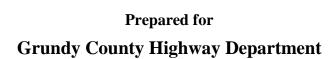
# Brisbin Road Corridor Access Study


Grundy County, Illinois











Prepared by



August 2012

# **Contents**

| List | of     | Fi  | gures  | and    | Ta  | ıbles.  | iii |
|------|--------|-----|--------|--------|-----|---------|-----|
|      | $\sim$ | - " | 500.00 | cirici | - 0 | ic ics, |     |

| 1. | Introduction                                                                                                                                                                                                                   | 1                                |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| 2. | What is Access Management? Access Management Elements                                                                                                                                                                          | 3 3                              |
| 3. | Existing Traffic Conditions Corridor Study Limits Existing Traffic Volumes Existing Roadway Conditions Public Transportation Existing Intersection Operations                                                                  | 6<br>9<br>10<br>17               |
| 4. | Future Land Use and Traffic Conditions Future Development and Traffic Generation Future Roadway System Distribution of Future Development Traffic Assignment of Future Development Traffic Year 2040 Projected Traffic Volumes | 20<br>20<br>27<br>27<br>28<br>29 |
| 5. | Recommended Roadway Design Roadway Classification and Function Cross-Section and Geometric Characteristics Access Control and Traffic Signals Intersection Geometrics and Traffic Control Projected Intersection Operations    | 33<br>33<br>34<br>47<br>48<br>54 |
| 6. | Project Funding Options                                                                                                                                                                                                        | 56                               |
| 7. | Conclusions                                                                                                                                                                                                                    | 57                               |
| Ap | pendix                                                                                                                                                                                                                         |                                  |

# **List of Figures and Tables**

| 1.  | Corridor Study Limits                                                           | 7  |
|-----|---------------------------------------------------------------------------------|----|
| 2.  | Aerial View of Corridor Study Area                                              | 8  |
| 3.  | Existing Traffic Volumes                                                        | 11 |
| 4.  | Existing Typical Cross-Section                                                  | 12 |
| 5.  | Existing Conditions (Brisbin Road: U.S. Route 6 to Whitman Road)                | 13 |
| 6.  | Existing Conditions (Brisbin Road: Whitman Road to Minooka Road)                | 14 |
| 7.  | Existing Conditions (Brisbin Road: Minooka Road to Sherrill Road)               | 15 |
| 8.  | Traffic Analysis Zones                                                          | 22 |
| 9.  | Residential Growth to 2040                                                      | 23 |
| 10. | Retail Growth to 2040                                                           | 24 |
| 11. | Industrial Growth to 2040                                                       | 25 |
| 12. | Office Growth to 2040                                                           | 26 |
| 13. | Projected 2040 Traffic Volumes (Brisbin Road: North Road to Local Access F)     | 30 |
| 14. | Projected 2040 Traffic Volumes (Brisbin Road: Local Access C to Local Access E) | 31 |
| 15. | Projected 2040 Traffic Volumes (Brisbin Road: Sherrill Road to Minooka Road)    | 32 |
| 16. | Typical Cross-Section – Post Interchange Design                                 |    |
|     | (Brisbin Road: South Project Terminus)                                          | 35 |
| 17. | Typical Cross-Section – Post Interchange Design                                 |    |
|     | (Brisbin Road: US 6 to South Project Terminus)                                  | 36 |
| 18. | Recommended Typical Cross-Section – Ultimate Design                             |    |
|     | (Brisbin Road: South of US 6)                                                   | 37 |
| 19. | Typical Cross-Section – Post Interchange Design                                 |    |
|     | (Brisbin Road: US 6 to I-80 Interchange)                                        | 39 |
| 20. | Recommended Typical Cross-Section – Ultimate Design                             |    |
|     | (Brisbin Road: US 6 to I-80 Interchange)                                        | 40 |
| 21. | Typical Cross-Section – Post Interchange Design                                 |    |
|     | (Brisbin Road: North Project Terminus)                                          | 42 |
| 22. | Recommended Typical Cross-Section – Interim Design (Near Term)                  |    |
|     | (Brisbin Road: I-80 Interchange to Sherrill Road)                               | 43 |
| 23. | Recommended Typical Cross-Section – Interim Design (Mid Term)                   |    |
|     | (Brisbin Road: I-80 Interchange to Sherrill Road)                               | 44 |
|     |                                                                                 |    |

| 24. | Recommended Typical Cross-Section – Ultimate Design           |    |
|-----|---------------------------------------------------------------|----|
|     | (Brisbin Road: I-80 Interchange to Sherrill Road)             | 45 |
| 25. | Recommended Access Locations/Intersection Geometrics          |    |
|     | (Brisbin Road: U.S. Route 6 to Whitman Road)                  | 49 |
| 26. | Recommended Access Locations/Intersection Geometrics          |    |
|     | (Brisbin Road: Whitman Road to Minooka Road)                  | 50 |
| 27. | Recommended Access Locations/Intersection Geometrics          |    |
|     | (Brisbin Road: Minooka Road to Sherrill Road)                 | 51 |
|     |                                                               |    |
|     | _                                                             |    |
| Tal | bles                                                          |    |
| 1.  | Existing Daily (24-Hour) Traffic Volumes                      | 9  |
| 2.  | Level of Service Criteria                                     | 18 |
| 3.  | Capacity Analysis Results – Existing Traffic Conditions       | 19 |
| 4.  | Directional Distribution of Future Study Area Traffic         | 28 |
| 5.  | Capacity Analysis Results – Projected 2040 Traffic Conditions | 55 |

# 1. Introduction

The Grundy County Highway Department retained the services of Kenig, Lindgren, O'Hara, Aboona, Inc. (KLOA, Inc.) to develop a corridor access plan for Brisbin Road in unincorporated Grundy County, Illinois.

The study limits for Brisbin Road extend over a three-mile section from U.S. Route 6 on the south to the Grundy County-Kendall County line at Sherrill Road on the north, and envelops the future Brisbin Road interchange with Interstate 80, which is presently under construction and anticipated to be completed in Autumn 2012. This section of Brisbin Road is under the jurisdiction of the Grundy County Highway Department.

Brisbin Road is an important north-south County highway that connects U.S. Route 6 to the south with Kendall County Highway 5 and U.S. Route 52 to the north. Within the study area, Brisbin Road is presently a two-lane roadway with a rural cross-section (i.e., shoulders and drainage ditch).

The Village of Channahon planning area is located to the southeast of the future I-80/Brisbin Road interchange while the Village of Minooka planning area is located to the northeast of the interchange and the City of Morris planning area is located to the northwest and southwest of the interchange. Boundary agreements are in place amongst the three communities and Brisbin Road forms one of the boundaries of those agreements. The comprehensive plans of all three communities identify Brisbin Road as an arterial roadway and envision the corridor developing with highway-oriented commercial land uses, as well as some light industrial, office, research/business park, and low-density residential uses.

The opening of the I-80 interchange is likely to be the impetus for the development of the south end of the corridor. Prior to the Brisbin Road corridor becoming more developed, access and design guidelines are needed. As such, the purpose of this Corridor Access Study is to develop a roadway improvement plan that (1) accommodates the projected traffic levels generated by the new I-80 interchange and development growth that may occur along the corridor, (2) establishes future access points along the roadway, (3) defines the ultimate roadway cross-section, right-of-

way requirements, intersection geometrics and traffic controls, (4) achieves the County's functional and aesthetic vision of the roadway, and (5) attains consensus with the participating communities on an acceptable roadway design.

Access management elements have been incorporated into the plan to balance mobility and access, so as to maintain an efficient movement of traffic while enhancing safe and efficient access to and from abutting properties. Since the current roadway grid along Brisbin Road is incomplete and approximately spaced along the section lines at one-mile intervals, the plan includes the locations of future connector roadways that will improve local traffic circulation, provide alternate means of property access, and can be constructed, in part or in total, by private developers as a condition of approval at the time that a site plan is submitted to the governing agency for review.

# What Is Access Management?

"Access management is the systematic control of the location, spacing, design, and operations of driveways, median openings, interchanges, and street connections to a roadway." Along busy commercial corridors, as Brisbin Road will eventually be, a well conceived access management plan serves to improve the efficient movement of traffic while enhancing the safe and efficient access to and from abutting properties. Some specific benefits of access management include:

- Safer and more efficient access to properties
- Fewer and less severe vehicle crashes
- Fewer vehicle/pedestrian conflicts
- Less traffic congestion
- Reduced travel delays
- Reduced fuel consumption and vehicle emissions
- Increased and preserved traffic capacity
- Enhanced corridor aesthetics

# **Access Management Elements**

There are many access management techniques that can be used to improve traffic flow and enhance safety along a corridor. The primary elements of this corridor access study include: well-spaced and coordinated traffic signals and full access intersections, location of future connector roadways, landscaped medians, and auxiliary lanes. The objective is to accommodate most, if not all, left-turn movements at the signalized intersections along the corridor.

<sup>&</sup>lt;sup>1</sup> Access Management Manual, Transportation Research Board, Washington, D.C. 2003 Brisbin Road Corridor Access Study

#### Traffic Signal Spacing/Coordination and Connector Roads

The spacing of full access unsignalized intersection and signalized intersections can have a dramatic influence on the safe and efficient movement of traffic along a corridor. Management of signal spacing includes planning for the frequency of signals, as well as the uniformity of their spacing.

The Grundy County Highway Access Regulation Ordinance (GCHARO) does not include Brisbin Road in its highway access classification system as Brisbin Road was taken over by the County after the GCHARO was adopted in September 2004. Comparable County highways in Grundy County are classified as Access 3 roadways when defining access control standards. The minimum spacing of full access unsignalized intersections on Access 3 roadways is ¼-mile (1,320 feet) and the minimum spacing of signal-controlled intersections is 1/3-mile (1,760 feet).

The Grundy County access standards are consistent with the standards of the adjoining counties of Kendall and LaSalle. However, these standards are more conservative than those of Will County and Kane County, where minimum spacing standards for signal-controlled intersections along suburban arterials and collectors are ½-mile.

The future infill of connector roadways within the existing approximately one-mile roadway grid along Brisbin Road is likely to occur at the ½-mile point to maintain a proportional roadway grid. The most efficient location of additional connector roads and property access drives would be mid-point between this future ½-mile roadway grid, or at the ¼-mile points. A minimum signalized intersection spacing standard of 1/3-mile is more appropriate in a rural, residential or other relatively low-density environment. Restricting signalized access to 1/3-mile spacing in areas of denser traffic generators can lead to less efficient signal operation, poorer signal coordination, dual turn lanes and/or longer turn lane stacking requirements at intersections, higher vehicle delays, lower levels of service, and unsafe travel conditions on arterial or major collector roadways.

For these reasons, the minimum spacing standards for signal-controlled intersections along Brisbin Road is recommended to be ¼-mile, consistent with Grundy County's minimum spacing standards for full access unsignalized intersections along these roadways.

To maintain efficient traffic signal operations and traffic flow progression at this spacing standard, all future signals within the Brisbin Road corridor should be interconnected into a coordinated signal system.

#### **Landscaped Center Median**

A landscaped center median can be a very effective access management tool because it separates directional traffic flow, limits the locations of left-turn movements, provides a refuge area for pedestrians crossing the roadway, and enhances community appearance. Left-turn movements adversely impact traffic flow and are far more likely to be involved in vehicular crashes than right-turn movements. The installation of a landscaped median has the effect of restricting driveway and minor cross-street turning movements to right-turn movements only. In addition, vehicular-pedestrian crash rates are typically less than one-half that on roadways with a two-way left-turn lane

#### **Auxiliary Lanes**

Deceleration lanes for left- and right-turns provide an effective way to limit the speed differential between turning vehicles and through vehicles. Left- and right-turn lanes are needed to maintain traffic progression on major signalized collector or arterial roadways. The GCHARO indicates that left-turn lanes "are mandatory for all major and minor use generators", which would include intersections with significant collector and arterial roadways. The GCHARO further specifies that right-turn lanes "should be installed at an access on a County highway if the average daily two-way volume at the access is at least 1,000 vehicles and the average peak hour entering right-turn volume is at least 40 vehicles. Other factors such as the highway design speed, the number of highway approach lanes, composition of access traffic, and adjacent highway alignment should influence the need for a deceleration lane regardless of whether the volumes mentioned above are or are not met."

# 3.

# **Existing Traffic Conditions**

Transportation conditions in the Brisbin Road corridor were inventoried to create a database for analyzing existing and projected future conditions. Three general components of existing conditions were considered, including:

- 1. Characteristics of the roadways, including lane configuration, intersection traffic controls, and speed limits
- 2. Existing weekday traffic volumes
- 3. Intersection operations

# **Corridor Study Limits**

The study limits for the Brisbin Road corridor extend over a three-mile section from U.S. Route 6 on the south to Sherrill Road on the north. Five (5) intersections were evaluated and analyzed within the study limits, as follows:

- 1. Brisbin Road / Sherrill Road
- 2. Brisbin Road / Minooka Road
- 3. Brisbin Road / Private Drive
- 4. Brisbin Road / North Road
- 5. Brisbin Road / U.S. Route 6

Figure 1 shows the Brisbin Road corridor study area with respect to the surrounding roadway system. Figure 2 shows an aerial view of the corridor study area with the study intersections highlighted.

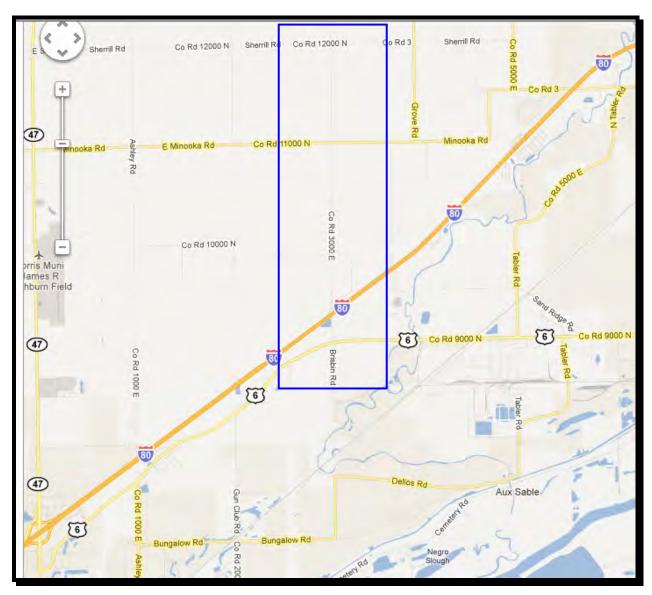



Figure 1 CORRIDOR STUDY LIMITS

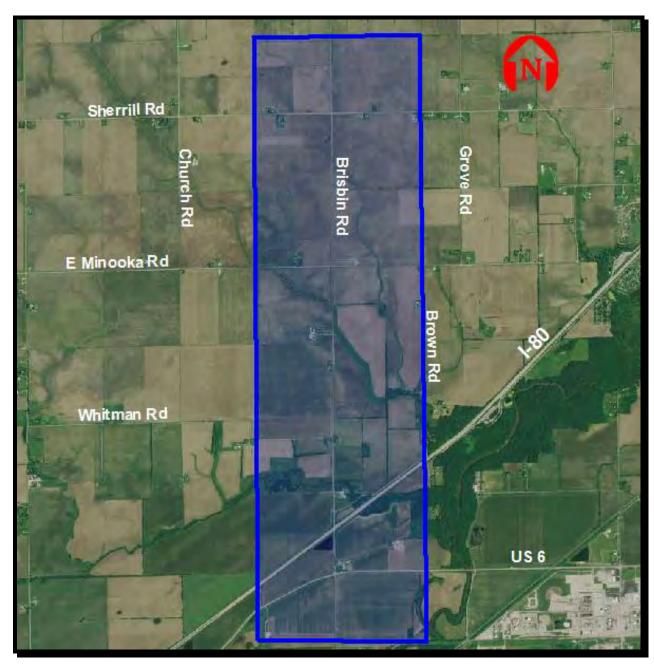



Figure 2 AERIAL VIEW OF CORRIDOR STUDY AREA

## **Existing Traffic Volumes**

Traffic volume and vehicle classification data was collected or obtained by KLOA, Inc. as part of the corridor access study. The data was summarized on a 24-hour basis and for the weekday peak hours.

#### Average Daily (24-Hour) Traffic Volumes

Average daily traffic volume and vehicle classification data for the study area roadways was obtained from the Illinois Department of Transportation (IDOT). The data was collected by IDOT in 2009 and 2010, prior to the commencement of construction on the I-80/Brisbin Road interchange.

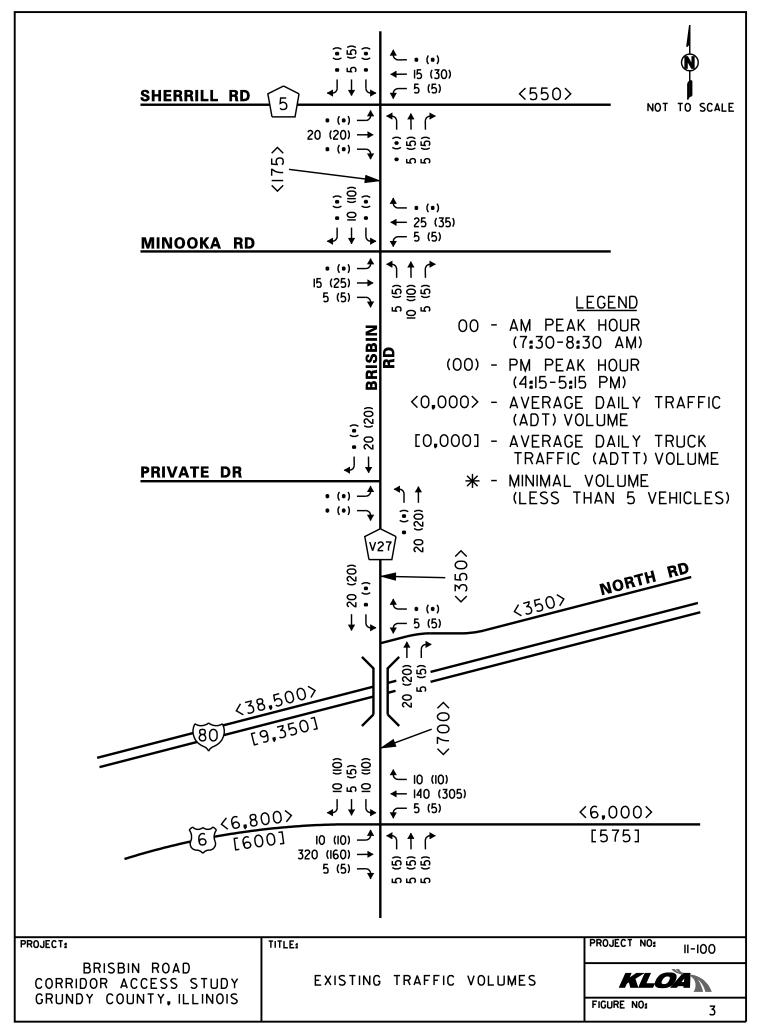
The traffic count data indicates that Brisbin Road presently carries from approximately 175 vehicles per day (vpd) at the north end of the corridor to approximately 700 vpd at the south end of the corridor, as shown in Table 1. The Brisbin Road/U.S. Route 6 Intersection Design Study contained in the Combined Design Report for the I-80/Brisbin Road Interchange, prepared by Parsons Transportation Group in 2003, indicates that approximately 10 percent of the daily traffic on Brisbin Road is generated by single unit and multi-unit trucks.

Table 1 EXISTING DAILY (24-HOUR) TRAFFIC VOLUMES

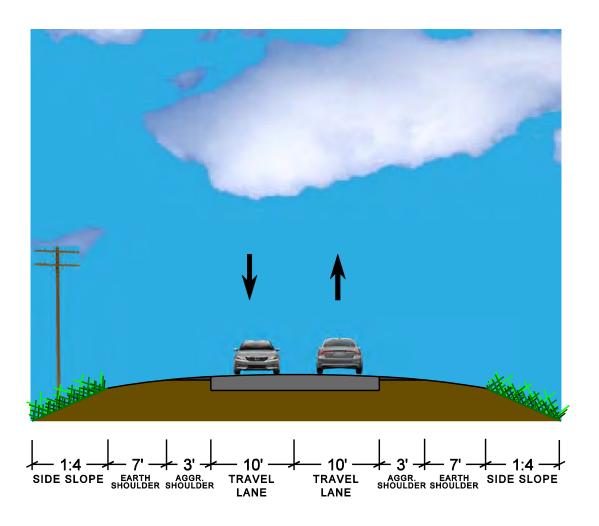
|                                                   | Two                      |                     |                   |                    |
|---------------------------------------------------|--------------------------|---------------------|-------------------|--------------------|
| Section                                           | Passenger<br>Vehicles    | Trucks <sup>1</sup> | Total<br>Vehicles | Percent Trucks (%) |
| Brisbin Road<br>(South of Sherrill Road)          | 160                      | 15                  | 175               | 10.0               |
| Brisbin Road<br>(North of U.S. Route 6)           | 630                      | 70                  | 700               | 10.0               |
| <sup>1</sup> Consists of single unit and multi-un | nit trucks (i.e. vehicle | es over 28 feet)    |                   |                    |

#### **Peak Hour Intersection Traffic Volumes**

Manual intersection turning-movement traffic counts were conducted at the Brisbin Road/Sherrill Road and Brisbin Road/Minooka Road intersections on Tuesday, September 20, 2011 during the weekday morning and afternoon commuter peak periods. From the traffic count data, the peak hours of traffic activity were determined to be 7:30-8:30 A.M. in the morning and 4:15-5:15 P.M. in the evening.


At the time of this study, the I-80/Brisbin Road interchange was under construction and Brisbin Road was closed between U.S. Route 6 and North Road. As such, peak hour traffic volumes for the Brisbin Road/U.S. Route 6 intersection were obtained from the 2003 Intersection Design Study. Peak hour traffic volumes at the Brisbin Road intersections with North Road and the private drive north of North Road were estimated based on an analysis of the traffic volumes at the other study area intersections.

The existing peak hour traffic volumes and 24-hour volumes are shown in Figure 3.


### **Existing Roadway Conditions**

KLOA, Inc. obtained the Phase II roadway design plans for the I-80/Brisbin Road interchange from the Grundy County Highway Department. KLOA then conducted an extensive field review of the corridor and the intersections in the study area to identify the physical and operational aspects of the roadway system. Figure 4 illustrates the existing typical cross-section of Brisbin Road. Presently, with the exception of the I-80 interchange area, Grundy County has a prescriptive easement for Brisbin Road with no recorded widths or public right-of-way as the private property lines extend to the centerline of the roadway. Brisbin Road is designed to rural standards with aggregate shoulders and open drainage swales. Figures 5 through 7 illustrate the existing property lines, right-of-way, lane geometrics, traffic controls, intersection spacing, and posted speed limits along Brisbin Road. The following paragraphs describe Brisbin Road and the key intersections in the corridor.

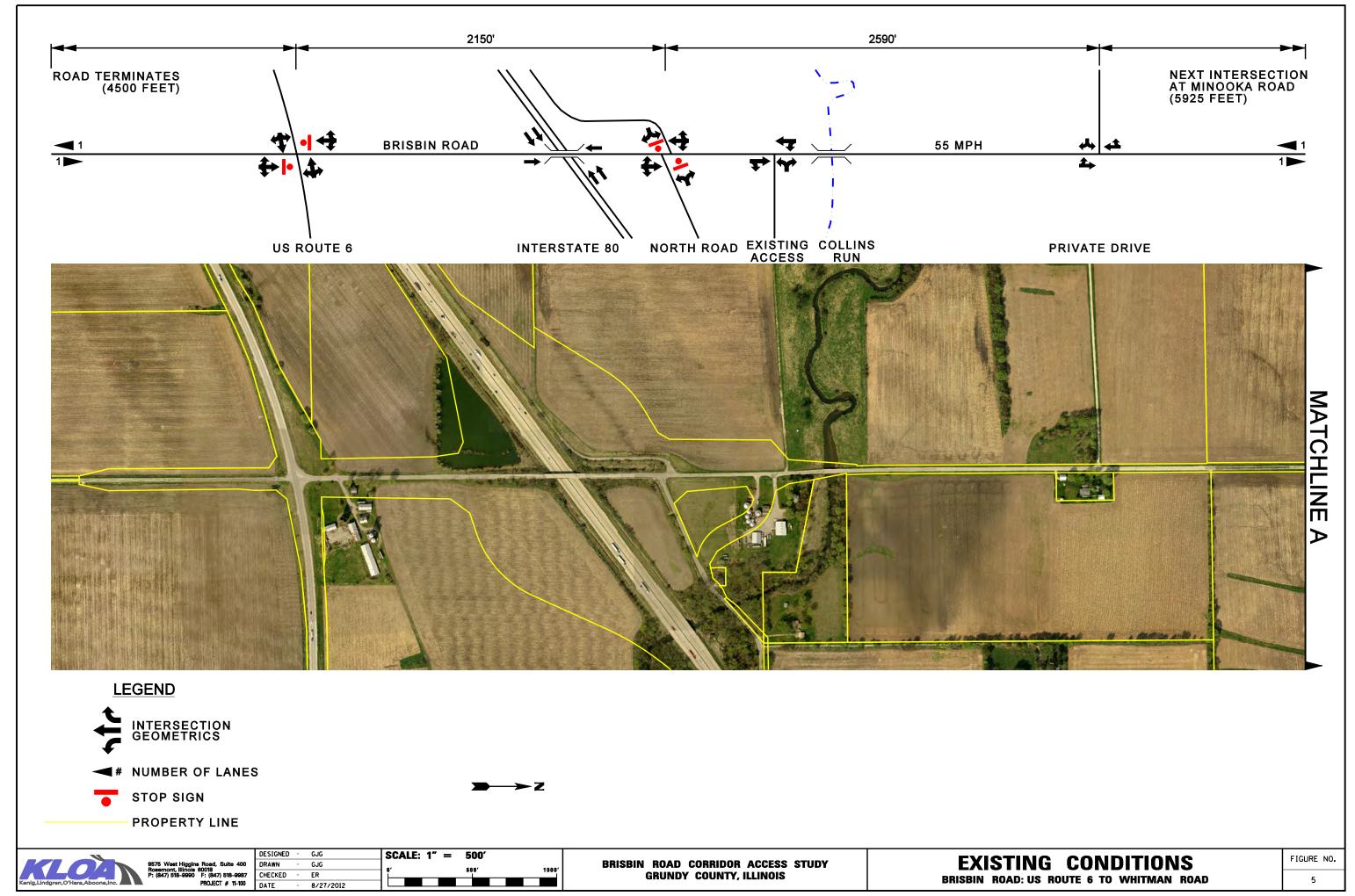
Brisbin Road (County Highway V27) is a two-lane, undivided, north-south roadway that extends from approximately 4,500 feet south of U.S. Route 6 to Walker Road approximately 12 miles to the north in Kendall County. The section of Brisbin Road under study (U.S. Route 6 to Sherrill Road) is under the jurisdiction of the Grundy County Highway Department (GCHD) and has a rural cross-section (i.e., shoulders and drainage ditch). Brisbin Road is functionally classified by IDOT as a collector road while the comprehensive plans of Morris, Minooka and Channahon all identify Brisbin Road as an arterial road. The Grundy County Highway Access Regulation Ordinance (GCHARO) does not include Brisbin Road in its highway access classification system as Brisbin Road was taken over by the County after the GCHARO was adopted in September 2004, however, comparable County highways in Grundy County are classified as Access 3 roadways when defining access control, intersection spacing and traffic control standards. Brisbin Road is also a Federal Aid Urban Route (FAU 401) between U.S. Route 6 and Minooka Road, making it part of the National Highway System (NHS) and eligible for federal-aid funds for resurfacing, reconstruction, traffic management, bicycle/ pedestrian, and operational improvement projects. There are no posted speed limits on Brisbin Road and the roadway was observed to operate within the Illinois statutory maximum speed limit of 55 mph.

