130 % SPLP Pesticides % 2 12/2.9/2.1 AW 30.1.130 % 4.4' - DDD ND 0.005 ug/L 1 01/04/22 AW SW8081B 4.4' - DDT ND 0.005 ug/L 1 01/04/22 AW SW8081B a-BHC ND 0.005 ug/L 1 01/04/22 AW SW8081B Alachlor ND 0.005 ug/L 1 01/04/22 AW SW8081B Aldrin ND 0.003 ug/L 1 01/04/22 AW SW8081B b-BHC ND 0.005 ug/L 1 01/04/22 AW SW8081B d-BHC ND 0.005 ug/L 1 01/04/22 AW SW8081B b-BHC ND 0.005 ug/L 1 01/04/22 AW SW8081B d-BHC ND 0.005		7 I 91		70 9/	2	12/29/21		30 150 %
SPLP Pesticides ND 0.005 ug/L 1 01/04/22 AW SW8081B 4,4' -DDE ND 0.005 ug/L 1 01/04/22 AW SW8081B 4,4' -DDT ND 0.005 ug/L 1 01/04/22 AW SW8081B a-BHC ND 0.005 ug/L 1 01/04/22 AW SW8081B Alachlor ND 0.005 ug/L 1 01/04/22 AW SW8081B Aldrin ND 0.005 ug/L 1 01/04/22 AW SW8081B b-BHC ND 0.003 ug/L 1 01/04/22 AW SW8081B chlordane ND 0.005 ug/L 1 01/04/22 AW SW8081B chlordane ND 0.005 ug/L 1 01/04/22 AW SW8081B d-BHC ND 0.005 ug/L 1 01/04/22 AW SW8081B chlordane ND 0.005 ug/L 1 01/04/22 AW SW8081B	% TOMA	69		70 0/	2	12/29/21		30 - 150 %
SPLP Pesticides4,4' - DDDND0.005ug/L101/04/22AWSW8081B4,4' - DDEND0.005ug/L101/04/22AWSW8081B4,4' - DDTND0.005ug/L101/04/22AWSW8081Ba-BHCND0.005ug/L101/04/22AWSW8081BAlachlorND0.010ug/L101/04/22AWSW8081BAldrinND0.003ug/L101/04/22AWSW8081Bb-BHCND0.005ug/L101/04/22AWSW8081BChlordaneND0.050ug/L101/04/22AWSW8081Bd-BHCND0.005ug/L101/04/22AWSW8081BDieldrinND0.005ug/L101/04/22AWSW8081BEndosulfan IND0.005ug/L101/04/22AWSW8081BEndosulfan IIND0.005ug/L101/04/22AWSW8081BEndosulfan sulfateND0.005ug/L101/04/22AWSW8081BEndrinND0.005ug/L101/04/22AWSW8081BEndosulfan sulfateND0.005ug/L101/04/22AWSW8081BEndrinND0.005ug/L101/04/22AWSW8081BEndrinND0.005ug/L101/04/22		03		70	2	12/23/21	~~~	30 - 130 /8
4,4'-DDDND0.005ug/L101/04/22AWSW8081B4,4'-DDEND0.005ug/L101/04/22AWSW8081B4,4'-DDTND0.005ug/L101/04/22AWSW8081Ba-BHCND0.005ug/L101/04/22AWSW8081BAlachlorND0.005ug/L101/04/22AWSW8081BAldrinND0.001ug/L101/04/22AWSW8081Bb-BHCND0.005ug/L101/04/22AWSW8081BChlordaneND0.005ug/L101/04/22AWSW8081Bd-BHCND0.005ug/L101/04/22AWSW8081BDieldrinND0.005ug/L101/04/22AWSW8081BEndosulfan IIND0.005ug/L101/04/22AWSW8081BEndosulfan sulfateND0.005ug/L101/04/22AWSW8081BEndrinND0.005ug/L101/04/22AWSW8081B	SPLP Pesticides		0.005			04/04/00		00000045
4,4'-DDEND0.005ug/L101/04/22AWSW8081B4,4'-DDTND0.005ug/L101/04/22AWSW8081Ba-BHCND0.005ug/L101/04/22AWSW8081BAlachlorND0.010ug/L101/04/22AWSW8081BAldrinND0.003ug/L101/04/22AWSW8081Bb-BHCND0.005ug/L101/04/22AWSW8081BChlordaneND0.050ug/L101/04/22AWSW8081Bd-BHCND0.005ug/L101/04/22AWSW8081BDieldrinND0.005ug/L101/04/22AWSW8081BEndosulfan IND0.005ug/L101/04/22AWSW8081BEndosulfan sulfateND0.005ug/L101/04/22AWSW8081BEndrinND0.005ug/L101/04/22AWSW8081B	4,4' -DDD	ND	0.005	ug/L	1	01/04/22	AW	SW8081B
4,4'-DDTND0.005ug/L101/04/22AWSW8081Ba-BHCND0.005ug/L101/04/22AWSW8081BAlachlorND0.010ug/L101/04/22AWSW8081BAldrinND0.003ug/L101/04/22AWSW8081Bb-BHCND0.005ug/L101/04/22AWSW8081BchlordaneND0.050ug/L101/04/22AWSW8081Bd-BHCND0.050ug/L101/04/22AWSW8081BDieldrinND0.005ug/L101/04/22AWSW8081BEndosulfan IND0.005ug/L101/04/22AWSW8081BEndosulfan sulfateND0.005ug/L101/04/22AWSW8081BEndrinND0.005ug/L101/04/22AWSW8081BEndrinND0.005ug/L401/04/22AWSW8081BEndrinND0.005ug/L401/04/22AWSW8081BEndrinND0.005ug/L401/04/22AWSW8081BEndrinND0.005ug/L401/04/22AWSW8081BEndrinND0.005ug/L401/04/22AWSW8081BEndrinND0.005ug/L401/04/22AWSW8081BEndrinND0.005 <td>4,4' -DDE</td> <td>ND</td> <td>0.005</td> <td>ug/L</td> <td>1</td> <td>01/04/22</td> <td>AW</td> <td>SW8081B</td>	4,4' -DDE	ND	0.005	ug/L	1	01/04/22	AW	SW8081B
a-BHC ND 0.005 ug/L 1 01/04/22 AW SW8081B Alachlor ND 0.010 ug/L 1 01/04/22 AW SW8081B Aldrin ND 0.003 ug/L 1 01/04/22 AW SW8081B b-BHC ND 0.005 ug/L 1 01/04/22 AW SW8081B chlordane ND 0.005 ug/L 1 01/04/22 AW SW8081B d-BHC ND 0.005 ug/L 1 01/04/22 AW SW8081B d-BHC ND 0.005 ug/L 1 01/04/22 AW SW8081B d-BHC ND 0.005 ug/L 1 01/04/22 AW SW8081B Dieldrin ND 0.005 ug/L 1 01/04/22 AW SW8081B Endosulfan II ND 0.005 ug/L 1 01/04/22 AW SW8081B Endosulfan sulfate <t< td=""><td>4,4' -DDT</td><td>ND</td><td>0.005</td><td>ug/L</td><td>1</td><td>01/04/22</td><td>AW</td><td>SW8081B</td></t<>	4,4' -DDT	ND	0.005	ug/L	1	01/04/22	AW	SW8081B
Alachlor ND 0.010 ug/L 1 01/04/22 AW SW8081B Aldrin ND 0.003 ug/L 1 01/04/22 AW SW8081B b-BHC ND 0.005 ug/L 1 01/04/22 AW SW8081B Chlordane ND 0.005 ug/L 1 01/04/22 AW SW8081B d-BHC ND 0.050 ug/L 1 01/04/22 AW SW8081B d-BHC ND 0.005 ug/L 1 01/04/22 AW SW8081B Dieldrin ND 0.005 ug/L 1 01/04/22 AW SW8081B Endosulfan I ND 0.005 ug/L 1 01/04/22 AW SW8081B Endosulfan sulfate ND 0.005 ug/L 1 01/04/22 AW SW8081B Endrin ND 0.005 ug/L 1 01/04/22 AW SW8081B Endrin ND 0.005 ug/L 1 01/04/22 AW SW8081B <	a-BHC	ND	0.005	ug/L	1	01/04/22	AW	SW8081B
Aldrin ND 0.003 ug/L 1 01/04/22 AW SW8081B b-BHC ND 0.005 ug/L 1 01/04/22 AW SW8081B Chlordane ND 0.050 ug/L 1 01/04/22 AW SW8081B d-BHC ND 0.050 ug/L 1 01/04/22 AW SW8081B Dieldrin ND 0.005 ug/L 1 01/04/22 AW SW8081B Endosulfan I ND 0.010 ug/L 1 01/04/22 AW SW8081B Endosulfan II ND 0.005 ug/L 1 01/04/22 AW SW8081B Endosulfan sulfate ND 0.005 ug/L 1 01/04/22 AW SW8081B Endrin ND 0.005 ug/L 1 01/04/22 AW SW8081B Endrin ND 0.005 ug/L 1 01/04/22 AW SW8081B	Alachlor	ND	0.010	ug/L	1	01/04/22	AW	SW8081B
b-BHC ND 0.005 ug/L 1 01/04/22 AW SW8081B Chlordane ND 0.050 ug/L 1 01/04/22 AW SW8081B d-BHC ND 0.005 ug/L 1 01/04/22 AW SW8081B d-BHC ND 0.005 ug/L 1 01/04/22 AW SW8081B Dieldrin ND 0.005 ug/L 1 01/04/22 AW SW8081B Endosulfan I ND 0.005 ug/L 1 01/04/22 AW SW8081B Endosulfan II ND 0.005 ug/L 1 01/04/22 AW SW8081B Endosulfan sulfate ND 0.005 ug/L 1 01/04/22 AW SW8081B Endrin ND 0.005 ug/L 1 01/04/22 AW SW8081B	Aldrin	ND	0.003	ug/L	1	01/04/22	AW	SW8081B
Chlordane ND 0.050 ug/L 1 01/04/22 AW SW8081B d-BHC ND 0.005 ug/L 1 01/04/22 AW SW8081B Dieldrin ND 0.010 ug/L 1 01/04/22 AW SW8081B Endosulfan I ND 0.005 ug/L 1 01/04/22 AW SW8081B Endosulfan II ND 0.005 ug/L 1 01/04/22 AW SW8081B Endosulfan sulfate ND 0.005 ug/L 1 01/04/22 AW SW8081B Endosulfan sulfate ND 0.005 ug/L 1 01/04/22 AW SW8081B Endrin ND 0.005 ug/L 1 01/04/22 AW SW8081B	b-BHC	ND	0.005	ug/L	1	01/04/22	AW	SW8081B
d-BHC ND 0.005 ug/L 1 01/04/22 AW SW8081B Dieldrin ND 0.010 ug/L 1 01/04/22 AW SW8081B Endosulfan I ND 0.005 ug/L 1 01/04/22 AW SW8081B Endosulfan II ND 0.005 ug/L 1 01/04/22 AW SW8081B Endosulfan sulfate ND 0.005 ug/L 1 01/04/22 AW SW8081B Endrin ND 0.005 ug/L 1 01/04/22 AW SW8081B	Chlordane	ND	0.050	ug/L	1	01/04/22	AW	SW8081B
Dieldrin ND 0.010 ug/L 1 01/04/22 AW SW8081B Endosulfan I ND 0.005 ug/L 1 01/04/22 AW SW8081B Endosulfan II ND 0.005 ug/L 1 01/04/22 AW SW8081B Endosulfan sulfate ND 0.005 ug/L 1 01/04/22 AW SW8081B Endrin ND 0.005 ug/L 1 01/04/22 AW SW8081B	d-BHC	ND	0.005	ug/L	1	01/04/22	AW	SW8081B
Endosulfan I ND 0.005 ug/L 1 01/04/22 AW SW8081B Endosulfan II ND 0.005 ug/L 1 01/04/22 AW SW8081B Endosulfan sulfate ND 0.005 ug/L 1 01/04/22 AW SW8081B Endrin ND 0.005 ug/L 1 01/04/22 AW SW8081B	Dieldrin	ND	0.010	ug/L	1	01/04/22	AW	SW8081B
Endosulfan II ND 0.005 ug/L 1 01/04/22 AW SW8081B Endosulfan sulfate ND 0.005 ug/L 1 01/04/22 AW SW8081B Endrin ND 0.005 ug/L 1 01/04/22 AW SW8081B	Endosulfan I	ND	0.005	ug/L	1	01/04/22	AW	SW8081B
Endosulfan sulfate ND 0.005 ug/L 1 01/04/22 AW SW8081B Endrin ND 0.005 ug/L 1 01/04/22 AW SW8081B	Endosulfan II	ND	0.005	ug/L	1	01/04/22	AW	SW8081B
Endrin ND 0.005 ug/L 1 01/04/22 AW SW8081B	Endosulfan sulfate	ND	0.005	ug/L	1	01/04/22	AW	SW8081B
	Endrin	ND	0.005	ug/L	1	01/04/22	AW	SW8081B

Project ID: BURR ELEMENTARY SCHOOL Client ID: BES-303S (0.0-0.5)

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Endrin aldehyde	ND	0.010	ug/L	1	01/04/22	AW	SW8081B
Endrin Ketone	ND	0.005	ug/L	1	01/04/22	AW	SW8081B
g-BHC	ND	0.005	ug/L	1	01/04/22	AW	SW8081B
Heptachlor	ND	0.005	ug/L	1	01/04/22	AW	SW8081B
Heptachlor epoxide	ND	0.005	ug/L	1	01/04/22	AW	SW8081B
Methoxychlor	ND	0.005	ug/L	1	01/04/22	AW	SW8081B
Toxaphene	ND	0.20	ug/L	1	01/04/22	AW	SW8081B
QA/QC Surrogates							
%DCBP (Surrogate Rec)	70		%	1	01/04/22	AW	30 - 150 %
%DCBP (Surrogate Rec) (Confirmation)	66		%	1	01/04/22	AW	30 - 150 %
%TCMX (Surrogate Rec)	129		%	1	01/04/22	AW	30 - 150 %
%TCMX (Surrogate Rec) (Confirmation)	98		%	1	01/04/22	AW	30 - 150 %
Polynuclear Aromatic HC	2						
2-Methylnaphthalene	ND	300	ug/Kg	1	12/29/21	WB	SW8270D
Acenaphthene	ND	300	ug/Kg	1	12/29/21	WB	SW8270D
Acenaphthylene	ND	300	ug/Kg	1	12/29/21	WB	SW8270D
Anthracene	ND	300	ug/Kg	1	12/29/21	WB	SW8270D
Benz(a)anthracene	ND	300	ug/Kg	1	12/29/21	WB	SW8270D
Benzo(a)pyrene	ND	300	ug/Kg	1	12/29/21	WB	SW8270D
Benzo(b)fluoranthene	ND	300	ug/Kg	1	12/29/21	WB	SW8270D
Benzo(ghi)perylene	ND	300	ug/Kg	1	12/29/21	WB	SW8270D
Benzo(k)fluoranthene	ND	300	ug/Kg	1	12/29/21	WB	SW8270D
Chrysene	ND	300	ug/Kg	1	12/29/21	WB	SW8270D
Dibenz(a,h)anthracene	ND	300	ug/Kg	1	12/29/21	WB	SW8270D
Fluoranthene	ND	300	ug/Kg	1	12/29/21	WB	SW8270D
Fluorene	ND	300	ug/Kg	1	12/29/21	WB	SW8270D
Indeno(1,2,3-cd)pyrene	ND	300	ug/Kg	1	12/29/21	WB	SW8270D
Naphthalene	ND	300	ug/Kg	1	12/29/21	WB	SW8270D
Phenanthrene	ND	300	ug/Kg	1	12/29/21	WB	SW8270D
Pyrene	ND	300	ug/Kg	1	12/29/21	WB	SW8270D
QA/QC Surrogates							
% 2-Fluorobiphenyl	102		%	1	12/29/21	WB	30 - 130 %
% Nitrobenzene-d5	80		%	1	12/29/21	WB	30 - 130 %
% Terphenyl-d14	69		%	1	12/29/21	WB	30 - 130 %