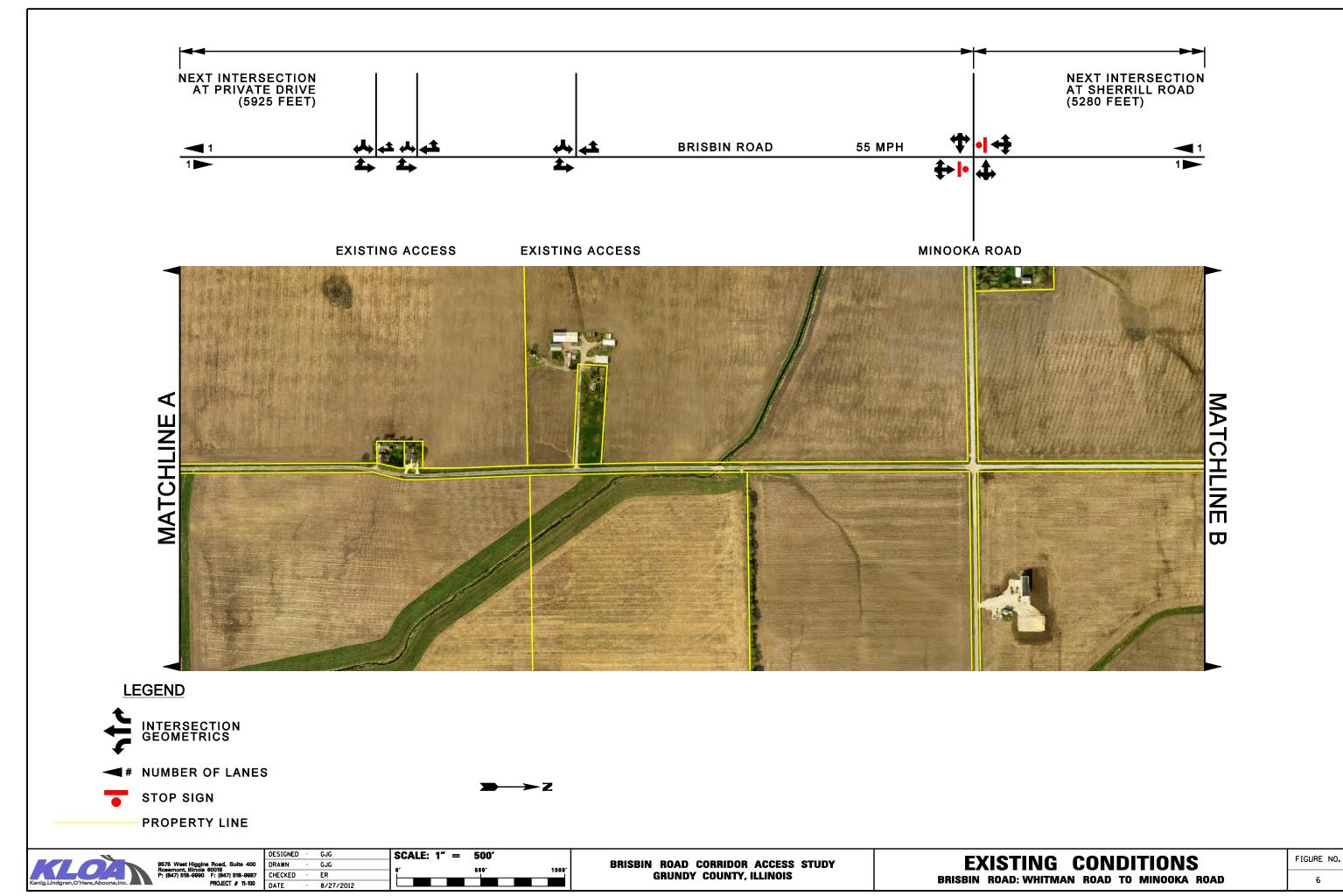


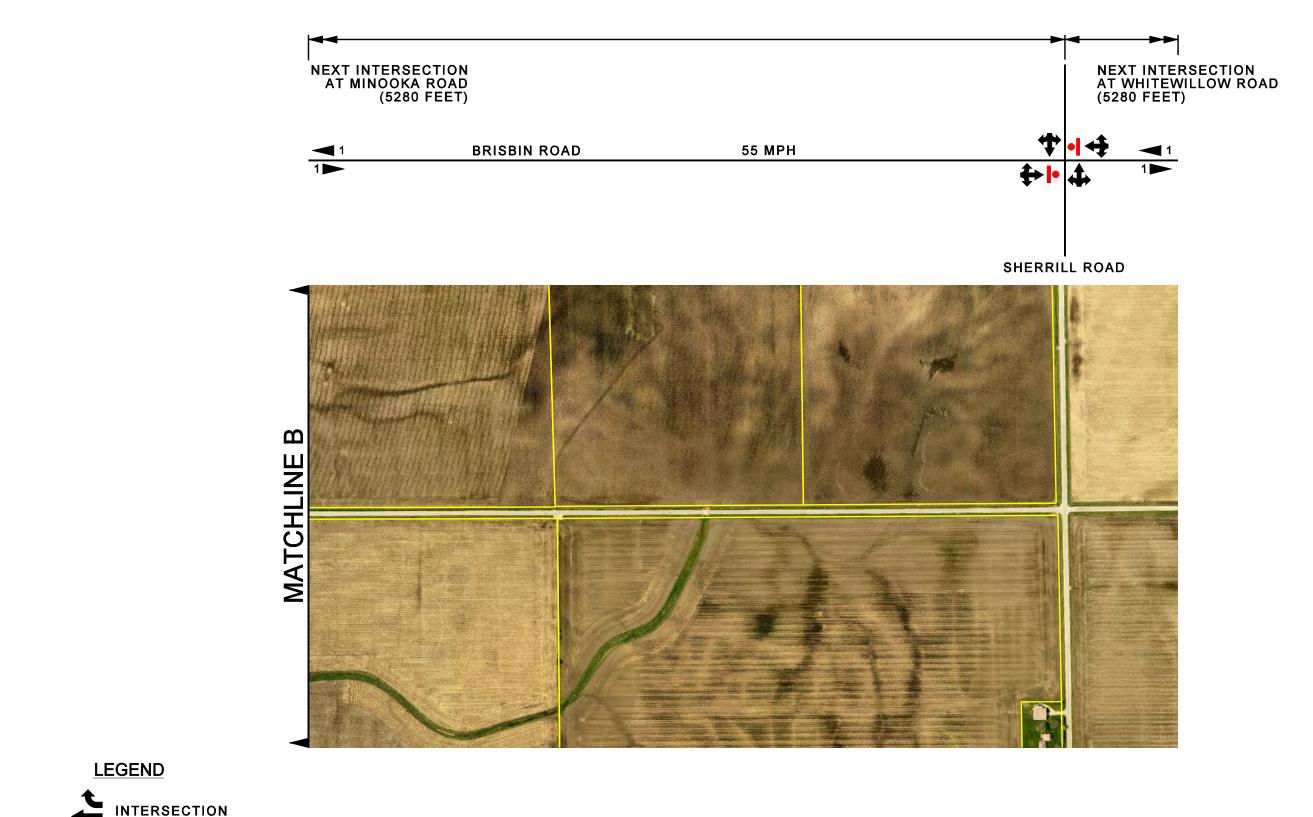
# **Brisbin Road**



PROJECT:


BRISBIN ROAD CORRIDOR ACCESS STUDY GRUNDY COUNTY, ILLINOIS


TITLE:


EXISTING TYPICAL CROSS SECTION

PROJECT NO: II-IOO

FIGURE NO: 4









■# NUMBER OF LANES

STOP SIGN

PROPERTY LINE



|    | DESIGNED | - | GJG       | SCALE: 1" = | 500'      | Т  |
|----|----------|---|-----------|-------------|-----------|----|
| 0  | DRAWN    | - | GJG       | •           | 500' 1000 | ۱, |
| 37 | CHECKED  | - | ER        | Ĭ <u> </u>  | 1000      | ı  |
| 0  | DATE     | - | 8/27/2012 |             |           |    |
|    |          |   |           |             |           |    |

BRISBIN ROAD CORRIDOR ACCESS STUDY GRUNDY COUNTY, ILLINOIS

EXISTING CONDITIONS
BRISBIN ROAD: MINOOKA ROAD TO SHERRILL ROAD

FIGURE NO.

*U.S. Route 6* is a two-lane, undivided, east-west roadway that extends from IL Route 47 and the City of Morris on the west to I-55, the villages of Minooka and Channahon, and downtown Joliet on the east. U.S. Route 6 is under IDOT jurisdiction and has a rural cross-section. It is functionally classified by IDOT as a minor arterial roadway and an arterial roadway/major thoroughfare by the City of Morris and the villages of Minooka and Channahon. U.S. Route 6 is also a Federal Aid Urban Route (FAU 392) and is designated by IDOT as a Class II truck route. The intersection of U.S. Route 6 and Brisbin Road is under stop control on Brisbin Road. U.S. Route 6 carries approximately 6,000-6,800 vehicles per day and 575-600 trucks per day in the vicinity of Brisbin Road. The posted speed limit on U.S. Route 6 is 55 mph.

Sherrill Road (County Highway C16) is a two-lane, undivided, east-west roadway that extends from Lisbin Road in Saratoga Township on the west to O'Brien Road in Aux Sable Township on the east. Sherrill Road is under the jurisdiction of the GCHD from Lisbin Road to Ashley Road, and the Kendall County Highway Department (County Highway 5) from Ashley Road to O'Brien Road. Sherrill Road is classified as a local street by IDOT and a collector road by the City of Morris and Village of Channahon. Sherrill Road has a rural cross-section and carries approximately 500-550 vehicles per day. The intersection of Sherrill Road with Brisbin Road in under stop control on Brisbin Road. There are no posted speed limits on Sherrill Road in the vicinity of Brisbin Road and the roadway was observed to operate within the Illinois statutory maximum speed limit of 55 mph.

Minooka Road is a two-lane, undivided, east-west roadway that extends from E. 27<sup>th</sup> Road in LaSalle County on the west to Ridge Road in Minooka on the east where it continues east as Mondamin Street. Minooka Road has a rural cross-section and is under the jurisdiction of Saratoga Township to the west of Brisbin Road and Aux Sable Township from Brisbin Road east to O'Brien Road. From O'Brien Road east to Tabler Road, Minooka Road is under GCHD jurisdiction and designed County Highway C16. Minooka Road is classified by IDOT as a collector road. The City of Morris classifies Minooka Road as an arterial road to the west of Brisbin Road and a collector road to the east of Brisbin Road. Minooka Road is also a Federal Aid Urban Route (FAU 400). The intersection of Minooka Road with Brisbin Road is under stop control on Brisbin Road. Minooka Road carries approximately 300 vpd in the vicinity of Brisbin Road. There are no posted speed limits on Minooka Road in the vicinity of Brisbin Road and the roadway was observed to operate within the Illinois statutory maximum speed limit of 55 mph.

Whitman Road is a two-lane, undivided, east-west local roadway that extends from Ashley Road on the west to a point one mile east of Ashley Road. Whitman Road has a rural cross-section and is under the jurisdiction of Saratoga Township.

*North Road* is a two-lane, undivided, east-west local roadway that extends from Brisbin Road on the west to Brown Road on the east. North Road has a rural cross-section and is under the jurisdiction of Aux Sable Township. The intersection of North Road with Brisbin Road is under stop control on North Road.

Interstate 80 (I-80) is a limited access east-west expressway that spans the United States from New Jersey on the east to California on the west. Within Illinois, I-80 is under IDOT jurisdiction. In the vicinity of Brisbin Road, I-80 has two lanes in each direction and there are currently two full interchanges on I-80, one approximately six miles to the east at Ridge Road and the other approximately 3.75 miles to the west at IL Route 47. A new full interchange is presently under construction at Brisbin Road. I-80 is a Federal Aid Interstate Route (FAI 80) and is designated by IDOT as a Class I truck route. The posted speed limit on this section of I-80 is 65 mph.

## **Public Transportation**

There are presently no fixed-route transit services operating in the vicinity of Minooka, Channahon and Morris. The only public transportation currently available in the area is dialaride transit service provided by the Grundy Transit System (GTS) on weekdays between 7:30 A.M. and 4:00 P.M.

## **Existing Intersection Operations**

To evaluate existing traffic operations in the Brisbin Road corridor during the peak weekday time periods, capacity analyses were conducted at all study intersections utilizing Synchro 6.0 computer software, which generally follows the methodologies outlined in the Transportation Research Board's *Highway Capacity Manual (HCM)*, 2000. This software allows for the analysis of multiple interconnected traffic signal systems as well as independent signalized or unsignalized intersections.

The ability of an intersection to accommodate traffic flow is expressed in terms of Level of Service, which is assigned a letter grade from A to F based on the average control delay experienced by vehicles passing through the intersection. Control delay is that portion of the total delay attributed to the traffic signal or stop sign control operation, and includes initial deceleration delay, queue move-up time, stopped delay, and final acceleration delay. Level of Service A is the highest grade (best traffic flow and least delay), Level of Service E represents saturated or atcapacity conditions, and Level of Service F is the lowest grade (oversaturated conditions, extensive delays). As indicated in the GCHARO, Level of Service C is the desired peak-hour service level for projected 20-year future traffic conditions.

For signal-controlled intersections, levels of service are calculated for lane groups, intersection approaches, and the intersection as a whole. For all-way stop controlled (AWSC) intersections, levels of service are calculated based on the weighted average of the delay on each of the approaches (the approach delay consists of the weighted average of the delay on each lane of the approach). For two-way stop controlled (TWSC) intersections, levels of service are only calculated for the approaches controlled by a stop sign (not for the intersection as a whole). Level of Service F at TWSC intersections occurs when there are not enough suitable gaps in the flow of traffic on the major (uncontrolled) street to allow minor-street traffic to safely enter the major street flow or cross the major street in a reasonable amount of time.

The *Highway Capacity Manual* definitions for levels of service and the corresponding control delay for signalized and unsignalized intersections are shown in Table 2. Table 3 summarizes the results of the capacity analyses for the existing weekday morning and afternoon peak-hour conditions, indicating the level service and delay for the critical minor street movement at all TWSC intersections. The capacity analysis worksheets are contained in the Appendix.

Table 2 LEVEL OF SERVICE CRITERIA

| Signalized Intersections |                                                                                                                                                                                                                             |                                             |  |  |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--|--|
| Level of<br>Service      | Interpretation                                                                                                                                                                                                              | Average Control Delay (seconds per vehicle) |  |  |
| A                        | Very short delay, with extremely favorable progression. Most vehicles arrive during the green phase and do not stop at all.                                                                                                 | ≤10                                         |  |  |
| В                        | Good progression, with more vehicles stopping than for Level of Service A, causing higher levels of average delay.                                                                                                          | >10-20                                      |  |  |
| С                        | Light congestion, with individual cycle failures beginning to appear. Number of vehicles stopping is significant at this level.                                                                                             | >20-35                                      |  |  |
| D                        | Congestion is more noticeable, with longer delays resulting from combinations of unfavorable progression, long cycle lengths, or high V/C ratios. Many vehicles stop, and the proportion of vehicles not stopping declines. | >35-55                                      |  |  |
| E                        | Limit of acceptable delay. High delays result from poor progression, high cycle lengths, and high V/C ratios.                                                                                                               | >55-80                                      |  |  |
| F                        | Unacceptable delays occurring, with oversaturation.                                                                                                                                                                         | >80.0                                       |  |  |

#### **Unsignalized Intersections**

| Level of Service | Average Control Delay (seconds per vehicle) |
|------------------|---------------------------------------------|
| A                | 0-10                                        |
| В                | >10-15                                      |
| C                | >15-25                                      |
| D                | >25-35                                      |
| E                | >35-50                                      |
| F                | >50                                         |

Source: Highway Capacity Manual, 2000.

Table 3
CAPACITY ANALYSIS RESULTS – EXISTING TRAFFIC CONDITIONS

|                                           | Wee<br>AM Pea | Weekday<br>PM Peak Hour |     |       |
|-------------------------------------------|---------------|-------------------------|-----|-------|
| Intersection                              | LOS           | Delay                   | LOS | Delay |
| Brisbin Road / Sherrill Road <sup>1</sup> | A             | 9.1                     | A   | 9.1   |
| Brisbin Road / Minooka Road <sup>1</sup>  | A             | 9.2                     | A   | 9.3   |
| Brisbin Road / Private Drive <sup>1</sup> | A             | 8.6                     | A   | 8.6   |
| Brisbin Road / North Road <sup>1</sup>    | A             | 8.7                     | A   | 8.7   |
| Brisbin Road / U.S. Route 6 <sup>1</sup>  | В             | 12.2                    | В   | 12.3  |

Note: LOS = level of service Delay = seconds/vehicle

The results indicate that all study area intersections along the Brisbin Road corridor presently operate at very good levels of service under existing traffic controls. It should be noted that the capacity analysis for the intersections of Brisbin Road with U.S. Route 6 and North Road were based on traffic conditions prior to the commencement of construction of the new Brisbin Road interchange with I-80.

<sup>&</sup>lt;sup>1</sup> Unsignalized TWSC Intersection. LOS and delay representative of average of stop controlled approaches.

# 4.

# **Future Land Use and Traffic Conditions**

An assessment of future traffic conditions in the Brisbin Road corridor is an essential step in determining the ultimate design requirements for the roadway. The assessment was based on three key components: (1) the types and densities of land use anticipated to develop in the corridor, (2) the roadway system that will be developed to accommodate these land uses, and (3) the generation, distribution and assignment of the resulting traffic volumes from these land uses.

Based on a comparison of daily traffic volumes between that published by IDOT in 2009/2010 and that published by IDOT in 2001, Brisbin Road has experienced a modest but steady increase in volume of approximately 1.5-3.0 percent per year (14-27% total) during this time period. This trend may be reflective of the collector/arterial classification of Brisbin Road and development growth occurring along U.S. Route 6 and Minooka Road to the east (i.e., Minooka, Channahon) and west (i.e., Morris) of the study area.

As land is developed along Brisbin Road over the next 20 years or more, the traffic volumes on these roadways will increase. The aggregation of the traffic generated by these future developments with the existing traffic volumes comprise the projected traffic volumes utilized in this analysis. For the purpose of this study, a planning horizon of 28 years (i.e., Year 2040) was selected to coincide with the anticipated development of the developable land area in the corridor and for comparison to 2040 regional traffic projections developed by the Chicago Metropolitan Agency for Planning (CMAP). In actuality, full buildout of the developable land in the Brisbin Road corridor may not occur for many years beyond 2040.

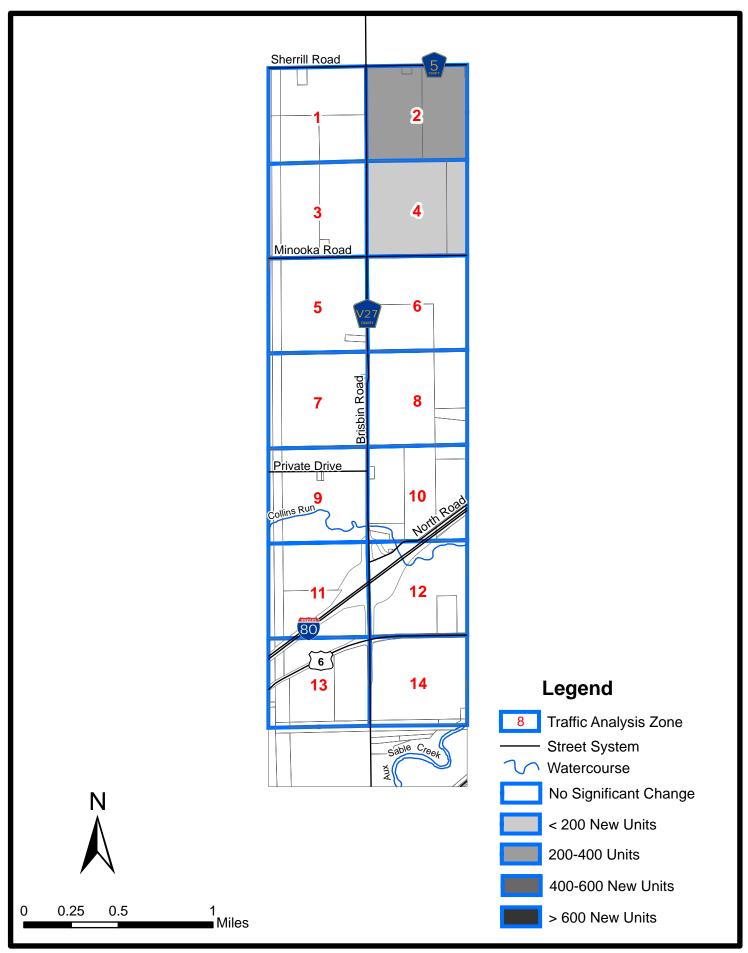
# **Future Development and Traffic Generation**

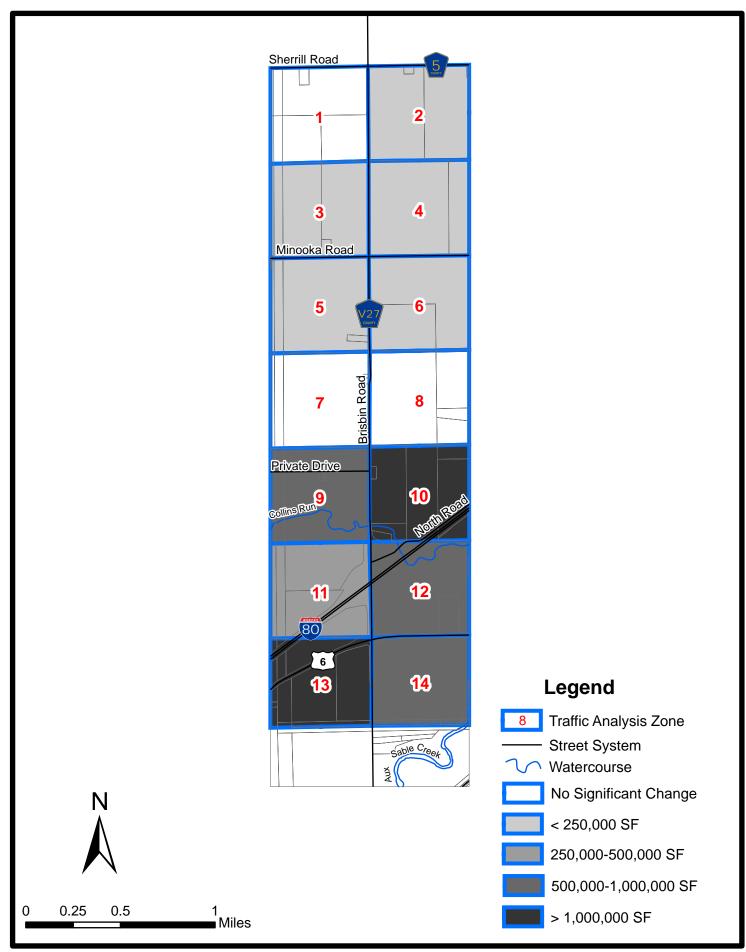
Estimates of future development to the 2040 planning horizon were prepared by the City of Morris, Village of Minooka and Village of Channahon, in conjunction with KLOA, Inc., based on the future land uses contained in the comprehensive plans of the three communities as well as the Village of Channahon's West Side Sub-Area Plan.

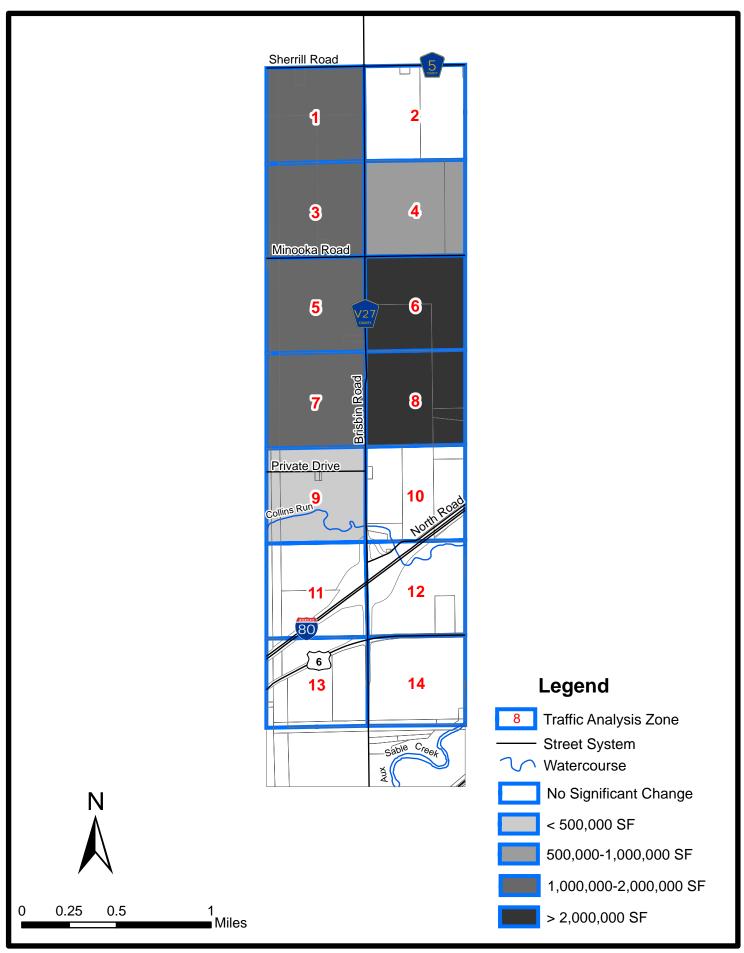
First the number of developable acres by land-use type was estimated for the study area based on an analysis of aerial mapping of the study area, existing land uses, existing rights-of-way, and natural (undevelopable) features. Next development ratios were determined based on development trends in the three communities. The development ratios are in units per acre for residential developments and floor-area-ratios (FAR) for retail, industrial, and office/service developments. Development ratios range from 2 units per acre for residential uses and 0.2-0.35 FAR for retail, office/service and industrial uses. Next, development densities were estimated by multiplying the developable acreage by the development ratios.

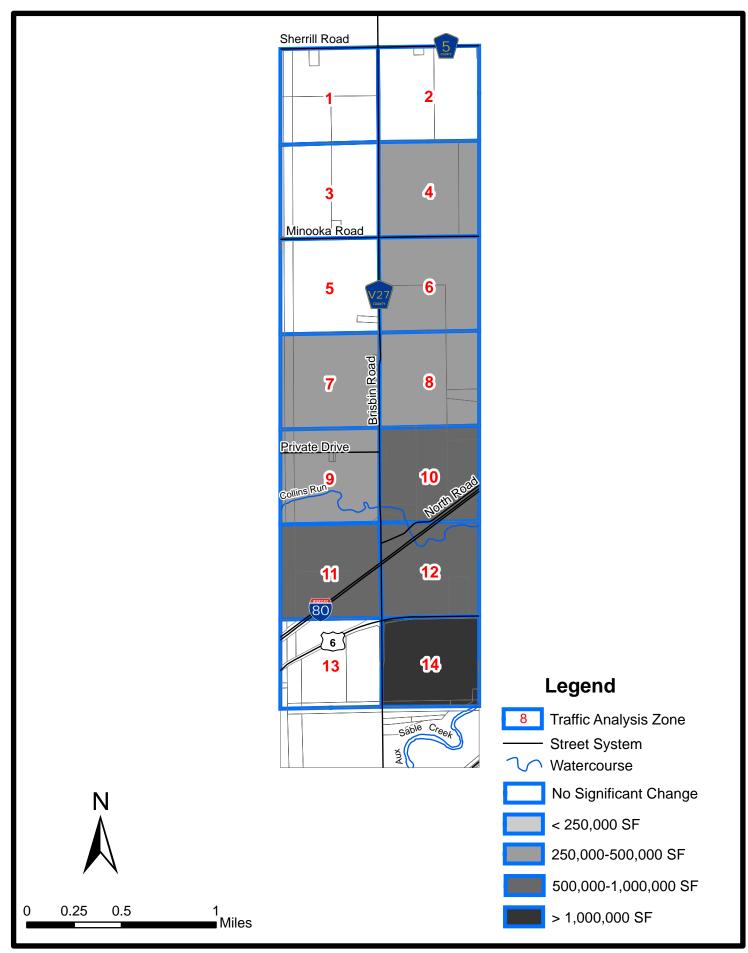
The future development densities were then utilized to calculate weekday peak-hour traffic volumes that would be generated by these developments using trip generation equations published by the Institute of Transportation Engineers (ITE) in *Trip Generation*, 8<sup>th</sup> Edition, 2008. Average daily (24-hour) traffic volumes were also calculated by dividing the peak-hour volumes by a 12 percent peak-hour factor.


Due to the length of the Brisbin Road corridor (3 miles), the corridor was subdivided into 14 zones for traffic analysis purposes. Each zone has frontage on Brisbin Road, is equivalent in size (½-mile by ½-mile square), and is generally projected to contain parcels of similar land use. Figure 8 illustrates the boundaries of the traffic analysis zones (TAZs). A summary table of the future land-uses, developable acreage and ratios, projected development densities, and traffic generation for each of the TAZ's is in the Appendix.


Figure 9 illustrates where residential growth is anticipated to occur, the majority of which will occur along the east side of Brisbin Road between Sherrill Road and Minooka Road at the north end of the corridor. Approximately 540 dwelling units are projected to be built within the study area in the future.


Figure 10 illustrates where retail growth is anticipated to occur. Retail growth will occur in the form of neighborhood level centers, community level centers, and regional level centers. Regional retail growth will occur along Brisbin Road on the north and south sides of the new I-80 interchange and at the Brisbin Road/U.S. Route 6 intersection. Neighborhood and community level retail will tend to follow the residential development patterns and will cluster in the vicinity of the Brisbin Road/Minooka Road intersection and the Brisbin Road/Sherrill Road intersection. Approximately 4.8 million square feet of retail space is projected to develop in the future.


Figure 11 illustrates the anticipated industrial growth areas. The primary locations in which significant industrial development is expected is along the east and west sides of Brisbin Road to the north of the I-80 interchange. Approximately 11.4 million square feet of industrial space is projected to develop in this area in the future.


Growth in office/service uses will occur along both sides of Brisbin Road with the largest concentration occurring to the southeast of the I-80 interchange, as shown in Figure 12. In total, approximately 4.6 million square feet of office space is projected to develop in the future.











## **Future Roadway System**

The roadway system that will serve future development in the Brisbin Road corridor will be an improvement over the current system, both from the perspective of access to the regional roadway system as well as local circulation within the study area and environs.

Regionally, the Brisbin Road corridor will be directly connected to I-80 (eastbound and westbound) when construction of the full-diamond, I-80/Brisbin Road interchange is completed in Autumn 2012. Locally, access to the Brisbin Road corridor may be improved in the future with the extensions or realignments of existing roadways, as documented in the Morris and Channahon comprehensive plans. Potential roadway extensions include Brisbin Road south then west to Gun Club Road, Church Road south from Minooka Road to U. S. Route 6 (with a bridge over I-80), Whitman Road east to Brisbin Road, and North Road west to IL 47. North Road east of Brisbin Road will be realigned as part of the I-80/Brisbin Road interchange project.

## **Distribution of Future Development Traffic**

The distribution of traffic generated by future development within the traffic analysis zones was based on several factors. The first was existing traffic patterns on the roadways in the planning area. The second was home-to-work trip flow data from the 2000 U.S. Census, as tabulated by CMAP for the Census tracts that comprise the planning area (Tracts 1.02, 1.03, 2). The third was from an analysis of the distribution of existing and planned households in the study area based on the 2000 Census data and the development projections discussed above. Lastly, consideration was given to the potential development of new connections to existing regional roadway facilities (i.e., I-80/Brisbin Road interchange) and potential extensions of existing local roadways (e.g., Brisbin Road south to Gun Club Road).

Based on these factors, the directions from which future development traffic will approach and depart the study area were estimated. The directional distribution will vary by land use. Traffic generated by residential, industrial and office/service developments are more associated with the major travel corridors and regional roadway system. Traffic generated by retail developments will originate from the residential neighborhoods within the developments market area. The market areas for neighborhood and community scale retail centers will be smaller and draw more local traffic whereas the market area for regional scale retail centers will be larger and draw more traffic from I-80. To distinguish between the orientation of traffic from the various land uses, four (4) different directional distributions were developed to forecast future traffic volumes in the Brisbin Road corridor, as shown in Table 4.