Project ID: BURR EL Client ID: BES-303	EMENTARY SC S (0.0-0.5)	HOOL			Pł	noenix	I.D.: CK064	57
Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference	

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director January 10, 2022 Reviewed and Released by: Greg Lawrence, Assistant Lab Director

Analysis Report

January 10, 2022

FOR: Attn: Mr. Brian Sirowich Tighe & Bond 213 Court St, Suite 1100 Middletown, CT 06457

Sample Information		Custody Inforn	Custody Information					
Matrix:	SOIL	Collected by:		12/28/21	12:10			
Location Code:	TIGHE-DAS	Received by:	LB	12/28/21	15:41			
Rush Request:	24 Hour	Analyzed by:	see "By" below					
P.O.#:	150439BES	l eberetem	Data		CCK064			

Laboratory Data

SDG ID: GCK06455 Phoenix ID: CK06458

Project ID: BURR ELEMENTARY SCHOOL Client ID: BES-304S (0.0-0.5)

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Bv	Reference
Areania	2.96	0.96	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4	12/20/21	-,	SW6010D
Arsenic	3.00	0.00	mg/Kg	1	12/29/21		SWOUTUD
	12.6	0.43	mg/Kg	1	12/29/21	EK	SW6010D
SPLP Arsenic	< 0.004	0.004	mg/L	1	01/07/22	EK	SVV6010D
SPLP Metals Digestion	Completed				01/07/22	AB/AB	SW3010A
Percent Solid	81		%		12/28/21	С	SW846-%Solid
Soil Extraction for Pesticide	Completed				12/28/21	O/E	SW3545A
Extraction of ETPH	Completed				12/28/21	B/U/E	SW3546
Soil Extraction for SVOA PAH	Completed				12/28/21	R/U	SW3546
Extraction for PCB	Completed				12/28/21	SX/Q/C	SW3540C
SPLP Extraction for Metals	Completed				01/06/22	AB	SW1312
SPLP Extraction for Organics	Completed				01/03/22	AB	SW1312
SPLP Pesticides Ext.	Completed				01/04/22	JS/JS	SW3510C
Total Metals Digest	Completed				12/28/21	B/P	SW3050B
TPH by GC (Extractable	Products	;)					
Ext. Petroleum H.C. (C9-C36)	ND	60	mg/Kg	1	12/29/21	JRB	CTETPH 8015D
Identification	ND		mg/Kg	1	12/29/21	JRB	CTETPH 8015D
QA/QC Surrogates							
% COD (surr)	58		%	1	12/29/21	JRB	50 - 150 %
% Terphenyl (surr)	57		%	1	12/29/21	JRB	50 - 150 %
PCB (Soxhlet SW35400	<u>;)</u>						
PCB-1016	ND	210	ug/Kg	5	12/29/21	SC	SW8082A
PCB-1221	ND	210	ug/Kg	5	12/29/21	SC	SW8082A
PCB-1232	ND	210	ug/Kg	5	12/29/21	SC	SW8082A
PCB-1242	ND	210	ug/Kg	5	12/29/21	SC	SW8082A
PCB-1248	ND	210	ug/Kg	5	12/29/21	SC	SW8082A

Project ID: BURR ELEMENTARY SCHOOL Client ID: BES-304S (0.0-0.5)