Table 4
DIRECTIONAL DISTRIBUTION OF FUTURE STUDY AREA TRAFFIC

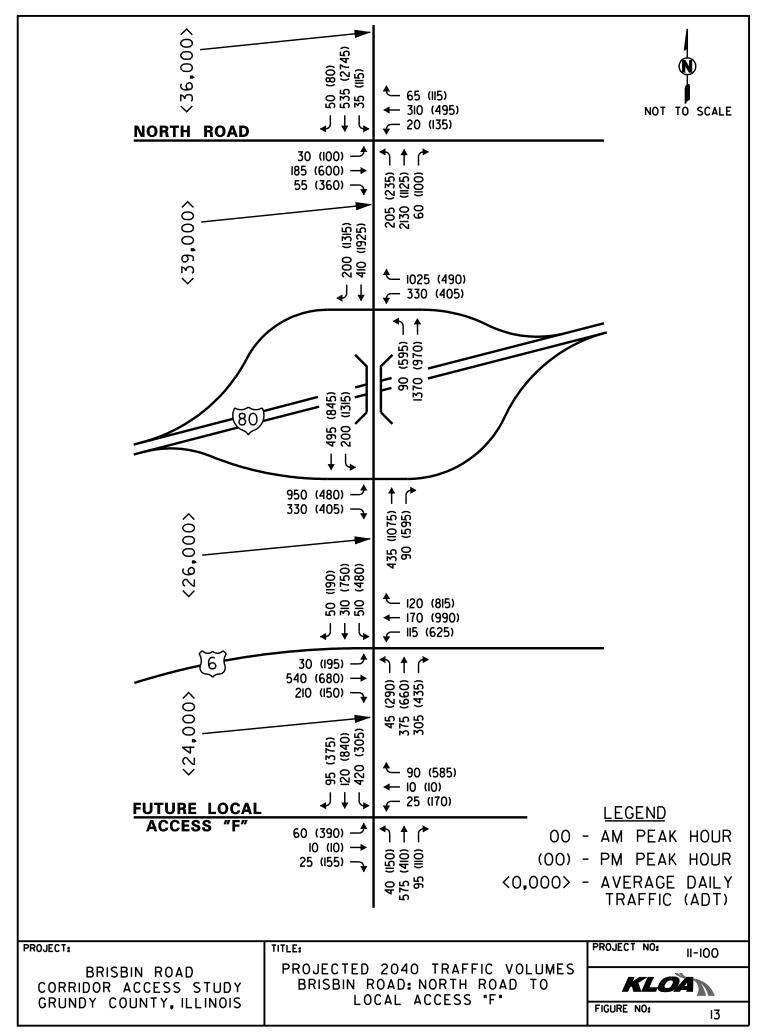
|                                                                                              | Percentage of Traffic |                       |                     |                    |  |
|----------------------------------------------------------------------------------------------|-----------------------|-----------------------|---------------------|--------------------|--|
|                                                                                              |                       |                       | Neighborhood/       |                    |  |
| Direction To/From                                                                            | Residential           | Industrial/<br>Office | Community<br>Retail | Regional<br>Retail |  |
|                                                                                              |                       |                       | *                   |                    |  |
| East on I-80                                                                                 | 5%                    | 10%                   | <b>٠</b>            | 10%                |  |
| West on I-80                                                                                 | 5%                    | 10%                   | *                   | 10%                |  |
| North via Brisbin Rd, Grove Rd,<br>Church Rd                                                 | 40%                   | 20%                   | 20%                 | 20%                |  |
| South via Brisbin Rd extended,<br>Brown Rd, Gun Club Rd                                      | *                     | 5%                    | 5%                  | 10%                |  |
| East via U.S. Route 6, Minooka Rd,<br>Sherrill Rd                                            | 25%                   | 30%                   | 45%                 | 25%                |  |
| West via U.S. Route 6, Minooka Rd,<br>Sherrill Rd, North Rd extended,<br>Whitman Rd extended | <u>25%</u>            | <u>25%</u>            | <u>30%</u>          | <u>25%</u>         |  |
| Total                                                                                        | 100%                  | 100%                  | 100%                | 100%               |  |

<sup>\* -</sup> Minimal

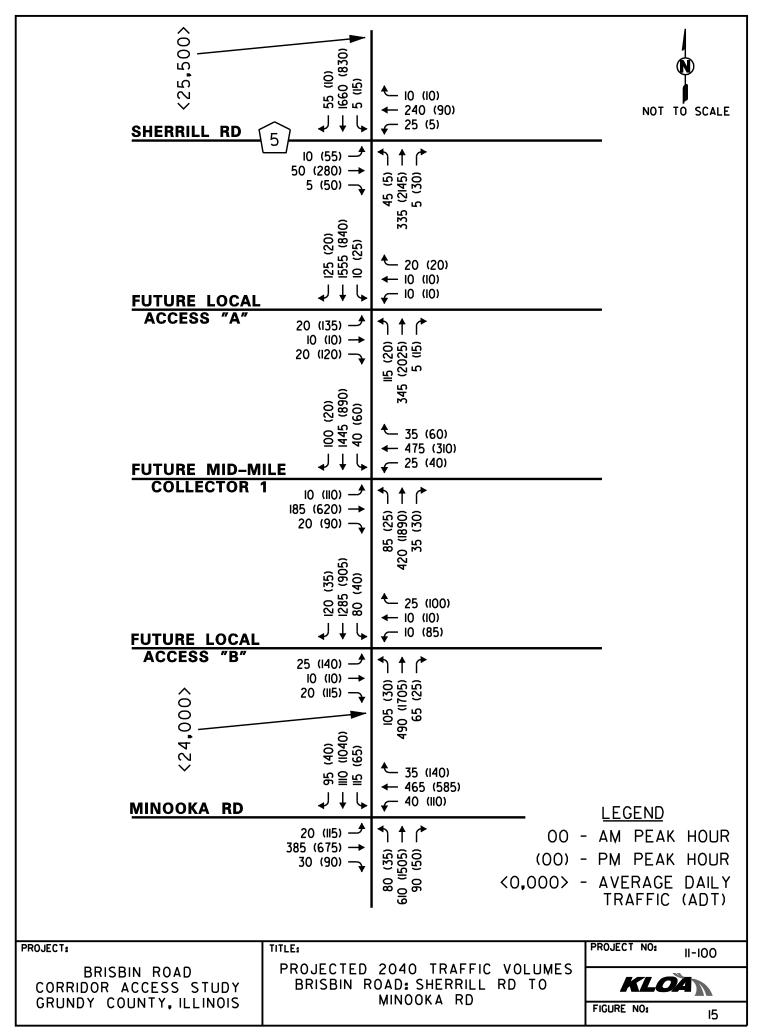
# **Assignment of Future Development Traffic**

The peak hour traffic generated by future development within the TAZ's was assigned to the roadway system based on the directional distributions shown in Table 4. The traffic assignment process was performed manually based on a modified gravity model methodology that considered all network roadway options and functional classifications.

For future developments with Brisbin Road frontage, access was assumed from Brisbin Road as well as from the adjacent existing roadways and/or future east-west and north-south connector roads that may be developed in the future to support these developments. Consequently, only a portion of the traffic generated by these developments will travel on Brisbin Road. Traffic assignments were made for trips both originating in and destined to the study area and reflect the fact that a portion of the retail development traffic will be generated internal to the study area from existing and future residential subdivisions.


## Year 2040 Projected Traffic Volumes

The assignment of future development peak hour traffic was combined with the existing peak hour traffic volumes (Figure 3) to obtain the projected 2040 peak hour traffic volumes, which are shown in Figures 13-15 for the various sections of Brisbin Road. Projected 2040 daily (24-hour) traffic volumes were also calculated utilizing the peak hour factor and are also shown in Figures 13-15. To plan for the ultimate design of Brisbin Road, it was assumed that all planned development would be completed by 2040. The KLOA projections for Brisbin Road range from 24,000-39,000 vpd based on the land use data provided by the three communities.


To validate the 2040 traffic projections, KLOA requested 2040 average daily traffic (ADT) projections from CMAP, which are based on existing ADT data available from IDOT and from the April 2010 CMAP Regional Transportation Plan/Transportation Improvement Program Travel Demand Analysis. The regional travel model utilized in the transportation plan uses CMAP 2040 socioeconomic projections (provided by the local communities) and assumes the implementation of the 2040 Regional Transportation Plan for the Northeastern Illinois area.

The CMAP traffic projections indicate that traffic volumes on Brisbin Road will increase from the current volume of 175-700 vpd (see Table 1) to 500-8,000 vpd in 2040, reflecting an annual traffic growth rate of 6.6-37.2 percent over the next 28 years.

A comparison between the KLOA traffic projections and CMAP traffic projections indicates that the KLOA projections are substantially higher. This difference is attributed to the KLOA analysis assumption that full buildout of the Brisbin Road corridor will occur by 2040. In actuality, full buildout may not occur for several years beyond 2040.







#### 5.

### **Recommended Roadway Design**

This chapter summarizes the recommended design of Brisbin Road within the corridor study area. The first step in this process is to understand the function that the roadway provides within the hierarchy of the Grundy County, City of Morris, Village of Minooka, and Village of Channahon roadway system. The next step is to develop a roadway design that sustains that function and operates at the desired level of service given the volume of traffic it may ultimately carry. Recommendations and/or policies developed in this chapter address the roadway cross-section, geometric characteristics (right-of-way requirements, number of lanes), access control, traffic signal spacing, intersection geometrics, traffic controls, and intersection operations.

#### **Roadway Classification and Function**

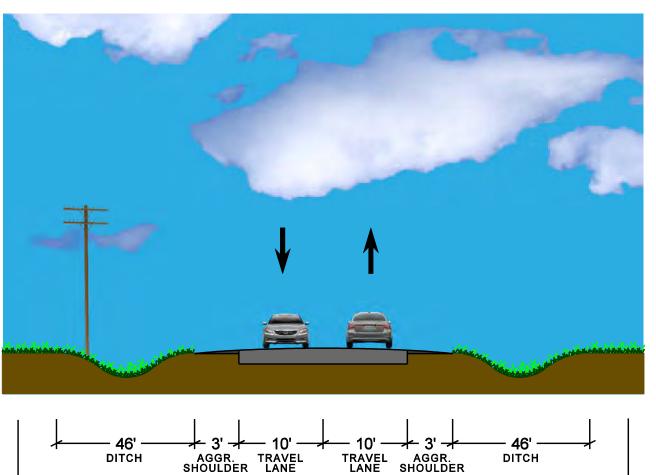
Brisbin Road is functionally classified by IDOT as a collector road while the comprehensive plans of Morris, Minooka and Channahon all identify Brisbin Road as an arterial road. Arterial roadways and major collector roads serve a similar function to promote a high degree of mobility with limited direct land access. They serve as the primary routes through urbanized areas connecting residential, shopping, employment, and recreation activities at the community level via the minor collector and local roadway system.

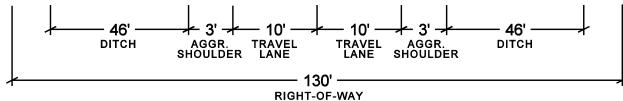
As such, the recommended Brisbin Road cross-sections and geometric characteristics were developed to meet the following criteria:

- 1. To provide sufficient capacity to accommodate the projected 2040 traffic volumes safely and efficiently, particularly regarding turning movements at major intersections.
- 2. To provide adequate right-of-way to accommodate potential future capacity improvements (additional through lanes or turn lanes) beyond the 28-year planning period.
- 3. To control access to the facility while maintaining sufficient spacing between traffic signals and full-access intersections.
- 4. To minimize "side friction" by prohibiting parking or loading on Brisbin Road.

- 5. To achieve an urban design standard (i.e., curb and gutter, sidewalks) or a hybrid urban/rural design that can ultimately be converted to a full urban design in the future.
- 6. To develop an aesthetically-pleasing design that allows for streetscaping/landscaping opportunities within the median and parkways.
- 7. To encourage multimodal travel on separated off-street sidewalks and/or multi-use trails, which is a goal of the Grundy County 2020 Comprehensive Plan and is consistent with the comprehensive plans of Morris and Channahon that include an off-street path along the southern portion of Brisbin Road connecting to a path along Collins Run Creek.

#### **Cross-Section and Geometric Characteristics**


#### South of U.S. Route 6


This section of Brisbin Road is presently adjoined by agricultural land on both sides. It is anticipated that this land will eventually develop with retail and office/service uses. The I-80/Brisbin Road interchange construction project includes improvements to Brisbin Road that extend south approximately 1,150 feet south of U.S. Route 6. Between the project's south terminus and U.S. Route 6, Brisbin Road will transition from a two-lane roadway with a rural cross-section (i.e., shoulder and ditch) within a 130-foot right-of-way to an urban cross-section (i.e., curb and gutter) that will widen to provide northbound left- and right-turn lanes within a 165-foot right-of-way. Figures 16 and 17 depict the Brisbin Road cross-sections upon completion of the interchange construction for the south project terminus and the south approach to U.S. Route 6, respectively.

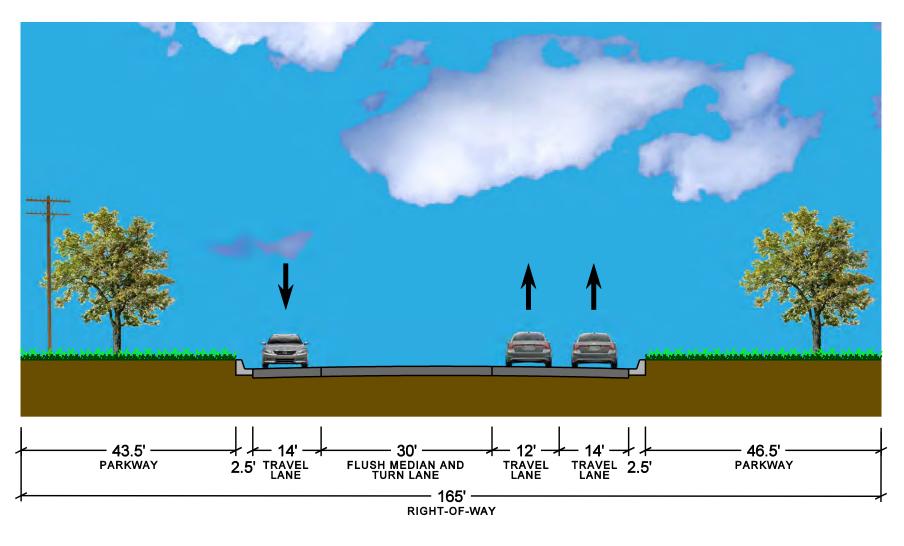
An urban cross-section is ultimately desired for this section of Brisbin Road, which eventually will be under the jurisdiction of the City of Morris and Village of Channahon. The road capacity necessary to accommodate the projected 2040 traffic volumes can be developed within the 130-foot right-of-way that will be in place after the interchange construction is completed. As development occurs to the south of the interchange project limits, this 130-foot right-of-way (65 feet on each side) could be dedicated by the adjoining property owners to continue the desired cross-section further south. The recommended mid-block cross-section for the ultimate design of Brisbin Road south of U.S. Route 6 is shown in Figure 18 and described below:

- Two through lanes in both northbound and southbound directions. The inside lanes being 12-feet wide and outside lanes being 14-feet wide, consistent with the IDOT interchange design.
- Curb and gutter on both sides of the roadway.
- A raised 30-foot wide barrier median, landscaped with turf or shade trees and/or low-lying shrubs/flowers. The median would accommodate up to two 12-foot wide left-turn lanes at key intersections. The median would not be opened at right-in/right-out driveways.
- A 21.5-foot wide landscaped parkway on both sides of the road. The parkway would accommodate a 12-foot wide right-turn lane at key intersections.
- Sidewalk or multi-use trail within a 15-foot wide easement on both sides of the roadway.

South Project Terminus Post Interchange Design






PROJECT:

BRISBIN ROAD CORRIDOR ACCESS STUDY GRUNDY COUNTY, ILLINOIS TITLE:

TYPICAL CROSS SECTION

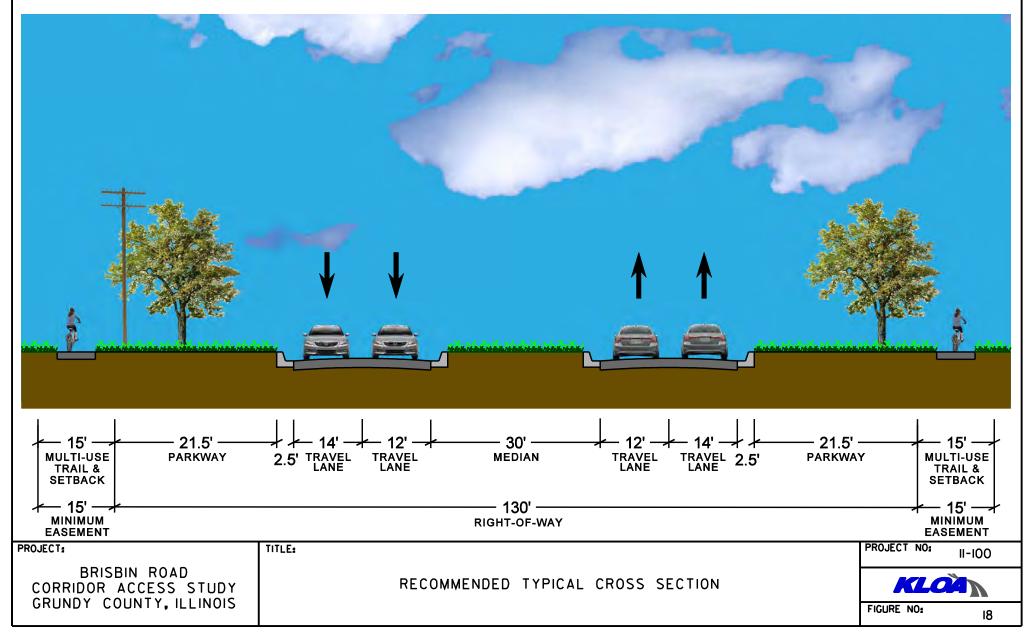
PROJECT NO: 11-100 FIGURE NO: 16

US 6 to South Project Terminus Post Interchange Design



PROJECT<sub>2</sub>

BRISBIN ROAD CORRIDOR ACCESS STUDY GRUNDY COUNTY, ILLINOIS


TITLE:

TYPICAL CROSS SECTION (VIEW LOOKING NORTH)

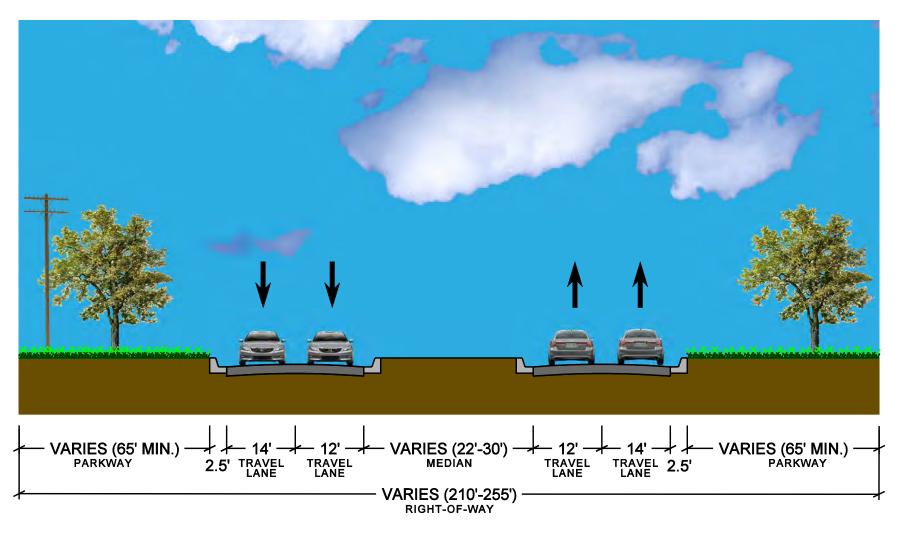
PROJECT NO: II-IOO

FIGURE NO: 17

South of US 6 Ultimate Design



#### U.S. Route 6 to I-80 Interchange


This section of Brisbin Road is also presently adjoined by agricultural land on both sides of the roadway, which is also anticipated to develop with retail and office/service uses. The I-80/Brisbin Road interchange construction project includes the replacement of the existing bridge over I-80 with a wider bridge, the construction of eastbound and westbound entrance and exit ramps in a full diamond configuration, the realignment of North Road closer to Collins Run, and the widening of Brisbin Road between the bridge and U.S. Route 6. Within this section of Brisbin Road, a four-lane roadway with an urban design is being constructed with a concrete barrier median that varies in width from 22-30 feet and accommodates a single left-turn lane at the entrance ramps and dual left-turn lanes at U.S. Route 6, as shown in Figure 19. The right-of-way, which will be controlled by IDOT, will range from 210-250 feet.

The projected 2040 traffic volumes will require expanded capacity on Brisbin Road to provide a six-lane roadway with dual left-turn lanes and single or dual right-turn lanes at all intersections, which can be accommodated within the 210-250 foot right-of-way. This expansion of road capacity will require a wider bridge deck over I-80 than is currently being constructed and will require additional lanes on the entrance and exit ramps (or possibly the reconfiguration of the ramps to provide free-flow movements). In addition, since the Brisbin Road bridge currently under construction does not provide accommodations for bicycles and pedestrians, any future widening of this bridge should be designed to accommodate bicycle and pedestrian movements in dedicated space protected from the vehicular lanes.

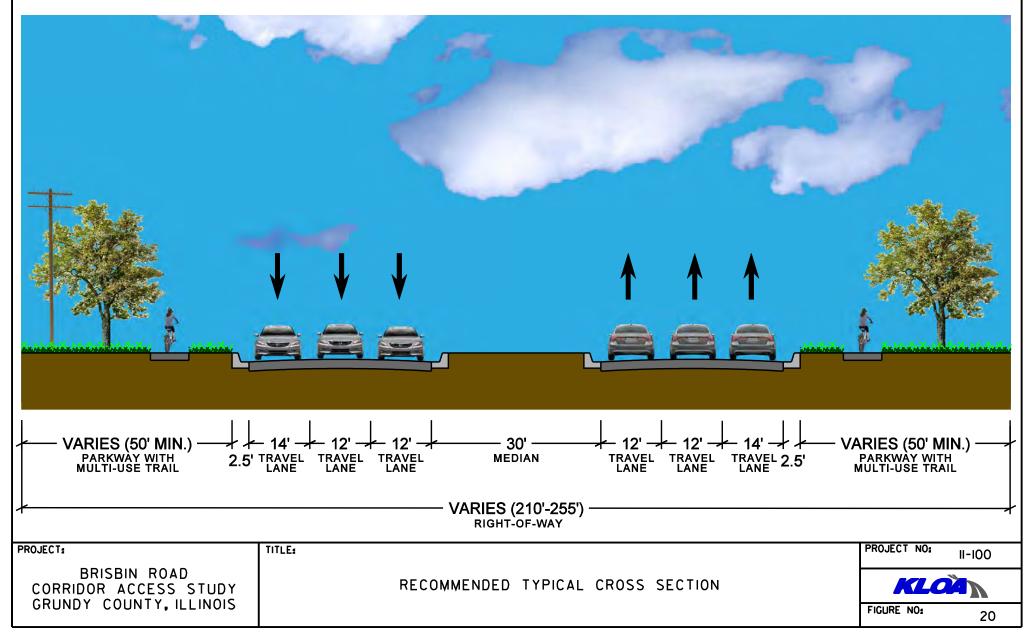
The recommended mid-block cross-section for the ultimate design of Brisbin Road between U.S. Route 6 and the I-80 interchange is shown in Figure 20 and is described below:

- Three through lanes in both the northbound and southbound directions. The two inside lanes being 12-feet wide and the outside lanes being 14-feet wide, consistent with the IDOT interchange design.
- Curb and gutter on both sides of the roadway.
- A raised 30-foot wide barrier median, which can be landscaped on the non-bridge sections and paved on the bridge section. The median would accommodate two 12-foot wide left-turn lanes at U.S. Route 6 and the I-80 ramps (unless the ramps are reconfigured).
- A variable-width landscaped parkway on the non-bridge sections of the roadway. The
  parkway would accommodate single or dual right-turn lanes at U.S. Route 6 and at the I-80
  entrance ramps.
- Sidewalk or multi-use trail within the public right-of-way on both sides of the roadway.

US 6 to I-80 Interchange Post Interchange Design



PROJECT:


BRISBIN ROAD CORRIDOR ACCESS STUDY GRUNDY COUNTY, ILLINOIS

TITLEs

TYPICAL CROSS SECTION

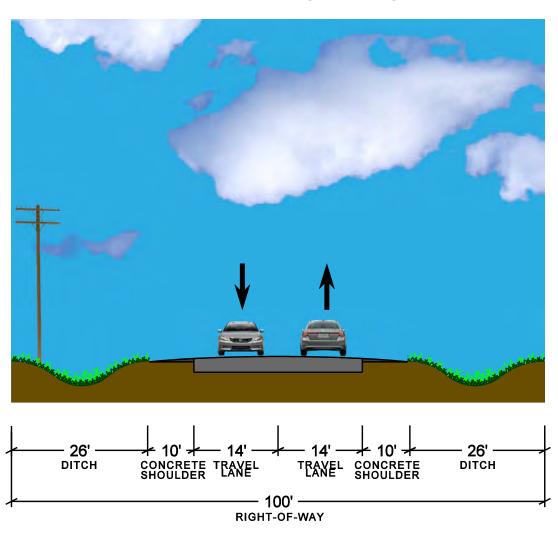
PROJECT NO: II-IOO

US 6 to I-80 Interchange Ultimate Design



#### I-80 Interchange to Sherrill Road

This section of Brisbin Road is presently adjoined by agricultural land on both sides of the roadway and is anticipated to eventually develop with industrial, retail, residential, and office/service uses. The north terminus of the I-80/Brisbin Road interchange construction project is located at the bridge over Collins Run. Between the I-80 interchange and this north terminus, Brisbin Road will transition from a four-lane divided roadway with an urban cross-section to a two-lane undivided roadway with a rural cross-section within a 100-foot right-of-way. Figure 21 depict the Brisbin Road cross-section at the north project terminus upon completion of the interchange construction.


The road capacity necessary to accommodate the projected 2040 traffic volumes along the segment of Brisbin Road between the I-80 interchange and Sherrill Road will ultimately require a six-lane roadway with single or dual left-turn lanes and single right-turn lanes. The desired design for the six-lane facility is an urban cross-section with a raised barrier median and curb and gutter, which would match the ultimate design of Brisbin Road from the interchange south to U.S. Route 6. The ultimate road design would be built within a 170-foot right-of-way, which would be established through a roadway dedication easement of 85 feet of land on each side of the roadway as development occurs.

However, traffic conditions on Brisbin Road may not reach levels requiring a six-lane facility for many years, depending on the pace of development. Therefore, interim designs are recommended for Brisbin Road that would preserve sufficient right-of-way for the ultimate six-lane urban cross-section but only provide the road capacity to accommodate near-term (within the next 5 years) and mid-term (5-28 years) traffic volumes.

The near-term interim design would initially be implemented via the dedication of a 170-foot roadway easement to establish the public right-of-way and the construction of a rural two-lane cross-section with shoulder and ditch on both sides of the pavement. The roadway would be offset to one side of the centerline of the 170-foot right-of-way, thereby allowing a portion of the right-of-way to continue to be used by local land owners for agricultural purposes until the midterm interim design is required. The mid-term interim design would have an urban-rural hybrid cross-section with an urban barrier median on the right-of-way centerline and a rural outside shoulder and ditch. The mid-term design would require the use of the entire 170-foot right-of-way and would utilize the outside shoulder and ditch from the near-term design, convert the two near-term travel lanes for one direction of travel, construct the median, and build the two additional travel lanes for the other direction of travel.

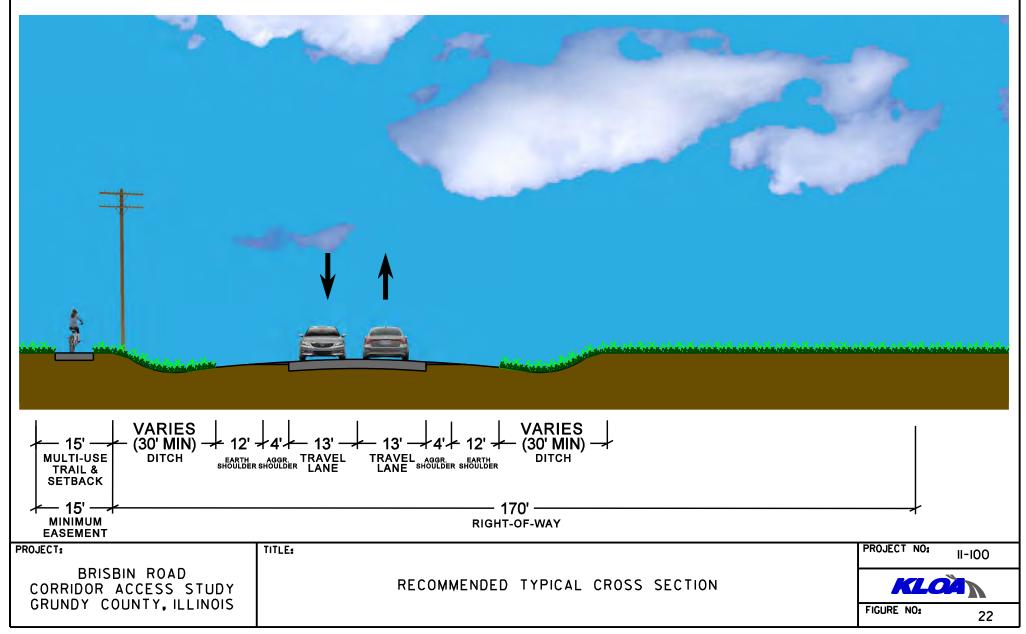
The recommended interim (near-term and mid-term) and ultimate mid-block designs for Brisbin Road between the I-80 interchange and Sherrill Road are shown in Figures 22, 23 and 24, respectively, and are described below:

North Project Terminus Post Interchange Design



PROJECT:

BRISBIN ROAD CORRIDOR ACCESS STUDY GRUNDY COUNTY, ILLINOIS


TITLE:

TYPICAL CROSS SECTION

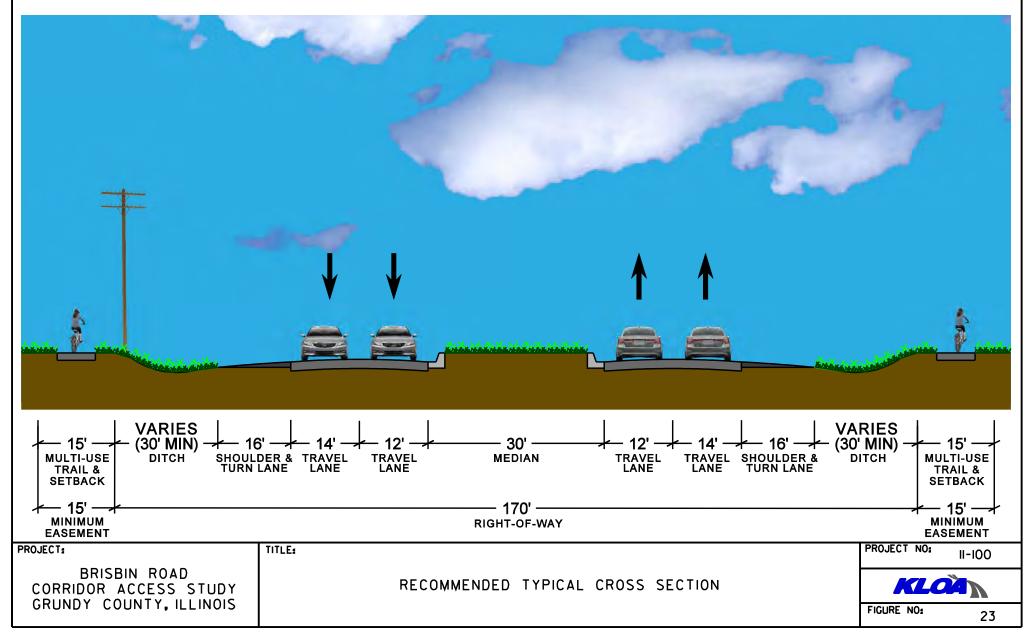
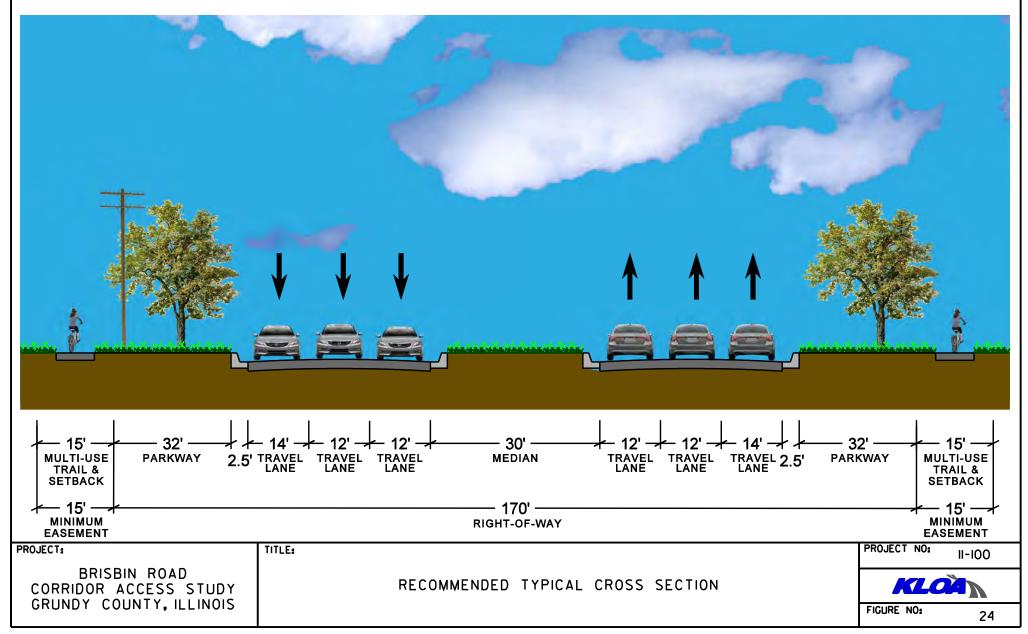

PROJECT NO: II-IOO

FIGURE NO: 21


I-80 Interchange to Sherrill Road Interim Design - Near Term



I-80 Interchange to Sherrill Road Interim Design - Mid Term



I-80 Interchange to Sherrill Road Ultimate Design



#### Interim Design (Near-Term)

- One 13-foot wide through lane in both northbound and southbound directions, with the pavement centerline offset 28 feet to one side of the future 170-foot right-of-way centerline.
- A 16-foot shoulder (4-foot aggregate, 12-foot earth) accommodating a 12-foot wide right-turn lane at key intersections.
- A 30-foot wide (min.) drainage ditch
- Sidewalk or multi-use trail within a 15-foot wide easement on one side of the roadway.

#### **Interim Design (Mid-Term)**

- Two through lanes in both northbound and southbound directions. The inside lane being 12-feet wide and the outside lane being 14-feet wide, consistent with the IDOT interchange design.
- A raised 30-foot wide barrier median on the 170-foot right-of-way centerline. The median can be turf or landscaped with shade trees and/or low-lying shrubs/flowers. The median would accommodate single or dual 12-foot wide left-turn lanes at key intersections and would not be opened at right-in/right-out driveways.
- A 16-foot paved shoulder accommodating a 12-foot wide right-turn lane at key intersections.
- A 30-foot wide (min.) drainage ditch
- Sidewalk or multi-use trail within a 15-foot wide easement on both sides of the roadway.

#### <u>Ultimate Design</u>

- Three through lanes in both the northbound and southbound directions. The two inside lanes being 12-feet wide and the outside lane being 14-feet wide, consistent with the IDOT interchange design.
- Curb and gutter on both sides of the roadway
- A raised 30-foot wide barrier median, which can be turf or landscaped with shade trees and/or low-lying shrubs/flowers. The median would accommodate single or dual 12-foot wide left-turn lanes at key intersections. The median would not be opened at right-in/right-out driveways.
- A 32-foot wide landscaped parkway on both sides of the road. The parkway would accommodate a single 12-foot wide right-turn lane at key intersections.
- Sidewalk or multi-use trail within a 15-foot wide easement on both sides of the roadway.

#### **Access Control and Traffic Signals**

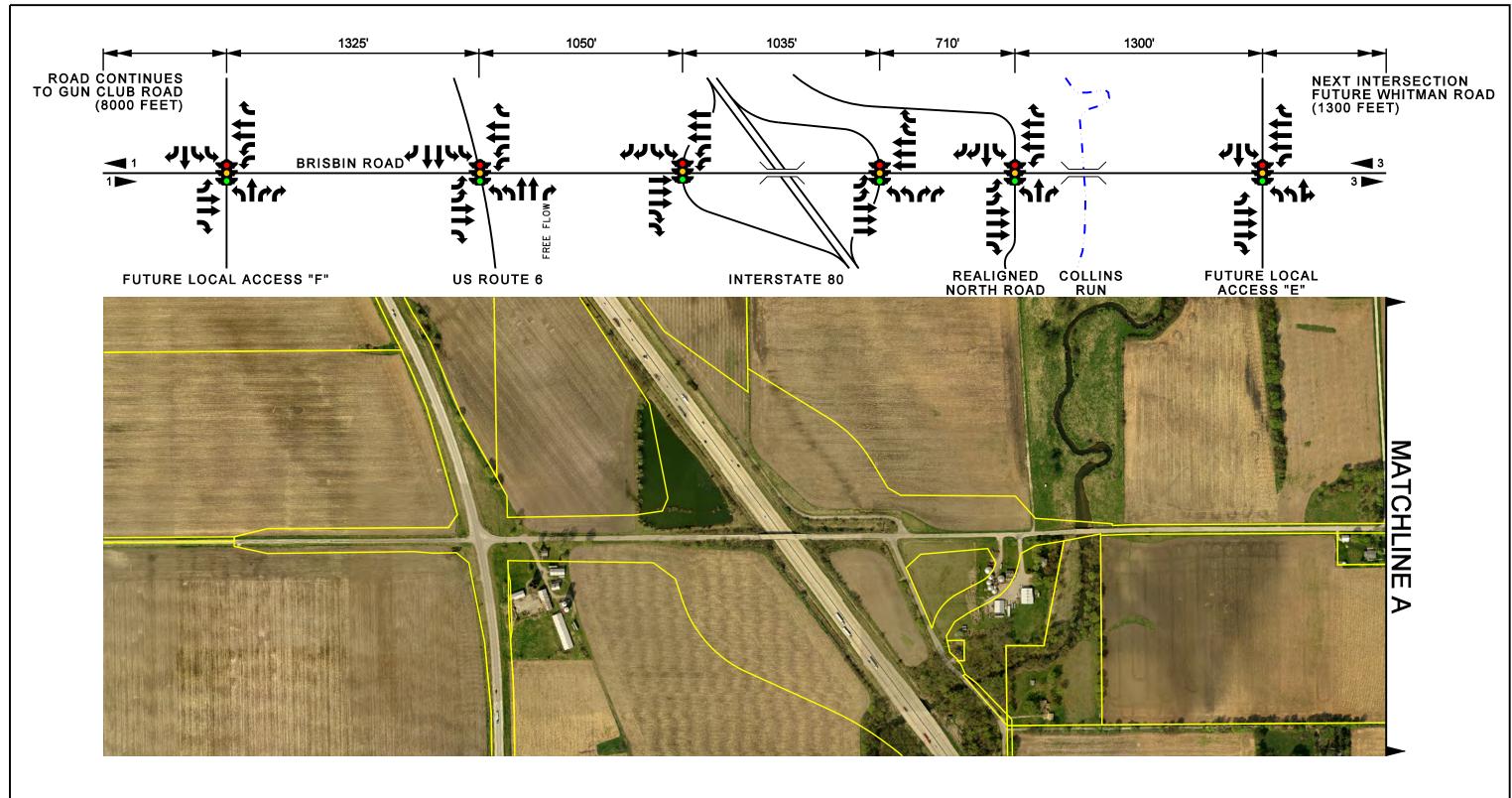
As noted above and discussed in Chapter 2, access control standards should be established and adhered to in order to maximize roadway capacity, maintain traffic flow efficiency and enhance safety. The Grundy County Highway Access Regulation Ordinance (GCHARO) does not include Brisbin Road in its highway access classification system as jurisdiction of Brisbin Road was transferred to the County after the GCHARO was adopted in September 2004. However, comparable County highways in Grundy County are classified as Access 3 roadways when defining access control, intersection spacing and traffic control standards. Access 3 roadways are locally significant facilities where direct access to abutting land is controlled to maximize the through movement of traffic. The following access control standards are recommended for Brisbin Road:

- Access to Brisbin Road will be controlled by IDOT between U.S. Route 6 and North Road.
- Access to Brisbin Road between North Road and Sherrill Road will be controlled by the GCHD and should be limited as defined by the GCHARO Access 3 roadway guidelines. Currently, the minimum spacing of full access unsignalized intersections on Access 3 roadways is ¼-mile (1,320 feet) and the minimum spacing of signal-controlled intersections is 1/3-mile (1,760 feet). For reasons discussed in Chapter 2, the minimum spacing standards for signal-controlled intersections along Brisbin Road should be adjusted to ¼-mile, consistent with the spacing standard for suburban arterials and collectors in the urbanizing counties of Will and Kane.
- Access to Brisbin Road to the south of U.S. Route 6 will be controlled by the City of Morris and Village of Channahon and is encouraged to follow the Access 3 roadway guidelines.
- Restricted right-in/right-out (RIRO) access driveways should be spaced at a minimum of 500 feet with a desirable spacing of 1/8-mile (660 feet).
- As parcels are developed, consideration should be given to closing, relocating or consolidating existing driveways and/or limiting access at existing driveways to adhere to the minimum spacing guidelines.
- Access to adjoining parcels should be consolidated whenever possible.
- The raised barrier median should be extended across all RIRO driveways to reinforce the access restrictions by physically preventing left-turn entering and exiting movements.
- New full access driveways should be aligned opposite an existing full access driveway if it is reasonably close to meeting the minimum spacing requirements.
- The creation of offset intersections should be avoided.
- To promote development access flexibility, encourage a more uniform distribution of development traffic, and reduce traffic volumes on Brisbin Road, development access should also be provided from the adjoining cross streets.

• To maintain efficient traffic signal operations and traffic flow progression, all future signals within the corridor that are located within ½-mile of each other should be interconnected into a coordinated signal system.

Figures 25-27 illustrate the recommended future access locations along Brisbin Road.

#### **Intersection Geometrics and Traffic Control**


Figures 25-27 also illustrate the recommended geometrics for each intersection within the Brisbin Road corridor for the ultimate design condition. In addition to the four-lane to six-lane cross-sections, the key intersections will also require exclusive left- and right-turn lanes. It should be noted that the purpose of the corridor access study is to identify general geometric requirements for Brisbin Road to accommodate the projected 2040 traffic demands. The actual design of the intersections (i.e., need for dual turn lanes, length of turn lanes and tapers, intersection radii, signal equipment locations, etc.) will be determined when Phase I Intersection Design Studies (IDS) are prepared for the future signalized intersections or when Phase II engineering plans are developed. The following describes the recommended roadway improvements that will be required at each of the intersections in the corridor.

#### Brisbin Road with Future Intersections South of U.S. Route 6

South of U.S. Route 6, new local access drives may develop at approximately ¼-mile spacing. At these future intersections, the recommended 130-foot right-of-way and ultimate four-lane urban design of Brisbin Road will accommodate a single or dual left-turn lanes, two through lanes, and a dedicated right-turn lane in each direction. The local access drives should provide separate left-turn, through and right-turn lanes, as needed based on the traffic volumes generated. These intersections are projected to ultimately require traffic signal control, which should be installed when traffic volumes reach threshold levels warranting the signal.

#### Brisbin Road with U.S. Route 6

This intersection will be under traffic signal control upon completion of the interchange construction project. The cross-section of Brisbin Road at this intersection will ultimately require dual left-turn lanes, two through lanes and a dedicated right-turn lane in each direction. The ultimate design would maintain the urban cross-section and be accommodated within the right-of-way that will be in place when the interchange construction is completed (165 feet south of US 6; 255 feet north of US 6). As part of the interchange project, U.S. Route 6 will be widened to accommodate an ultimate cross-section of dual left-turn lanes, two through lanes, and a single right-turn lane, which will be sufficient to accommodate the projected 2040 traffic volumes, although the westbound right-turn lane may need to be redesigned for free-flow turning movements.

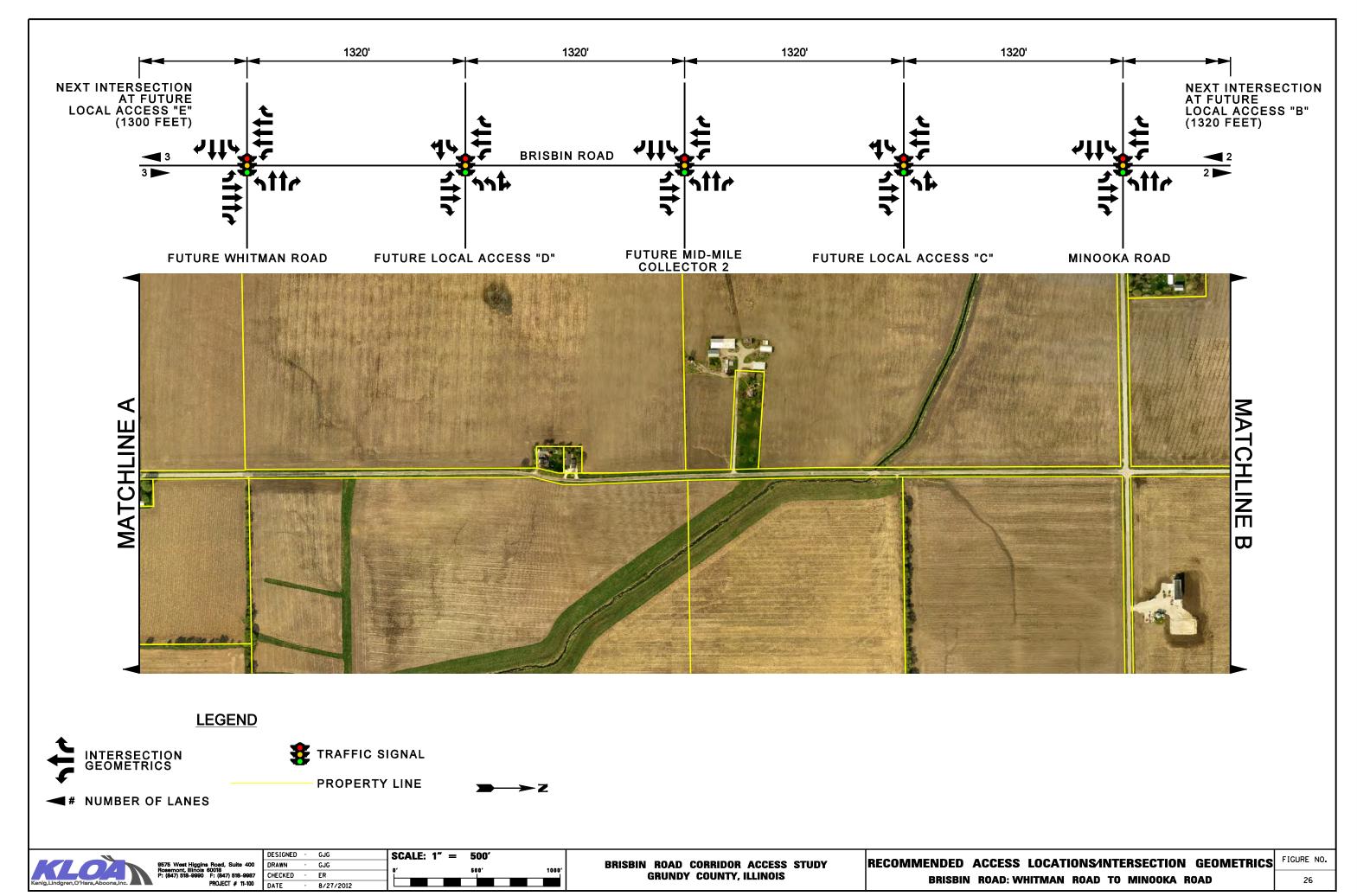


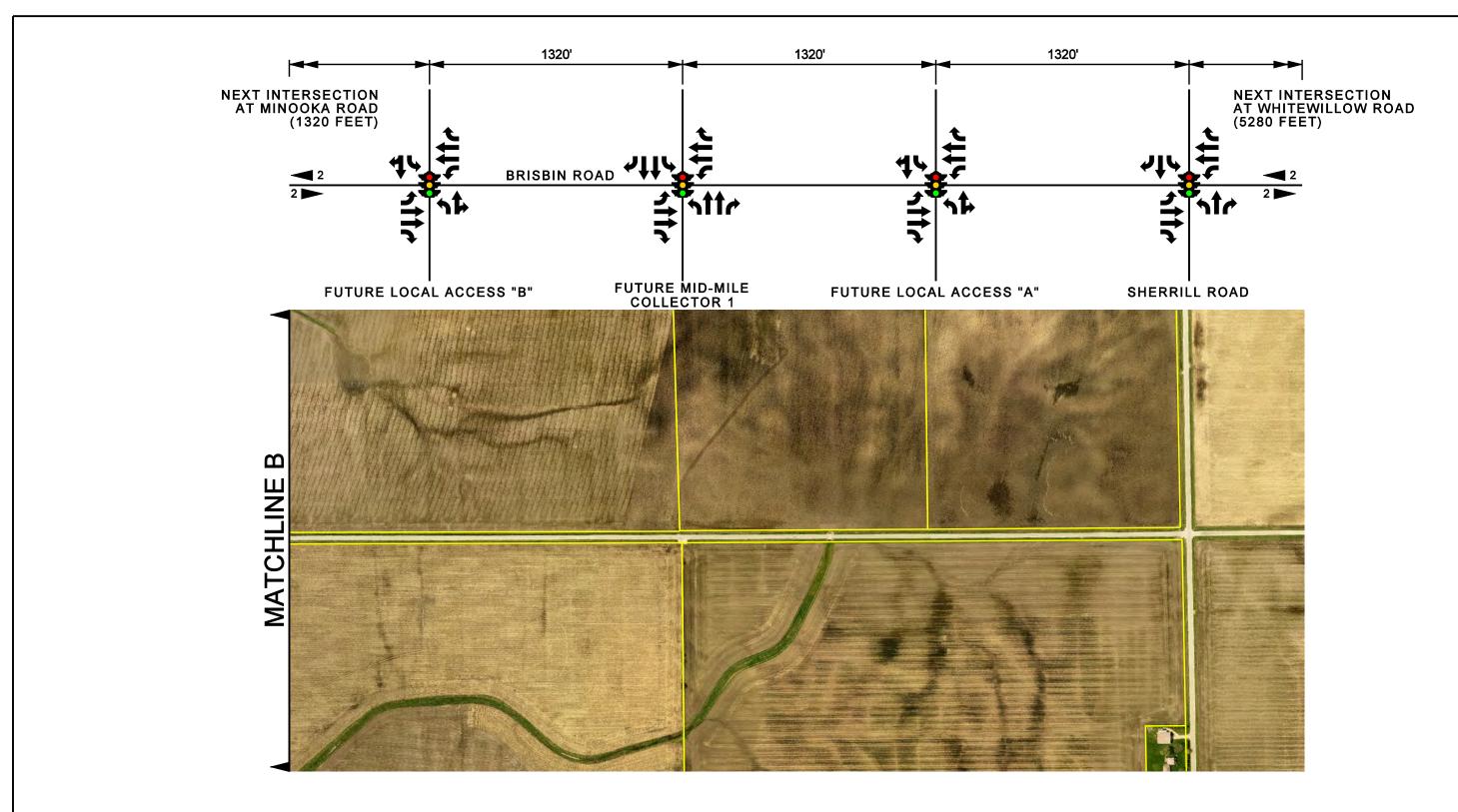




TRAFFIC SIGNAL

PROPERTY LINE


■ # NUMBER OF LANES


DESIGNED - GJG SCALE: 1" = 500' GJG CHECKED -8/27/2012

BRISBIN ROAD CORRIDOR ACCESS STUDY **GRUNDY COUNTY, ILLINOIS** 

RECOMMENDED ACCESS LOCATIONS/INTERSECTION GEOMETRICS FIGURE NO. BRISBIN ROAD: US ROUTE 6 TO WHITMAN ROAD

25





#### **LEGEND**



TRAFFIC SIGNAL

PROPERTY LINE

**NUMBER OF LANES** 

DESIGNED - GJG SCALE: 1" = 500' GJG CHECKED -8/27/2012

BRISBIN ROAD CORRIDOR ACCESS STUDY **GRUNDY COUNTY, ILLINOIS** 

RECOMMENDED ACCESS LOCATIONS/INTERSECTION GEOMETRICS FIGURE NO. BRISBIN ROAD: MINOOKA ROAD TO SHERRILL ROAD

#### **Brisbin Road with Future I-80 Ramps**

The future intersections of the I-80 ramps with Brisbin Road will be under traffic signal control upon completion of the interchange construction project. On Brisbin Road, the recommended ultimate six-lane urban design will accommodate three dedicated through lanes, dual left-turn lanes and dual right-turn lanes in each direction. This cross-section, however, will require the reconstruction and widening of the Brisbin Road bridge. The entrance ramps would be widened to accept the dual turn lanes before tapering down to the single merge lane. The exit ramps would be widened on the approach to Brisbin Road to provide dual left-turn lanes and dual right-turn lanes.

#### **Brisbin Road with Realigned North Road**

This intersection will need to be under traffic signal control to accommodate the projected 2040 traffic volumes. The signal should be installed when traffic volumes reach threshold levels warranting the signal. At this intersection, the recommended ultimate six-lane urban design of Brisbin Road will accommodate single or dual left-turn lanes, three dedicated through lanes, and a dedicated right-turn lane in each direction. The widening would be accommodated within the recommended 170-foot right-of-way. North Road is recommended to be widened at this intersection to provide separate a left-turn lane, through lane, and single or dual right-turn lanes, which can be provided within the 120-foot right-of-way that will be in place upon completion of the interchange project.

#### **Brisbin Road with Future Whitman Road**

This intersection will require signalization to accommodate the projected 2040 traffic volumes. The signal should be installed when traffic volumes reach the level that signal warrants are satisfied. The cross-section of Brisbin Road at this intersection will ultimately require single or dual left-turn lanes, three through lanes and a dedicated right-turn lane in each direction, which can be accommodated with an urban design within the recommended 170-foot right-of-way. The cross-section of the future Whitman Road at the intersection may require a dedicated left-turn lane, a single through lane and a dedicated right-turn lane in both directions.

#### Brisbin Road with Future Intersections between Whitman Road and Minooka Road

The intersections of the new mid-mile collector road or local roads that may develop at approximately ¼-mile spacing between the future Whitman Road and Minooka Road are projected to eventually require traffic signal control, when volumes warrant, to accommodate the projected 2040 traffic volumes. The cross-section of Brisbin Road at these intersections may ultimately only require a single left-turn lane, two through lanes and a right-turn lane in each direction, which can be accommodated with an urban design within the recommended 170-foot right-of-way. However, if higher development densities are realized than projected in this report, the traffic volumes along this section of Brisbin Road could be higher as well. As such, it is recommended that the 30-foot median be maintained along this section of Brisbin Road to allow for the potential need to provide dual left-turn lanes at the signalized intersections. Preserving a

170-foot right-of-way along this section of Brisbin Road will also allow for the potential need to increase capacity along this section of the roadway to provide three through lanes in each direction. The cross-sections of the mid-mile collector and the local roads will likely require single or dual left-turn lanes, a single or dual through lanes, and a dedicated right-turn lane (or possibly a combination through/right-turn lane) in each direction.

#### **Brisbin Road with Minooka Road**

The intersection of Brisbin Road with Minooka Road will require signalization to accommodate the projected 2040 traffic volumes. The signal should be installed when traffic volumes reach the level that signal warrants are satisfied. The cross-section of Brisbin Road at this intersection may ultimately only require a single left-turn lane, two through lanes and a dedicated right-turn lane in each direction, which can be accommodated with an urban design within the recommended 170-foot right-of-way. However, continuing the 30-foot median at this intersection and maintaining a 170-foot right-of-way will preserve the necessary space to increase intersection capacity in the future (i.e., dual left-turn lanes, third through lane) should traffic conditions marketably change due to higher development densities than projected within the corridor or to the north of the corridor. The cross-section of Minooka Road at the intersection may require single or dual left-turn lanes, two through lanes and a dedicated right-turn lane in each direction.

#### Brisbin Road with Future Intersections between Minooka Road and Sherrill Road

The intersections of the new mid-mile collector road or local roads that may develop at approximately ¼-mile spacing between Minooka Road and Sherrill Road are projected to eventually require traffic signal control, when volumes warrant, to accommodate the projected 2040 traffic volumes. The cross-section of Brisbin Road at these intersections may ultimately only require a single left-turn lane, two through lanes and a right-turn lane in each direction, which can be accommodated with an urban design within the recommended 170-foot right-of-way. However, continuing the 30-foot median at this intersection and maintaining a 170-foot right-of-way will preserve the necessary space to increase intersection capacity in the future (i.e., dual left-turn lanes, third through lane) should traffic conditions marketably change due to higher development densities than projected within the corridor or to the north of the corridor. Preserving a 170-foot right-of-way along this section of Brisbin Road will also allow for the potential need to increase capacity along this section of the roadway to provide three through lanes in each direction. The cross-sections of the mid-mile collector and the local roads will likely require a single left-turn lane, through lane, and right-turn lane (or possibly a combination through/right-turn lane) in each direction.

#### **Brisbin Road with Sherrill Road**

The intersection of Brisbin Road with Sherrill Road will require signalization to accommodate the projected 2040 traffic volumes. The signal should be installed when traffic volumes reach the level that signal warrants are satisfied. The cross-section of Brisbin Road at this intersection will ultimately require a single left-turn lane, two through lanes and a right-turn lane in each direction, which can be accommodated with an urban design within the recommended 170-foot

right-of-way. However, continuing the 30-foot median at this intersection and maintaining a 170-foot right-of-way will preserve the necessary space to increase intersection capacity in the future (i.e., dual left-turn lanes, third through lane) should traffic conditions marketably change due to higher development densities than projected within the corridor or to the north of the corridor. The cross-section of Sherrill Road will likely require a single left-turn lane, through lane, and right-turn lane in each direction.

#### **Projected Intersection Operations**

Intersection capacity analyses were performed for the projected 2040 weekday peak hour traffic conditions. The recommended intersection geometrics for the major traffic signal controlled intersections were developed with the desire to maintain a Level of Service C or better for the overall intersection, per the GCHARO.

Table 5 summarizes the results of the capacity analyses for the projected 2040 weekday peak hour traffic conditions. The results shown in the table illustrate the average level of service and delay for all vehicles combined at each particular intersection. The capacity analysis worksheets are contained in the Appendix.

As the capacity analysis indicates, all intersection geometric design recommendations will be able to accommodate 2040 traffic levels at Level of Service C or better with the exception of the Brisbin Road intersections with future Whitman Road and U.S. Route 6 in the PM peak hour which are projected to operate at Level of Service D.

Queuing and the overall progression of traffic through the network can be managed efficiently through a system of signal interconnects that coordinate the signals along the corridor to create a platooning effect. It should be noted that the recommendations produced in this report are contingent upon the development of a continuous parallel collector road system with grid access via future and existing mid-mile collectors and local access roads that would divert some of the traffic burden away from Brisbin Road.

Table 5 CAPACITY ANALYSIS RESULTS – PROJECTED 2040 TRAFFIC CONDITIONS

|                                            |     | kday<br>ak Hour |     | kday<br>ak Hour |
|--------------------------------------------|-----|-----------------|-----|-----------------|
| Intersection                               | LOS | Delay           | LOS | Delay           |
| Brisbin Road / Sherrill Road               | С   | 22.3            | В   | 19.8            |
| Brisbin Road / Future Local Access "A"     | A   | 7.0             | A   | 7.9             |
| Brisbin Road / Future Mid-Mile Collector 1 | В   | 13.4            | C   | 25.6            |
| Brisbin Road / Future Local Access "B"     | A   | 7.0             | A   | 9.8             |
| Brisbin Road / Minooka Road                | В   | 15.2            | C   | 27.8            |
| Brisbin Road / Future Local Access "C"     | A   | 9.2             | В   | 10.8            |
| Brisbin Road / Future Mid-Mile Collector 2 | В   | 16.1            | C   | 28.4            |
| Brisbin Road / Future Local Access "D"     | A   | 7.7             | C   | 23.5            |
| Brisbin Road / Future Whitman Road         | В   | 16.8            | D   | 39.3            |
| Brisbin Road / Future Local Access "E"     | A   | 8.1             | C   | 21.4            |
| Brisbin Road / Realigned North Road        | В   | 18.6            | C   | 31.8            |
| Brisbin Road / I-80 Westbound Ramps        | В   | 16.3            | В   | 16.7            |
| Brisbin Road / I-80 Eastbound Ramps        | В   | 14.3            | В   | 19.4            |
| Brisbin Road / U.S. Route 6                | C   | 24.8            | D   | 39.3            |
| Brisbin Road / Future Local Access "F"     | В   | 16.2            | C   | 25.0            |

Note: LOS = level of service Delay = seconds/vehicle

# 6. **Project Funding Options**

The Illinois Road Improvement Impact Fee Law creates the authority for counties with a population over 400,000 and all home-rule municipalities to adopt and implement Road Improvement Impact Fee ordinances and resolutions designed to supplement other funding sources (i.e., Motor Fuel Taxes, Surface Transportation Program, Congestion Mitigation & Air Quality Program, Illinois Transportation Enhancement Program) so that the burden of paying for road improvements needed to accommodate new development can be allocated in a fair and equitable manner. These fees are levied or imposed by qualifying counties and municipalities as a condition to the issuance of a building permit or a certificate of occupancy and are pooled into an interest-bearing fund allowing for the corridor roadway improvements to be completed in a coordinated manner for efficiencies of scale and to minimize disruptions to the travelling public.

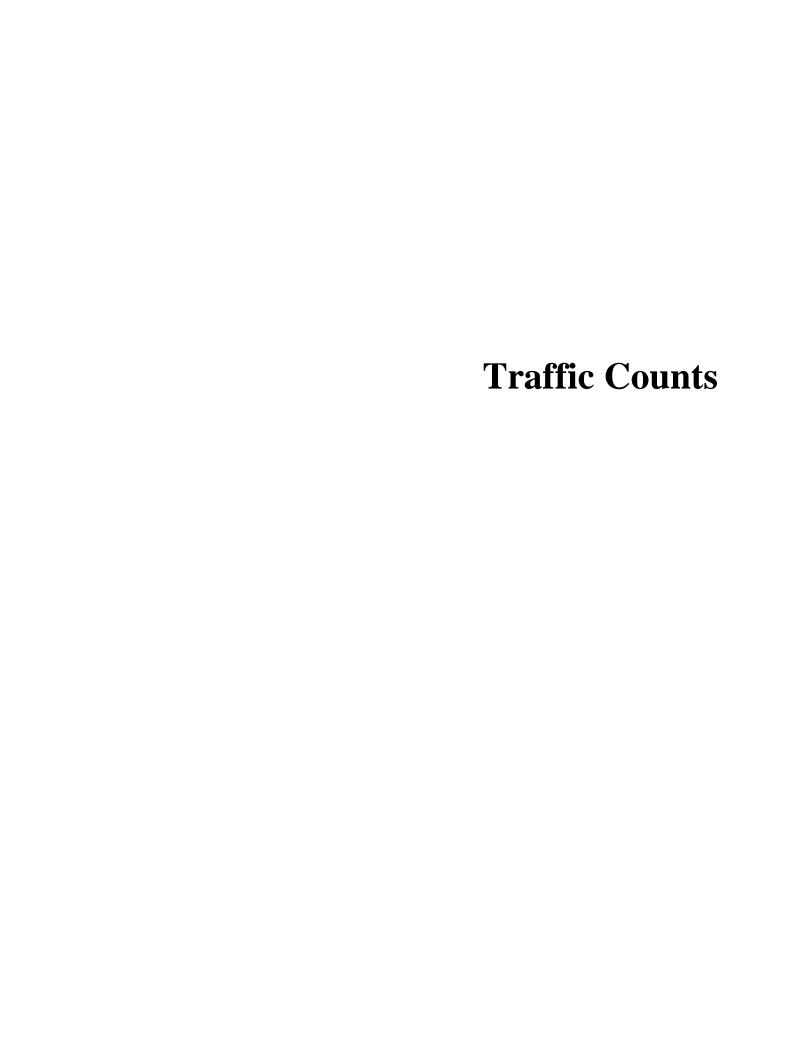
Presently DuPage County, Kane County and Lake County collect road impact fees to help fund roadway projects. Grundy County currently has a population of approximately 50,000 and does not presently meet the state statutes to impose road impact fees. However, as development growth occurs in the County and the residential population increases, the County will eventually be in a position to enact a Road Impact Fee Ordinance, which might be utilized for future improvements to Brisbin Road.