Parameter Result PQL Units Dilution Date/Time By Reference PCB-1264 ND 210 upKg 5 122821 SC SW0082A PCB-1260 ND 210 upKg 5 122821 SC SW0082A PCB-1282 ND 210 upKg 5 122821 SC SW0082A QAGC Surrocates * 5 122821 SC 30 - 150 % SK % DCBP (Confirmation) 32 % 5 122821 SC 30 - 150 % % DCMX (Confirmation) 37 % 5 122821 SC 30 - 150 % % TCMX (Confirmation) 37 % 5 122821 AW SW0081B 4.4'-DDT ND 1.6 upKg 2 122821 AW SW0081B Addrin ND 1.6 upKg 2 122821 AW SW0081B Addrin ND 1.6 upKg 2			RL/					
PCB-1254 ND 210 ug/Kg 5 1229/21 SC SW9082A PCB-1260 ND 210 ug/Kg 5 1229/21 SC SW9082A PCB-1262 ND 210 ug/Kg 5 1229/21 SC SW9082A PCB-1262 ND 210 ug/Kg 5 1229/21 SC SW9082A PCB-1262 ND 210 ug/Kg 5 1229/21 SC 30 - 150 % % DCBP (Confirmation) 32 % 5 1229/21 SC 30 - 150 % % TCMX (Confirmation) 37 % 5 1229/21 AW SW9081B 4.4 -DDE ND 1.6 ug/Kg 2 1229/21 AW SW9081B 4.4 -DDE ND 1.6 ug/Kg 2 1229/21 AW SW9081B Alchin ND 1.6 ug/Kg 2 1229/21 AW SW9081B Alchin ND 1.6 <t< th=""><th>Parameter</th><th>Result</th><th>PQL</th><th>Units</th><th>Dilution</th><th>Date/Time</th><th>By</th><th>Reference</th></t<>	Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference
PCB-1280 ND 210 upKg 5 1228/21 SC SW0802A PCB-1286 ND 210 ugKg 5 1229/21 SC SW0802A PCB-1268 ND 210 ugKg 5 1229/21 SC SW0802A PCB-1268 S 1229/21 SC 30 - 150 % SC 30 - 150 % % DCBP (Confirmation) 32 % 5 1229/21 SC 30 - 150 % % TCMX (Confirmation) 37 % 5 1229/21 AW SW0801B 4.4 -DDE ND 1.6 ug/Kg 2 1228/21 AW SW0801B 4.4 -DDT ND 1.6 ug/Kg 2 1228/21 AW SW0801B Alachior ND 1.6 ug/Kg 2 1228/21 AW SW0801B Alachior ND 1.6 ug/Kg 2 1228/21 AW SW0801B Alachior ND 8.2 ug/Kg	PCB-1254	ND	210	ug/Kg	5	12/29/21	SC	SW8082A
PCB-1282 ND 210 up/Kg 5 12/29/21 SC SW8082A OACC SurroatteS	PCB-1260	ND	210	ug/Kg	5	12/29/21	SC	SW8082A
PCB-1268 ND 210 up/kg 5 12/29/21 SC SW0082A % DCBP 83 % 5 12/29/21 SC 30 - 150 % % DCBP (Confirmation) 82 % 5 12/29/21 SC 30 - 150 % % TCMX (Confirmation) 37 % 5 12/29/21 SC 30 - 150 % Pesticides 5 12/29/21 AW SW8081B 4.4 -DDT ND 1.6 ug/Kg 2 12/29/21 AW SW8081B 4.4 -DDT ND 1.6 ug/Kg 2 12/29/21 AW SW8081B 4.4 -DDT ND 1.6 ug/Kg 2 12/29/21 AW SW8081B Adathar ND 8.2 ug/Kg 2 12/29/21 AW SW8081B Adathar ND 8.2 ug/Kg 2 12/29/21 AW SW8081B Adathar ND 8.2 ug/Kg 2 12/29/21 AW SW8081B Adathar ND	PCB-1262	ND	210	ug/Kg	5	12/29/21	SC	SW8082A
QA/CS Surrogates View DCBP B3 % 5 12/29/21 SC 30 - 150 % % DCBP (Confirmation) B2 % 5 12/29/21 SC 30 - 150 % % TCMX (Confirmation) 32 % 5 12/29/21 SC 30 - 150 % % TCMX (Confirmation) 37 % 5 12/29/21 AW SW8081B 4/4 -DDC ND 1.6 ug/kg 2 12/29/21 AW SW8081B a-BHC ND 1.6 u	PCB-1268	ND	210	ug/Kg	5	12/29/21	SC	SW8082A
% DCBP 83 % 5 1228921 SC 30 - 160 %, % DCBP (Confirmation) 32 % 5 1228921 SC 30 - 160 %, % DCBY (Confirmation) 37 % 5 1228921 SC 30 - 160 %, % TCMX (Confirmation) 37 % 5 1228921 SC 30 - 160 %, 4.4 - DDD ND 1.6 ugKg 2 1228921 AW SW8081B 4.4 - DDT ND 1.6 ugKg 2 1228921 AW SW8081B Alachlor ND 1.6 ugKg 2 1228921 AW SW8081B Alachlor ND 8.2 ugKg 2 1228921 AW SW8081B Alachlor ND 8.2 ugKg 2 1228921 AW SW8081B Alachlor ND 8.2 ugKg 2 1228921 AW SW8081B Alachlor ND 8.2 <thugkg< th=""> 2</thugkg<>	QA/QC Surrogates							
% DCBP (Confirmation) 82 % 5 122921 SC 30.150 % % TCMX (Confirmation) 37 % 5 122921 SC 30.150 % Pesticides	% DCBP	83		%	5	12/29/21	SC	30 - 150 %
% TCMX 32 % 5 1228/21 SC 30 - 150 % % TCMX (Confirmation) 37 % 5 1228/21 SC 30 - 150 % Pesticides SW 5 1228/21 SC 30 - 150 % A(4'-DDD ND 1.6 ug/Kg 2 1228/21 AW SW8081B a/4'-DDE ND 1.6 ug/Kg 2 1228/21 AW SW8081B a/4'-DDT ND 1.6 ug/Kg 2 1228/21 AW SW8081B a/4'-DDT ND 8.2 ug/Kg 2 1228/21 AW SW8081B a/achior ND 8.2 ug/Kg 2 1228/21 AW SW8081B b-BHC ND 1.6 ug/Kg 2 1228/21 AW SW8081B c-Bdosulfan I ND 8.2 ug/Kg 2 1228/21 AW SW8081B Endosulfan I ND 8.2	% DCBP (Confirmation)	82		%	5	12/29/21	SC	30 - 150 %
% TCMX (Confirmation) 37 % 5 12/29/21 SC 30-150 % Pesticides 4.4 -DDC ND 1.6 ug/Kg 2 12/29/21 AW SW8081B 4.4'-DDT ND 1.6 ug/Kg 2 12/29/21 AW SW8081B a-BHC ND 1.6 ug/Kg 2 12/29/21 AW SW8081B a-BHC ND 1.6 ug/Kg 2 12/29/21 AW SW8081B Aldrin ND 1.6 ug/Kg 2 12/29/21 AW SW8081B b-BHC ND 1.6 ug/Kg 2 12/29/21 AW SW8081B c-Bdoculfan ND 8.2 ug/Kg 2 12/29/21 AW SW8081B Endosulfan II ND 8.2 ug/Kg 2 12/29/21 AW SW8081B Endosulfan Sulfate ND 8.2 ug/Kg 2 12/29/21 AW SW8081B	% TCMX	32		%	5	12/29/21	SC	30 - 150 %
Pesticides 4.4'-DDD ND 1.6 ug/Kg 2 12/29/21 AW SW80818 4.4'-DDE ND 1.6 ug/Kg 2 12/29/21 AW SW80818 A/4'-DDT ND 1.6 ug/Kg 2 12/29/21 AW SW80818 Alachior ND 1.6 ug/Kg 2 12/29/21 AW SW80818 Aldrin ND 1.6 ug/Kg 2 12/29/21 AW SW80818 Aldrin ND 1.6 ug/Kg 2 12/29/21 AW SW80818 Chlordane ND 4.1 ug/Kg 2 12/29/21 AW SW80818 Endosulfan I ND 8.2 ug/Kg 2 12/29/21 AW SW80818 Endosulfan Sulfate ND 8.2 ug/Kg 2 12/29/21 AW SW80818 Endosulfan II ND 8.2 ug/Kg 2 12/29/21 AW SW80818	% TCMX (Confirmation)	37		%	5	12/29/21	SC	30 - 150 %
4,4'-DDD ND 1.6 ug/kg 2 1229/21 AW SW8081B 4,4'-DDT ND 1.6 ug/kg 2 1229/21 AW SW8081B a-BHC ND 1.6 ug/kg 2 1229/21 AW SW8081B Alachlor ND 1.6 ug/kg 2 1229/21 AW SW8081B Alachlor ND 1.6 ug/kg 2 1229/21 AW SW8081B b-BHC ND 1.6 ug/kg 2 1229/21 AW SW8081B c-BHC ND 1.6 ug/kg 2 1229/21 AW SW8081B c-BHC ND 8.2 ug/kg 2 1229/21 AW SW8081B Endosulfan ND 8.2 ug/kg 2 1229/21 AW SW8081B Endosulfan II ND 8.2 ug/kg 2 1229/21 AW SW8081B Endosulfan Sulfate ND 8.2 ug/kg 2 1229/21 AW SW8081B Enddrin	Pesticides							
4.4'-DDE ND 1.6 ug/Kg 2 12/29/21 AW SW8081B 4.4'-DDT ND 1.6 ug/Kg 2 12/29/21 AW SW8081B Alachlor ND 8.2 ug/Kg 2 12/29/21 AW SW8081B Alachlor ND 1.6 ug/Kg 2 12/29/21 AW SW8081B Alachlor ND 1.6 ug/Kg 2 12/29/21 AW SW8081B Chlordane ND 4.1 ug/Kg 2 12/29/21 AW SW8081B Dieldrin ND 4.1 ug/Kg 2 12/29/21 AW SW8081B Endosulfan I ND 8.2 ug/Kg 2 12/29/21 AW SW8081B Endosulfan Ulate ND 8.2 ug/Kg 2 12/29/21 AW SW8081B Endosulfan sulfate ND 8.2 ug/Kg 2 12/29/21 AW SW8081B Endosulfan sulfate ND 8.2 ug/Kg 2 12/29/21 AW SW8081B <td>4,4' -DDD</td> <td>ND</td> <td>1.6</td> <td>ug/Kg</td> <td>2</td> <td>12/29/21</td> <td>AW</td> <td>SW8081B</td>	4,4' -DDD	ND	1.6	ug/Kg	2	12/29/21	AW	SW8081B
4,4'-DDT ND 1.6 ug/kg 2 12/29/21 AW SW8081B a-BHC ND 1.6 ug/kg 2 12/29/21 AW SW8081B Alachlor ND 8.2 ug/kg 2 12/29/21 AW SW8081B Aldrin ND 1.6 ug/kg 2 12/29/21 AW SW8081B b-BHC ND 1.6 ug/kg 2 12/29/21 AW SW8081B c-Hordane ND 1.6 ug/kg 2 12/29/21 AW SW8081B c-Hosulfan ND 4.1 ug/kg 2 12/29/21 AW SW8081B Endosulfan I ND 8.2 ug/kg 2 12/29/21 AW SW8081B Endosulfan sulfate ND 8.2 ug/kg 2 12/29/21 AW SW8081B Endrin aldehyde ND 8.2 ug/kg 2 12/29/21 AW SW8081B Endrin ketone ND 8.2 ug/kg 2 12/29/21 AW SW8081B	4,4' -DDE	ND	1.6	ug/Kg	2	12/29/21	AW	SW8081B
a-BHC ND 1.6 ug/Kg 2 1229/21 AW SW8081B Alachlor ND 8.2 ug/Kg 2 1229/21 AW SW8081B b-BHC ND 1.6 ug/Kg 2 1229/21 AW SW8081B b-BHC ND 1.6 ug/Kg 2 1229/21 AW SW8081B chlordane ND 4.1 ug/Kg 2 1229/21 AW SW8081B chlordane ND 4.1 ug/Kg 2 1229/21 AW SW8081B Endosulfan I ND 8.2 ug/Kg 2 1229/21 AW SW8081B Endosulfan sulfate ND 8.2 ug/Kg 2 1229/21 AW SW8081B Endrin ND 8.2 ug/Kg 2 1229/21 AW SW8081B Endrin aldehyde ND 8.2 ug/Kg 2 1229/21 AW SW8081B Endrin aldehyde ND 8.2 ug/Kg 2 1229/21 AW SW8081B	4,4' -DDT	ND	1.6	ug/Kg	2	12/29/21	AW	SW8081B
Alachlor ND 8.2 ug/kg 2 122921 AW SW8081B Aldrin ND 1.6 ug/kg 2 122921 AW SW8081B b-BHC ND 1.6 ug/kg 2 122921 AW SW8081B Chlordane ND 4.1 ug/kg 2 122921 AW SW8081B d-BHC ND 1.6 ug/kg 2 122921 AW SW8081B Endosulfan I ND 8.2 ug/kg 2 122921 AW SW8081B Endosulfan II ND 8.2 ug/kg 2 122921 AW SW8081B Endosulfan Sulfate ND 8.2 ug/kg 2 122921 AW SW8081B Endrin aldehyde ND 8.2 ug/kg 2 122921 AW SW8081B Endrin inketone ND 8.2 ug/kg 2 122921 AW SW8081B Endrin inketone ND 8.2 ug/kg 2 122921 AW SW8081B	a-BHC	ND	1.6	ug/Kg	2	12/29/21	AW	SW8081B
Aldrin ND 1.6 ug/Kg 2 12/29/21 AW SW8081B b-BHC ND 1.6 ug/Kg 2 12/29/21 AW SW8081B Chlordane ND 1.6 ug/Kg 2 12/29/21 AW SW8081B d-BHC ND 1.6 ug/Kg 2 12/29/21 AW SW8081B Dieldrin ND 4.1 ug/Kg 2 12/29/21 AW SW8081B Endosulfan II ND 8.2 ug/Kg 2 12/29/21 AW SW8081B Endosulfan III ND 8.2 ug/Kg 2 12/29/21 AW SW8081B Endrin letone ND 8.2 ug/Kg 2 12/29/21 AW SW8081B Endrin ketone ND 8.2 ug/Kg 2 12/29/21 AW SW8081B Endrin ketone ND 8.2 ug/Kg 2 12/29/21 AW SW8081B g-BHC ND 1.6 ug/Kg 2 12/29/21 AW SW8081B <	Alachlor	ND	8.2	ug/Kg	2	12/29/21	AW	SW8081B
b-BHC ND 1.6 ug/kg 2 1229/21 AW SW8081B Chlordane ND 41 ug/kg 2 1229/21 AW SW8081B d-BHC ND 1.6 ug/kg 2 1229/21 AW SW8081B Endosulfan ND 4.1 ug/kg 2 1229/21 AW SW8081B Endosulfan I ND 8.2 ug/kg 2 1229/21 AW SW8081B Endosulfan sulfate ND 8.2 ug/kg 2 12/29/21 AW SW8081B Endrin ND 8.2 ug/kg 2 12/29/21 AW SW8081B Endrin aldehyde ND 8.2 ug/kg 2 12/29/21 AW SW8081B Endrin ketone ND 8.2 ug/kg 2 12/29/21 AW SW8081B Endrin ketone ND 8.2 ug/kg 2 12/29/21 AW SW8081B Endrin ketone	Aldrin	ND	1.6	ug/Kg	2	12/29/21	AW	SW8081B
Chlordane ND 41 ug/Kg 2 12/29/21 AW SW8081B d-BHC ND 1.6 ug/Kg 2 12/29/21 AW SW8081B Dieldrin ND 4.1 ug/Kg 2 12/29/21 AW SW8081B Endosulfan I ND 8.2 ug/Kg 2 12/29/21 AW SW8081B Endosulfan II ND 8.2 ug/Kg 2 12/29/21 AW SW8081B Endrin aldehyde ND 8.2 ug/Kg 2 12/29/21 AW SW8081B Endrin ketone ND 8.2 ug/Kg 2 12/29/21 AW SW8081B Endrin ketone ND 8.2 ug/Kg 2 12/29/21 AW SW8081B Endrin ketone ND 8.2 ug/Kg 2 12/29/21 AW SW8081B Endrin ketone ND 8.2 ug/Kg 2 12/29/21 AW SW8081B	b-BHC	ND	1.6	ug/Kg	2	12/29/21	AW	SW8081B
d-BHC ND 1.6 ug/Kg 2 12/29/21 AW SW8081B Dieldrin ND 4.1 ug/Kg 2 12/29/21 AW SW8081B Endosulfan I ND 8.2 ug/Kg 2 12/29/21 AW SW8081B Endosulfan II ND 8.2 ug/Kg 2 12/29/21 AW SW8081B Endosulfan sulfate ND 8.2 ug/Kg 2 12/29/21 AW SW8081B Endrin aldehyde ND 8.2 ug/Kg 2 12/29/21 AW SW8081B Endrin ketone ND 8.2 ug/Kg 2 12/29/21 AW SW8081B g-BHC ND 8.2 ug/Kg 2 12/29/21 AW SW8081B Heptachlor ND 8.2 ug/Kg 2 12/29/21 AW SW8081B Hotaxychlor ND 8.2 ug/Kg 2 12/29/21 AW SW8081B Tox	Chlordane	ND	41	ug/Kg	2	12/29/21	AW	SW8081B
Dieldrin ND 4.1 ug/Kg 2 12/29/21 AW SW8081B Endosulfan I ND 8.2 ug/Kg 2 12/29/21 AW SW8081B Endosulfan II ND 8.2 ug/Kg 2 12/29/21 AW SW8081B Endosulfan sulfate ND 8.2 ug/Kg 2 12/29/21 AW SW8081B Endrin ND 8.2 ug/Kg 2 12/29/21 AW SW8081B Endrin ketone ND 8.2 ug/Kg 2 12/29/21 AW SW8081B Endrin ketone ND 8.2 ug/Kg 2 12/29/21 AW SW8081B Endrin ketone ND 8.2 ug/Kg 2 12/29/21 AW SW8081B Heptachlor ND 8.2 ug/Kg 2 12/29/21 AW SW8081B Methoxychlor ND 4.1 ug/Kg 2 12/29/21 AW SW8081B GAQC Surrogates S % 2 12/29/21 AW 30 - 150 % <td>d-BHC</td> <td>ND</td> <td>1.6</td> <td>ug/Kg</td> <td>2</td> <td>12/29/21</td> <td>AW</td> <td>SW8081B</td>	d-BHC	ND	1.6	ug/Kg	2	12/29/21	AW	SW8081B
Endosulfan I ND 8.2 ug/Kg 2 12/29/21 AW SW8081B Endosulfan II ND 8.2 ug/Kg 2 12/29/21 AW SW8081B Endosulfan sulfate ND 8.2 ug/Kg 2 12/29/21 AW SW8081B Endrin ND 8.2 ug/Kg 2 12/29/21 AW SW8081B Endrin aldehyde ND 8.2 ug/Kg 2 12/29/21 AW SW8081B Endrin ketone ND 8.2 ug/Kg 2 12/29/21 AW SW8081B Heptachlor ND 8.2 ug/Kg 2 12/29/21 AW SW8081B Heptachlor epoxide ND 8.2 ug/Kg 2 12/29/21 AW SW8081B Methoxychlor ND 160 ug/Kg 2 12/29/21 AW SW8081B OXOE Surgates % 2 12/29/21 AW 30 - 150 % % DCBP (Confirmation) 69 % 2 12/29/21 AW 30 - 150 %	Dieldrin	ND	4.1	ug/Kg	2	12/29/21	AW	SW8081B
Endosulfan II ND 8.2 ug/Kg 2 12/29/21 AW SW8081B Endosulfan sulfate ND 8.2 ug/Kg 2 12/29/21 AW SW8081B Endrin ND 8.2 ug/Kg 2 12/29/21 AW SW8081B Endrin aldehyde ND 8.2 ug/Kg 2 12/29/21 AW SW8081B Endrin ketone ND 8.2 ug/Kg 2 12/29/21 AW SW8081B Heptachlor ND 8.2 ug/Kg 2 12/29/21 AW SW8081B Heptachlor epoxide ND 8.2 ug/Kg 2 12/29/21 AW SW8081B Methoxychlor ND 160 ug/Kg 2 12/29/21 AW SW8081B OXACC Surrogates ////////////////////////////////////	Endosulfan I	ND	8.2	ug/Kg	2	12/29/21	AW	SW8081B
Endosulfan sulfate ND 8.2 ug/Kg 2 12/29/21 AW SW8081B Endrin ND 8.2 ug/Kg 2 12/29/21 AW SW8081B Endrin aldehyde ND 8.2 ug/Kg 2 12/29/21 AW SW8081B Endrin ketone ND 8.2 ug/Kg 2 12/29/21 AW SW8081B g-BHC ND 1.6 ug/Kg 2 12/29/21 AW SW8081B Heptachlor epoxide ND 8.2 ug/Kg 2 12/29/21 AW SW8081B Methoxychlor ND 4.1 ug/Kg 2 12/29/21 AW SW8081B OXACC Surrogates V 0 0.0 ug/Kg 2 12/29/21 AW SW8081B OXACC Surrogates V 0 0.0 ND 0.0 0.0 1 0/0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Endosulfan II	ND	8.2	ug/Kg	2	12/29/21	AW	SW8081B
Endrin ND 8.2 ug/Kg 2 12/29/21 AW SW8081B Endrin aldehyde ND 8.2 ug/Kg 2 12/29/21 AW SW8081B Endrin ketone ND 8.2 ug/Kg 2 12/29/21 AW SW8081B g-BHC ND 1.6 ug/Kg 2 12/29/21 AW SW8081B Heptachlor ND 8.2 ug/Kg 2 12/29/21 AW SW8081B Methoxychlor ND 8.2 ug/Kg 2 12/29/21 AW SW8081B OXACC Surrogates ND 41 ug/Kg 2 12/29/21 AW SW8081B OXACC Surrogates V 0 160 ug/Kg 2 12/29/21 AW 30-150 % % DCBP (Confirmation) 69 % 2 12/29/21 AW 30-150 % % TCMX 59 % 2 12/29/21 AW SW8081B 4,4' -DDD <	Endosulfan sulfate	ND	8.2	ug/Kg	2	12/29/21	AW	SW8081B
Endrin aldehyde ND 8.2 ug/Kg 2 12/29/21 AW SW8081B Endrin ketone ND 8.2 ug/Kg 2 12/29/21 AW SW8081B g-BHC ND 1.6 ug/Kg 2 12/29/21 AW SW8081B Heptachlor ND 8.2 ug/Kg 2 12/29/21 AW SW8081B Heptachlor epoxide ND 8.2 ug/Kg 2 12/29/21 AW SW8081B Methoxychlor ND 8.2 ug/Kg 2 12/29/21 AW SW8081B OX/OC Surrogates ND 160 ug/Kg 2 12/29/21 AW SW8081B OX/OC Surrogates V 1 0.150 % SW8081B SW8081B SW8081B OX/OC Surrogates % 2 12/29/21 AW 30 - 150 % SW8081B Y TCMX 59 % 2 12/29/21 AW 30 - 150 % SW8081B <td< td=""><td>Endrin</td><td>ND</td><td>8.2</td><td>ug/Kg</td><td>2</td><td>12/29/21</td><td>AW</td><td>SW8081B</td></td<>	Endrin	ND	8.2	ug/Kg	2	12/29/21	AW	SW8081B
Endrin ketone ND 8.2 ug/Kg 2 12/29/21 AW SW8081B g-BHC ND 1.6 ug/Kg 2 12/29/21 AW SW8081B Heptachlor ND 8.2 ug/Kg 2 12/29/21 AW SW8081B Heptachlor epoxide ND 8.2 ug/Kg 2 12/29/21 AW SW8081B Methoxychlor ND 4.1 ug/Kg 2 12/29/21 AW SW8081B Toxaphene ND 160 ug/Kg 2 12/29/21 AW SW8081B GA/QC Surrogates	Endrin aldehyde	ND	8.2	ug/Kg	2	12/29/21	AW	SW8081B
g-BHC ND 1.6 ug/Kg 2 12/29/21 AW SW8081B Heptachlor epoxide ND 8.2 ug/Kg 2 12/29/21 AW SW8081B Heptachlor epoxide ND 8.2 ug/Kg 2 12/29/21 AW SW8081B Methoxychlor ND 41 ug/Kg 2 12/29/21 AW SW8081B Toxaphene ND 160 ug/Kg 2 12/29/21 AW SW8081B QA/QC Surrogates X SW8081B SW8081B QA/AC Surrogates X 2 12/29/21 AW 30 - 150 % & DCBP (Confirmation) 69 % 2 12/29/21 AW 30 - 150 % % TCMX (Confirmation) 59 % 2 12/29/21 AW 30 - 150 % % TCMX (Confirmation) 59 % 2 12/29/21 AW 30 - 150 % 4,4' -DDD ND 0.005 ug/L 1 01/04/22 AW SW8081B 4,4' -DDT	Endrin ketone	ND	8.2	ug/Kg	2	12/29/21	AW	SW8081B
Heptachlor ND 8.2 ug/Kg 2 12/29/21 AW SW8081B Heptachlor epoxide ND 8.2 ug/Kg 2 12/29/21 AW SW8081B Methoxychlor ND 41 ug/Kg 2 12/29/21 AW SW8081B Toxaphene ND 160 ug/Kg 2 12/29/21 AW SW8081B OA/CC Surrogates 2 12/29/21 AW SW8081B Ø/ACC Surrogates 30 - 150 % % DCBP (Confirmation) 69 % 2 12/29/21 AW 30 - 150 % % TCMX 59 % 2 12/29/21 AW 30 - 150 % % TCMX (Confirmation) 59 % 2 12/29/21 AW 30 - 150 % 4,4' -DDD ND 0.005 ug/L 1 01/04/22 AW SW8081B 4,4' -DDT	g-BHC	ND	1.6	ug/Kg	2	12/29/21	AW	SW8081B
Heptachlor epoxide ND 8.2 ug/Kg 2 12/29/21 AW SW8081B Methoxychlor ND 41 ug/Kg 2 12/29/21 AW SW8081B Toxaphene ND 160 ug/Kg 2 12/29/21 AW SW8081B OA/QC Surrogates V V SW8081B V SW8081B ØA/QC Surrogates 52 % 2 12/29/21 AW S0 - 150 % % DCBP (Confirmation) 69 % 2 12/29/21 AW 30 - 150 % % TCMX 59 % 2 12/29/21 AW 30 - 150 % % TCMX (Confirmation) 59 % 2 12/29/21 AW 30 - 150 % SPLP Pesticides % 2 12/29/21 AW 30 - 150 % % 4,4' -DDD ND 0.005 ug/L 1 01/04/22 AW SW8081B 4,4' -DDT ND 0.005 ug/L 1 01/04/22 AW SW8081B a-BHC ND 0.005 ug/L 1	Heptachlor	ND	8.2	ug/Kg	2	12/29/21	AW	SW8081B
Methoxychlor ND 41 ug/Kg 2 12/29/21 AW SW8081B Toxaphene ND 160 ug/Kg 2 12/29/21 AW SW8081B QAQC Surrogates ************************************	Heptachlor epoxide	ND	8.2	ug/Kg	2	12/29/21	AW	SW8081B
Toxaphene ND 160 ug/Kg 2 12/29/21 AW SW8081B QA/QC Surrogates	Methoxychlor	ND	41	ug/Kg	2	12/29/21	AW	SW8081B
OA/OC Surrogates % DCBP 52 % 2 12/29/21 AW 30 - 150 % % DCBP (Confirmation) 69 % 2 12/29/21 AW 30 - 150 % % TCMX 59 % 2 12/29/21 AW 30 - 150 % % TCMX (Confirmation) 59 % 2 12/29/21 AW 30 - 150 % % TCMX (Confirmation) 59 % 2 12/29/21 AW 30 - 150 % % TCMX (Confirmation) 59 % 2 12/29/21 AW 30 - 150 % \$MTCMX (Confirmation) 59 % 2 12/29/21 AW 30 - 150 % \$MTCMX (Confirmation) 59 % 2 12/29/21 AW 30 - 150 % \$MTCMX (Confirmation) 59 % 2 12/29/21 AW \$W8081B 4,4' -DDD ND 0.005 ug/L 1 01/04/22 AW \$W8081B 4,4' -DDT ND 0.005 ug/L	Toxaphene	ND	160	ug/Kg	2	12/29/21	AW	SW8081B
% DCBP 52 % 2 12/29/21 AW 30 - 150 % % DCBP (Confirmation) 69 % 2 12/29/21 AW 30 - 150 % % TCMX 59 % 2 12/29/21 AW 30 - 150 % % TCMX (Confirmation) 59 % 2 12/29/21 AW 30 - 150 % SPLP Pesticides % 2 12/29/21 AW 30 - 150 % 4,4' -DDD ND 0.005 ug/L 1 01/04/22 AW SW8081B 4,4' -DDE ND 0.005 ug/L 1 01/04/22 AW SW8081B 4,4' -DDT ND 0.005 ug/L 1 01/04/22 AW SW8081B 4,4' -DDT ND 0.005 ug/L 1 01/04/22 AW SW8081B 4,a-BHC ND 0.005 ug/L 1 01/04/22 AW SW8081B Alderin ND 0.003 ug/L 1 01/04/22 AW SW8081B b-BHC ND 0.005 ug/L 1 </td <td>QA/QC Surrogates</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	QA/QC Surrogates							
% DCBP (Confirmation) 69 % 2 12/29/21 AW 30 - 150 % % TCMX 59 % 2 12/29/21 AW 30 - 150 % % TCMX (Confirmation) 59 % 2 12/29/21 AW 30 - 150 % SPLP Pesticides % 2 12/29/21 AW 30 - 150 % 4,4' -DDD ND 0.005 ug/L 1 01/04/22 AW SW8081B 4,4' -DDE ND 0.005 ug/L 1 01/04/22 AW SW8081B 4,4' -DDT ND 0.005 ug/L 1 01/04/22 AW SW8081B a-BHC ND 0.005 ug/L 1 01/04/22 AW SW8081B Alachlor ND 0.005 ug/L 1 01/04/22 AW SW8081B Aldrin ND 0.003 ug/L 1 01/04/22 AW SW8081B b-BHC ND 0.005 ug/L 1 01/04/22 AW SW8081B d-BHC ND 0.055 ug/L <td>% DCBP</td> <td>52</td> <td></td> <td>%</td> <td>2</td> <td>12/29/21</td> <td>AW</td> <td>30 - 150 %</td>	% DCBP	52		%	2	12/29/21	AW	30 - 150 %
% TCMX 59 % 2 12/29/21 AW 30 - 150 % % TCMX (Confirmation) 59 % 2 12/29/21 AW 30 - 150 % SPLP Pesticides 4,4' -DDD ND 0.005 ug/L 1 01/04/22 AW SW8081B 4,4' -DDE ND 0.005 ug/L 1 01/04/22 AW SW8081B 4,4' -DDT ND 0.005 ug/L 1 01/04/22 AW SW8081B a-BHC ND 0.005 ug/L 1 01/04/22 AW SW8081B Alachlor ND 0.005 ug/L 1 01/04/22 AW SW8081B Aldrin ND 0.003 ug/L 1 01/04/22 AW SW8081B b-BHC ND 0.005 ug/L 1 01/04/22 AW SW8081B Ghlordane ND 0.050 ug/L 1 01/04/22 AW SW8081B Dialdrin ND 0.050 ug/L 1 01/04/22 AW SW8081B	% DCBP (Confirmation)	69		%	2	12/29/21	AW	30 - 150 %
% TCMX (Confirmation) 59 % 2 12/29/21 AW 30 - 150 % SPLP Pesticides 4,4' - DDD ND 0.005 ug/L 1 01/04/22 AW SW8081B 4,4' - DDE ND 0.005 ug/L 1 01/04/22 AW SW8081B 4,4' - DDT ND 0.005 ug/L 1 01/04/22 AW SW8081B a-BHC ND 0.005 ug/L 1 01/04/22 AW SW8081B Alachlor ND 0.005 ug/L 1 01/04/22 AW SW8081B Aldrin ND 0.010 ug/L 1 01/04/22 AW SW8081B b-BHC ND 0.003 ug/L 1 01/04/22 AW SW8081B Chlordane ND 0.055 ug/L 1 01/04/22 AW SW8081B d-BHC ND 0.055 ug/L 1 01/04/22 AW SW8081B Dialdrin ND 0.055 ug/L 1 01/04/22 AW	% TCMX	59		%	2	12/29/21	AW	30 - 150 %
SPLP Pesticides 4,4' - DDD ND 0.005 ug/L 1 01/04/22 AW SW8081B 4,4' - DDE ND 0.005 ug/L 1 01/04/22 AW SW8081B 4,4' - DDT ND 0.005 ug/L 1 01/04/22 AW SW8081B a-BHC ND 0.005 ug/L 1 01/04/22 AW SW8081B Alachlor ND 0.005 ug/L 1 01/04/22 AW SW8081B Aldrin ND 0.010 ug/L 1 01/04/22 AW SW8081B b-BHC ND 0.005 ug/L 1 01/04/22 AW SW8081B Chlordane ND 0.005 ug/L 1 01/04/22 AW SW8081B d-BHC ND 0.050 ug/L 1 01/04/22 AW SW8081B d-BHC ND 0.050 ug/L 1 01/04/22 AW SW8081B d-BHC ND 0.005 ug/L 1 01/04/22 AW	% TCMX (Confirmation)	59		%	2	12/29/21	AW	30 - 150 %
4,4'-DDD ND 0.005 ug/L 1 01/04/22 AW SW8081B 4,4'-DDE ND 0.005 ug/L 1 01/04/22 AW SW8081B 4,4'-DDT ND 0.005 ug/L 1 01/04/22 AW SW8081B a-BHC ND 0.005 ug/L 1 01/04/22 AW SW8081B Alachlor ND 0.005 ug/L 1 01/04/22 AW SW8081B Aldrin ND 0.005 ug/L 1 01/04/22 AW SW8081B b-BHC ND 0.003 ug/L 1 01/04/22 AW SW8081B chlordane ND 0.005 ug/L 1 01/04/22 AW SW8081B d-BHC ND 0.005 ug/L 1 01/04/22 AW SW8081B d-BHC ND 0.005 ug/L 1 01/04/22 AW SW8081B d-BHC ND 0.005 ug/L 1 01/04/22 AW SW8081B Dialdri	SPLP Pesticides							
4,4' - DDE ND 0.005 ug/L 1 01/04/22 AW SW8081B 4,4' - DDT ND 0.005 ug/L 1 01/04/22 AW SW8081B a-BHC ND 0.005 ug/L 1 01/04/22 AW SW8081B Alachlor ND 0.005 ug/L 1 01/04/22 AW SW8081B Aldrin ND 0.010 ug/L 1 01/04/22 AW SW8081B b-BHC ND 0.003 ug/L 1 01/04/22 AW SW8081B Chlordane ND 0.005 ug/L 1 01/04/22 AW SW8081B d-BHC ND 0.005 ug/L 1 01/04/22 AW SW8081B d-BHC ND 0.050 ug/L 1 01/04/22 AW SW8081B d-BHC ND 0.005 ug/L 1 01/04/22 AW SW8081B Dialdrin ND 0.005 ug/L 1 01/04/22 AW SW8081B	4,4' -DDD	ND	0.005	ug/L	1	01/04/22	AW	SW8081B
4,4' - DDT ND 0.005 ug/L 1 01/04/22 AW SW8081B a-BHC ND 0.005 ug/L 1 01/04/22 AW SW8081B Alachlor ND 0.010 ug/L 1 01/04/22 AW SW8081B Aldrin ND 0.003 ug/L 1 01/04/22 AW SW8081B b-BHC ND 0.005 ug/L 1 01/04/22 AW SW8081B Chlordane ND 0.005 ug/L 1 01/04/22 AW SW8081B d-BHC ND 0.005 ug/L 1 01/04/22 AW SW8081B d-BHC ND 0.005 ug/L 1 01/04/22 AW SW8081B Dialdrin ND 0.005 ug/L 1 01/04/22 AW SW8081B	4,4' -DDE	ND	0.005	ug/L	1	01/04/22	AW	SW8081B
a-BHC ND 0.005 ug/L 1 01/04/22 AW SW8081B Alachlor ND 0.010 ug/L 1 01/04/22 AW SW8081B Aldrin ND 0.003 ug/L 1 01/04/22 AW SW8081B b-BHC ND 0.005 ug/L 1 01/04/22 AW SW8081B Chlordane ND 0.005 ug/L 1 01/04/22 AW SW8081B d-BHC ND 0.005 ug/L 1 01/04/22 AW SW8081B d-BHC ND 0.005 ug/L 1 01/04/22 AW SW8081B Dialdrin ND 0.005 ug/L 1 01/04/22 AW SW8081B	4,4' -DDT	ND	0.005	ug/L	1	01/04/22	AW	SW8081B
Alachlor ND 0.010 ug/L 1 01/04/22 AW SW8081B Aldrin ND 0.003 ug/L 1 01/04/22 AW SW8081B b-BHC ND 0.005 ug/L 1 01/04/22 AW SW8081B Chlordane ND 0.050 ug/L 1 01/04/22 AW SW8081B d-BHC ND 0.005 ug/L 1 01/04/22 AW SW8081B Dialdrin ND 0.005 ug/L 1 01/04/22 AW SW8081B	a-BHC	ND	0.005	ug/L	1	01/04/22	AW	SW8081B
Aldrin ND 0.003 ug/L 1 01/04/22 AW SW8081B b-BHC ND 0.005 ug/L 1 01/04/22 AW SW8081B Chlordane ND 0.050 ug/L 1 01/04/22 AW SW8081B d-BHC ND 0.005 ug/L 1 01/04/22 AW SW8081B Dioldrin ND 0.005 ug/L 1 01/04/22 AW SW8081B	Alachlor	ND	0.010	ug/L	1	01/04/22	AW	SW8081B
b-BHC ND 0.005 ug/L 1 01/04/22 AW SW8081B Chlordane ND 0.050 ug/L 1 01/04/22 AW SW8081B d-BHC ND 0.005 ug/L 1 01/04/22 AW SW8081B Dioldrin ND 0.005 ug/L 1 01/04/22 AW SW8081B	Aldrin	ND	0.003	ug/L	1	01/04/22	AW	SW8081B
Chlordane ND 0.050 ug/L 1 01/04/22 AW SW8081B d-BHC ND 0.005 ug/L 1 01/04/22 AW SW8081B Dioldrin ND 0.002 ug/L 1 01/04/22 AW SW8081B	b-BHC	ND	0.005	ug/L	1	01/04/22	AW	SW8081B
d-BHC ND 0.005 ug/L 1 01/04/22 AW SW8081B	Chlordane	ND	0.050	ug/L	1	01/04/22	AW	SW8081B
	d-BHC	ND	0.005	ug/L	1	01/04/22	AW	SW8081B
UICIUIIII 100 0.002 UYL I 01/04/22 AVV SVV6081B	Dieldrin	ND	0.002	ug/L	1	01/04/22	AW	SW8081B
Endosulfan I ND 0.005 ug/L 1 01/04/22 AW SW8081B	Endosulfan I	ND	0.005	ug/L	1	01/04/22	AW	SW8081B

Project ID: BURR ELEMENTARY SCHOOL Client ID: BES-304S (0.0-0.5)

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference
Endosulfan II	ND	0.005	ug/L	1	01/04/22	AW	SW8081B
Endosulfan sulfate	ND	0.005	ug/L	1	01/04/22	AW	SW8081B
Endrin	ND	0.005	ug/L	1	01/04/22	AW	SW8081B
Endrin aldehyde	ND	0.005	ug/L	1	01/04/22	AW	SW8081B
Endrin Ketone	ND	0.005	ug/L	1	01/04/22	AW	SW8081B
g-BHC	ND	0.005	ug/L	1	01/04/22	AW	SW8081B
Heptachlor	ND	0.005	ug/L	1	01/04/22	AW	SW8081B
Heptachlor epoxide	ND	0.005	ug/L	1	01/04/22	AW	SW8081B
Methoxychlor	ND	0.005	ug/L	1	01/04/22	AW	SW8081B
Toxaphene	ND	0.20	ug/L	1	01/04/22	AW	SW8081B
QA/QC Surrogates							
%DCBP (Surrogate Rec)	44		%	1	01/04/22	AW	30 - 150 %
%DCBP (Surrogate Rec) (Confirmation)	95		%	1	01/04/22	AW	30 - 150 %
%TCMX (Surrogate Rec)	74		%	1	01/04/22	AW	30 - 150 %
%TCMX (Surrogate Rec) (Confirmation)	86		%	1	01/04/22	AW	30 - 150 %
Polynuclear Aromatic I	HC						
2-Methylnaphthalene	ND	290	ug/Kg	1	12/29/21	WB	SW8270D
Acenaphthene	ND	290	ug/Kg	1	12/29/21	WB	SW8270D
Acenaphthylene	ND	290	ug/Kg	1	12/29/21	WB	SW8270D
Anthracene	ND	290	ug/Kg	1	12/29/21	WB	SW8270D
Benz(a)anthracene	ND	290	ug/Kg	1	12/29/21	WB	SW8270D
Benzo(a)pyrene	ND	290	ug/Kg	1	12/29/21	WB	SW8270D
Benzo(b)fluoranthene	ND	290	ug/Kg	1	12/29/21	WB	SW8270D
Benzo(ghi)perylene	ND	290	ug/Kg	1	12/29/21	WB	SW8270D
Benzo(k)fluoranthene	ND	290	ug/Kg	1	12/29/21	WB	SW8270D
Chrysene	ND	290	ug/Kg	1	12/29/21	WB	SW8270D
Dibenz(a,h)anthracene	ND	290	ug/Kg	1	12/29/21	WB	SW8270D
Fluoranthene	ND	290	ug/Kg	1	12/29/21	WB	SW8270D
Fluorene	ND	290	ug/Kg	1	12/29/21	WB	SW8270D
Indeno(1,2,3-cd)pyrene	ND	290	ug/Kg	1	12/29/21	WB	SW8270D
Naphthalene	ND	290	ug/Kg	1	12/29/21	WB	SW8270D
Phenanthrene	ND	290	ug/Kg	1	12/29/21	WB	SW8270D
Pyrene	ND	290	ug/Kg	1	12/29/21	WB	SW8270D
QA/QC Surrogates							
% 2-Fluorobiphenyl	93		%	1	12/29/21	WB	30 - 130 %
% Nitrobenzene-d5	76		%	1	12/29/21	WB	30 - 130 %
% Terphenyl-d14	66		%	1	12/29/21	WB	30 - 130 %