In the interim, Grundy County should work with the local municipalities that annex land along the Brisbin Road corridor (i.e., Morris, Minooka, Channahon) to insure that road impact fees or development impact fees are imposed on private development in the corridor (via annexation agreements, development agreements, etc.) to insure that funds are set aside to improve Brisbin Road in a coordinated manner when traffic conditions warrant such improvements. These fees can be used for engineering and construction of "add-capacity" projects, including lane additions, turning lanes at intersections, acquisition of land or real property for the expansion of the roadway, and relocation of existing utilities or drainage in advance of new road capacity. They can also used for the design of new roadways, traffic signal interconnection, and bridge widening to accommodate new roadway capacity. Impact fee revenues must be encumbered for use within 5 years of payment.

## 7. Conclusions

This Corridor Access Study serves many functions in the evaluation of Brisbin Road, which will become the primary north-south travel corridor between IL Route 47 in Morris and Ridge Road in Minooka when the I-80/Brisbin Road interchange construction project is completed in 2012. Firstly, it serves to identify the ultimate right-of-way, roadway cross-section and intersection geometrics that will be required to accommodate projected traffic volumes over the next 28 years (Year 2040) or more when approximately 2,000 acres of land will potentially be developed with approximately 540 dwelling units and 20.8 million square feet of commercial and industrial space. Secondly, this study establishes guidelines pertaining to access control and traffic signal spacing with consideration given to the location of future land uses that may develop in the corridor. Lastly, this study identifies potential funding mechanisms that Grundy County can utilize to enact an equitable public-private cost-sharing arrangement with private developers so that the Brisbin Road improvements can be constructed in a coordinated manner for efficiencies of scale and to minimize disruptions to the travelling public.

The Corridor Access Study is intended to serve as a guide for future decisions affecting Brisbin Road. Key findings from the study follow below:


- At the time of this study, the Brisbin Road interchange with Interstate 80 was under construction and scheduled to be completed in Autumn 2012. As part of the interchange project, public right-of-way was secured by IDOT from approximately 1,150 feet south of U.S. Route 6 to the Collins Run bridge.
- Prior to the start of construction of the interchange project, all study area intersections along Brisbin Road operated at very good levels of service under stop sign controlled conditions.
- The traffic volumes on Brisbin Road presently range from 175-700 vehicles per day (vpd) and are projected to increase to 24,000-39,000 vpd upon completion of the interchange and buildout of the developable land in the corridor.

- To accommodate the projected 2040 traffic volumes at satisfactory levels of service, road capacity improvements will be required along Brisbin Road, which will require the dedication of sufficient public right-of-way. While the IDOT right-of-way between U.S. Route 6 and realigned North Road established as part of the interchange project will be sufficient to accommodate these capacity improvements, additional right-of-way will be required to the north of North Road and the south of U.S. Route 6.
- The ultimate design of Brisbin Road to the south of U.S. Route 6 is an urban four-lane cross-section with two travel lanes in each direction, a raised 30-foot wide barrier median accommodating single or dual left-turn lanes at intersections, curb and gutter on both sides of the roadway, and a 21.5-foot wide landscaped parkway accommodating right-turn lanes at key intersections. This design would be built within a 130-foot right-of-way, which is the right-of-way that will be in place for approximately 1,100 feet south of U.S. Route 6 after the I-80 interchange project is completed. As development occurs to the south of this point along Brisbin Road, the establishment of this 130-foot right-of-way will require the acquisition or dedication of 65 feet of land on each side of the roadway. A sidewalk or multi-use trail can be provided within a 15-foot wide easement on both sides of the roadway. This section of Brisbin Road will eventually be under the jurisdiction of the City of Morris and the Village of Channahon. As such, these communities will ultimately oversee the access controls and design requirements of the roadway.
- The ultimate design of Brisbin Road from U.S. Route 6 north to Sherrill Road is an urban six-lane cross-section with three travel lanes in each direction, a raised barrier median accommodating single or dual left-turn lanes at intersections, curb and gutter on both sides of the roadway, and a landscaped parkway accommodating right-turn lanes at key intersections. From U.S. Route 6 north to the I-80 interchange, the IDOT right-of-way (210-250 feet) is sufficient to accommodate the ultimate design. From the I-80 interchange north to Sherrill Road, this design would be built within a 170-foot right-of-way, which would be established through a roadway dedication easement of 85 feet of land on each side of the roadway as development occurs. A sidewalk or multi-use trail can be provided within a 15-foot wide private easement on both sides of the roadway, except within the IDOT right-of-way where the sidewalk/trail would be incorporated into the widened bridge structure within the public right-of-way.
- Considering that traffic levels on Brisbin Road may not require a six-lane facility for many years, interim designs are recommended the section of Brisbin Road between the I-80 interchange and Sherrill Road that would preserve sufficient right-of-way for the ultimate six-lane urban cross-section but only provide the road capacity to accommodate near-term (within 5 years) and mid-term (5-28 years) traffic volumes.
- The near-term interim design would initially be implemented via the dedication of a 170-foot roadway easement to establish the public right-of-way and the construction of a rural two-lane cross-section with shoulder and ditch on both sides of the pavement. The roadway would be offset to one side of the centerline of the 170-foot right-of-way, thereby allowing a

portion of the right-of-way to continue to be used by local land owners for agricultural purposes until the mid-term interim design is required.

- The mid-term interim design would have an urban-rural hybrid cross-section with an urban 30-foot barrier median on the right-of-way centerline that could ultimately accommodate dual left-turn lanes, a paved outside shoulder accommodating right-turn lanes at key intersections, and a drainage ditch. The mid-term design would require the use of the entire 170-foot right-of-way and would utilize the outside shoulder and ditch from the near-term design, convert the two near-term travel lanes for one direction of travel, construct the median, and build the two additional travel lanes for the other direction of travel.
- The public right-of-way needed along Brisbin Road should be dedicated as a contingency of development or acquired through other means to preserve the needed land area for the ultimate expansion of the roadway.
- Access control standards should be established for Brisbin Road to maximize road capacity and maintain traffic flow efficiency and safety. The following standards are recommended:
  - The minimum spacing between full access intersections, traffic-signal controlled or unsignalized, should be ½-mile (1,320 feet) wherever possible.
  - Restricted right-in/right-out (RIRO) access driveways should be spaced at a minimum of 500 feet with a desirable spacing of 1/8-mile (660 feet).
  - As parcels are developed, existing driveways should be closed, relocated, consolidated or converted to RIRO to adhere to the minimum spacing standards.
  - Access to adjoining parcels should be consolidated whenever possible.
  - The raised barrier median should be extended across all RIRO driveways.
  - New full access driveways should be aligned opposite an existing full access driveway if it is reasonably close to meeting the minimum spacing requirements.
  - The creation of offset intersections should be avoided.
  - Development access should also be provided from the adjoining cross streets.
  - A parallel collector and local road system should be developed to distribute local traffic, serve new land uses, and divert some of the traffic burden away from Brisbin Road.
  - Future traffic signals located within ½-mile of each other should be interconnected into a coordinated signal system.
  - Left- and right-turn lanes should be provided at all full access intersections.
  - Parking should be prohibited at all times on the roadway.
  - Off-street pedestrian paths and/or multi-use trails should be provided within the corridor along both sides of the roadway.

- The actual design of the intersections (i.e., length of turn lanes and tapers, intersection radii, signal equipment locations, etc.) will be determined when Phase I Intersection Design Studies (IDS) are prepared for the future signalized intersections or when Phase II engineering plans are developed for the roadway.
- Funding for future capacity improvements to Brisbin Road should be borne, in part, by the developers of land that contributes significant volumes of traffic onto the roadway.
- Initially, Grundy County should work with the local municipalities that annex land along the Brisbin Road corridor (i.e., Morris, Minooka, Channahon) to insure that road impact fees or development impact fees are imposed on private development in the corridor (via annexation agreements, development agreements, etc.) to insure that funds are set aside to improve Brisbin Road in an equitable and coordinated manner when traffic conditions warrant such improvements. These fees would be used for engineering and construction of "add-capacity" projects, including lane additions, turning lanes, land acquisition, utility relocation, signal modifications/interconnect, and bridge widening.
- In addition, land developers along Brisbin Road should be required to dedicate the necessary right-of-way for the County to construct the ultimately roadway improvements described in this report.
- Eventually, as development growth occurs in Grundy County and the residential population reaches 400,000, the County should consider enacting a Road Improvement Impact Fee ordinance, which might be applied to future improvements of Brisbin Road.



Morris, IL Weather: Warm and Sunny 09/22/11 Brisbin and Sherrill Rd 16:31:48

\_\_\_\_\_\_

Brisbin and Sherrill Rd Tuesday September 20, 2011

TURNS/TEAPAC[Ver 3.61.12] - 15-Minute Counts: All Vehicles - by Mvmt

#### Intersection # 1 brisbin/sherrill

| Begin | N-2   | Appro | ach  | E-2       | Appro | ach       | S-2   | Appro     | ach  | W-2   | Appro | ach  | Int   |
|-------|-------|-------|------|-----------|-------|-----------|-------|-----------|------|-------|-------|------|-------|
| Time  | RT    | TH    | LT   | RT        | TH    | LT        | RT    | TH        | LT   | RT    | TH    | LT   | Total |
| ===== | ===== | ====: | ==== | =====     | ====  | ====      | ===== | =====     | ==== | ===== | ====  | ==== | ===== |
| 700   | 0     | 0     | 0    | 0         | 2     | 0         | 0     | 0         | 0    | 0     | 3     | 0    | 5     |
| 715   | 0     | 0     | 1    | 0         | 3     | 0         | 0     | 0         | 0    | 0     | 2     | 0    | 6     |
| 730   | 0     | 0     | 0    | 0         | 5     | 0         | 0     | 0         | 0    | 0     | 5     | 0    | 10    |
| 745   | 1     | 0     | 0    | 1         | 4     | 0         | 0     | 0         | 0    | 0     | 6     | 0    | 12    |
| 800   | 0     | 0     | 1    | 1         | 5     | 0         | 0     | 0         | 0    | 0     | 6     | 0    | 13    |
| 815   | 0     | 0     | 0    | 0         | 1     | 0         | 0     | 0         | 0    | 0     | 1     | 0    | 2     |
| 830   | 1     | 0     | 0    | 0         | 1     | 0         | 0     | 0         | 0    | 0     | 2     | 0    | 4     |
| 845   | 0     | 0     | 0    | 0         | 4     | 0         | 0     | 0         | 0    | 2     | 3     | 0    | 9     |
|       |       |       |      |           |       |           |       |           |      |       |       |      |       |
| 1600  | 0     | 0     | 0    | 0         | 4     | 0         | 1     | 1         | 0    | 0     | 3     | 0    | 9     |
| 1615  | 0     | 0     | 0    | 0         | 9     | 1         | 0     | 0         | 0    | 0     | 7     | 0    | 17    |
| 1630  | 0     | 1     | 0    | 1         | 8     | 0         | 0     | 0         | 0    | 1     | 1     | 0    | 12    |
| 1645  | 0     | 0     | 0    | 0         | 3     | 0         | 0     | 1         | 0    | 0     | 2     | 0    | 6     |
| 1700  | 0     | 0     | 0    | 0         | 9     | 0         | 0     | 0         | 0    | 0     | 8     | 0    | 17    |
| 1715  | 0     | 0     | 0    | 0         | 5     | 0         | 0     | 1         | 1    | 0     | 8     | 0    | 15    |
| 1730  | 0     | 0     | 0    | 0         | 4     | 0         | 0     | 0         | 0    | 0     | 1     | 0    | 5     |
| 1745  | 0     | 0     | 0    | 0         | 10    | 0         | 0     | 0         | 0    | 0     | 3     | 0    | 13    |
| ===== | ===== | ====: | ==== | ========= |       | ========= |       | ========= |      |       | ===== |      |       |
| Total | 2     | 1     | 2    | 3         | 77    | 1         | 1     | 3         | 1    | 3     | 61    | 0    | 155   |

TURNS/TEAPAC[Ver 3.61.12] - 15-Minute Counts: All Vehicles - Totals

Intersection # 1 brisbin/sherrill

|       | ======= | :====== | ======  | ======= |        |      | ====== | ====== | =       |
|-------|---------|---------|---------|---------|--------|------|--------|--------|---------|
| Begin |         | Approa  | ch Tota | ls      |        | Exit | Totals |        | Int     |
| Time  | N       | E       | S       | W       | N      | E    | S      | W      | Total   |
| ===== | ======  |         |         |         | ====== |      |        |        | = ===== |
| 700   | 0       | 2       | 0       | 3       | 0      | 3    | 0      | 2      | 5       |
| 715   | 1       | 3       | 0       | 2       | 0      | 3    | 0      | 3      | 6       |
| 730   | 0       | 5       | 0       | 5       | 0      | 5    | 0      | 5      | 10      |
| 745   | 1       | 5       | 0       | 6       | 1      | 6    | 0      | 5      | 12      |
| 800   | 1       | 6       | 0       | 6       | 1      | 7    | 0      | 5      | 13      |
| 815   | 0       | 1       | 0       | 1       | 0      | 1    | 0      | 1      | 2       |
| 830   | 1       | 1       | 0       | 2       | 0      | 2    | 0      | 2      | 4       |
| 845   | 0       | 4       | 0       | 5       | 0      | 3    | 2      | 4      | 9       |
|       |         |         |         |         |        |      |        |        |         |
| 1600  | 0       | 4       | 2       | 3       | 1      | 4    | 0      | 4      | 9       |
| 1615  | 0       | 10      | 0       | 7       | 0      | 7    | 1      | 9      | 17      |
| 1630  | 1       | 9       | 0       | 2       | 1      | 1    | 2      | 8      | 12      |
| 1645  | 0       | 3       | 1       | 2       | 1      | 2    | 0      | 3      | 6       |
| 1700  | 0       | 9       | 0       | 8       | 0      | 8    | 0      | 9      | 17      |
| 1715  | 0       | 5       | 2       | 8       | 1      | 8    | 0      | 6      | 15      |
| 1730  | 0       | 4       | 0       | 1       | 0      | 1    | 0      | 4      | 5       |
| 1745  | 0       | 10      | 0       | 3       | 0      | 3    | 0      | 10     | 13      |
| ===== | ======  |         |         | ======= | ====== |      | ====== | ====== | = ===== |
| Total | 5       | 81      | 5       | 64      | 6      | 64   | 5      | 80     | 155     |

Morris, IL Weather: Warm and Sunny 09/22/11 Brisbin and Sherrill Rd 16:31:48

Brisbin and Sherrill Rd Tuesday September 20, 2011

TURNS/TEAPAC[Ver 3.61.12] - 60-Minute Volumes: by Movement

Intersection # 1 brisbin/sherrill

| Begin | N-2   | Approa | ach  | E-2   | Appro     | ach | S-Z   | Appro     | ach   | W-2       | Approa | ach | Int   |
|-------|-------|--------|------|-------|-----------|-----|-------|-----------|-------|-----------|--------|-----|-------|
| Time  | RT    | TH     | LT   | RT    | TH        | LT  | RT    | TH        | LT    | RT        | TH     | LT  | Total |
| ===== | ===== | =====  | ==== | ===== | ========= |     | ===== | ========= |       | ========= |        |     | ===== |
| 700   | 1     | 0      | 1    | 1     | 14        | 0   | 0     | 0         | 0     | 0         | 16     | 0   | 33    |
| 715   | 1     | 0      | 2    | 2     | 17        | 0   | 0     | 0         | 0     | 0         | 19     | 0   | 41    |
| 730   | 1     | 0      | 1    | 2     | 15        | 0   | 0     | 0         | 0     | 0         | 18     | 0   | 37    |
| 745   | 2     | 0      | 1    | 2     | 11        | 0   | 0     | 0         | 0     | 0         | 15     | 0   | 31    |
| 800   | 1     | 0      | 1    | 1     | 11        | 0   | 0     | 0         | 0     | 2         | 12     | 0   | 28    |
| 815   | 1     | 0      | 0    | 0     | 6         | 0   | 0     | 0         | 0     | 2         | 6      | 0   | 15*   |
| 830   | 1     | 0      | 0    | 0     | 5         | 0   | 0     | 0         | 0     | 2         | 5      | 0   | 13*   |
| 845   | 0     | 0      | 0    | 0     | 4         | 0   | 0     | 0         | 0     | 2         | 3      | 0   | 9*    |
|       |       |        |      |       |           |     |       |           |       |           |        |     |       |
| 1600  | 0     | 1      | 0    | 1     | 24        | 1   | 1     | 2         | 0     | 1         | 13     | 0   | 44    |
| 1615  | 0     | 1      | 0    | 1     | 29        | 1   | 0     | 1         | 0     | 1         | 18     | 0   | 52    |
| 1630  | 0     | 1      | 0    | 1     | 25        | 0   | 0     | 2         | 1     | 1         | 19     | 0   | 50    |
| 1645  | 0     | 0      | 0    | 0     | 21        | 0   | 0     | 2         | 1     | 0         | 19     | 0   | 43    |
| 1700  | 0     | 0      | 0    | 0     | 28        | 0   | 0     | 1         | 1     | 0         | 20     | 0   | 50    |
| 1715  | 0     | 0      | 0    | 0     | 19        | 0   | 0     | 1         | 1     | 0         | 12     | 0   | 33*   |
| 1730  | 0     | 0      | 0    | 0     | 14        | 0   | 0     | 0         | 0     | 0         | 4      | 0   | 18*   |
| 1745  | 0     | 0      | 0    | 0     | 10        | 0   | 0     | 0         | 0     | 0         | 3      | 0   | 13*   |
| ===== |       |        |      | ====  | =====     |     |       |           | ===== | ===       | =====  |     |       |

TURNS/TEAPAC[Ver 3.61.12] - 60-Minute Volumes: Appr/Exit Totals

Intersection # 1 brisbin/sherrill

|       | ======  | ======  | ======   | ====== | ======= |        | -===== | ====== |       |
|-------|---------|---------|----------|--------|---------|--------|--------|--------|-------|
| Begin |         | Approac | h Total: | 3      |         | Exit 1 | Cotals |        | Int   |
| Time  | N       | E       | s        | W      | N       | E      | S      | W      | Total |
| ===== | ======  | ======  | ======   |        | ======= |        |        | =====  | ===== |
| 700   | 2       | 15      | 0        | 16     | 1       | 17     | 0      | 15     | 33    |
| 715   | 3       | 19      | 0        | 19     | 2       | 21     | 0      | 18     | 41    |
| 730   | 2       | 17      | 0        | 18     | 2       | 19     | 0      | 16     | 37    |
| 745   | 3       | 13      | 0        | 15     | 2       | 16     | 0      | 13     | 31    |
| 800   | 2       | 12      | 0        | 14     | 1       | 13     | 2      | 12     | 28    |
| 815   | 1       | 6       | 0        | 8      | 0       | 6      | 2      | 7      | 15*   |
| 830   | 1       | 5       | 0        | 7      | 0       | 5      | 2      | 6      | 13*   |
| 845   | 0       | 4       | 0        | 5      | 0       | 3      | 2      | 4      | 9*    |
|       |         |         |          |        |         |        |        |        |       |
| 1600  | 1       | 26      | 3        | 14     | 3       | 14     | 3      | 24     | 44    |
| 1615  | 1       | 31      | 1        | 19     | 2       | 18     | 3      | 29     | 52    |
| 1630  | 1       | 26      | 3        | 20     | 3       | 19     | 2      | 26     | 50    |
| 1645  | 0       | 21      | 3        | 19     | 2       | 19     | 0      | 22     | 43    |
| 1700  | 0       | 28      | 2        | 20     | 1       | 20     | 0      | 29     | 50    |
| 1715  | 0       | 19      | 2        | 12     | 1       | 12     | 0      | 20     | 33*   |
| 1730  | 0       | 14      | 0        | 4      | 0       | 4      | 0      | 14     | 18*   |
| 1745  | 0       | 10      | 0        | 3      | 0       | 3      | 0      | 10     | 13*   |
| ===== | ======= | ======  | ======   | ====== | ======= |        | -===== | ====== | ===== |

Morris, IL Weather: Warm and Sunny 09/22/11 Minooka and Brisbin Rd 16:35:11

\_\_\_\_\_\_

Minooka and Brisbin Rd Tuesday September 20, 2011

TURNS/TEAPAC[Ver 3.61.12] - 15-Minute Counts: All Vehicles - by Mvmt

#### Intersection # 2 minooka/brisbin

| Begin | N-2   | Appro | ach  | E-        | Appro | ach  | S         | Appro | ach  | W-2       | Appro | ach  | Int   |
|-------|-------|-------|------|-----------|-------|------|-----------|-------|------|-----------|-------|------|-------|
| Time  | RT    | TH    | LT   | RT        | TH    | LT   | RT        | TH    | LT   | RT        | TH    | LT   | Total |
| ===== | ===== | ====: | ==== | =====     | ===== | ==== | =====     | ===== | ==== | =====     | ====  | ==== | ===== |
| 700   | 0     | 0     | 0    | 0         | 0     | 0    | 0         | 0     | 0    | 0         | 1     | 0    | 1     |
| 715   | 0     | 0     | 0    | 0         | 0     | 0    | 0         | 0     | 0    | 1         | 3     | 0    | 4     |
| 730   | 0     | 0     | 0    | 0         | 8     | 1    | 0         | 0     | 3    | 0         | 5     | 0    | 17    |
| 745   | 0     | 0     | 0    | 0         | 3     | 0    | 2         | 0     | 0    | 1         | 3     | 0    | 9     |
| 800   | 0     | 0     | 0    | 0         | 10    | 1    | 0         | 0     | 1    | 0         | 4     | 0    | 16    |
| 815   | 0     | 0     | 0    | 0         | 6     | 1    | 0         | 0     | 0    | 0         | 3     | 0    | 10    |
| 830   | 0     | 0     | 0    | 0         | 1     | 0    | 1         | 0     | 0    | 1         | 0     | 0    | 3     |
| 845   | 0     | 0     | 0    | 0         | 3     | 0    | 0         | 0     | 0    | 2         | 2     | 0    | 7     |
|       |       |       |      |           |       |      |           |       |      |           |       |      |       |
| 1600  | 0     | 0     | 0    | 2         | 4     | 1    | 0         | 0     | 2    | 1         | 10    | 0    | 20    |
| 1615  | 0     | 0     | 1    | 0         | 11    | 2    | 0         | 0     | 0    | 0         | 6     | 1    | 21    |
| 1630  | 1     | 1     | 0    | 0         | 4     | 0    | 1         | 0     | 1    | 0         | 10    | 1    | 19    |
| 1645  | 0     | 0     | 0    | 0         | 10    | 1    | 0         | 0     | 1    | 0         | 5     | 0    | 17    |
| 1700  | 0     | 0     | 0    | 0         | 12    | 0    | 0         | 0     | 1    | 0         | 6     | 0    | 19    |
| 1715  | 0     | 0     | 0    | 0         | 6     | 0    | 0         | 1     | 0    | 1         | 7     | 1    | 16    |
| 1730  | 0     | 0     | 0    | 0         | 13    | 0    | 0         | 0     | 0    | 1         | 7     | 0    | 21    |
| 1745  | 0     | 0     | 0    | 0         | 9     | 0    | 0         | 0     | 0    | 1         | 6     | 0    | 16    |
| ===== | ===== | ====: | ==== | ========= |       |      | ========= |       |      | ========= |       |      | ===== |
| Total | 1     | 1     | 1    | 2         | 100   | 7    | 4         | 1     | 9    | 9         | 78    | 3    | 216   |

TURNS/TEAPAC[Ver 3.61.12] - 15-Minute Counts: All Vehicles - Totals

#### Intersection # 2 minooka/brisbin

| Begin |        | Approa | ch Tota | als |        | Exit Totals |        |         |       |  |
|-------|--------|--------|---------|-----|--------|-------------|--------|---------|-------|--|
| Time  | N      | E      | S       | W   | N      | E           | S      | W       | Total |  |
| ===== | ====== |        |         |     | ====== |             | ====== |         | ===== |  |
| 700   | 0      | 0      | 0       | 1   | 0      | 1           | 0      | 0       | 1     |  |
| 715   | 0      | 0      | 0       | 4   | 0      | 3           | 1      | 0       | 4     |  |
| 730   | 0      | 9      | 3       | 5   | 0      | 5           | 1      | 11      | 17    |  |
| 745   | 0      | 3      | 2       | 4   | 0      | 5           | 1      | 3       | 9     |  |
| 800   | 0      | 11     | 1       | 4   | 0      | 4           | 1      | 11      | 16    |  |
| 815   | 0      | 7      | 0       | 3   | 0      | 3           | 1      | 6       | 10    |  |
| 830   | 0      | 1      | 1       | 1   | 0      | 1           | 1      | 1       | 3     |  |
| 845   | 0      | 3      | 0       | 4   | 0      | 2           | 2      | 3       | 7     |  |
|       |        |        |         |     |        |             |        |         |       |  |
| 1600  | 0      | 7      | 2       | 11  | 2      | 10          | 2      | 6       | 20    |  |
| 1615  | 1      | 13     | 0       | 7   | 1      | 7           | 2      | 11      | 21    |  |
| 1630  | 2      | 4      | 2       | 11  | 1      | 11          | 1      | 6       | 19    |  |
| 1645  | 0      | 11     | 1       | 5   | 0      | 5           | 1      | 11      | 17    |  |
| 1700  | 0      | 12     | 1       | 6   | 0      | 6           | 0      | 13      | 19    |  |
| 1715  | 0      | 6      | 1       | 9   | 2      | 7           | 1      | 6       | 16    |  |
| 1730  | 0      | 13     | 0       | 8   | 0      | 7           | 1      | 13      | 21    |  |
| 1745  | 0      | 9      | 0       | 7   | 0      | 6           | 1      | 9       | 16    |  |
| ===== | ====== |        |         |     | ====== | ======      | ====== | .====== | ===== |  |
| Total | 3      | 109    | 14      | 90  | 6      | 83          | 17     | 110     | 216   |  |

\_\_\_\_\_\_

Morris, IL Weather: Warm and Sunny 09/22/11 Minooka and Brisbin Rd 16:35:11

Minooka and Brisbin Rd Tuesday September 20, 2011

TURNS/TEAPAC[Ver 3.61.12] - 60-Minute Volumes: by Movement

Intersection # 2 minooka/brisbin

| Begin | N-2                                     | Approa | ach  | E-2   | Appro     | ach        | s- | Approa    | ach   | W-2  | Approa    | ach | Int   |
|-------|-----------------------------------------|--------|------|-------|-----------|------------|----|-----------|-------|------|-----------|-----|-------|
| Time  | RT                                      | TH     | LT   | RT    | TH        | LT         | RT | TH        | LT    | RT   | TH        | LT  | Total |
| ===== | =====                                   | =====  | ==== | ===== | ========= |            |    | ========= |       |      | ========= |     |       |
| 700   | 0                                       | 0      | 0    | 0     | 11        | 1          | 2  | 0         | 3     | 2    | 12        | 0   | 31    |
| 715   | 0                                       | 0      | 0    | 0     | 21        | 2          | 2  | 0         | 4     | 2    | 15        | 0   | 46    |
| 730   | 0                                       | 0      | 0    | 0     | 27        | 3          | 2  | 0         | 4     | 1    | 15        | 0   | 52    |
| 745   | 0                                       | 0      | 0    | 0     | 20        | 2          | 3  | 0         | 1     | 2    | 10        | 0   | 38    |
| 800   | 0                                       | 0      | 0    | 0     | 20        | 2          | 1  | 0         | 1     | 3    | 9         | 0   | 36    |
| 815   | 0                                       | 0      | 0    | 0     | 10        | 1          | 1  | 0         | 0     | 3    | 5         | 0   | 20*   |
| 830   | 0                                       | 0      | 0    | 0     | 4         | 0          | 1  | 0         | 0     | 3    | 2         | 0   | 10*   |
| 845   | 0                                       | 0      | 0    | 0     | 3         | 0          | 0  | 0         | 0     | 2    | 2         | 0   | 7*    |
|       |                                         |        |      |       |           |            |    |           |       |      |           |     |       |
| 1600  | 1                                       | 1      | 1    | 2     | 29        | 4          | 1  | 0         | 4     | 1    | 31        | 2   | 77    |
| 1615  | 1                                       | 1      | 1    | 0     | 37        | 3          | 1  | 0         | 3     | 0    | 27        | 2   | 76    |
| 1630  | 1                                       | 1      | 0    | 0     | 32        | 1          | 1  | 1         | 3     | 1    | 28        | 2   | 71    |
| 1645  | 0                                       | 0      | 0    | 0     | 41        | 1          | 0  | 1         | 2     | 2    | 25        | 1   | 73    |
| 1700  | 0                                       | 0      | 0    | 0     | 40        | 0          | 0  | 1         | 1     | 3    | 26        | 1   | 72    |
| 1715  | 0                                       | 0      | 0    | 0     | 28        | 0          | 0  | 1         | 0     | 3    | 20        | 1   | 53*   |
| 1730  | 0                                       | 0      | 0    | 0     | 22        | 0          | 0  | 0         | 0     | 2    | 13        | 0   | 37*   |
| 1745  | 0                                       | 0      | 0    | 0     | 9         | 0          | 0  | 0         | 0     | 1    | 6         | 0   | 16*   |
| ===== | ======================================= |        |      | ====  | =====     | ========== |    |           | ====: | ==== | =====     |     |       |