Project ID: BURR ELEN Client ID: BES-304S ((1ENTARY SCI	HOOL			Pł	noeni	x I.D.: CK064	458
Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference	

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis, Shiller, Laboratory Director January 10, 2022 Reviewed and Released by: Greg Lawrence, Assistant Lab Director

Analysis Report

January 10, 2022

FOR: Attn: Mr. Brian Sirowich Tighe & Bond 213 Court St, Suite 1100 Middletown, CT 06457

Sample Information		Custody Inforn	Custody Information					
Matrix:	SOIL	Collected by:		12/28/21	12:15			
Location Code:	TIGHE-DAS	Received by:	LB	12/28/21	15:41			
Rush Request:	24 Hour	Analyzed by:	see "By" below					
P.O.#:	150439BES	l ab avatam	Data		CCKOG			

Laboratory Data

SDG ID: GCK06455 Phoenix ID: CK06459

Project ID: BURR ELEMENTARY SCHOOL Client ID: BES-305S (0.0-0.5)

Deservester	Desult	RL/	L lucitor	Dilution	Dete/Time	D	Defenses
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Arsenic	3.61	0.73	mg/Kg	1	12/29/21	EK	SW6010D
Lead	14.4	0.36	mg/Kg	1	12/29/21	EK	SW6010D
SPLP Lead	< 0.010	0.010	mg/L	1	01/07/22	EK	SW6010D
SPLP Metals Digestion	Completed				01/07/22	AB/AB	SW3010A
Percent Solid	82		%		12/28/21	С	SW846-%Solid
Soil Extraction for Pesticide	Completed				12/28/21	O/E	SW3545A
Extraction of ETPH	Completed				12/28/21	B/U/E	SW3546
Soil Extraction for SVOA PAH	Completed				12/28/21	R/U	SW3546
Extraction for PCB	Completed				12/28/21	SX/Q/C	SW3540C
SPLP Extraction for Metals	Completed				01/06/22	AB	SW1312
SPLP Extraction for Organics	Completed				01/03/22	AB	SW1312
SPLP Pesticides Ext.	Completed				01/04/22	JS/JS	SW3510C
Total Metals Digest	Completed				12/28/21	B/P	SW3050B
TPH by GC (Extractable	e Products	<u>s)</u>					
Ext. Petroleum H.C. (C9-C36)	ND	59	mg/Kg	1	12/29/21	JRB	CTETPH 8015D
Identification	ND		mg/Kg	1	12/29/21	JRB	CTETPH 8015D
QA/QC Surrogates							
% COD (surr)	75		%	1	12/29/21	JRB	50 - 150 %
% Terphenyl (surr)	82		%	1	12/29/21	JRB	50 - 150 %
PCB (Soxhlet SW35400	<u>C)</u>						
PCB-1016	ND	200	ug/Kg	5	12/29/21	SC	SW8082A
PCB-1221	ND	200	ug/Kg	5	12/29/21	SC	SW8082A
PCB-1232	ND	200	ug/Kg	5	12/29/21	SC	SW8082A
PCB-1242	ND	200	ug/Kg	5	12/29/21	SC	SW8082A
PCB-1248	ND	200	ug/Kg	5	12/29/21	SC	SW8082A

Project ID: BURR ELEMENTARY SCHOOL Client ID: BES-305S (0.0-0.5)

		RL/					
Parameter R	lesult	PQL	Units	Dilution	Date/Time	Ву	Reference
PCB-1254	ND	200	ug/Kg	5	12/29/21	SC	SW8082A
PCB-1260	ND	200	ug/Kg	5	12/29/21	SC	SW8082A
PCB-1262	ND	200	ug/Kg	5	12/29/21	SC	SW8082A
PCB-1268	ND	200	ug/Kg	5	12/29/21	SC	SW8082A
QA/QC Surrogates							
% DCBP	72		%	5	12/29/21	SC	30 - 150 %
% DCBP (Confirmation)	82		%	5	12/29/21	SC	30 - 150 %
% TCMX	69		%	5	12/29/21	SC	30 - 150 %
% TCMX (Confirmation)	67		%	5	12/29/21	SC	30 - 150 %
Pesticides							
4,4' -DDD	ND	1.6	ug/Kg	2	12/29/21	AW	SW8081B
4,4' -DDE	ND	1.6	ug/Kg	2	12/29/21	AW	SW8081B
4,4' -DDT	ND	1.6	ug/Kg	2	12/29/21	AW	SW8081B
a-BHC	ND	1.6	ug/Kg	2	12/29/21	AW	SW8081B
Alachlor	ND	7.9	ug/Kg	2	12/29/21	AW	SW8081B
Aldrin	ND	1.6	ug/Kg	2	12/29/21	AW	SW8081B
b-BHC	ND	1.6	ug/Kg	2	12/29/21	AW	SW8081B
Chlordane	ND	40	ug/Kg	2	12/29/21	AW	SW8081B
d-BHC	ND	1.6	ug/Kg	2	12/29/21	AW	SW8081B
Dieldrin	ND	4.0	ug/Kg	2	12/29/21	AW	SW8081B
Endosulfan I	ND	7.9	ug/Kg	2	12/29/21	AW	SW8081B
Endosulfan II	ND	7.9	ug/Kg	2	12/29/21	AW	SW8081B
Endosulfan sulfate	ND	7.9	ug/Kg	2	12/29/21	AW	SW8081B
Endrin	ND	7.9	ug/Kg	2	12/29/21	AW	SW8081B
Endrin aldehyde	ND	7.9	ug/Kg	2	12/29/21	AW	SW8081B
Endrin ketone	ND	7.9	ug/Kg	2	12/29/21	AW	SW8081B
g-BHC	ND	1.6	ug/Kg	2	12/29/21	AW	SW8081B
Heptachlor	ND	7.9	ug/Kg	2	12/29/21	AW	SW8081B
Heptachlor epoxide	ND	7.9	ug/Kg	2	12/29/21	AW	SW8081B
Methoxychlor	ND	40	ug/Kg	2	12/29/21	AW	SW8081B
Toxaphene	ND	160	ug/Kg	2	12/29/21	AW	SW8081B
QA/QC Surrogates							
% DCBP	51		%	2	12/29/21	AW	30 - 150 %
% DCBP (Confirmation)	68		%	2	12/29/21	AW	30 - 150 %
% TCMX	61		%	2	12/29/21	AW	30 - 150 %
% TCMX (Confirmation)	61		%	2	12/29/21	AW	30 - 150 %
SPLP Pesticides							
4,4' -DDD	ND	0.005	ug/L	1	01/04/22	AW	SW8081B
4,4' -DDE	ND	0.005	ug/L	1	01/04/22	AW	SW8081B
4,4' -DDT	ND	0.005	ug/L	1	01/04/22	AW	SW8081B
a-BHC	ND	0.005	ug/L	1	01/04/22	AW	SW8081B
Alachlor	ND	0.010	ug/L	1	01/04/22	AW	SW8081B
Aldrin	ND	0.003	ug/L	1	01/04/22	AW	SW8081B
b-BHC	ND	0.005	ug/L	1	01/04/22	AW	SW8081B
Chlordane	ND	0.050	ug/L	1	01/04/22	AW	SW8081B
d-BHC	ND	0.005	ug/L	1	01/04/22	AW	SW8081B
Dieldrin	ND	0.002	ug/L	1	01/04/22	AW	SW8081B
Endosulfan I	ND	0.005	ug/L	1	01/04/22	AW	SW8081B

Project ID: BURR ELEMENTARY SCHOOL Client ID: BES-305S (0.0-0.5)

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Endosulfan II	ND	0.005	ug/L	1	01/04/22	AW	SW8081B
Endosulfan sulfate	ND	0.005	ug/L	1	01/04/22	AW	SW8081B
Endrin	ND	0.005	ug/L	1	01/04/22	AW	SW8081B
Endrin aldehyde	ND	0.005	ug/L	1	01/04/22	AW	SW8081B
Endrin Ketone	ND	0.005	ug/L	1	01/04/22	AW	SW8081B
g-BHC	ND	0.005	ug/L	1	01/04/22	AW	SW8081B
Heptachlor	ND	0.005	ug/L	1	01/04/22	AW	SW8081B
Heptachlor epoxide	ND	0.005	ug/L	1	01/04/22	AW	SW8081B
Methoxychlor	ND	0.005	ug/L	1	01/04/22	AW	SW8081B
Toxaphene	ND	0.20	ug/L	1	01/04/22	AW	SW8081B
QA/QC Surrogates							
%DCBP (Surrogate Rec)	48		%	1	01/04/22	AW	30 - 150 %
%DCBP (Surrogate Rec) (Confirmation)	129		%	1	01/04/22	AW	30 - 150 %
%TCMX (Surrogate Rec)	64		%	1	01/04/22	AW	30 - 150 %
%TCMX (Surrogate Rec) (Confirmation)	95		%	1	01/04/22	AW	30 - 150 %
Polynuclear Aromatic	HC						
2-Methylnaphthalene	ND	280	ug/Kg	1	12/29/21	WB	SW8270D
Acenaphthene	ND	280	ug/Kg	1	12/29/21	WB	SW8270D
Acenaphthylene	ND	280	ug/Kg	1	12/29/21	WB	SW8270D
Anthracene	ND	280	ug/Kg	1	12/29/21	WB	SW8270D
Benz(a)anthracene	ND	280	ug/Kg	1	12/29/21	WB	SW8270D
Benzo(a)pyrene	ND	280	ug/Kg	1	12/29/21	WB	SW8270D
Benzo(b)fluoranthene	ND	280	ug/Kg	1	12/29/21	WB	SW8270D
Benzo(ghi)perylene	ND	280	ug/Kg	1	12/29/21	WB	SW8270D
Benzo(k)fluoranthene	ND	280	ug/Kg	1	12/29/21	WB	SW8270D
Chrysene	ND	280	ug/Kg	1	12/29/21	WB	SW8270D
Dibenz(a,h)anthracene	ND	280	ug/Kg	1	12/29/21	WB	SW8270D
Fluoranthene	ND	280	ug/Kg	1	12/29/21	WB	SW8270D
Fluorene	ND	280	ug/Kg	1	12/29/21	WB	SW8270D
Indeno(1,2,3-cd)pyrene	ND	280	ug/Kg	1	12/29/21	WB	SW8270D
Naphthalene	ND	280	ug/Kg	1	12/29/21	WB	SW8270D
Phenanthrene	ND	280	ug/Kg	1	12/29/21	WB	SW8270D
Pyrene	ND	280	ug/Kg	1	12/29/21	WB	SW8270D
QA/QC Surrogates							
% 2-Fluorobiphenyl	98		%	1	12/29/21	WB	30 - 130 %
% Nitrobenzene-d5	83		%	1	12/29/21	WB	30 - 130 %
% Terphenyl-d14	68		%	1	12/29/21	WB	30 - 130 %

Project ID: BURR ELE Client ID: BES-305S		Pł	noeni	x I.D.: CK064	159			
Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference	

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis, Shiller, Laboratory Director January 10, 2022 Reviewed and Released by: Greg Lawrence, Assistant Lab Director

Analysis Report

January 10, 2022

FOR: Attn: Mr. Brian Sirowich Tighe & Bond 213 Court St, Suite 1100 Middletown, CT 06457

Sample Information		Custody Inforn	nation	<u>Date</u>	<u>Time</u>
Matrix:	SOIL	Collected by:		12/28/21	12:20
Location Code:	TIGHE-DAS	Received by:	LB	12/28/21	15:41
Rush Request:	24 Hour	Analyzed by:	see "By" below		
P.O.#:	150439BES	Laboratory	Data	SDG ID:	GCK064

Project ID: BURR ELEMENTARY SCHOOL

Client ID:

BES-306S (0.0-0.5)

SDG ID: GCK06455 Phoenix ID: CK06460

Deremeter	Popult	RL/	Linita	Dilution	Data/Tima	Dv	Deference
Falameter	Result	FQL	Units	Dilution	Date/Time	Бу	Reference
Arsenic	4.21	0.75	mg/Kg	1	12/29/21	EK	SW6010D
Lead	15.3	0.38	mg/Kg	1	12/29/21	EK	SW6010D
SPLP Arsenic	< 0.004	0.004	mg/L	1	01/07/22	EK	SW6010D
SPLP Lead	< 0.010	0.010	mg/L	1	01/07/22	EK	SW6010D
SPLP Metals Digestion	Completed				01/07/22	AB/AB	SW3010A
Percent Solid	79		%		12/28/21	С	SW846-%Solid
Soil Extraction for Pesticide	Completed				12/28/21	O/E	SW3545A
Extraction of ETPH	Completed				12/28/21	B/U/E	SW3546
Soil Extraction for SVOA PAH	Completed				12/28/21	R/U	SW3546
Extraction for PCB	Completed				12/28/21	SX/Q/C	SW3540C
SPLP Extraction for Metals	Completed				01/06/22	AB	SW1312
SPLP Extraction for Organics	Completed				12/29/21	AB	SW1312
SPLP Pesticides Ext.	Completed				12/30/21	JS/JS	SW3510C
Total Metals Digest	Completed				12/28/21	B/P	SW3050B
TPH by GC (Extractable	e Products	<u>;)</u>					
Ext. Petroleum H.C. (C9-C36)	ND	63	mg/Kg	1	12/29/21	JRB	CTETPH 8015D
Identification	ND		mg/Kg	1	12/29/21	JRB	CTETPH 8015D
QA/QC Surrogates							
% COD (surr)	52		%	1	12/29/21	JRB	50 - 150 %
% Terphenyl (surr)	64		%	1	12/29/21	JRB	50 - 150 %
PCB (Soxhlet SW35400	<u>C)</u>						
PCB-1016	ND	210	ug/Kg	5	12/29/21	SC	SW8082A
PCB-1221	ND	210	ug/Kg	5	12/29/21	SC	SW8082A
PCB-1232	ND	210	ug/Kg	5	12/29/21	SC	SW8082A
PCB-1242	ND	210	ug/Kg	5	12/29/21	SC	SW8082A