TURNS/TEAPAC[Ver 3.61.12] - 60-Minute Volumes: Appr/Exit Totals

Intersection # 2 minooka/brisbin

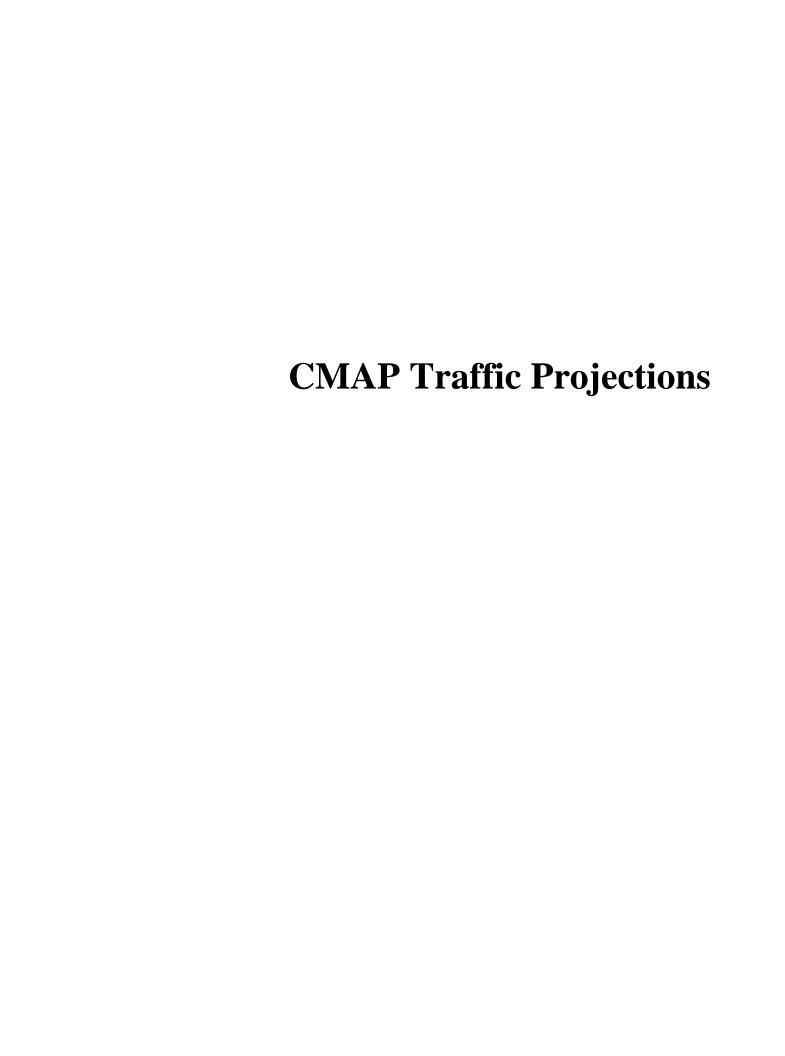
| Begin |        | Approa | ch Total | <br>ls |        |        | Int         |        |       |
|-------|--------|--------|----------|--------|--------|--------|-------------|--------|-------|
| Time  | N      | E      | S        | W      | N      | E      | Totals<br>S | W      | Total |
| ===== | ====== |        | ======   |        | ====== | ====== | ======      |        | ===== |
| 700   | 0      | 12     | 5        | 14     | 0      | 14     | 3           | 14     | 31    |
| 715   | 0      | 23     | 6        | 17     | 0      | 17     | 4           | 25     | 46    |
| 730   | 0      | 30     | 6        | 16     | 0      | 17     | 4           | 31     | 52    |
| 745   | 0      | 22     | 4        | 12     | 0      | 13     | 4           | 21     | 38    |
| 800   | 0      | 22     | 2        | 12     | 0      | 10     | 5           | 21     | 36    |
| 815   | 0      | 11     | 1        | 8      | 0      | 6      | 4           | 10     | 20*   |
| 830   | 0      | 4      | 1        | 5      | 0      | 3      | 3           | 4      | 10*   |
| 845   | 0      | 3      | 0        | 4      | 0      | 2      | 2           | 3      | 7*    |
|       |        |        |          |        |        |        |             |        |       |
| 1600  | 3      | 35     | 5        | 34     | 4      | 33     | 6           | 34     | 77    |
| 1615  | 3      | 40     | 4        | 29     | 2      | 29     | 4           | 41     | 76    |
| 1630  | 2      | 33     | 5        | 31     | 3      | 29     | 3           | 36     | 71    |
| 1645  | 0      | 42     | 3        | 28     | 2      | 25     | 3           | 43     | 73    |
| 1700  | 0      | 40     | 2        | 30     | 2      | 26     | 3           | 41     | 72    |
| 1715  | 0      | 28     | 1        | 24     | 2      | 20     | 3           | 28     | 53*   |
| 1730  | 0      | 22     | 0        | 15     | 0      | 13     | 2           | 22     | 37*   |
| 1745  | 0      | 9      | 0        | 7      | 0      | 6      | 1           | 9      | 16*   |
| ===== | ====== |        | ======   |        | ====== | ====== | =====       | ====== | ===== |

\_\_\_\_\_\_



| Zone # Land Us  1 Resident Office Industria Retail | 120                  | (B)              | dential  (C) =(A)*(B) Total No. Units | Land Use Size  Industrial/  (D)  =(A)*43560/1000  Square Footage (,000 sf) | Office/Retail/C<br>(E)<br>Floor Area<br>Ratio | (F)<br>=(D)*(E)     | Resid<br>(G)<br>=(C)*.75*.25 | lential                  | Indus                          | AM Peak Hour                    |                                |          |                                    |          |                            |                                    |                                | PM Peak Hour T                         | rip Generation                 |                                 |                                   |                                  |
|----------------------------------------------------|----------------------|------------------|---------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------|---------------------|------------------------------|--------------------------|--------------------------------|---------------------------------|--------------------------------|----------|------------------------------------|----------|----------------------------|------------------------------------|--------------------------------|----------------------------------------|--------------------------------|---------------------------------|-----------------------------------|----------------------------------|
| # Land Us  1 Resident Office Industria             | Developab<br>Acres   | (B) e Units/Acre | (C)<br>=(A)*(B)<br><b>Total No.</b>   | (D)<br>=(A)*43560/1000<br>Square Footage                                   | (E) Floor Area                                | (F)<br>=(D)*(E)     | (G)                          |                          | Indus                          | strial                          |                                |          |                                    |          |                            |                                    |                                |                                        |                                |                                 |                                   |                                  |
| # Land Us  1 Resident Office Industria             | Developab<br>Acres   | e<br>Units/Acre  | =(A)*(B) Total No.                    | =(A)*43560/1000<br><b>Square Footage</b>                                   | Floor Area                                    | =(D)*(E)            |                              | (H)                      |                                | Julian                          | Off                            | fice     | Re                                 | tail     | Resid                      | lential                            | Industrial                     |                                        | Office                         |                                 | Retail                            |                                  |
| 1 Resident Office Industria                        | 120                  |                  | Units                                 | (,000 st)                                                                  | Ratio                                         |                     | Inbound                      | =(C)*.75*.75<br>Outbound | (I)<br>=(F)*.92*.88<br>Inbound | (J)<br>=(F)*.92*.12<br>Outbound | (K)<br>=(F)*1.5*.88<br>Inbound | Outbound | (M)<br>EXP((0.59*(LN(F)<br>Inbound | Outbound | (O)<br>=(C)*.63<br>Inbound | (P)<br>=(C)*.37<br><b>Outbound</b> | (Q)<br>=(F)*.97*.12<br>Inbound | (R)<br>=(F)*.97*.88<br><b>Outbound</b> | (S)<br>=(F)*1.5*.17<br>Inbound | (T)<br>=(F)*1.5*.83<br>Outbound | (U)<br>XP((0.67*(LN(F)<br>Inbound | (V)<br>=(C)*3.73*.51<br>Outbound |
| Office<br>Industria                                | 120                  | 3.0              |                                       | [ • ] • ] • ] • ] • [ • ] • ] • ] • ] •                                    |                                               | (,000 sf)           | Trips                        | Trips                    | Trips                          | Trips                           | Trips                          | Trips    | Trips                              | Trips    | Trips                      | Trips                              | Trips                          | Trips                                  | Trips                          | Trips                           | Trips                             | Trips                            |
| Netall                                             | 100                  |                  |                                       | 5,227                                                                      | 0.25<br>0.35<br>0.2                           | 1,830               |                              |                          | 1,481                          | 202                             |                                |          |                                    |          |                            |                                    | 213                            | 1,562                                  |                                |                                 |                                   |                                  |
| SUBTOTA                                            | AL 120               | <u> </u>         | 1111111111111111                      |                                                                            | 0.2                                           |                     | 0                            | 0                        | 1,481                          | 202                             | 0                              | 0        | 0                                  | 0        | 0                          | 0                                  | 213                            | 1,562                                  | 0                              | 0                               | 0                                 | 0                                |
| 2 Residenti<br>Office                              | al 176               | 2.0              | 352                                   |                                                                            | 0.25<br>0.3                                   |                     | 66                           | 198                      | .,                             |                                 | •                              | •        | •                                  |          | 222                        | 130                                |                                | .,002                                  | ·                              | •                               | ·                                 |                                  |
| Industria<br>Retail                                | 8                    |                  |                                       | 348                                                                        | 0.3                                           | 70                  |                              |                          |                                |                                 |                                |          | 76                                 | 49       |                            |                                    |                                |                                        |                                |                                 | 245                               | 255                              |
| SUBTOTA                                            | L 184                |                  |                                       |                                                                            |                                               |                     | 66                           | 198                      | 0                              | 0                               | 0                              | 0        | 76                                 | 49       | 222                        | 130                                | 0                              | 0                                      | 0                              | 0                               | 245                               | 255                              |
| 3 Residenti<br>Office                              | al                   | 3.0              |                                       |                                                                            | 0.25                                          |                     |                              |                          |                                |                                 |                                |          |                                    |          |                            |                                    |                                |                                        |                                |                                 |                                   |                                  |
| Industria                                          | 110                  |                  |                                       | 4,792                                                                      | 0.35                                          | 1,677               |                              |                          | 1,358                          | 185                             |                                |          |                                    |          |                            |                                    | 195                            | 1,432                                  |                                |                                 |                                   |                                  |
| Retail                                             | 10                   |                  |                                       | 436                                                                        | 0.2                                           | 87                  |                              |                          | 4.050                          |                                 |                                |          | 87                                 | 55       |                            |                                    |                                |                                        |                                |                                 | 284                               | 296                              |
| SUBTOT                                             | AL 120               |                  |                                       |                                                                            |                                               |                     | 0                            | 0                        | 1,358                          | 185                             | 0                              | 0        | 87                                 | 55       | 0                          | 0                                  | 195                            | 1,432                                  | 0                              | 0                               | 284                               | 296                              |
| 4 Residenti Office Industria Retail                | 94<br>31<br>34<br>20 | 2.0              | 188                                   | 1,350<br>1,481<br>871                                                      | 0.25<br>0.35<br>0.2                           | 338<br>518<br>174   | 35                           | 106                      | 420                            | 57                              | 446                            | 61       | 130                                | 83       | 118                        | 70                                 | 60                             | 442                                    | 86                             | 420                             | 452                               | 471                              |
| SUBTOT                                             | AL 179               |                  |                                       |                                                                            |                                               |                     | 35                           | 106                      | 420                            | 57                              | 446                            | 61       | 130                                | 83       | 118                        | 70                                 | 60                             | 442                                    | 86                             | 420                             | 452                               | 471                              |
| 5 Residenti<br>Office<br>Industria<br>Retail       |                      | 3.0              |                                       | 4,269<br>523                                                               | 0.25<br>0.35<br>0.2                           | 1,494<br>105        |                              |                          | 1,210                          | 165                             |                                |          | 96                                 | 62       |                            |                                    | 174                            | 1,275                                  |                                |                                 | 321                               | 334                              |
| SUBTOT                                             | L 110                |                  |                                       |                                                                            |                                               |                     | 0                            | 0                        | 1,210                          | 165                             | 0                              | 0        | 96                                 | 62       | 0                          | 0                                  | 174                            | 1,275                                  | 0                              | 0                               | 321                               | 334                              |
| 6 Residenti Office Industria                       | 25                   | 3.0              |                                       | 1,089<br>6,316<br>653                                                      | 0.25<br>0.35<br>0.2                           | 272<br>2,211<br>131 |                              |                          | 1,790                          | 244                             | 359                            | 49       | 110                                | 70       |                            |                                    | 257                            | 1,887                                  | 69                             | 339                             | 373                               | 388                              |
| SUBTOT                                             |                      |                  | <u> </u>                              |                                                                            |                                               |                     | 0                            | 0                        | 1,790                          | 244                             | 359                            | 49       | 110                                | 70       | 0                          | 0                                  | 257                            | 1,887                                  | 69                             | 339                             | 373                               | 388                              |
| 7 Residenti<br>Office<br>Industria<br>Retail       | al 40                | 3.0              |                                       | 1,742<br>3,485                                                             | 0.25<br>0.35<br>0.2                           | 436<br>1,220        |                              |                          | 987                            | 135                             | 575                            | 78       |                                    |          |                            |                                    | 142                            | 1,041                                  | 111                            | 542                             |                                   |                                  |
| SUBTOT                                             | L 120                |                  |                                       |                                                                            |                                               |                     | 0                            | 0                        | 987                            | 135                             | 575                            | 78       | 0                                  | 0        | 0                          | 0                                  | 142                            | 1,041                                  | 111                            | 542                             | 0                                 | 0                                |

FUTURE LAND USE AND TRIP GENERATION


|                                                 |                             |                |                                       | Land Use Size                                         |                            |                                            |                                         |                                          |                                         | AM Peak Hour                             | Trip Generation                         | ı                                        |                                             |                                                |                                     |                                      |                                         | PM Peak Hour                             | Trip Generation                         |                                          |                                            |                                             |
|-------------------------------------------------|-----------------------------|----------------|---------------------------------------|-------------------------------------------------------|----------------------------|--------------------------------------------|-----------------------------------------|------------------------------------------|-----------------------------------------|------------------------------------------|-----------------------------------------|------------------------------------------|---------------------------------------------|------------------------------------------------|-------------------------------------|--------------------------------------|-----------------------------------------|------------------------------------------|-----------------------------------------|------------------------------------------|--------------------------------------------|---------------------------------------------|
|                                                 |                             | Resid          | ential                                | Industrial/0                                          | Office/Retail/C            | Other                                      | Resid                                   | lential                                  | Indu                                    | strial                                   | Of                                      | fice                                     | Re                                          | etail                                          | Resid                               | dential                              | Indu                                    | strial                                   | Off                                     | ice                                      | Re                                         | etail                                       |
|                                                 | (A)<br>Developable<br>Acres | (B) Units/Acre | (C)<br>=(A)*(B)<br>Total No.<br>Units | (D)<br>=(A)*43560/1000<br>Square Footage<br>(,000 sf) | (E)<br>Floor Area<br>Ratio | (F)<br>=(D)*(E)<br>Floor Area<br>(,000 sf) | (G)<br>=(C)*.75*.25<br>Inbound<br>Trips | (H)<br>=(C)*.75*.75<br>Outbound<br>Trips | (I)<br>=(F)*.92*.88<br>Inbound<br>Trips | (J)<br>=(F)*.92*.12<br>Outbound<br>Trips | (K)<br>=(F)*1.5*.88<br>Inbound<br>Trips | (L)<br>=(F)*1.5*.12<br>Outbound<br>Trips | (M)<br>EXP((0.59*(LN(F)<br>Inbound<br>Trips | (N)<br>)):XP((0.59*(LN(F)<br>Outbound<br>Trips | (O)<br>=(C)*.63<br>Inbound<br>Trips | (P)<br>=(C)*.37<br>Outbound<br>Trips | (Q)<br>=(F)*.97*.12<br>Inbound<br>Trips | (R)<br>=(F)*.97*.88<br>Outbound<br>Trips | (S)<br>=(F)*1.5*.17<br>Inbound<br>Trips | (T)<br>=(F)*1.5*.83<br>Outbound<br>Trips | (U)<br>XP((0.67*(LN(F)<br>Inbound<br>Trips | (V)<br>) =(C)*3.73*.51<br>Outbound<br>Trips |
| Residential Office Industrial Retail            | 40<br>140                   | 3.0            |                                       | 1,742<br>6,098                                        | 0.25<br>0.35<br>0.2        | 436<br>2,134                               |                                         |                                          | 1,728                                   | 236                                      | 575                                     | 78                                       |                                             |                                                |                                     |                                      | 248                                     | 1,822                                    | 111                                     | 542                                      |                                            |                                             |
| SUBTOTAL                                        | 180                         |                |                                       |                                                       |                            |                                            | 0                                       | 0                                        | 1,728                                   | 236                                      | 575                                     | 78                                       | 0                                           | 0                                              | 0                                   | 0                                    | 248                                     | 1,822                                    | 111                                     | 542                                      | 0                                          | 0                                           |
| 9 Residential Office Industrial Retail SUBTOTAL | 25<br>20<br>60<br>105       | 3.0            |                                       | 1,089<br>871<br>2,614                                 | 0.25<br>0.35<br>0.2        | 272<br>305<br>523                          | 0                                       | 0                                        | 247                                     | 34                                       | 359<br>359                              | 49                                       | 249<br>249                                  | 159<br>159                                     | 0                                   | 0                                    | 35<br>35                                | 260                                      | 69<br>69                                | 339                                      | 944<br>944                                 | 983<br>983                                  |
| 10 Residential Office Industrial Retail         | 50<br>116                   | 3.0            |                                       | 2,178<br>5,053                                        | 0.25<br>0.35<br>0.2        | 545<br>1,011                               |                                         |                                          |                                         |                                          | 719                                     | 98                                       | 368                                         | 235                                            |                                     |                                      |                                         |                                          | 139                                     | 678                                      | 1,468                                      | 1,528                                       |
| SUBTOTAL                                        | 166                         |                |                                       |                                                       |                            |                                            | 0                                       | 0                                        | 0                                       | 0                                        | 719                                     | 98                                       | 368                                         | 235                                            | 0                                   | 0                                    | 0                                       | 0                                        | 139                                     | 678                                      | 1,468                                      | 1,528                                       |
| Residential Office Industrial Retail            | 50<br>50                    | 3.0            |                                       | 2,178<br>2,178                                        | 0.25<br>0.35<br>0.2        | 545<br>436                                 |                                         |                                          |                                         |                                          | 719                                     | 98                                       | 224                                         | 143                                            |                                     |                                      |                                         |                                          | 139                                     | 678                                      | 836                                        | 870                                         |
| SUBTOTAL                                        | 100                         |                |                                       |                                                       |                            |                                            | 0                                       | 0                                        | 0                                       | 0                                        | 719                                     | 98                                       | 224                                         | 143                                            | 0                                   | 0                                    | 0                                       | 0                                        | 139                                     | 678                                      | 836                                        | 870                                         |
| Residential Office Industrial Retail            | 62<br>80                    | 3.0            |                                       | 2,701<br>3,485                                        | 0.25<br>0.3<br>0.2         | 675<br>697                                 |                                         |                                          |                                         |                                          | 891                                     | 122                                      | 295                                         | 189                                            |                                     |                                      |                                         |                                          | 172                                     | 841                                      | 1,145                                      | 1,191                                       |
| SUBTOTAL                                        | 142                         |                |                                       |                                                       |                            |                                            | 0                                       | 0                                        | 0                                       | 0                                        | 891                                     | 122                                      | 295                                         | 189                                            | 0                                   | 0                                    | 0                                       | 0                                        | 172                                     | 841                                      | 1,145                                      | 1,191                                       |
| Residential Office Industrial Retail            | 120                         | 3.0            |                                       | 5,227                                                 | 0.25<br>0.35<br>0.2        | 1,045                                      |                                         |                                          |                                         |                                          |                                         |                                          | 375                                         | 240                                            |                                     |                                      |                                         |                                          |                                         |                                          | 1,502                                      | 1,563                                       |
| SUBTOTAL                                        | 120                         |                |                                       |                                                       |                            |                                            | 0                                       | 0                                        | 0                                       | 0                                        | 0                                       | 0                                        | 375                                         | 240                                            | 0                                   | 0                                    | 0                                       | 0                                        | 0                                       | 0                                        | 1,502                                      | 1,563                                       |
| 14 Residential Office Industrial Retail         | 100                         | 3.0            |                                       | 4,356<br>2,614                                        | 0.25<br>0.3<br>0.2         | 1,089<br>523                               |                                         |                                          |                                         |                                          | 1,437                                   | 196                                      | 249                                         | 159                                            |                                     |                                      |                                         |                                          | 278                                     | 1,356                                    | 944                                        | 983                                         |
| SUBTOTAL                                        | 160                         |                |                                       |                                                       |                            |                                            | 0                                       | 0                                        | 0                                       | 0                                        | 1,437                                   | 196                                      | 249                                         | 159                                            | 0                                   | 0                                    | 0                                       | 0                                        | 278                                     | 1,356                                    | 944                                        | 983                                         |
|                                                 |                             |                |                                       |                                                       |                            |                                            |                                         |                                          |                                         |                                          |                                         |                                          |                                             |                                                |                                     |                                      |                                         |                                          |                                         |                                          |                                            |                                             |

Note: See Figure 1 for zone locations.

Residential generally contains single-family detached units as defined by ITE Land Use Code 210.

Industrial generally consists of light industrial facilities as defined by ITE Land Use Code 110.

Retail generally consists of shopping center development as defined by ITE Land Use Code 820. Office generally consists of general office buildings as defined by ITE Land Use Code 710.





### Chicago Metropolitan Agency for Planning

233 South Wacker Drive Suite 800 Chicago, Illinois 60606

312 454 0400 www.cmap.illinois.gov

June 24, 2011

Craig Cassem County Engineer Grundy County Highway Department 245 North IL 47 Morris, IL 60450

Subject: Brisbin Road

Grundy County Highway Department

Dear Mr. Cassem:

In response to a request made on your behalf and dated June 14, 2011, we have developed year 2040 average daily traffic (ADT) projections for the subject location. These are in a table on the following page.

Traffic projections are developed using existing ADT data provided in the request letter and the results from the most recent (April 2010) CMAP RTP/TIP Travel Demand Analysis. The regional travel model uses CMAP 2040 socioeconomic projections and assumes the implementation of the 2040 Regional Transportation Plan for the Northeastern Illinois area.

If you have any questions, please call Jose Rodriguez at (312) 386-8806.

Sincerely,

Donald P. Kopec

Deputy Director for Planning and Programming

cc: Russell (KLOA)

M:\proj1\ceb\forecasts\2011 Response\gr-01-11.docx

Donald P. Koj

### Table: 2040 Projected ADTs, Brisbin Road Corridor

| ROAD SEGMENT                                    | 2040 ADT |
|-------------------------------------------------|----------|
| Brisbin Road north of Minooka Road              | 500      |
| Brisbin Rd between Minooka Rd and WB I-80 ramps | 3,000    |
| Brisbin Rd between EB I-80 ramps and US 6       | 8,000    |
| I-80 east of Brisbin Rd                         | 48,000   |
| I-80 west of Brisbin Rd                         | 52,000   |
| Ramp, WB I-80 to Brisbin Rd                     | 100      |
| Ramp, Brisbin Rd to WB I-80                     | 2,000    |
| Ramp, Brisbin Rd to EB I-80                     | 100      |
| Ramp, EB I-80 to Brisbin Rd                     | 2,000    |
| US 6 east of Brisbin Rd                         | 10,000   |
| US 6 west of Brisbin Rd                         | 5,000    |
| Minooka Rd east of Brisbin Rd                   | 500      |
| Minooka Rd west of Brisbin Rd                   | 500      |
| Sherill Rd east of Brisbin Rd                   | 2,000    |
| Sherill Rd west of Brisbin Rd                   | 2,000    |
| Brown Rd between Minooka Rd and North Rd        | 200      |
| Brown Rd between North Rd and Shady Oaks Rd     | 600      |
| Brown Rd south of Shady Oaks Rd                 | 100      |
| Grove Rd between Sherill Rd and Minooka Rd      | 1,000    |
| Church Rd between Sherill Rd and Minooka Rd     | 100      |
| Gun Club Rd south of US 6                       | 500      |

# **Capacity Analysis Worksheets Existing Traffic Conditions**

| 5. Onemii Road & D       | HODIH      | Noau     |       |      |          |           |      |          |             |          | 0, 2 | 57 <b>2</b> 012 |
|--------------------------|------------|----------|-------|------|----------|-----------|------|----------|-------------|----------|------|-----------------|
|                          | ၨ          | <b>→</b> | *     | •    | <b>+</b> | •         | 4    | <b>†</b> | <i>&gt;</i> | <b>/</b> | ļ    | 1               |
| Movement                 | EBL        | EBT      | EBR   | WBL  | WBT      | WBR       | NBL  | NBT      | NBR         | SBL      | SBT  | SBR             |
| Lane Configurations      |            | 4        |       |      | 4        |           |      | 4        |             |          | 4    |                 |
| Sign Control             |            | Free     |       |      | Free     |           |      | Stop     |             |          | Stop |                 |
| Grade                    |            | 0%       |       |      | 0%       |           |      | 0%       |             |          | 0%   |                 |
| Volume (veh/h)           | 1          | 20       | 1     | 5    | 15       | 1         | 1    | 5        | 5           | 1        | 5    | 1               |
| Peak Hour Factor         | 0.92       | 0.92     | 0.92  | 0.92 | 0.92     | 0.92      | 0.92 | 0.92     | 0.92        | 0.92     | 0.92 | 0.92            |
| Hourly flow rate (vph)   | 1          | 22       | 1     | 5    | 16       | 1         | 1    | 5        | 5           | 1        | 5    | 1               |
| Pedestrians              |            |          |       |      |          |           |      |          |             |          |      |                 |
| Lane Width (ft)          |            |          |       |      |          |           |      |          |             |          |      |                 |
| Walking Speed (ft/s)     |            |          |       |      |          |           |      |          |             |          |      |                 |
| Percent Blockage         |            |          |       |      |          |           |      |          |             |          |      |                 |
| Right turn flare (veh)   |            |          |       |      |          |           |      |          |             |          |      |                 |
| Median type              |            |          |       |      |          |           |      | None     |             |          | None |                 |
| Median storage veh)      |            |          |       |      |          |           |      |          |             |          |      |                 |
| Upstream signal (ft)     |            |          |       |      |          |           |      |          |             |          |      |                 |
| pX, platoon unblocked    |            |          |       |      |          |           |      |          |             |          |      |                 |
| vC, conflicting volume   | 17         |          |       | 23   |          |           | 56   | 53       | 22          | 60       | 53   | 17              |
| vC1, stage 1 conf vol    |            |          |       |      |          |           |      |          |             |          |      |                 |
| vC2, stage 2 conf vol    |            |          |       |      |          |           |      |          |             |          |      |                 |
| vCu, unblocked vol       | 17         |          |       | 23   |          |           | 56   | 53       | 22          | 60       | 53   | 17              |
| tC, single (s)           | 4.1        |          |       | 4.1  |          |           | 7.1  | 6.5      | 6.2         | 7.1      | 6.5  | 6.2             |
| tC, 2 stage (s)          |            |          |       |      |          |           |      |          |             |          |      |                 |
| tF (s)                   | 2.2        |          |       | 2.2  |          |           | 3.5  | 4.0      | 3.3         | 3.5      | 4.0  | 3.3             |
| p0 queue free %          | 100        |          |       | 100  |          |           | 100  | 99       | 99          | 100      | 99   | 100             |
| cM capacity (veh/h)      | 1600       |          |       | 1592 |          |           | 933  | 835      | 1055        | 923      | 835  | 1062            |
| Direction, Lane #        | EB 1       | WB 1     | NB 1  | SB 1 |          |           |      |          |             |          |      |                 |
| Volume Total             | 24         | 23       | 12    | 8    |          |           |      |          |             |          |      |                 |
| Volume Left              | 1          | 5        | 1     | 1    |          |           |      |          |             |          |      |                 |
| Volume Right             | 1          | 1        | 5     | 1    |          |           |      |          |             |          |      |                 |
| cSH                      | 1600       | 1592     | 932   | 874  |          |           |      |          |             |          |      |                 |
| Volume to Capacity       | 0.00       | 0.00     | 0.01  | 0.01 |          |           |      |          |             |          |      |                 |
| Queue Length 95th (ft)   | 0          | 0        | 1     | 1    |          |           |      |          |             |          |      |                 |
| Control Delay (s)        | 0.3        | 1.7      | 8.9   | 9.2  |          |           |      |          |             |          |      |                 |
| Lane LOS                 | Α          | Α        | Α     | Α    |          |           |      |          |             |          |      |                 |
| Approach Delay (s)       | 0.3        | 1.7      | 8.9   | 9.2  |          |           |      |          |             |          |      |                 |
| Approach LOS             |            |          | Α     | Α    |          |           |      |          |             |          |      |                 |
| Intersection Summary     |            |          |       |      |          |           |      |          |             |          |      |                 |
| Average Delay            |            |          | 3.4   |      |          |           |      |          |             |          |      |                 |
| Intersection Capacity Ut | tilization |          | 13.3% | Į.   | CU Leve  | el of Ser | vice |          | Α           |          |      |                 |
| Analysis Period (min)    |            |          | 15    |      |          |           |      |          |             |          |      |                 |
| ,                        |            |          |       |      |          |           |      |          |             |          |      |                 |

| o. Milliooka Road &      | DHSDII     | i Koac   | 1     |      |          |           |      |          |             |          | 0/2  | 3/2012 |
|--------------------------|------------|----------|-------|------|----------|-----------|------|----------|-------------|----------|------|--------|
|                          | ۶          | <b>→</b> | •     | •    | <b>←</b> | •         | 1    | <b>†</b> | <i>&gt;</i> | <b>/</b> | ţ    | 4      |
| Movement                 | EBL        | EBT      | EBR   | WBL  | WBT      | WBR       | NBL  | NBT      | NBR         | SBL      | SBT  | SBR    |
| Lane Configurations      |            | 4        |       |      | 4        |           |      | 44       |             |          | 4    |        |
| Sign Control             |            | Free     |       |      | Free     |           |      | Stop     |             |          | Stop |        |
| Grade                    |            | 0%       |       |      | 0%       |           |      | 0%       |             |          | 0%   |        |
| Volume (veh/h)           | 1          | 15       | 5     | 5    | 25       | 1         | 5    | 10       | 5           | 1        | 10   | 1      |
| Peak Hour Factor         | 0.92       | 0.92     | 0.92  | 0.92 | 0.92     | 0.92      | 0.92 | 0.92     | 0.92        | 0.92     | 0.92 | 0.92   |
| Hourly flow rate (vph)   | 1          | 16       | 5     | 5    | 27       | 1         | 5    | 11       | 5           | 1        | 11   | 1      |
| Pedestrians              |            |          |       |      |          |           |      |          |             |          |      |        |
| Lane Width (ft)          |            |          |       |      |          |           |      |          |             |          |      |        |
| Walking Speed (ft/s)     |            |          |       |      |          |           |      |          |             |          |      |        |
| Percent Blockage         |            |          |       |      |          |           |      |          |             |          |      |        |
| Right turn flare (veh)   |            |          |       |      |          |           |      |          |             |          |      |        |
| Median type              |            |          |       |      |          |           |      | None     |             |          | None |        |
| Median storage veh)      |            |          |       |      |          |           |      |          |             |          |      |        |
| Upstream signal (ft)     |            |          |       |      |          |           |      |          |             |          |      |        |
| pX, platoon unblocked    |            |          |       |      |          |           |      |          |             |          |      |        |
| vC, conflicting volume   | 28         |          |       | 22   |          |           | 66   | 60       | 19          | 71       | 62   | 28     |
| vC1, stage 1 conf vol    |            |          |       |      |          |           |      |          |             |          |      |        |
| vC2, stage 2 conf vol    |            |          |       |      |          |           |      |          |             |          |      |        |
| vCu, unblocked vol       | 28         |          |       | 22   |          |           | 66   | 60       | 19          | 71       | 62   | 28     |
| tC, single (s)           | 4.1        |          |       | 4.1  |          |           | 7.1  | 6.5      | 6.2         | 7.1      | 6.5  | 6.2    |
| tC, 2 stage (s)          |            |          |       |      |          |           |      |          |             |          |      |        |
| tF (s)                   | 2.2        |          |       | 2.2  |          |           | 3.5  | 4.0      | 3.3         | 3.5      | 4.0  | 3.3    |
| p0 queue free %          | 100        |          |       | 100  |          |           | 99   | 99       | 99          | 100      | 99   | 100    |
| cM capacity (veh/h)      | 1585       |          |       | 1594 |          |           | 914  | 827      | 1059        | 904      | 825  | 1048   |
| Direction, Lane #        | EB 1       | WB 1     | NB 1  | SB 1 |          |           |      |          |             |          |      |        |
| Volume Total             | 23         | 34       | 22    | 13   |          |           |      |          |             |          |      |        |
| Volume Left              | 1          | 5        | 5     | 1    |          |           |      |          |             |          |      |        |
| Volume Right             | 5          | 1        | 5     | 1    |          |           |      |          |             |          |      |        |
| cSH                      | 1585       | 1594     | 898   | 846  |          |           |      |          |             |          |      |        |
| Volume to Capacity       | 0.00       | 0.00     | 0.02  | 0.02 |          |           |      |          |             |          |      |        |
| Queue Length 95th (ft)   | 0          | 0        | 2     | 1    |          |           |      |          |             |          |      |        |
| Control Delay (s)        | 0.4        | 1.2      | 9.1   | 9.3  |          |           |      |          |             |          |      |        |
| Lane LOS                 | Α          | Α        | Α     | Α    |          |           |      |          |             |          |      |        |
| Approach Delay (s)       | 0.4        | 1.2      | 9.1   | 9.3  |          |           |      |          |             |          |      |        |
| Approach LOS             |            |          | Α     | Α    |          |           |      |          |             |          |      |        |
| Intersection Summary     |            |          |       |      |          |           |      |          |             |          |      |        |
| Average Delay            |            |          | 4.0   |      |          |           |      |          |             |          |      |        |
| Intersection Capacity Ut | tilization | ı        | 13.3% | [0   | CU Leve  | el of Ser | vice |          | Α           |          |      |        |
| Analysis Period (min)    |            |          | 15    |      |          |           |      |          |             |          |      |        |
|                          |            |          |       |      |          |           |      |          |             |          |      |        |

|                          | ۶          | •    | 4     | <b>†</b> | ļ        | 4            |
|--------------------------|------------|------|-------|----------|----------|--------------|
| Movement                 | EBL        | EBR  | NBL   | NBT      | SBT      | SBR          |
| Lane Configurations      | W          |      |       | ની       | <b>∱</b> |              |
| Sign Control             | Stop       |      |       | Free     | Free     |              |
| Grade                    | 0%         |      |       | 0%       | 0%       |              |
| Volume (veh/h)           | 1          | 1    | 1     | 20       | 20       | 1            |
| Peak Hour Factor         | 0.92       | 0.92 | 0.92  | 0.92     | 0.92     | 0.92         |
| Hourly flow rate (vph)   | 1          | 1    | 1     | 22       | 22       | 1            |
| Pedestrians              |            |      |       |          |          |              |
| Lane Width (ft)          |            |      |       |          |          |              |
| Walking Speed (ft/s)     |            |      |       |          |          |              |
| Percent Blockage         |            |      |       |          |          |              |
| Right turn flare (veh)   |            |      |       |          |          |              |
| Median type              | None       |      |       |          |          |              |
| Median storage veh)      |            |      |       |          |          |              |
| Upstream signal (ft)     |            |      |       |          |          |              |
| pX, platoon unblocked    |            |      |       |          |          |              |
| vC, conflicting volume   | 46         | 22   | 23    |          |          |              |
| vC1, stage 1 conf vol    |            |      |       |          |          |              |
| vC2, stage 2 conf vol    |            |      |       |          |          |              |
| vCu, unblocked vol       | 46         | 22   | 23    |          |          |              |
| tC, single (s)           | 6.4        | 6.2  | 4.1   |          |          |              |
| tC, 2 stage (s)          |            |      |       |          |          |              |
| tF (s)                   | 3.5        | 3.3  | 2.2   |          |          |              |
| p0 queue free %          | 100        | 100  | 100   |          |          |              |
| cM capacity (veh/h)      | 963        | 1055 | 1592  |          |          |              |
| Direction, Lane #        | EB 1       | NB 1 | SB 1  |          |          |              |
| Volume Total             | 2          | 23   | 23    |          |          |              |
| Volume Left              | 1          | 1    | 0     |          |          |              |
| Volume Right             | 1          | 0    | 1     |          |          |              |
| cSH                      | 1007       | 1592 | 1700  |          |          |              |
| Volume to Capacity       | 0.00       | 0.00 | 0.01  |          |          |              |
| Queue Length 95th (ft)   | 0          | 0    | 0     |          |          |              |
| Control Delay (s)        | 8.6        | 0.4  | 0.0   |          |          |              |
| Lane LOS                 | A          | А    | 0.0   |          |          |              |
| Approach Delay (s)       | 8.6        | 0.4  | 0.0   |          |          |              |
| Approach LOS             | А          |      |       |          |          |              |
| Intersection Summary     |            |      |       |          |          |              |
| Average Delay            |            |      | 0.6   |          |          |              |
| Intersection Capacity Ut | tilization |      | 13.3% | 10       | CU Leve  | I of Service |
| Analysis Period (min)    |            |      | 15    |          |          | . 3. 20 10   |
|                          |            |      |       |          |          |              |

| 11. U.S. 6 & BIISDIII                   | Nuau       |          |       |      |          |           |      |          |             |          | 0/2  | 5/2012 |
|-----------------------------------------|------------|----------|-------|------|----------|-----------|------|----------|-------------|----------|------|--------|
|                                         | ۶          | <b>→</b> | •     | •    | <b>←</b> | •         | •    | <b>†</b> | <i>&gt;</i> | <b>/</b> | ļ    | 4      |
| Movement                                | EBL        | EBT      | EBR   | WBL  | WBT      | WBR       | NBL  | NBT      | NBR         | SBL      | SBT  | SBR    |
| Lane Configurations                     |            | 4        |       |      | 4        |           |      | 4        |             |          | 4    |        |
| Sign Control                            |            | Free     |       |      | Free     |           |      | Stop     |             |          | Stop |        |
| Grade                                   |            | 0%       |       |      | 0%       |           |      | 0%       |             |          | 0%   |        |
| Volume (veh/h)                          | 10         | 320      | 5     | 5    | 140      | 10        | 5    | 5        | 5           | 10       | 5    | 10     |
| Peak Hour Factor                        | 0.92       | 0.92     | 0.92  | 0.92 | 0.92     | 0.92      | 0.92 | 0.92     | 0.92        | 0.92     | 0.92 | 0.92   |
| Hourly flow rate (vph)                  | 11         | 348      | 5     | 5    | 152      | 11        | 5    | 5        | 5           | 11       | 5    | 11     |
| Pedestrians                             |            |          |       |      |          |           |      |          |             |          |      |        |
| Lane Width (ft)                         |            |          |       |      |          |           |      |          |             |          |      |        |
| Walking Speed (ft/s)                    |            |          |       |      |          |           |      |          |             |          |      |        |
| Percent Blockage                        |            |          |       |      |          |           |      |          |             |          |      |        |
| Right turn flare (veh)                  |            |          |       |      |          |           |      |          |             |          |      |        |
| Median type                             |            |          |       |      |          |           |      | None     |             |          | None |        |
| Median storage veh)                     |            |          |       |      |          |           |      |          |             |          |      |        |
| Upstream signal (ft)                    |            |          |       |      |          |           |      |          |             |          |      |        |
| pX, platoon unblocked                   |            |          |       |      |          |           |      |          |             |          |      |        |
| vC, conflicting volume                  | 163        |          |       | 353  |          |           | 554  | 546      | 351         | 549      | 543  | 158    |
| vC1, stage 1 conf vol                   |            |          |       |      |          |           |      |          |             |          |      |        |
| vC2, stage 2 conf vol                   |            |          |       |      |          |           |      |          |             |          |      |        |
| vCu, unblocked vol                      | 163        |          |       | 353  |          |           | 554  | 546      | 351         | 549      | 543  | 158    |
| tC, single (s)                          | 4.1        |          |       | 4.1  |          |           | 7.1  | 6.5      | 6.2         | 7.1      | 6.5  | 6.2    |
| tC, 2 stage (s)                         |            |          |       |      |          |           |      |          |             |          |      |        |
| tF (s)                                  | 2.2        |          |       | 2.2  |          |           | 3.5  | 4.0      | 3.3         | 3.5      | 4.0  | 3.3    |
| p0 queue free %                         | 99         |          |       | 100  |          |           | 99   | 99       | 99          | 97       | 99   | 99     |
| cM capacity (veh/h)                     | 1416       |          |       | 1205 |          |           | 429  | 440      | 693         | 435      | 441  | 888    |
| Direction, Lane #                       | EB 1       | WB 1     | NB 1  | SB 1 |          |           |      |          |             |          |      |        |
| Volume Total                            | 364        | 168      | 16    | 27   |          |           |      |          |             |          |      |        |
| Volume Left                             | 11         | 5        | 5     | 11   |          |           |      |          |             |          |      |        |
| Volume Right                            | 5          | 11       | 5     | 11   |          |           |      |          |             |          |      |        |
| cSH                                     | 1416       | 1205     | 496   | 548  |          |           |      |          |             |          |      |        |
| Volume to Capacity                      | 0.01       | 0.00     | 0.03  | 0.05 |          |           |      |          |             |          |      |        |
| Queue Length 95th (ft)                  | 1          | 0        | 3     | 4    |          |           |      |          |             |          |      |        |
| Control Delay (s)                       | 0.3        | 0.3      | 12.5  | 11.9 |          |           |      |          |             |          |      |        |
| Lane LOS                                | Α          | Α        | В     | В    |          |           |      |          |             |          |      |        |
| Approach Delay (s)                      | 0.3        | 0.3      | 12.5  | 11.9 |          |           |      |          |             |          |      |        |
| Approach LOS                            |            |          | В     | В    |          |           |      |          |             |          |      |        |
| Intersection Summary                    |            |          |       |      |          |           |      |          |             |          |      |        |
| Average Delay                           |            |          | 1.2   |      |          |           |      |          |             |          |      |        |
| Intersection Capacity Ut                | tilization | ı        | 31.3% | [[   | CU Leve  | el of Ser | vice |          | Α           |          |      |        |
| Analysis Period (min)                   |            |          | 15    |      |          |           |      |          |             |          |      |        |
| , , , , , , , , , , , , , , , , , , , , |            |          |       |      |          |           |      |          |             |          |      |        |

|                             | •          | •    | <b>†</b> | <b>/</b> | <b>\</b> | <b>↓</b>     |
|-----------------------------|------------|------|----------|----------|----------|--------------|
| Movement                    | WBL        | WBR  | NBT      | NBR      | SBL      | SBT          |
| Lane Configurations         | W          |      | 1>       |          |          | 4            |
| Sign Control                | Stop       |      | Free     |          |          | Free         |
| Grade                       | 0%         |      | 0%       |          |          | 0%           |
| Volume (veh/h)              | 5          | 1    | 20       | 5        | 1        | 20           |
| Peak Hour Factor            | 0.92       | 0.92 | 0.92     | 0.92     | 0.92     | 0.92         |
| Hourly flow rate (vph)      | 5          | 1    | 22       | 5        | 1        | 22           |
| Pedestrians                 |            |      |          |          |          |              |
| Lane Width (ft)             |            |      |          |          |          |              |
| Walking Speed (ft/s)        |            |      |          |          |          |              |
| Percent Blockage            |            |      |          |          |          |              |
| Right turn flare (veh)      |            |      |          |          |          |              |
| Median type                 | None       |      |          |          |          |              |
| Median storage veh)         |            |      |          |          |          |              |
| Upstream signal (ft)        |            |      |          |          |          |              |
| pX, platoon unblocked       |            |      |          |          |          |              |
| vC, conflicting volume      | 48         | 24   |          |          | 27       |              |
| vC1, stage 1 conf vol       | .0         | ·    |          |          | =-       |              |
| vC2, stage 2 conf vol       |            |      |          |          |          |              |
| vCu, unblocked vol          | 48         | 24   |          |          | 27       |              |
| tC, single (s)              | 6.4        | 6.2  |          |          | 4.1      |              |
| tC, 2 stage (s)             | 0          | 0.2  |          |          | ***      |              |
| tF (s)                      | 3.5        | 3.3  |          |          | 2.2      |              |
| p0 queue free %             | 99         | 100  |          |          | 100      |              |
| cM capacity (veh/h)         | 960        | 1052 |          |          | 1587     |              |
|                             |            |      |          |          | 1007     |              |
| Direction, Lane #           | WB 1       | NB 1 | SB 1     |          |          |              |
| Volume Total                | 7          | 27   | 23       |          |          |              |
| Volume Left                 | 5          | 0    | 1        |          |          |              |
| Volume Right                | 1          | 5    | 0        |          |          |              |
| cSH                         | 975        | 1700 | 1587     |          |          |              |
| Volume to Capacity          | 0.01       | 0.02 | 0.00     |          |          |              |
| Queue Length 95th (ft)      | 1          | 0    | 0        |          |          |              |
| Control Delay (s)           | 8.7        | 0.0  | 0.4      |          |          |              |
| Lane LOS                    | Α          |      | Α        |          |          |              |
| Approach Delay (s)          | 8.7        | 0.0  | 0.4      |          |          |              |
| Approach LOS                | Α          |      |          |          |          |              |
| Intersection Summary        |            |      |          |          |          |              |
| Average Delay               |            |      | 1.1      |          |          |              |
| Intersection Capacity U     | tilization |      | 13.3%    | IC       | CU Leve  | el of Servic |
| Analysis Period (min)       |            |      | 15       |          |          |              |
| , analysis i siloa (illiii) |            |      | .0       |          |          |              |

| 5. Onemii Road & D       | Noau       |          |       |      |          |           |      |          |             | 0, 2     | 0,20.2   |      |
|--------------------------|------------|----------|-------|------|----------|-----------|------|----------|-------------|----------|----------|------|
|                          | ၨ          | <b>→</b> | *     | •    | <b>+</b> | •         | 4    | <b>†</b> | <i>&gt;</i> | <b>/</b> | <b>↓</b> | 4    |
| Movement                 | EBL        | EBT      | EBR   | WBL  | WBT      | WBR       | NBL  | NBT      | NBR         | SBL      | SBT      | SBR  |
| Lane Configurations      |            | 4        |       |      | 4        |           |      | 4        |             |          | 4        |      |
| Sign Control             |            | Free     |       |      | Free     |           |      | Stop     |             |          | Stop     |      |
| Grade                    |            | 0%       |       |      | 0%       |           |      | 0%       |             |          | 0%       |      |
| Volume (veh/h)           | 1          | 20       | 1     | 5    | 30       | 1         | 1    | 5        | 5           | 1        | 5        | 1    |
| Peak Hour Factor         | 0.92       | 0.92     | 0.92  | 0.92 | 0.92     | 0.92      | 0.92 | 0.92     | 0.92        | 0.92     | 0.92     | 0.92 |
| Hourly flow rate (vph)   | 1          | 22       | 1     | 5    | 33       | 1         | 1    | 5        | 5           | 1        | 5        | 1    |
| Pedestrians              |            |          |       |      |          |           |      |          |             |          |          |      |
| Lane Width (ft)          |            |          |       |      |          |           |      |          |             |          |          |      |
| Walking Speed (ft/s)     |            |          |       |      |          |           |      |          |             |          |          |      |
| Percent Blockage         |            |          |       |      |          |           |      |          |             |          |          |      |
| Right turn flare (veh)   |            |          |       |      |          |           |      |          |             |          |          |      |
| Median type              |            |          |       |      |          |           |      | None     |             |          | None     |      |
| Median storage veh)      |            |          |       |      |          |           |      |          |             |          |          |      |
| Upstream signal (ft)     |            |          |       |      |          |           |      |          |             |          |          |      |
| pX, platoon unblocked    |            |          |       |      |          |           |      |          |             |          |          |      |
| vC, conflicting volume   | 34         |          |       | 23   |          |           | 72   | 69       | 22          | 77       | 69       | 33   |
| vC1, stage 1 conf vol    | •          |          |       |      |          |           | . –  |          |             |          |          |      |
| vC2, stage 2 conf vol    |            |          |       |      |          |           |      |          |             |          |          |      |
| vCu, unblocked vol       | 34         |          |       | 23   |          |           | 72   | 69       | 22          | 77       | 69       | 33   |
| tC, single (s)           | 4.1        |          |       | 4.1  |          |           | 7.1  | 6.5      | 6.2         | 7.1      | 6.5      | 6.2  |
| tC, 2 stage (s)          |            |          |       |      |          |           |      | 0.0      | 0.2         | • • • •  | 0.0      | 0.2  |
| tF (s)                   | 2.2        |          |       | 2.2  |          |           | 3.5  | 4.0      | 3.3         | 3.5      | 4.0      | 3.3  |
| p0 queue free %          | 100        |          |       | 100  |          |           | 100  | 99       | 99          | 100      | 99       | 100  |
| cM capacity (veh/h)      | 1578       |          |       | 1592 |          |           | 910  | 818      | 1055        | 901      | 818      | 1040 |
|                          |            | WB 1     | NB 1  |      |          |           | 010  | 0.10     | 1000        | 001      | 010      | 1010 |
| Direction, Lane #        | EB 1       |          |       | SB 1 |          |           |      |          |             |          |          |      |
| Volume Total             | 24         | 39       | 12    | 8    |          |           |      |          |             |          |          |      |
| Volume Left              | 1          | 5        | 1     | 1    |          |           |      |          |             |          |          |      |
| Volume Right             | 1          | 1        | 5     | 1    |          |           |      |          |             |          |          |      |
| cSH                      | 1578       | 1592     | 920   | 855  |          |           |      |          |             |          |          |      |
| Volume to Capacity       | 0.00       | 0.00     | 0.01  | 0.01 |          |           |      |          |             |          |          |      |
| Queue Length 95th (ft)   | 0          | 0        | 1     | 1    |          |           |      |          |             |          |          |      |
| Control Delay (s)        | 0.3        | 1.0      | 9.0   | 9.2  |          |           |      |          |             |          |          |      |
| Lane LOS                 | Α          | Α        | Α     | Α    |          |           |      |          |             |          |          |      |
| Approach Delay (s)       | 0.3        | 1.0      | 9.0   | 9.2  |          |           |      |          |             |          |          |      |
| Approach LOS             |            |          | Α     | Α    |          |           |      |          |             |          |          |      |
| Intersection Summary     |            |          |       |      |          |           |      |          |             |          |          |      |
| Average Delay            |            |          | 2.7   |      |          |           |      |          |             |          |          |      |
| Intersection Capacity Ut | tilization | l        | 13.6% | ŀ    | CU Leve  | el of Ser | vice |          | Α           |          |          |      |
| Analysis Period (min)    |            |          | 15    |      |          |           |      |          |             |          |          |      |
|                          |            |          |       |      |          |           |      |          |             |          |          |      |

| 6. MINIOUKA ROAU &       | DHSDII    | INUac    | ı     |      |         |           |      |          |             |          | 0/2  | 3/2012 |
|--------------------------|-----------|----------|-------|------|---------|-----------|------|----------|-------------|----------|------|--------|
|                          | ۶         | <b>→</b> | •     | •    | •       | •         | 1    | <b>†</b> | <i>&gt;</i> | <b>/</b> | ţ    | 4      |
| Movement                 | EBL       | EBT      | EBR   | WBL  | WBT     | WBR       | NBL  | NBT      | NBR         | SBL      | SBT  | SBR    |
| Lane Configurations      |           | 4        |       |      | 4       |           |      | 4        |             |          | 4    |        |
| Sign Control             |           | Free     |       |      | Free    |           |      | Stop     |             |          | Stop |        |
| Grade                    |           | 0%       |       |      | 0%      |           |      | 0%       |             |          | 0%   |        |
| Volume (veh/h)           | 1         | 25       | 5     | 5    | 35      | 1         | 5    | 10       | 5           | 1        | 10   | 1      |
| Peak Hour Factor         | 0.92      | 0.92     | 0.92  | 0.92 | 0.92    | 0.92      | 0.92 | 0.92     | 0.92        | 0.92     | 0.92 | 0.92   |
| Hourly flow rate (vph)   | 1         | 27       | 5     | 5    | 38      | 1         | 5    | 11       | 5           | 1        | 11   | 1      |
| Pedestrians              |           |          |       |      |         |           |      |          |             |          |      |        |
| Lane Width (ft)          |           |          |       |      |         |           |      |          |             |          |      |        |
| Walking Speed (ft/s)     |           |          |       |      |         |           |      |          |             |          |      |        |
| Percent Blockage         |           |          |       |      |         |           |      |          |             |          |      |        |
| Right turn flare (veh)   |           |          |       |      |         |           |      |          |             |          |      |        |
| Median type              |           |          |       |      |         |           |      | None     |             |          | None |        |
| Median storage veh)      |           |          |       |      |         |           |      |          |             |          |      |        |
| Upstream signal (ft)     |           |          |       |      |         |           |      |          |             |          |      |        |
| pX, platoon unblocked    |           |          |       |      |         |           |      |          |             |          |      |        |
| vC, conflicting volume   | 39        |          |       | 33   |         |           | 88   | 82       | 30          | 92       | 84   | 39     |
| vC1, stage 1 conf vol    |           |          |       |      |         |           |      |          |             |          |      |        |
| vC2, stage 2 conf vol    |           |          |       |      |         |           |      |          |             |          |      |        |
| vCu, unblocked vol       | 39        |          |       | 33   |         |           | 88   | 82       | 30          | 92       | 84   | 39     |
| tC, single (s)           | 4.1       |          |       | 4.1  |         |           | 7.1  | 6.5      | 6.2         | 7.1      | 6.5  | 6.2    |
| tC, 2 stage (s)          |           |          |       |      |         |           |      |          |             |          |      |        |
| tF (s)                   | 2.2       |          |       | 2.2  |         |           | 3.5  | 4.0      | 3.3         | 3.5      | 4.0  | 3.3    |
| p0 queue free %          | 100       |          |       | 100  |         |           | 99   | 99       | 99          | 100      | 99   | 100    |
| cM capacity (veh/h)      | 1571      |          |       | 1579 |         |           | 884  | 805      | 1045        | 875      | 803  | 1033   |
| Direction, Lane #        | EB 1      | WB 1     | NB 1  | SB 1 |         |           |      |          |             |          |      |        |
| Volume Total             | 34        | 45       | 22    | 13   |         |           |      |          |             |          |      |        |
| Volume Left              | 1         | 5        | 5     | 1    |         |           |      |          |             |          |      |        |
| Volume Right             | 5         | 1        | 5     | 1    |         |           |      |          |             |          |      |        |
| cSH                      | 1571      | 1579     | 875   | 824  |         |           |      |          |             |          |      |        |
| Volume to Capacity       | 0.00      | 0.00     | 0.02  | 0.02 |         |           |      |          |             |          |      |        |
| Queue Length 95th (ft)   | 0         | 0        | 2     | 1    |         |           |      |          |             |          |      |        |
| Control Delay (s)        | 0.2       | 0.9      | 9.2   | 9.4  |         |           |      |          |             |          |      |        |
| Lane LOS                 | Α         | Α        | Α     | Α    |         |           |      |          |             |          |      |        |
| Approach Delay (s)       | 0.2       | 0.9      | 9.2   | 9.4  |         |           |      |          |             |          |      |        |
| Approach LOS             |           |          | Α     | Α    |         |           |      |          |             |          |      |        |
| Intersection Summary     |           |          |       |      |         |           |      |          |             |          |      |        |
| Average Delay            |           |          | 3.3   |      |         |           |      |          |             |          |      |        |
| Intersection Capacity Ut | ilization |          | 14.2% | 10   | CU Leve | el of Ser | vice |          | Α           |          |      |        |
| Analysis Period (min)    |           |          | 15    | -    |         |           |      |          |             |          |      |        |
| 2, 2 2 <b>2</b> ()       |           |          |       |      |         |           |      |          |             |          |      |        |

|                          | ۶          | •    | 4     | <b>†</b> | ļ        | 4            |
|--------------------------|------------|------|-------|----------|----------|--------------|
| Movement                 | EBL        | EBR  | NBL   | NBT      | SBT      | SBR          |
| Lane Configurations      | W          |      |       | ની       | <b>∱</b> |              |
| Sign Control             | Stop       |      |       | Free     | Free     |              |
| Grade                    | 0%         |      |       | 0%       | 0%       |              |
| Volume (veh/h)           | 1          | 1    | 1     | 20       | 20       | 1            |
| Peak Hour Factor         | 0.92       | 0.92 | 0.92  | 0.92     | 0.92     | 0.92         |
| Hourly flow rate (vph)   | 1          | 1    | 1     | 22       | 22       | 1            |
| Pedestrians              |            |      |       |          |          |              |
| Lane Width (ft)          |            |      |       |          |          |              |
| Walking Speed (ft/s)     |            |      |       |          |          |              |
| Percent Blockage         |            |      |       |          |          |              |
| Right turn flare (veh)   |            |      |       |          |          |              |
| Median type              | None       |      |       |          |          |              |
| Median storage veh)      |            |      |       |          |          |              |
| Upstream signal (ft)     |            |      |       |          |          |              |
| pX, platoon unblocked    |            |      |       |          |          |              |
| vC, conflicting volume   | 46         | 22   | 23    |          |          |              |
| vC1, stage 1 conf vol    |            |      |       |          |          |              |
| vC2, stage 2 conf vol    |            |      |       |          |          |              |
| vCu, unblocked vol       | 46         | 22   | 23    |          |          |              |
| tC, single (s)           | 6.4        | 6.2  | 4.1   |          |          |              |
| tC, 2 stage (s)          |            |      |       |          |          |              |
| tF (s)                   | 3.5        | 3.3  | 2.2   |          |          |              |
| p0 queue free %          | 100        | 100  | 100   |          |          |              |
| cM capacity (veh/h)      | 963        | 1055 | 1592  |          |          |              |
| Direction, Lane #        | EB 1       | NB 1 | SB 1  |          |          |              |
| Volume Total             | 2          | 23   | 23    |          |          |              |
| Volume Left              | 1          | 1    | 0     |          |          |              |
| Volume Right             | 1          | 0    | 1     |          |          |              |
| cSH                      | 1007       | 1592 | 1700  |          |          |              |
| Volume to Capacity       | 0.00       | 0.00 | 0.01  |          |          |              |
| Queue Length 95th (ft)   | 0          | 0    | 0     |          |          |              |
| Control Delay (s)        | 8.6        | 0.4  | 0.0   |          |          |              |
| Lane LOS                 | A          | А    | 0.0   |          |          |              |
| Approach Delay (s)       | 8.6        | 0.4  | 0.0   |          |          |              |
| Approach LOS             | А          |      |       |          |          |              |
| Intersection Summary     |            |      |       |          |          |              |
| Average Delay            |            |      | 0.6   |          |          |              |
| Intersection Capacity Ut | tilization |      | 13.3% | 10       | CU Leve  | I of Service |
| Analysis Period (min)    |            |      | 15    |          |          | . 3. 20 10   |
|                          |            |      |       |          |          |              |

| 11. U.S. 6 & BIISDIII    | Nuau       |          |       |      |          |           |      |      |          |          | 0/20 | 5/2012 |
|--------------------------|------------|----------|-------|------|----------|-----------|------|------|----------|----------|------|--------|
|                          | ۶          | <b>→</b> | •     | •    | <b>←</b> | •         | •    | †    | <b>/</b> | <b>/</b> | ļ    | 4      |
| Movement                 | EBL        | EBT      | EBR   | WBL  | WBT      | WBR       | NBL  | NBT  | NBR      | SBL      | SBT  | SBR    |
| Lane Configurations      |            | 4        |       |      | 4        |           |      | 4    |          |          | 4    |        |
| Sign Control             |            | Free     |       |      | Free     |           |      | Stop |          |          | Stop |        |
| Grade                    |            | 0%       |       |      | 0%       |           |      | 0%   |          |          | 0%   |        |
| Volume (veh/h)           | 10         | 160      | 5     | 5    | 305      | 10        | 5    | 5    | 5        | 10       | 5    | 10     |
| Peak Hour Factor         | 0.92       | 0.92     | 0.92  | 0.92 | 0.92     | 0.92      | 0.92 | 0.92 | 0.92     | 0.92     | 0.92 | 0.92   |
| Hourly flow rate (vph)   | 11         | 174      | 5     | 5    | 332      | 11        | 5    | 5    | 5        | 11       | 5    | 11     |
| Pedestrians              |            |          |       |      |          |           |      |      |          |          |      |        |
| Lane Width (ft)          |            |          |       |      |          |           |      |      |          |          |      |        |
| Walking Speed (ft/s)     |            |          |       |      |          |           |      |      |          |          |      |        |
| Percent Blockage         |            |          |       |      |          |           |      |      |          |          |      |        |
| Right turn flare (veh)   |            |          |       |      |          |           |      |      |          |          |      |        |
| Median type              |            |          |       |      |          |           |      | None |          |          | None |        |
| Median storage veh)      |            |          |       |      |          |           |      |      |          |          |      |        |
| Upstream signal (ft)     |            |          |       |      |          |           |      |      |          |          |      |        |
| pX, platoon unblocked    |            |          |       |      |          |           |      |      |          |          |      |        |
| vC, conflicting volume   | 342        |          |       | 179  |          |           | 560  | 552  | 177      | 554      | 549  | 337    |
| vC1, stage 1 conf vol    |            |          |       |      |          |           |      |      |          |          |      |        |
| vC2, stage 2 conf vol    |            |          |       |      |          |           |      |      |          |          |      |        |
| vCu, unblocked vol       | 342        |          |       | 179  |          |           | 560  | 552  | 177      | 554      | 549  | 337    |
| tC, single (s)           | 4.1        |          |       | 4.1  |          |           | 7.1  | 6.5  | 6.2      | 7.1      | 6.5  | 6.2    |
| tC, 2 stage (s)          |            |          |       |      |          |           |      |      |          |          |      |        |
| tF (s)                   | 2.2        |          |       | 2.2  |          |           | 3.5  | 4.0  | 3.3      | 3.5      | 4.0  | 3.3    |
| p0 queue free %          | 99         |          |       | 100  |          |           | 99   | 99   | 99       | 97       | 99   | 98     |
| cM capacity (veh/h)      | 1217       |          |       | 1396 |          |           | 424  | 436  | 866      | 432      | 438  | 705    |
| Direction, Lane #        | EB 1       | WB 1     | NB 1  | SB 1 |          |           |      |      |          |          |      |        |
| Volume Total             | 190        | 348      | 16    | 27   |          |           |      |      |          |          |      |        |
| Volume Left              | 11         | 5        | 5     | 11   |          |           |      |      |          |          |      |        |
| Volume Right             | 5          | 11       | 5     | 11   |          |           |      |      |          |          |      |        |
| cSH                      | 1217       | 1396     | 517   | 513  |          |           |      |      |          |          |      |        |
| Volume to Capacity       | 0.01       | 0.00     | 0.03  | 0.05 |          |           |      |      |          |          |      |        |
| Queue Length 95th (ft)   | 1          | 0.00     | 2     | 4    |          |           |      |      |          |          |      |        |
| Control Delay (s)        | 0.5        | 0.2      | 12.2  | 12.4 |          |           |      |      |          |          |      |        |
| Lane LOS                 | A          | A        | В     | В    |          |           |      |      |          |          |      |        |
| Approach Delay (s)       | 0.5        | 0.2      | 12.2  | 12.4 |          |           |      |      |          |          |      |        |
| Approach LOS             | 0.0        | 0.2      | В     | В    |          |           |      |      |          |          |      |        |
| Intersection Summary     |            |          |       |      |          |           |      |      |          |          |      |        |
| Average Delay            |            |          | 1.2   |      |          |           |      |      |          |          |      |        |
| Intersection Capacity Ut | tilization |          | 28.2% | 10   | CU Leve  | el of Ser | vice |      | Α        |          |      |        |
| Analysis Period (min)    |            |          | 15    |      |          | J. J. J.  |      |      |          |          |      |        |
| yolo i olioa (ilili)     |            |          |       |      |          |           |      |      |          |          |      |        |

|                             | •          | •    | <b>†</b> | <b>/</b> | <b>\</b> | <b>↓</b>     |
|-----------------------------|------------|------|----------|----------|----------|--------------|
| Movement                    | WBL        | WBR  | NBT      | NBR      | SBL      | SBT          |
| Lane Configurations         | W          |      | 1>       |          |          | 4            |
| Sign Control                | Stop       |      | Free     |          |          | Free         |
| Grade                       | 0%         |      | 0%       |          |          | 0%           |
| Volume (veh/h)              | 5          | 1    | 20       | 5        | 1        | 20           |
| Peak Hour Factor            | 0.92       | 0.92 | 0.92     | 0.92     | 0.92     | 0.92         |
| Hourly flow rate (vph)      | 5          | 1    | 22       | 5        | 1        | 22           |
| Pedestrians                 |            |      |          |          |          |              |
| Lane Width (ft)             |            |      |          |          |          |              |
| Walking Speed (ft/s)        |            |      |          |          |          |              |
| Percent Blockage            |            |      |          |          |          |              |
| Right turn flare (veh)      |            |      |          |          |          |              |
| Median type                 | None       |      |          |          |          |              |
| Median storage veh)         |            |      |          |          |          |              |
| Upstream signal (ft)        |            |      |          |          |          |              |
| pX, platoon unblocked       |            |      |          |          |          |              |
| vC, conflicting volume      | 48         | 24   |          |          | 27       |              |
| vC1, stage 1 conf vol       | .0         | ·    |          |          | =-       |              |
| vC2, stage 2 conf vol       |            |      |          |          |          |              |
| vCu, unblocked vol          | 48         | 24   |          |          | 27       |              |
| tC, single (s)              | 6.4        | 6.2  |          |          | 4.1      |              |
| tC, 2 stage (s)             | 0          | 0.2  |          |          | ***      |              |
| tF (s)                      | 3.5        | 3.3  |          |          | 2.2      |              |
| p0 queue free %             | 99         | 100  |          |          | 100      |              |
| cM capacity (veh/h)         | 960        | 1052 |          |          | 1587     |              |
|                             |            |      |          |          | 1007     |              |
| Direction, Lane #           | WB 1       | NB 1 | SB 1     |          |          |              |
| Volume Total                | 7          | 27   | 23       |          |          |              |
| Volume Left                 | 5          | 0    | 1        |          |          |              |
| Volume Right                | 1          | 5    | 0        |          |          |              |
| cSH                         | 975        | 1700 | 1587     |          |          |              |
| Volume to Capacity          | 0.01       | 0.02 | 0.00     |          |          |              |
| Queue Length 95th (ft)      | 1          | 0    | 0        |          |          |              |
| Control Delay (s)           | 8.7        | 0.0  | 0.4      |          |          |              |
| Lane LOS                    | Α          |      | Α        |          |          |              |
| Approach Delay (s)          | 8.7        | 0.0  | 0.4      |          |          |              |
| Approach LOS                | Α          |      |          |          |          |              |
| Intersection Summary        |            |      |          |          |          |              |
| Average Delay               |            |      | 1.1      |          |          |              |
| Intersection Capacity U     | tilization |      | 13.3%    | IC       | CU Leve  | el of Servic |
| Analysis Period (min)       |            |      | 15       |          |          |              |
| , analysis i siloa (illiii) |            |      | .0       |          |          |              |