Project ID: BURR ELEMENTARY SCHOOL Client ID: BES-306S (0.0-0.5)

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
PCB-1248	ND	210	ug/Kg	5	12/29/21	SC	SW8082A
PCB-1254	ND	210	ug/Kg	5	12/29/21	SC	SW8082A
PCB-1260	ND	210	ug/Kg	5	12/29/21	SC	SW8082A
PCB-1262	ND	210	ug/Kg	5	12/29/21	SC	SW8082A
PCB-1268	ND	210	ug/Kg	5	12/29/21	SC	SW8082A
QA/QC Surrogates							
% DCBP	74		%	5	12/29/21	SC	30 - 150 %
% DCBP (Confirmation)	72		%	5	12/29/21	SC	30 - 150 %
% TCMX	78		%	5	12/29/21	SC	30 - 150 %
% TCMX (Confirmation)	77		%	5	12/29/21	SC	30 - 150 %
Pesticides							
4,4' -DDD	ND	1.6	ug/Kg	2	12/29/21	AW	SW8081B
4,4' -DDE	6.0	1.6	ug/Kg	2	12/29/21	AW	SW8081B
4,4' -DDT	6.2	1.6	ug/Kg	2	12/29/21	AW	SW8081B
a-BHC	ND	1.6	ug/Kg	2	12/29/21	AW	SW8081B
Alachlor	ND	8.2	ug/Kg	2	12/29/21	AW	SW8081B
Aldrin	ND	1.6	ug/Kg	2	12/29/21	AW	SW8081B
b-BHC	ND	1.6	ug/Kg	2	12/29/21	AW	SW8081B
Chlordane	ND	41	ug/Kg	2	12/29/21	AW	SW8081B
d-BHC	ND	1.6	ug/Kg	2	12/29/21	AW	SW8081B
Dieldrin	ND	4.1	ug/Kg	2	12/29/21	AW	SW8081B
Endosulfan I	ND	8.2	ug/Kg	2	12/29/21	AW	SW8081B
Endosulfan II	ND	8.2	ug/Kg	2	12/29/21	AW	SW8081B
Endosulfan sulfate	ND	8.2	ug/Kg	2	12/29/21	AW	SW8081B
Endrin	ND	8.2	ug/Kg	2	12/29/21	AW	SW8081B
Endrin aldehyde	ND	8.2	ug/Kg	2	12/29/21	AW	SW8081B
Endrin ketone	ND	8.2	ug/Kg	2	12/29/21	AW	SW8081B
g-BHC	ND	1.6	ug/Kg	2	12/29/21	AW	SW8081B
Heptachlor	ND	8.2	ug/Kg	2	12/29/21	AW	SW8081B
Heptachlor epoxide	ND	8.2	ug/Kg	2	12/29/21	AW	SW8081B
Methoxychlor	ND	41	ug/Kg	2	12/29/21	AW	SW8081B
Toxaphene	ND	160	ug/Kg	2	12/29/21	AW	SW8081B
QA/QC Surrogates							
% DCBP	53		%	2	12/29/21	AW	30 - 150 %
% DCBP (Confirmation)	70		%	2	12/29/21	AW	30 - 150 %
% TCMX	63		%	2	12/29/21	AW	30 - 150 %
% TCMX (Confirmation)	61		%	2	12/29/21	AW	30 - 150 %
SPLP Pesticides							
4,4' -DDD	ND	0.005	ug/L	1	12/30/21	AW	SW8081B
4,4' -DDE	ND	0.005	ug/L	1	12/30/21	AW	SW8081B
4,4' -DDT	ND	0.005	ug/L	1	12/30/21	AW	SW8081B
a-BHC	ND	0.005	ug/L	1	12/30/21	AW	SW8081B
Alachlor	ND	0.010	ug/L	1	12/30/21	AW	SW8081B
Aldrin	ND	0.003	ug/L	1	12/30/21	AW	SW8081B
b-BHC	ND	0.005	ug/L	1	12/30/21	AW	SW8081B
Chlordane	ND	0.050	ug/L	1	12/30/21	AW	SW8081B
d-BHC	ND	0.005	ug/L	1	12/30/21	AW	SW8081B
Dieldrin	ND	0.002	ug/L	1	12/30/21	AW	SW8081B

Project ID: BURR ELEMENTARY SCHOOL Client ID: BES-306S (0.0-0.5)

Deremeter	Popult	RL/	Linito	Dilution	Data/Tima	D./	Poforonoo
Farameter	Result	FQL	UTIIIS	Dilution	Date/Time	Бу	Reference
Endosulfan I	ND	0.005	ug/L	1	12/30/21	AW	SW8081B
Endosulfan II	ND	0.005	ug/L	1	12/30/21	AW	SW8081B
Endosulfan sulfate	ND	0.010	ug/L	1	12/30/21	AW	SW8081B
Endrin	ND	0.005	ug/L	1	12/30/21	AW	SW8081B
Endrin aldehyde	ND	0.005	ug/L	1	12/30/21	AW	SW8081B
Endrin Ketone	ND	0.005	ug/L	1	12/30/21	AW	SW8081B
g-BHC	ND	0.005	ug/L	1	12/30/21	AW	SW8081B
Heptachlor	ND	0.005	ug/L	1	12/30/21	AW	SW8081B
Heptachlor epoxide	ND	0.005	ug/L	1	12/30/21	AW	SW8081B
Methoxychlor	ND	0.005	ug/L	1	12/30/21	AW	SW8081B
Toxaphene	ND	0.20	ug/L	1	12/30/21	AW	SW8081B
QA/QC Surrogates							
%DCBP (Surrogate Rec)	35		%	1	12/30/21	AW	30 - 150 %
%DCBP (Surrogate Rec) (Confirmation)	32		%	1	12/30/21	AW	30 - 150 %
%TCMX (Surrogate Rec)	80		%	1	12/30/21	AW	30 - 150 %
%TCMX (Surrogate Rec) (Confirmation)	104		%	1	12/30/21	AW	30 - 150 %
Polynuclear Aromatic H	IC						
2-Methylnaphthalene	ND	290	ug/Kg	1	12/29/21	WB	SW8270D
Acenaphthene	ND	290	ug/Kg	1	12/29/21	WB	SW8270D
Acenaphthylene	ND	290	ug/Kg	1	12/29/21	WB	SW8270D
Anthracene	ND	290	ug/Kg	1	12/29/21	WB	SW8270D
Benz(a)anthracene	ND	290	ug/Kg	1	12/29/21	WB	SW8270D
Benzo(a)pyrene	ND	290	ug/Kg	1	12/29/21	WB	SW8270D
Benzo(b)fluoranthene	ND	290	ug/Kg	1	12/29/21	WB	SW8270D
Benzo(ghi)perylene	ND	290	ug/Kg	1	12/29/21	WB	SW8270D
Benzo(k)fluoranthene	ND	290	ug/Kg	1	12/29/21	WB	SW8270D
Chrysene	ND	290	ug/Kg	1	12/29/21	WB	SW8270D
Dibenz(a,h)anthracene	ND	290	ug/Kg	1	12/29/21	WB	SW8270D
Fluoranthene	ND	290	ug/Kg	1	12/29/21	WB	SW8270D
Fluorene	ND	290	ug/Kg	1	12/29/21	WB	SW8270D
Indeno(1,2,3-cd)pyrene	ND	290	ug/Kg	1	12/29/21	WB	SW8270D
Naphthalene	ND	290	ug/Kg	1	12/29/21	WB	SW8270D
Phenanthrene	ND	290	ug/Kg	1	12/29/21	WB	SW8270D
Pvrene	ND	290	ug/Kg	1	12/29/21	WB	SW8270D
QA/QC Surrogates							
% 2-Fluorobiphenvl	105		%	1	12/29/21	WB	30 - 130 %
% Nitrobenzene-d5	85		%	1	12/29/21	WB	30 - 130 %
% Terphenyl-d14	76		%	1	12/29/21	WB	30 - 130 %

Project ID: BURR ELE	MENTARY SCI		Phoenix I.D.: CK06					
Client ID: BES-306S	(0.0-0.5)							
		RL/						
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference	

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis, Shiller, Laboratory Director January 10, 2022 Reviewed and Released by: Greg Lawrence, Assistant Lab Director

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045

Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

January 10, 2022

QA/QC Data

SDG I.D.: GCK06455

Parameter	Blank	Blk RL	Sample Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
QA/QC Batch 606256 (mg/kg), (2C Sam	ple No:	CK0629	7 (CK064	455, CK	06456	, CK064	57, CK	06458,	CK064	59, CK	06460)	
ICP Metals - Soil													
Arsenic	BRL	0.67	1.41	1.68	NC	103	101	2.0	94.7			75 - 125	35
Lead	BRL	0.33	36.1	39.2	8.20	101	93.8	7.4	95.2			75 - 125	35
Comment:													
Additional Criteria: LCS acceptanc	e range i	is 80-120	% MS acc	eptance i	range 75	-125%.							
QA/QC Batch 607330 (mg/L), Q	C Samp	ole No: 0	CK10719	(CK064	58, CKC	6459,	CK0646	0)					
ICP Metals - SPLP Extrac	tion												
Arsenic	BRL	0.004	< 0.004	< 0.004	NC	92.1	92.0	0.1	98.5			80 - 120	20
Lead	BRL	0.010	0.022	0.022	NC	93.0	93.1	0.1	100			80 - 120	20
Comment:													
Additional Criteria: LCS acceptanc	Additional Criteria: LCS acceptance range is 80-120% MS acceptance range 75-125%.												

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045

Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

January 10, 2022

QA/QC Data

SDG I.D.: GCK06455

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
QA/QC Batch 606257 (mg/Kg), (2C Sam	ple No: CK06450	(CK06455, CK0645	6, CK06	457, Ck	(06458	, CK064	59, CK	(06460)		
TPH by GC (Extractable P	roduc	ts) - Soil									
Ext. Petroleum H.C. (C9-C36)	ND	50	76	79	3.9	92	113	20.5	60 - 120	30	
% COD (surr)	34	%	54	58	7.1	81	124	42.0	50 - 150	30	r.s
% Terphenyl (surr)	89	%	94	95	1.1	105	134	24.3	50 - 150	30	.,=
Comment:											
Additional surrogate criteria: LCS a normalized based on the alkane ca	cceptan	ce range is 60-120%	MS acceptance range	9 50-150%	%. The E	TPH/DF	RO LCS h	nas bee	n		
OA/OC Batch 606255 (ug/Kg). C	C Sam	ple No: CK05913 1	0X (CK06455, CK0	6456. C	K06457	. CK06	458. CK	06459	. CK064	60)	
Polychlorinated Binhenyls	- Soil			0.00, 0		, 0.100	,		, 0.100	00)	
DCR 1014		170	00	01	1 0	100	01	0.4	40 140	20	
PCB-1010		170	02	01	1.2	100	91	9.4	40 - 140	30	
DCB-1221		170							40 - 140	30	
PCB-1232		170							40 - 140	30	
PCB-1242		170							40 - 140	30	
PCB-1254		170							40 - 140	30	
PCB-1260	ND	170	90	86	45	NC	NC	NC	40 - 140	30	
PCB-1262	ND	170	70	00	1.0			110	40 - 140	30	
PCB-1268	ND	170							40 - 140	30	
% DCBP (Surrogate Rec)	86	%	95	92	3.2	73	94	25.1	30 - 150	30	
% DCBP (Surrogate Rec) (Confirm	81	%	91	89	2.2	73	112	42.2	30 - 150	30	r
% TCMX (Surrogate Rec)	71	%	83	80	3.7	83	76	8.8	30 - 150	30	
% TCMX (Surrogate Rec) (Confirm	72	%	86	79	8.5	88	66	28.6	30 - 150	30	
OA/OC Batch 606227 (ug/Kg) C)C Sam	nle No [.] CK05643.2		456 CK	06457	CK064	58 CK	6459	CK0646	50)	
Pesticides - Soil	20 Sum			100, 010	00107,		50, ORC	,0107,		.0)	
4,4' -DDD	ND	1.7	82	82	0.0	140	123	12.9	40 - 140	30	
4,4' -DDE	ND	1.7	75	78	3.9	104	103	1.0	40 - 140	30	
4,4' -DDT	ND	1.7	66	68	3.0	123	114	7.6	40 - 140	30	
a-BHC	ND	1.0	64	68	6.1	83	91	9.2	40 - 140	30	
Alachlor	ND	3.3	NA	NA	NC	NA	NA	NC	40 - 140	30	
Aldrin	ND	1.0	61	65	6.3	81	82	1.2	40 - 140	30	
b-BHC	ND	1.0	73	75	2.7	96	99	3.1	40 - 140	30	
Chlordane	ND	33	69	73	5.6	95	98	3.1	40 - 140	30	
d-BHC	ND	3.3	74	52	34.9	82	70	15.8	40 - 140	30	r
Dieldrin	ND	1.0	65	69	6.0	83	84	1.2	40 - 140	30	
Endosulfan I	ND	3.3	64	69	7.5	73	79	7.9	40 - 140	30	
Endosulfan II	ND	3.3	75	82	8.9	100	105	4.9	40 - 140	30	
Endosulfan sulfate	ND	3.3	71	75	5.5	112	104	7.4	40 - 140	30	
Endrin	ND	3.3	65	65	0.0	87	82	5.9	40 - 140	30	
Endrin aldehyde	ND	3.3	55	61	10.3	83	82	1.2	40 - 140	30	
Endrin ketone	ND	3.3	73	68	7.1	92	93	1.1	40 - 140	30	
g-BHC	ND	1.0	71	76	6.8	100	94	6.2	40 - 140	30	

<u>QA/QC Data</u>

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
Heptachlor	ND	3.3	60	64	6.5	80	80	0.0	40 - 140	30	
Heptachlor epoxide	ND	3.3	61	65	6.3	82	82	0.0	40 - 140	30	
Methoxychlor	ND	3.3	80	77	3.8	94	100	6.2	40 - 140	30	
Toxaphene	ND	130	NA	NA	NC	NA	NA	NC	40 - 140	30	
% DCBP	79	%	74	82	10.3	87	82	5.9	30 - 150	30	
% DCBP (Confirmation)	78	%	85	63	29.7	74	78	5.3	30 - 150	30	
% TCMX	75	%	73	78	6.6	93	94	1.1	30 - 150	30	
% TCMX (Confirmation)	70	%	79	66	17.9	77	81	5.1	30 - 150	30	
QA/QC Batch 606469 (ug/L), QC	Samp	le No: CK05884 (CK06460)									
<u>Pesticides</u>											
4,4' -DDD	ND	0.003	84	73	14.0				40 - 140	20	
4,4' -DDE	ND	0.003	73	68	7.1				40 - 140	20	
4,4' -DDT	ND	0.003	65	73	11.6				40 - 140	20	
a-BHC	ND	0.002	65	57	13.1				40 - 140	20	
Alachlor	ND	0.005	NA	NA	NC				40 - 140	20	
Aldrin	ND	0.002	56	57	1.8				40 - 140	20	
b-BHC	ND	0.002	71	55	25.4				40 - 140	20	r
Chlordane	ND	0.050	66	65	1.5				40 - 140	20	
d-BHC	ND	0.005	70	81	14.6				40 - 140	20	
Dieldrin	ND	0.002	61	67	9.4				40 - 140	20	
Endosulfan I	ND	0.005	53	74	33.1				40 - 140	20	r
Endosulfan II	ND	0.005	70	77	9.5				40 - 140	20	
Endosulfan sulfate	ND	0.005	65	67	3.0				40 - 140	20	
Endrin	ND	0.005	64	71	10.4				40 - 140	20	
Endrin aldehyde	ND	0.005	51	88	53.2				40 - 140	20	r
Endrin ketone	ND	0.005	58	68	15.9				40 - 140	20	
g-BHC	ND	0.002	66	60	9.5				40 - 140	20	
Heptachlor	ND	0.005	58	57	1.7				40 - 140	20	
Heptachlor epoxide	ND	0.005	53	63	17.2				40 - 140	20	
Methoxychlor	ND	0.005	72	61	16.5				40 - 140	20	
Toxaphene	ND	0.20	NA	NA	NC				40 - 140	20	
% DCBP	47	%	81	82	1.2				30 - 150	20	
% DCBP (Confirmation)	50	%	88	72	20.0				30 - 150	20	
% TCMX	77	%	100	94	6.2				30 - 150	20	
% TCMX (Confirmation)	105	%	95	89	6.5				30 - 150	20	
QA/QC Batch 606818 (ug/L), QC	Samp	le No: CK06455 (CK06455, CK0	6456, (CK06457	7, CK06	458, C	K06459)			
<u>Pesticides</u>											
4,4' -DDD	ND	0.003	99	106	6.8				40 - 140	20	
4,4' -DDE	ND	0.003	100	91	9.4				40 - 140	20	
4,4' -DDT	ND	0.003	96	87	9.8				40 - 140	20	
a-BHC	ND	0.002	88	119	30.0				40 - 140	20	r
Alachlor	ND	0.005	NA	NA	NC				40 - 140	20	
Aldrin	ND	0.002	100	98	2.0				40 - 140	20	
b-BHC	ND	0.002	113	130	14.0				40 - 140	20	
Chlordane	ND	0.050	96	99	3.1				40 - 140	20	
d-BHC	ND	0.005	59	76	25.2				40 - 140	20	r
Dieldrin	ND	0.002	96	108	11.8				40 - 140	20	
Endosulfan I	ND	0.005	102	88	14.7				40 - 140	20	
Endosulfan II	ND	0.005	118	124	5.0				40 - 140	20	
Endosulfan sulfate	ND	0.005	98	94	4.2				40 - 140	20	
Endrin	ND	0.005	101	109	7.6				40 - 140	20	
Endrin aldehyde	ND	0.005	91	79	14.1				40 - 140	20	

QA/QC Data

	.	Blk	LCS	LCSD	LCS	MS	MSD	MS	% Rec	% RPD	
Parameter	Blank	RL	%	%	RPD	%	%	RPD	Limits	Limits	
Endrin ketone	ND	0.005	116	98	16.8				40 - 140	20	
g-BHC	ND	0.002	94	138	37.9				40 - 140	20	r
Heptachlor	ND	0.005	102	106	3.8				40 - 140	20	
Heptachlor epoxide	ND	0.005	99	88	11.8				40 - 140	20	
Methoxychlor	ND	0.005	99	99	0.0				40 - 140	20	
Toxaphene	ND	0.20	NA	NA	NC				40 - 140	20	
% DCBP	69	%	102	86	17.0				30 - 150	20	
% DCBP (Confirmation)	114	%	56	108	63.4				30 - 150	20	r
% TCMX	72	%	71	96	29.9				30 - 150	20	r
% TCMX (Confirmation)	103	%	60	102	51.9				30 - 150	20	r
Comment [.]											

A LCS and LCS duplicate were performed instead of a MS and MSD. Alpha and gamma chlordane were spiked and analyzed instead of technical chlordane. Gamma chlordane recovery is reported as chlordane in the LCS and LCSD

QA/QC Batch 606258 (ug/kg), QC Sample No: CK05368 (CK06455, CK06456, CK06457, CK06458, CK06459, CK06460)

Polynuclear Aromatic HC - Soil

2-Methylnaphthalene	ND	230	77	69	11.0	74	79	6.5	40 - 140	30
Acenaphthene	ND	230	100	85	16.2	93	97	4.2	30 - 130	30
Acenaphthylene	ND	230	92	78	16.5	85	88	3.5	40 - 140	30
Anthracene	ND	230	96	82	15.7	89	91	2.2	40 - 140	30
Benz(a)anthracene	ND	230	97	83	15.6	88	96	8.7	40 - 140	30
Benzo(a)pyrene	ND	230	89	77	14.5	83	88	5.8	40 - 140	30
Benzo(b)fluoranthene	ND	230	88	80	9.5	81	80	1.2	40 - 140	30
Benzo(ghi)perylene	ND	230	104	93	11.2	98	100	2.0	40 - 140	30
Benzo(k)fluoranthene	ND	230	85	74	13.8	80	78	2.5	40 - 140	30
Chrysene	ND	230	96	82	15.7	87	92	5.6	40 - 140	30
Dibenz(a,h)anthracene	ND	230	103	88	15.7	95	100	5.1	40 - 140	30
Fluoranthene	ND	230	85	80	6.1	73	72	1.4	40 - 140	30
Fluorene	ND	230	95	82	14.7	88	91	3.4	40 - 140	30
Indeno(1,2,3-cd)pyrene	ND	230	109	96	12.7	102	110	7.5	40 - 140	30
Naphthalene	ND	230	76	67	12.6	73	78	6.6	40 - 140	30
Phenanthrene	ND	230	97	85	13.2	92	92	0.0	40 - 140	30
Pyrene	ND	230	71	68	4.3	64	66	3.1	30 - 130	30
% 2-Fluorobiphenyl	98	%	93	80	15.0	88	92	4.4	30 - 130	30
% Nitrobenzene-d5	74	%	76	68	11.1	70	82	15.8	30 - 130	30
% Terphenyl-d14	75	%	81	77	5.1	74	76	2.7	30 - 130	30
Comment:										

Additional 8270 criteria: 20% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 15-110%, for soils 30-130%)

r = This parameter is outside laboratory RPD specified recovery limits.

s = This parameter is outside laboratory Blank Surrogate specified recovery limits.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director January 10, 2022

Monday, January 10, 2022

Criteria: CT: GAM, RC

State: CT

Sample Criteria Exceedances Report

GCK06455 - TIGHE-DAS

State.							RL	Analvsis
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units
CK06460	\$PEST_SMR	4,4' -DDT	CT / RSR GA,GAA (mg/kg) / APS Organics	6.2	1.6	3	3	ug/Kg
CK06460	\$PEST_SMR	4,4' -DDE	CT / RSR GA,GAA (mg/kg) / APS Organics	6.0	1.6	3	3	ug/Kg

Phoenix Laboratories does not assume responsibility for the data contained in this exceedance report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

REASONABLE CONFIDENCE PROTOCOL LABORATORY ANALYSIS QA/QC CERTIFICATION FORM

Laboratory Name:	Phoenix Environmental Labs, Inc.	Client:	Tighe & I	Bond
Project Location:	BURR ELEMENTARY SCHOOL	Project N	umber:	
Laboratory Sample	ID(s): CK06455-CK06460	Sampling	g Date(s):	12/28/2021

List RCP Methods Used (e.g., 8260, 8270, et cetera) 1311/1312, 6010, 8081, 8082, 8270, ETPH

1	For each analytical method referenced in this laboratory report package, were all specified QA/QC performance criteria followed, including the requirement to explain any criteria falling outside of acceptable guidelines, as specified in the CT DEP method-specific Reasonable Confidence Protocol documents?	✓ Yes □ No
1A	Were the method specified preservation and holding time requirements met?	✓ Yes □ No
1B	VPH and EPH methods only:Was the VPH or EPH method conducted withoutsignificant modifications (see section 11.3 of respective RCP methods)	□ Yes □ No ☑ NA
2	Were all samples received by the laboratory in a condition consistent with that described on the associated Chain-of-Custody document(s)?	✓ Yes □ No
3	Were samples received at an appropriate temperature (< 6 Degrees C)?	✓ Yes □ No □ NA
4	Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents acheived? See Sections: ETPH Narration, PEST Narration.	🗆 Yes 🗹 No
5	a) Were reporting limits specified or referenced on the chain-of-custody?	✓ Yes □ No
	b) Were these reporting limits met?	✓ Yes □ No
6	For each analytical method referenced in this laboratory report package, were results reported for all constituents identified in the method-specific analyte lists presented in the Reasonable Confidence Protocol documents?	🗌 Yes 🗹 No
7	Are project-specific matrix spikes and laboratory duplicates included in the data set?	🗆 Yes 🗹 No

Notes: For all questions to which the response was "No" (with the exception of question #7), additional information must be provided in an attached narrative. If the answer to question #1, #1A or 1B is "No", the data package does not meet the requirements for "Reasonable Confidence". This form may not be altered and all questions must be answered.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete.					
Authorized Signature: Phylic Skille	Position: Laboratory Director				
Printed Name: Phyllis Shiller	Date: Monday, January 10, 2022				
Name of Laboratory Phoenix Environmental Labs, In	nc.				

This certification form is to be used for RCP methods only.

CTDEP RCP Laboratory Analysis QA/QC Certification Form - November 2007 Laboratory Quality Assurance and Quality Control Guidance Reasonable Confidence Protocols

RCP Certification Report

January 10, 2022

SDG I.D.: GCK06455

SDG Comments

Metals Analysis:

The client requested a site specific list of elements which is shorter than the 6010 RCP list. The following analytes from the 6010 RCP Metals list were not reported: Antimony, Barium, Beryllium, Cadmium, Chromium, Copper, Nickel, Selenium, Silver, Thallium, Vanadium, Zinc.

8270 Semi-volatile Organics:

The client requested a short list for 8270 RCP Semivolatile. Only the PAH constituents are reported as requested on the chain-ofcustody.

ETPH Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? No.

QC Batch 606257 (Samples: CK06455, CK06456, CK06457, CK06458, CK06459, CK06460): -----

The blank surrogate was below criteria. A low bias is possible. (% COD (surr)(CK06450)) Instrument:

AU-FID84 12/27/21-1

Jeff Bucko, Chemist 12/27/21

CK06459 (1X), CK06460 (1X)

The initial calibration (ET_D09AI) RSD for the compound list was less than 30% except for the following compounds: None. As per section 7.2.3, a discrimination check standard was run (D27A003) and contained the following outliers: None. The continuing calibration %D for the compound list was less than 30% except for the following compounds:None.

AU-XL2 12/27/21-1 Jeff Bucko, Chemist 12/27/21

CK06455 (1X), CK06456 (1X), CK06457 (1X), CK06458 (1X)

The initial calibration (ETPHO13I) RSD for the compound list was less than 30% except for the following compounds: None. As per section 7.2.3, a discrimination check standard was run (D27A003_1) and contained the following outliers: None. The continuing calibration %D for the compound list was less than 30% except for the following compounds: Samples: CK06455, CK06456, CK06457, CK06458 Preceding CC D27A061 - None.

Succeeding CC D27A073 - % Cod (surr) 38%H (30%), ETPH (C9-C36) 39%H (30%)

QC (Batch Specific):

Batch 606257 (CK06450)

CK06455, CK06456, CK06457, CK06458, CK06459, CK06460

All LCS recoveries were within 60 - 120 with the following exceptions: None.

All LCSD recoveries were within 60 - 120 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

Additional surrogate criteria: LCS acceptance range is 60-120% MS acceptance range 50-150%. The ETPH/DRO LCS has been normalized based on the alkane calibration.

ICP Metals Narration

Were all QA/QC performance criteria specified in the analytical method achieved? Yes.

Instrument:

ARCOS-2 01/07/22 09:24 Emily Kolominskaya, Chemist 01/07/22

CK06458, CK06459, CK06460

Page 33 of 42

Certification Report

January 10, 2022

SDG I.D.: GCK06455

ICP Metals Narration

The linear range is defined daily by the calibration range.

The following Initial Calibration Verification (ICV) compounds did not meet criteria: None.

The following Continuing Calibration Verification (CCV) compounds did not meet criteria: None.

The following ICP Interference Check (ICSAB) compounds did not meet criteria: None.

ARCOS-2 12/28/21 16:57

Emily Kolominskaya, Chemist 12/28/21

CK06455, CK06456, CK06457, CK06458, CK06459, CK06460

The linear range is defined daily by the calibration range.

The following Initial Calibration Verification (ICV) compounds did not meet criteria: None. The following Continuing Calibration Verification (CCV) compounds did not meet criteria: None.

The following ICP Interference Check (ICSAB) compounds did not meet criteria: None.

QC (Batch Specific):

Batch 606256 (CK06297)

CK06455, CK06456, CK06457, CK06458, CK06459, CK06460

All LCS recoveries were within 75 - 125 with the following exceptions: None. All LCSD recoveries were within 75 - 125 with the following exceptions: None. All LCS/LCSD RPDs were less than 35% with the following exceptions: None. Additional Criteria: LCS acceptance range is 80-120% MS acceptance range 75-125%.

Batch 607330 (CK10719)

CK06458, CK06459, CK06460

All LCS recoveries were within 80 - 120 with the following exceptions: None. All LCSD recoveries were within 80 - 120 with the following exceptions: None. All LCS/LCSD RPDs were less than 20% with the following exceptions: None.

Additional Criteria: LCS acceptance range is 80-120% MS acceptance range 75-125%.

PCB Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument:

AU-ECD1 12/29/21-1

Saadia Chudary, Chemist 12/29/21

CK06455 (5X), CK06459 (5X)

The initial calibration (PC1201AI) RSD for the compound list was less than 20% except for the following compounds: None. The initial calibration (PC1201BI) RSD for the compound list was less than 20% except for the following compounds: None. The continuing calibration %D for the compound list was less than 15% except for the following compounds: Samples: CK06455, CK06459

Preceding CC D29A003 - None. Succeeding CC D29A020 - PCB 1016 35%H (%) Samples: CK06455, CK06459 Preceding CC D29B003 - None. Succeeding CC D29B020 - PCB 1016 33%H (%)

AU-ECD29 12/29/21-1

Saadia Chudary, Chemist 12/29/21

CK06457 (5X), CK06460 (5X)

The initial calibration (PC1022AI) RSD for the compound list was less than 20% except for the following compounds: None. The initial calibration (PC1022BI) RSD for the compound list was less than 20% except for the following compounds: None.

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

RCP Certification Report

January 10, 2022

SDG I.D.: GCK06455

PCB Narration

The continuing calibration %D for the compound list was less than 15% except for the following compounds: Samples: CK06457, CK06460 Preceding CC D29B008 - None.