## Capacity Analysis Worksheets Projected 2040 Traffic Conditions

| <b>→ → → ← ← ← ↑ → →</b>                                              | <b>+</b> | ✓     |
|-----------------------------------------------------------------------|----------|-------|
| Lane Group EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL                    | SBT      | SBR   |
| Lane Configurations \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \             | <b>^</b> | 1     |
| Ideal Flow (vphpl) 1900 2000 1900 1900 2000 1900 1900 2000 1900 19    | 2000     | 1900  |
| Storage Length (ft) 265 265 265 265 265 265                           |          | 265   |
| Storage Lanes 1 1 1 1 1 1 1 1                                         |          | 1     |
| Total Lost Time (s) 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0           | 4.0      | 4.0   |
| Leading Detector (ft) 50 50 50 50 50 50 50 50 50                      | 50       | 50    |
| Trailing Detector (ft) 0 0 0 0 0 0 0 0 0                              | 0        | 0     |
| Turning Speed (mph) 15 9 15 9 15                                      |          | 9     |
| Lane Util. Factor 1.00 1.00 1.00 1.00 1.00 1.00 0.95 1.00 1.00        | 0.95     | 1.00  |
| Frt 0.850 0.850 0.850                                                 |          | 0.850 |
| Flt Protected 0.950 0.950 0.950 0.950                                 |          |       |
| Satd. Flow (prot) 1770 1961 1583 1770 1961 1583 1770 3725 1583 1770   | 3725     | 1583  |
| Flt Permitted 0.397 0.722 0.118 0.520                                 |          |       |
| Satd. Flow (perm) 740 1961 1583 1345 1961 1583 220 3725 1583 969      | 3725     | 1583  |
| Right Turn on Red Yes Yes Yes                                         |          | Yes   |
| Satd. Flow (RTOR) 5 11 5                                              |          | 58    |
| Headway Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0                 | 1.00     | 1.00  |
| Link Speed (mph) 30 30 55                                             | 55       |       |
| Link Distance (ft) 1533 1607 1320                                     | 1102     |       |
| Travel Time (s) 34.8 36.5 16.4                                        | 13.7     |       |
| Volume (vph) 10 50 5 25 240 10 45 335 5 5                             | 1660     | 55    |
| Peak Hour Factor 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95              | 0.95     | 0.95  |
| Adj. Flow (vph) 11 53 5 26 253 11 47 353 5 5                          | 1747     | 58    |
| Lane Group Flow (vph) 11 53 5 26 253 11 47 353 5 5                    | 1747     | 58    |
| Turn Type pm+pt pm+ov pm+pt pm+ov pm+pt pm+ov pm+pt                   |          | om+ov |
| Protected Phases 7 4 5 3 8 1 5 2 3 1                                  | 6        | 7     |
| Permitted Phases 4 4 8 8 2 2 6                                        |          | 6     |
| Detector Phases 7 4 5 3 8 1 5 2 3 1                                   | 6        | 7     |
| Minimum Initial (s) 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0           | 4.0      | 4.0   |
| Minimum Split (s) 10.0 22.0 10.0 10.0 22.0 10.0 10.0 22.0 10.0 10     | 22.0     | 10.0  |
| Total Split (s) 10.0 22.0 10.0 10.0 22.0 10.0 10.0 38.0 10.0 10.0     | 38.0     | 10.0  |
| Total Split (%) 12.5% 27.5% 12.5% 12.5% 27.5% 12.5% 47.5% 12.5% 12.5% | 47.5%    | 12.5% |
| Yellow Time (s) 3.0 4.5 3.0 3.0 4.5 3.0 3.0 4.5 3.0 3.0               | 4.5      | 3.0   |
| All-Red Time (s) 0.0 1.5 1.0 0.0 1.5 1.0 1.0 1.5 0.0 1.0              | 1.5      | 0.0   |
| Lead/Lag Lead Lag Lead Lag Lead Lag Lead Lag Lead Lead                | Lag      | Lead  |
| Lead-Lag Optimize?                                                    | - 3      |       |
|                                                                       | C-Max    | None  |
| Act Effct Green (s) 20.0 17.8 27.6 19.6 16.2 25.8 48.7 46.3 55.5 47.6 | 44.2     | 53.2  |
| Actuated g/C Ratio 0.25 0.22 0.34 0.24 0.20 0.32 0.61 0.58 0.69 0.60  | 0.55     | 0.66  |
| v/c Ratio 0.04 0.12 0.01 0.07 0.64 0.02 0.19 0.16 0.00 0.01           | 0.85     | 0.05  |
| Control Delay 17.8 24.7 11.0 18.6 36.6 9.5 13.6 3.5 1.6 8.2           | 25.1     | 2.7   |
| Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.                    | 0.0      | 0.0   |
| Total Delay 17.8 24.7 11.0 18.6 36.6 9.5 13.6 3.5 1.6 8.2             | 25.1     | 2.7   |
| LOS B C B B D A B A A A                                               | С        | Α     |
| Approach Delay 22.6 34.0 4.7                                          | 24.4     |       |
| Approach LOS C C A                                                    | C        |       |
| Stops (vph) 8 39 3 18 212 5 23 79 0 3                                 | 1087     | 8     |
| Fuel Used(gal) 0 1 0 1 6 0 1 5 0 0                                    | 40       | 1     |
| CO Emissions (g/hr) 14 74 6 35 417 12 65 315 3 7                      | 2815     | 39    |

|                         | ۶    | <b>→</b> | $\rightarrow$ | •    | ←    | •    | •    | <b>†</b> | _    | -    | ļ    | 4    |
|-------------------------|------|----------|---------------|------|------|------|------|----------|------|------|------|------|
| Lane Group              | EBL  | EBT      | EBR           | WBL  | WBT  | WBR  | NBL  | NBT      | NBR  | SBL  | SBT  | SBR  |
| NOx Emissions (g/hr)    | 3    | 14       | 1             | 7    | 81   | 2    | 13   | 61       | 1    | 1    | 548  | 8    |
| VOC Emissions (g/hr)    | 3    | 17       | 1             | 8    | 97   | 3    | 15   | 73       | 1    | 2    | 652  | 9    |
| Dilemma Vehicles (#)    | 0    | 0        | 0             | 0    | 0    | 0    | 0    | 21       | 0    | 0    | 93   | 0    |
| Queue Length 50th (ft)  | 4    | 18       | 0             | 9    | 114  | 0    | 1    | 4        | 0    | 1    | ~508 | 0    |
| Queue Length 95th (ft)  | 14   | 50       | 7             | 25   | 186  | 10   | 42   | 34       | 0    | 6    | #664 | 15   |
| Internal Link Dist (ft) |      | 1453     |               |      | 1527 |      |      | 1240     |      |      | 1022 |      |
| Turn Bay Length (ft)    | 265  |          | 265           | 265  |      | 265  | 265  |          | 265  | 265  |      | 265  |
| Base Capacity (vph)     | 264  | 482      | 554           | 365  | 446  | 526  | 251  | 2156     | 1116 | 639  | 2058 | 1091 |
| Starvation Cap Reductn  | 0    | 0        | 0             | 0    | 0    | 0    | 0    | 0        | 0    | 0    | 0    | 0    |
| Spillback Cap Reductn   | 0    | 0        | 0             | 0    | 0    | 0    | 0    | 0        | 0    | 0    | 0    | 0    |
| Storage Cap Reductn     | 0    | 0        | 0             | 0    | 0    | 0    | 0    | 0        | 0    | 0    | 0    | 0    |
| Reduced v/c Ratio       | 0.04 | 0.11     | 0.01          | 0.07 | 0.57 | 0.02 | 0.19 | 0.16     | 0.00 | 0.01 | 0.85 | 0.05 |

#### Intersection Summary

Area Type: Other

Cycle Length: 80

Actuated Cycle Length: 80

Offset: 11 (14%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

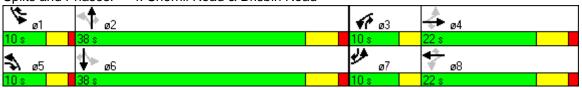
Natural Cycle: 90

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.85

Intersection Signal Delay: 22.3 Intersection LOS: C
Intersection Capacity Utilization 62.3% ICU Level of Service B

Analysis Period (min) 15


Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

# 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 4: Sherrill Road & Brisbin Road



|                        | ۶     | <b>→</b> | •     | €     | +        | •     | •     | <b>†</b> | <i>&gt;</i> | <b>/</b> | <b>↓</b> | -√    |
|------------------------|-------|----------|-------|-------|----------|-------|-------|----------|-------------|----------|----------|-------|
| Lane Group             | EBL   | EBT      | EBR   | WBL   | WBT      | WBR   | NBL   | NBT      | NBR         | SBL      | SBT      | SBR   |
| Lane Configurations    | *     | <b>^</b> | 7     | ሻ     | <b>^</b> | 7     | *     | <b>^</b> | 7           | *        | <b>^</b> | 7     |
| Ideal Flow (vphpl)     | 1900  | 2000     | 1900  | 1900  | 2000     | 1900  | 1900  | 2000     | 1900        | 1900     | 2000     | 1900  |
| Storage Length (ft)    | 265   |          | 400   | 400   |          | 265   | 400   |          | 400         | 265      |          | 265   |
| Storage Lanes          | 1     |          | 1     | 1     |          | 1     | 1     |          | 1           | 1        |          | 1     |
| Total Lost Time (s)    | 4.0   | 4.0      | 4.0   | 4.0   | 4.0      | 4.0   | 4.0   | 4.0      | 4.0         | 4.0      | 4.0      | 4.0   |
| Leading Detector (ft)  | 50    | 50       | 50    | 50    | 50       | 50    | 50    | 50       | 50          | 50       | 50       | 50    |
| Trailing Detector (ft) | 0     | 0        | 0     | 0     | 0        | 0     | 0     | 0        | 0           | 0        | 0        | 0     |
| Turning Speed (mph)    | 15    |          | 9     | 15    |          | 9     | 15    |          | 9           | 15       |          | 9     |
| Lane Util. Factor      | 1.00  | 0.95     | 1.00  | 1.00  | 0.95     | 1.00  | 1.00  | 0.95     | 1.00        | 1.00     | 0.95     | 1.00  |
| Frt                    |       |          | 0.850 |       |          | 0.850 |       |          | 0.850       |          |          | 0.850 |
| Flt Protected          | 0.950 |          |       | 0.950 |          |       | 0.950 |          |             | 0.950    |          |       |
| Satd. Flow (prot)      | 1770  | 3725     | 1583  | 1770  | 3725     | 1583  | 1770  | 3725     | 1583        | 1770     | 3725     | 1583  |
| Flt Permitted          | 0.307 |          |       | 0.390 |          |       | 0.118 |          |             | 0.328    |          |       |
| Satd. Flow (perm)      | 572   | 3725     | 1583  | 726   | 3725     | 1583  | 220   | 3725     | 1583        | 611      | 3725     | 1583  |
| Right Turn on Red      |       |          | Yes   |       |          | Yes   |       |          | Yes         |          |          | Yes   |
| Satd. Flow (RTOR)      |       |          | 32    |       |          | 32    |       |          | 95          |          |          | 100   |
| Headway Factor         | 1.00  | 1.00     | 1.00  | 1.00  | 1.00     | 1.00  | 1.00  | 1.00     | 1.00        | 1.00     | 1.00     | 1.00  |
| Link Speed (mph)       |       | 30       |       |       | 30       |       |       | 55       |             |          | 55       |       |
| Link Distance (ft)     |       | 739      |       |       | 617      |       |       | 1482     |             |          | 1320     |       |
| Travel Time (s)        |       | 16.8     |       |       | 14.0     |       |       | 18.4     |             |          | 16.4     |       |
| Volume (vph)           | 20    | 385      | 30    | 40    | 465      | 30    | 80    | 610      | 90          | 115      | 1110     | 95    |
| Peak Hour Factor       | 0.95  | 0.95     | 0.95  | 0.95  | 0.95     | 0.95  | 0.95  | 0.95     | 0.95        | 0.95     | 0.95     | 0.95  |
| Adj. Flow (vph)        | 21    | 405      | 32    | 42    | 489      | 32    | 84    | 642      | 95          | 121      | 1168     | 100   |
| Lane Group Flow (vph)  | 21    | 405      | 32    | 42    | 489      | 32    | 84    | 642      | 95          | 121      | 1168     | 100   |
| Turn Type              | pm+pt |          | pm+ov | pm+pt |          | pm+ov | pm+pt |          | pm+ov       | pm+pt    |          | pm+ov |
| Protected Phases       | 7     | 4        | 5     | 3     | 8        | 1     | 5     | 2        | 3           | 1        | 6        | 7     |
| Permitted Phases       | 4     |          | 4     | 8     |          | 8     | 2     |          | 2           | 6        |          | 6     |
| Detector Phases        | 7     | 4        | 5     | 3     | 8        | 1     | 5     | 2        | 3           | 1        | 6        | 7     |
| Minimum Initial (s)    | 4.0   | 4.0      | 4.0   | 4.0   | 4.0      | 4.0   | 4.0   | 4.0      | 4.0         | 4.0      | 4.0      | 4.0   |
| Minimum Split (s)      | 10.0  | 22.0     | 10.0  | 10.0  | 22.0     | 10.0  | 10.0  | 22.0     | 10.0        | 10.0     | 22.0     | 10.0  |
| Total Split (s)        | 10.0  | 22.0     | 10.0  | 10.0  | 22.0     | 10.0  | 10.0  | 38.0     | 10.0        | 10.0     | 38.0     | 10.0  |
| Total Split (%)        | 12.5% | 27.5%    | 12.5% | 12.5% | 27.5%    | 12.5% |       | 47.5%    | 12.5%       | 12.5%    | 47.5%    | 12.5% |
| Yellow Time (s)        | 3.0   | 4.5      | 3.0   | 3.0   | 4.5      | 3.0   | 3.0   | 4.5      | 3.0         | 3.0      | 4.5      | 3.0   |
| All-Red Time (s)       | 1.0   | 1.5      | 1.0   | 1.0   | 1.5      | 1.0   | 1.0   | 1.5      | 1.0         | 1.0      | 1.5      | 1.0   |
| Lead/Lag               | Lead  | Lag      | Lead  | Lead  | Lag      | Lead  | Lead  | Lag      | Lead        | Lead     | Lag      | Lead  |
| Lead-Lag Optimize?     |       |          |       |       |          |       |       |          |             |          |          |       |
| Recall Mode            | None  | None     | None  | None  | None     | None  | None  | C-Max    | None        | None     | C-Max    | None  |
| Act Effct Green (s)    | 21.2  | 16.5     | 26.4  | 21.3  | 16.5     | 26.2  | 44.6  | 39.8     | 49.7        | 44.0     | 39.5     | 49.3  |
| Actuated g/C Ratio     | 0.26  | 0.21     | 0.33  | 0.27  | 0.21     | 0.33  | 0.56  | 0.50     | 0.62        | 0.55     | 0.49     | 0.62  |
| v/c Ratio              | 0.09  | 0.53     | 0.06  | 0.15  | 0.64     | 0.06  | 0.35  | 0.35     | 0.09        | 0.29     | 0.63     | 0.10  |
| Control Delay          | 18.3  | 30.8     | 7.0   | 19.1  | 32.9     | 7.1   | 25.1  | 20.4     | 7.1         | 2.1      | 2.4      | 0.2   |
| Queue Delay            | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      | 0.0         | 0.0      | 0.0      | 0.0   |
| Total Delay            | 18.3  | 30.8     | 7.0   | 19.1  | 32.9     | 7.1   | 25.1  | 20.4     | 7.1         | 2.1      | 2.4      | 0.2   |
| LOS                    | В     | С        | Α     | В     | С        | Α     | С     | С        | Α           | Α        | Α        | Α     |
| Approach Delay         |       | 28.5     |       |       | 30.4     |       |       | 19.3     |             |          | 2.2      |       |
| Approach LOS           |       | С        |       |       | С        |       |       | В        |             |          | Α        |       |
| Stops (vph)            | 16    | 330      | 8     | 29    | 409      | 8     | 67    | 309      | 32          | 3        | 84       | 0     |
| Fuel Used(gal)         | 0     | 6        | 0     | 1     | 8        | 0     | 2     | 14       | 2           | 1        | 11       | 1     |
| CO Emissions (g/hr)    | 19    | 451      | 18    | 36    | 532      | 16    | 168   | 979      | 110         | 74       | 796      | 56    |

|                         | ᄼ    | -    | •    | •    | •    | •    | <b>~</b> | <b>†</b> | -    | -    | ļ    | 4    |
|-------------------------|------|------|------|------|------|------|----------|----------|------|------|------|------|
| Lane Group              | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL      | NBT      | NBR  | SBL  | SBT  | SBR  |
| NOx Emissions (g/hr)    | 4    | 88   | 4    | 7    | 103  | 3    | 33       | 190      | 21   | 14   | 155  | 11   |
| VOC Emissions (g/hr)    | 5    | 105  | 4    | 8    | 123  | 4    | 39       | 227      | 25   | 17   | 184  | 13   |
| Dilemma Vehicles (#)    | 0    | 0    | 0    | 0    | 0    | 0    | 0        | 46       | 0    | 0    | 36   | 0    |
| Queue Length 50th (ft)  | 7    | 93   | 0    | 14   | 116  | 0    | 17       | 12       | 1    | 3    | 14   | 1    |
| Queue Length 95th (ft)  | 22   | 135  | 18   | 35   | 164  | 18   | 87       | 241      | 49   | 3    | 8    | m0   |
| Internal Link Dist (ft) |      | 659  |      |      | 537  |      |          | 1402     |      |      | 1240 |      |
| Turn Bay Length (ft)    | 265  |      | 400  | 400  |      | 265  | 400      |          | 400  | 265  |      | 265  |
| Base Capacity (vph)     | 242  | 838  | 547  | 272  | 838  | 547  | 241      | 1854     | 1022 | 425  | 1840 | 1018 |
| Starvation Cap Reductn  | 0    | 0    | 0    | 0    | 0    | 0    | 0        | 0        | 0    | 0    | 0    | 0    |
| Spillback Cap Reductn   | 0    | 0    | 0    | 0    | 0    | 0    | 0        | 0        | 0    | 0    | 0    | 0    |
| Storage Cap Reductn     | 0    | 0    | 0    | 0    | 0    | 0    | 0        | 0        | 0    | 0    | 0    | 0    |
| Reduced v/c Ratio       | 0.09 | 0.48 | 0.06 | 0.15 | 0.58 | 0.06 | 0.35     | 0.35     | 0.09 | 0.28 | 0.63 | 0.10 |

#### Intersection Summary

Area Type: Other

Cycle Length: 80

Actuated Cycle Length: 80

Offset: 77 (96%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 70

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.64
Intersection Signal Delay: 15.2

Intersection Capacity Utilization 62.5%

Intersection LOS: B
ICU Level of Service B

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.





|                             | ۶     | <b>→</b>   | •     | •     | <b>←</b>   | •     | •     | <b>†</b>   | ~           | <b>/</b>   | Ţ          | -√         |
|-----------------------------|-------|------------|-------|-------|------------|-------|-------|------------|-------------|------------|------------|------------|
| Lane Group                  | EBL   | EBT        | EBR   | WBL   | WBT        | WBR   | NBL   | NBT        | NBR         | SBL        | SBT        | SBR        |
| Lane Configurations         | *     | <b>^</b>   | 7     | ች     | <b>^</b>   | 7     | ች     | <b>^</b> ^ | 7           | *          | <b>^</b> ^ | 7          |
| Ideal Flow (vphpl)          | 1900  | 2000       | 1900  | 1900  | 2000       | 1900  | 1900  | 2000       | 1900        | 1900       | 2000       | 1900       |
| Storage Length (ft)         | 200   |            | 265   | 400   |            | 200   | 400   |            | 400         | 265        |            | 265        |
| Storage Lanes               | 1     |            | 1     | 1     |            | 1     | 1     |            | 1           | 1          |            | 1          |
| Total Lost Time (s)         | 4.0   | 4.0        | 4.0   | 4.0   | 4.0        | 4.0   | 4.0   | 4.0        | 4.0         | 4.0        | 4.0        | 4.0        |
| Leading Detector (ft)       | 50    | 50         | 50    | 50    | 50         | 50    | 50    | 50         | 50          | 50         | 50         | 50         |
| Trailing Detector (ft)      | 0     | 0          | 0     | 0     | 0          | 0     | 0     | 0          | 0           | 0          | 0          | 0          |
| Turning Speed (mph)         | 15    |            | 9     | 15    |            | 9     | 15    |            | 9           | 15         |            | 9          |
| Lane Util. Factor           | 1.00  | 0.95       | 1.00  | 1.00  | 0.95       | 1.00  | 1.00  | 0.91       | 1.00        | 1.00       | 0.91       | 1.00       |
| Frt                         |       |            | 0.850 |       |            | 0.850 |       |            | 0.850       |            |            | 0.850      |
| Flt Protected               | 0.950 |            |       | 0.950 |            |       | 0.950 |            |             | 0.950      |            |            |
| Satd. Flow (prot)           | 1770  | 3725       | 1583  | 1770  | 3725       | 1583  | 1770  | 5353       | 1583        | 1770       | 5353       | 1583       |
| Flt Permitted               | 0.327 |            |       | 0.327 |            |       | 0.950 |            |             | 0.950      |            |            |
| Satd. Flow (perm)           | 609   | 3725       | 1583  | 609   | 3725       | 1583  | 1770  | 5353       | 1583        | 1770       | 5353       | 1583       |
| Right Turn on Red           |       |            | Yes   |       |            | Yes   |       |            | Yes         |            |            | Yes        |
| Satd. Flow (RTOR)           |       |            | 53    |       |            | 42    |       |            | 176         |            |            | 74         |
| Headway Factor              | 1.00  | 1.00       | 1.00  | 1.00  | 1.00       | 1.00  | 1.00  | 1.00       | 1.00        | 1.00       | 1.00       | 1.00       |
| Link Speed (mph)            |       | 30         |       |       | 30         |       |       | 55         |             |            | 55         |            |
| Link Distance (ft)          |       | 484        |       |       | 484        |       |       | 974        |             |            | 1489       |            |
| Travel Time (s)             |       | 11.0       |       |       | 11.0       |       |       | 12.1       |             |            | 18.5       |            |
| Volume (vph)                | 40    | 445        | 50    | 55    | 445        | 40    | 180   | 1595       | 190         | 75         | 540        | 70         |
| Peak Hour Factor            | 0.95  | 0.95       | 0.95  | 0.95  | 0.95       | 0.95  | 0.95  | 0.95       | 0.95        | 0.95       | 0.95       | 0.95       |
| Adj. Flow (vph)             | 42    | 468        | 53    | 58    | 468        | 42    | 189   | 1679       | 200         | 79         | 568        | 74         |
| Lane Group Flow (vph)       |       | 468        | 53    | 58    | 468        | 42    | 189   | 1679       | 200         | 79         | 568        | 74         |
| Turn Type                   | pm+pt |            | pm+ov | pm+pt |            | pm+ov | Prot  |            | pm+ov       | Prot       |            | pm+ov      |
| Protected Phases            | 7     | 4          | 5     | 3     | 8          | 1     | 5     | 2          | 3           | 1          | 6          | 7          |
| Permitted Phases            | 4     |            | 4     | 8     | •          | 8     | _     | 0          | 2           |            | 0          | 6          |
| Detector Phases             | 7     | 4          | 5     | 3     | 8          | 1     | 5     | 2          | 3           | 1          | 6          | 7          |
| Minimum Initial (s)         | 4.0   | 4.0        | 4.0   | 4.0   | 4.0        | 4.0   | 4.0   | 4.0        | 4.0         | 4.0        | 4.0        | 4.0        |
| Minimum Split (s)           | 10.0  | 22.0       | 10.0  | 10.0  | 22.0       | 10.0  | 10.0  | 22.0       | 10.0        | 10.0       | 22.0       | 10.0       |
| Total Split (s)             | 10.0  | 22.0       | 20.0  | 10.0  | 22.0       | 12.0  | 20.0  | 36.0       | 10.0        | 12.0       | 28.0       | 10.0       |
| Total Split (%)             |       | 27.5%      |       | 12.5% |            |       | 25.0% |            | 12.5%       |            |            | 12.5%      |
| Yellow Time (s)             | 3.0   | 4.5<br>1.5 | 3.0   | 3.0   | 4.5<br>1.5 | 3.0   | 3.0   | 4.5<br>1.5 | 3.0         | 3.0<br>1.0 | 4.5<br>1.5 | 3.0<br>1.0 |
| All-Red Time (s)            | 1.0   |            | 1.0   | 1.0   |            |       | 1.0   |            | 1.0<br>Lead |            |            |            |
| Lead/Lag Lead-Lag Optimize? | Lead  | Lag        | Lead  | Lead  | Lag        | Lead  | Lead  | Lag        | Leau        | Lead       | Lag        | Lead       |
| Recall Mode                 | None  | None       | None  | None  | None       | None  | None  | C-Max      | None        | None       | C-Max      | None       |
| Act Effct Green (s)         | 22.2  | 16.3       | 32.9  | 23.0  | 18.2       | 29.7  | 12.6  | 36.3       | 46.2        | 7.5        | 29.2       | 39.1       |
| Actuated g/C Ratio          | 0.28  | 0.20       | 0.41  | 0.29  | 0.23       | 0.37  | 0.16  | 0.45       | 0.58        | 0.09       | 0.36       | 0.49       |
| v/c Ratio                   | 0.20  | 0.62       | 0.41  | 0.23  | 0.25       | 0.07  | 0.10  | 0.43       | 0.20        | 0.03       | 0.30       | 0.09       |
| Control Delay               | 19.4  | 32.6       | 4.0   | 20.2  | 30.5       | 5.9   | 56.4  | 4.7        | 0.20        | 38.5       | 19.6       | 11.3       |
| Queue Delay                 | 0.0   | 0.0        | 0.0   | 0.0   | 0.0        | 0.0   | 0.0   | 0.0        | 0.0         | 0.0        | 0.0        | 0.0        |
| Total Delay                 | 19.4  | 32.6       | 4.0   | 20.2  | 30.5       | 5.9   | 56.4  | 4.7        | 0.5         | 38.5       | 19.6       | 11.3       |
| LOS                         | В     | C          | Α.    | C     | C          | Α     | E     | A          | Α           | D.0        | В          | В          |
| Approach Delay              | D     | 29.0       | А     | U     | 27.7       | Α.    | _     | 9.0        | Α.          |            | 20.8       | D          |
| Approach LOS                |       | 23.0<br>C  |       |       | C C        |       |       | 3.0<br>A   |             |            | 20.0<br>C  |            |
| Stops (vph)                 | 30    | 389        | 8     | 38    | 382        | 10    | 159   | 446        | 1           | 52         | 466        | 60         |
| Fuel Used(gal)              | 0     | 7          | 0     | 1     | 7          | 0     | 6     | 20         | 1           | 2          | 16         | 2          |
| CO Emissions (g/hr)         | 33    | 474        | 19    | 45    | 458        | 18    | 429   | 1374       | 85          | 158        | 1112       | 135        |
| 23 Emissions (g/m)          |       | 71-7       | 10    | 70    | 100        | 10    | 720   | 1017       |             | 100        | 1114       | .00        |

|                         | ۶    | <b>→</b> | $\rightarrow$ | •    | <b>←</b> | •    | •    | <b>†</b> | <b>/</b> | -    | ţ    | 4    |
|-------------------------|------|----------|---------------|------|----------|------|------|----------|----------|------|------|------|
| Lane Group              | EBL  | EBT      | EBR           | WBL  | WBT      | WBR  | NBL  | NBT      | NBR      | SBL  | SBT  | SBR  |
| NOx Emissions (g/hr)    | 6    | 92       | 4             | 9    | 89       | 3    | 83   | 267      | 16       | 31   | 216  | 26   |
| VOC Emissions (g/hr)    | 8    | 110      | 4             | 10   | 106      | 4    | 99   | 319      | 20       | 37   | 258  | 31   |
| Dilemma Vehicles (#)    | 0    | 0        | 0             | 0    | 0        | 0    | 0    | 98       | 0        | 0    | 4    | 0    |
| Queue Length 50th (ft)  | 14   | 111      | 0             | 20   | 111      | 0    | 94   | 16       | 0        | 25   | 83   | 13   |
| Queue Length 95th (ft)  | 35   | 156      | 18            | 44   | 156      | 19   | 145  | 35       | 0        | 59   | 147  | 54   |
| Internal Link Dist (ft) |      | 404      |               |      | 404      |      |      | 894      |          |      | 1409 |      |
| Turn Bay Length (ft)    | 200  |          | 265           | 400  |          | 200  | 400  |          | 400      | 265  |      | 265  |
| Base Capacity (vph)     | 257  | 838      | 747           | 262  | 881      | 626  | 354  | 2426     | 990      | 180  | 1952 | 813  |
| Starvation Cap Reductn  | 0    | 0        | 0             | 0    | 0        | 0    | 0    | 0        | 0        | 0    | 0    | 0    |
| Spillback Cap Reductn   | 0    | 0        | 0             | 0    | 0        | 0    | 0    | 0        | 0        | 0    | 0    | 0    |
| Storage Cap