Succeeding CC D29B018 - DCBP SURR 27%H (15%)

AU-ECD3 12/29/21-1

Saadia Chudary, Chemist 12/29/21

CK06456 (5X), CK06458 (5X)

The initial calibration (PC1129AI) RSD for the compound list was less than 20% except for the following compounds: None. The initial calibration (PC1129BI) RSD for the compound list was less than 20% except for the following compounds: None. The continuing calibration %D for the compound list was less than 15% except for the following compounds: Samples: CK06456, CK06458

Preceding CC D29B004 - None.

Succeeding CC D29B015 - DCBP SURR -47%L (15%), PCB 1016 -46%L (%), PCB 1260 -52%L (%), TCMX SURR -57%L (15%)

QC (Batch Specific):

Batch 606255 (CK05913)

CK06455, CK06456, CK06457, CK06458, CK06459, CK06460

All LCS recoveries were within 40 - 140 with the following exceptions: None.

All LCSD recoveries were within 40 - 140 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

PEST Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? No.

QC Batch 606227 (Samples: CK06455, CK06456, CK06457, CK06458, CK06459, CK06460): -----

The LCS/LCSD RPD exceeds the method criteria for one analyte, but this analyte was not reported in the sample(s). No significant variability is suspected. (d-BHC)

QC Batch 606469 (Samples: CK06460): -----

The LCS and/or the LCSD recovery is above the upper range for one or more analytes that were not reported in the sample(s), therefore no significant bias is suspected. (4,4" -DDD, 4,4" -DDE, b-BHC, Endosulfan II, Methoxychlor)

The LCS/LCSD RPD exceeds the method criteria for one surrogate. The RPD for the target analytes is acceptable. No significant variability is suspected. (% DCBP)

Instrument:

AU-ECD35 01/04/22-1 Adam Werner, Chemist 01/04/22

CK06455 (1X), CK06456 (1X), CK06457 (1X)

The initial calibration (PS0103AI) RSD for the compound list was less than 20% except for the following compounds: None. The initial calibration (PS0103BI) RSD for the compound list was less than 20% except for the following compounds: None. The Endrin and DDT breakdown does not exceed 15% except for the following compounds:None.

The Endrin and DDT breakdown does not exceed the maximum of 20% except for the following compounds:None.

The continuing calibration %D for the compound list was less than 20% except for the following compounds:

Samples: CK06455, CK06456, CK06457

Preceding CC 104B004 - Endosulfan II -30%L (20%)

Environmental Laboratories. Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

RCP Certification Report

January 10, 2022

SDG I.D.: GCK06455

PEST Narration

Succeeding CC 104B014 - Endosulfan II -24%L (20%)

A low "1A" standard was run after the samples to demonstrate capability to detect any compounds outside of the CC acceptance criteria. All reported samples were ND for the affected compounds.

AU-ECD4 01/04/22-1

Adam Werner, Chemist 01/04/22

CK06458 (1X), CK06459 (1X)

The initial calibration (PS1220AI) RSD for the compound list was less than 20% except for the following compounds: None. The initial calibration (PS1220BI) RSD for the compound list was less than 20% except for the following compounds: None. The Endrin and DDT breakdown does not exceed 15% except for the following compounds:None.

The Endrin and DDT breakdown does not exceed the maximum of 20% except for the following compounds:None.

The continuing calibration %D for the compound list was less than 20% except for the following compounds:

Samples: CK06458, CK06459

Preceding CC 104B004 - b-BHC 54%H (20%) Succeeding CC 104B017 - None.

AU-ECD4 12/29/21-1

Adam Werner, Chemist 12/29/21

CK06458 (2X), CK06459 (2X), CK06460 (2X)

The initial calibration (PS1220AI) RSD for the compound list was less than 20% except for the following compounds: None. The initial calibration (PS1220BI) RSD for the compound list was less than 20% except for the following compounds: None. The Endrin and DDT breakdown does not exceed 15% except for the following compounds:None.

The Endrin and DDT breakdown does not exceed the maximum of 20% except for the following compounds:None.

The continuing calibration %D for the compound list was less than 20% except for the following compounds:

Samples: CK06458, CK06459, CK06460

Preceding CC D29B004 - d-BHC 27%H (20%)

Succeeding CC D29B017 - % DCBP -22%L (20%)

AU-ECD7 12/29/21-1

Adam Werner, Chemist 12/29/21

CK06455 (2X), CK06456 (2X), CK06457 (2X)

The initial calibration (PS1215AI) RSD for the compound list was less than 20% except for the following compounds: None. The initial calibration (PS1215BI) RSD for the compound list was less than 20% except for the following compounds: None.

The Endrin and DDT breakdown does not exceed 15% except for the following compounds:None.

The Endrin and DDT breakdown does not exceed the maximum of 20% except for the following compounds:None.

The continuing calibration %D for the compound list was less than 20% except for the following compounds: Samples: CK06455, CK06456, CK06457

Preceding CC D29B004 - b-BHC 22%H (20%), Endosulfan II -21%L (20%)

Succeeding CC D29B016 - None.

A low "1A" standard was run after the samples to demonstrate capability to detect any compounds outside of the CC acceptance criteria. All reported samples were ND for the affected compounds.

AU-ECD7 12/30/21-1 Adam Werner, Chemist 12/30/21

CK06460 (1X)

The initial calibration (PS1215AI) RSD for the compound list was less than 20% except for the following compounds: None. The initial calibration (PS1215BI) RSD for the compound list was less than 20% except for the following compounds: None. The Endrin and DDT breakdown does not exceed 15% except for the following compounds:None.

The Endrin and DDT breakdown does not exceed the maximum of 20% except for the following compounds:None.

The continuing calibration %D for the compound list was less than 20% except for the following compounds:

Samples: CK06460

Preceding CC D30B004 - Endosulfan II -26%L (20%)

Succeeding CC D30B021 - % DCBP -21%L (20%)

A low "1A" standard was run after the samples to demonstrate capability to detect any compounds outside of the CC acceptance

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

RCP Certification Report

January 10, 2022

SDG I.D.: GCK06455

PEST Narration

criteria. All reported samples were ND for the affected compounds.

QC (Batch Specific):

Batch 606227 (CK05643)

CK06455, CK06456, CK06457, CK06458, CK06459, CK06460 All LCS recoveries were within 40 - 140 with the following exceptions: None. All LCSD recoveries were within 40 - 140 with the following exceptions: None. All LCS/LCSD RPDs were less than 30% with the following exceptions: d-BHC(34.9%)

Batch 606469 (CK05884)

CK06460

All LCS recoveries were within 40 - 140 with the following exceptions: None.

All LCSD recoveries were within 40 - 140 with the following exceptions: None.

All LCS/LCSD RPDs were less than 20% with the following exceptions: b-BHC(25.4%), Endosulfan I(33.1%), Endrin aldehyde(53.2%)

Batch 606818 (CK06455)

CK06455, CK06456, CK06457, CK06458, CK06459

All LCS recoveries were within 40 - 140 with the following exceptions: None.

All LCSD recoveries were within 40 - 140 with the following exceptions: None.

All LCS/LCSD RPDs were less than 20% with the following exceptions: % DCBP (Confirmation)(63.4%), % TCMX(29.9%), % TCMX (Confirmation)(51.9%), a-BHC(30.0%), d-BHC(25.2%), g-BHC(37.9%)

A LCS and LCS duplicate were performed instead of a MS and MSD. Alpha and gamma chlordane were spiked and analyzed instead of technical chlordane. Gamma chlordane recovery is reported as chlordane in the LCS and LCSD

SVOA Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument:

CHEM06 12/28/21-2

Matt Richard, Chemist 12/28/21

CK06455 (1X), CK06456 (1X), CK06457 (1X), CK06458 (1X), CK06459 (1X), CK06460 (1X)

For 8270 full list, the DDT breakdown and pentachlorophenol & benzidine peak tailing were evaluated in the DFTPP tune and were found to be in control.

For 8270 BN list, benzidine peak tailing was evaluated in the DFTPP tune and was found to be in control.

Initial Calibration Evaluation (CHEM06/6_BN_1212):

100% of target compounds met criteria.

The following compounds had %RSDs >20%: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet a minimum response factors: None.

Continuing Calibration Verification (CHEM06/1228_32-6_BN_1212):

Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None.

100% of target compounds met criteria.

The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: None.

NY # 11301

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

RCP Certification Report

January 10, 2022

SDG I.D.: GCK06455

SVOA Narration

The following compounds did not meet minimum response factors: None.

QC (Batch Specific):

Batch 606258 (CK05368)

CK06455, CK06456, CK06457, CK06458, CK06459, CK06460

All LCS recoveries were within 40 - 140 with the following exceptions: None.

All LCSD recoveries were within 40 - 140 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

Additional 8270 criteria: 20% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 15-110%, for soils 30-130%)

Temperature Narration

The samples were received at 1.9C with cooling initiated. (Note acceptance criteria for relevant matrices is above freezing up to 6°C)

Sarah Bell

From: Sent:	Mark Paulsson <u>≺MPaulsson@TigheBond.com></u> Wednesdav December 29, 2021 3:56 pM
To:	Sarah Bell
CC:	Brian Sirowich; Jill L. Libby
Subject:	Lab Report GCK06455 Sample Activation

Hi Sarah,

Can you please activate the following sample for SPLP pesticides, quickest TAT:

Lab ID: GCK06455 Sample ID: CK06460 (BES-306S (0.0-0.5'))

Thanks,

Mark

Mark E. Paulsson Project Environmental Scientist

o. 203.712.1106 | m. 203.216.3139

1000 Bridgeport Avenue, 3rd Floor, Shelton, CT 06484 w: tighebond.com | halvorsondesign.com

Sarah Bell

Subject: Attachments:

FW: Burr GCK06455-Analytical-Report.pdf

Added SPLP Pests to samples per Brian Sirowich

From: Brian Sirowich [mailto:BSirowich@TigheBond.com] Sent: Monday, January 03, 2022 12:51 PM To: Sarah Bell; Jill L. Libby Subject: RE: Burr Hi Sarah - Did you run SPLP Pesticides on these samples as well? If not can you please add

Sarah Bell

rom:	Jill L. Libby <jllibby@tighebond.com></jllibby@tighebond.com>
Sent:	Thursday, January 06, 2022 11:22 AM
To:	Sarah Bell
	Brian Sirowich
Subject:	BUR SPLP Metals

Sarah,

Could I please submit the following samples for 24TAT?

SPLP Lead

BES-305S CK06459

BES-306S CK06460

SPLP Arsenic

 BES-306S
 CK06460

 BES-304S
 CK06458

Jill Libby (*she/her/hers*) Project Environmental Scientist II

o. 781.708.9828 | m. 315.436.8260

One University Avenue, Suite 100, Westwood, MA 02090 w: tighebond.com | halvorsondesign.com

Tighe&Bond

APPENDIX F

Clean Earth of Connecticut 58 North Washington Street Plainville, CT 06062 Ph: Fax:

Manifest:1878240 Vehicle:60436a Decal:

Customer:Cisco LLC Generator:Town of Fairfield Address:725 Old Post Road FAIRFIELD, CT 06824 Ticket:2696350

Date	Time	Scale
In:01/05/2022	14:17:56	CECT
Out:01/05/2022	14:17:56	CECT

	Lbs.	Tns
Gross:	67,040	33.52
Tare:	37,920	18.96
Net:	29,120	14.56

Carrier: Profile #:214072186 Job:Burr Elementary School Address:1960 Burr Street FAIRFIELD, CT 06824

Material

Recyclable soil/rock/material

Comment:

Driver

Facility Clean Earth of Connecticut Mark Tran

CLEANEARTH	NO	N-RCRA HAZAF WASTE MANIFI	RDOUS EST			18	78	24		
 GENERATOR'S NAME AND MAILING ADDRESS TOWN OF Fairfield 725 Old Post Road Fairfield CT 2. GENERATOR'S PHONE 203-256-3010 	AND MAILING ADDREss airfield Burr Det Road 1960 CT 06824 Fairf 203-256-3010		Burr E: 1960 Bu Fairfie	lement irr St	ary reet	Schoo.	1 06	824		
3. TRANSPORTER I COMPANY NAME	4.	US EPA ID NUMBER	A. TRANSPORTER	1'S PHONE		TRANSPORT	ER'S PL	ATE NUM		
Clsco Environmental, L	LC	NOT APPLICABLE	(20)3	(20)3 752-2558 (60436-4		
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	6.	US EPA ID NUMBER	B. TRANSPORTER	2'S PHONE TRANSPORTER'S PLATE				ATE NUM		
DESIGNATED FACILITY NAME AND SITE ADDRESS	8	NOT APPLICABLE	(000	C. FACILITY'S PHONE (860) 747-8888						
CLEAN EARTH OF CONNECTICUT 58 NORTH WASHINGTON STREET PLAINVILLE, CT 06062		CLEAN EARTH OF CO 58 NORTH WASHINGTO PLAINVILLE, CT 06062	NNECTICUT ON STREET							
US DOT DESCRIPTION (INCLUDING PROPER SHIPPING	G NAME, HAZAI	RD CLASS, AND ID NUMBER		10. CON	NTAINERS	5 11.		12		
				NO.	TYPE	TOTA QUANT	AL TTY	UN WT/V		
CONNECTICUT REGULATED WA	STE SOLI	D NONE NONE		001	DT	000	~			
Approval: 214072186	Glob	al (Job #-1007ctr		001		0002	20	T		
SPECIAL HANDLING INSTRUCTIONS AND ADDITIONAL	L INFORMATION			302		157				
GENERATOR'S CERTIFICATION: I hereby declare that the contents all respects in proper condition for transport by highway accordin polychlorinated biphenyls (PCB's) in concentrations greater than 2: free liquids at the time of loading. PRINTED/TYPED NAME TRANSPORTER I ACKNOWLEDGEMENT OF RECEIPT OF PRINTED/TYPED NAME	ts of this consignme og to applicable nai 15 ppm, nor has be MATERIALS	at are fully and accurately described above by ional governmental regulations, and all appl in mixed in anyway with PCB's in concentration of the second se	he proper shipping name an cable State of Connecticut titions greater than or equal	d are classified, laws and regul to 50 ppm. I e	packaged, m ation. I cert ertify that t	MONTH MONTH L	ed/placard aterial nei ed above DAY DAY	ed, and are ther contained YEA 2J YEA YEA		
TRANSPORTER 2 ACKNOWLEDGEMENT OF RECEIPT OF PRINTED/TYPED NAME		SIGNATURE			1	MONTH	DAY	YFAD		
TRANSPORTER 2 ACKNOWLEDGEMENT OF RECEIPT OF PRINTED/TYPED NAME		SIGNATURE			1	MONTH I	DAY	YEAR		
TRANSPORTER 2 ACKNOWLEDGEMENT OF RECEIPT OF PRINTED/TYPED NAME DISCREPANCY INDICATION SPACE 11(a) CORRECTED WEIGHT AS SCALED 14.	56 _{TON} .	SIGNATURE			1	MONTH I	DAY	YEAF		
TRANSPORTER 2 ACKNOWLEDGEMENT OF RECEIPT OF PRINTED/TYPED NAME DISCREPANCY INDICATION SPACE 11(a) CORRECTED WEIGHT AS SCALED	56 TON	SIGNATURE S	MEST EXCEPT AS MC		13.	MONTH I	DAY	YEAF		

www.tighebond.com

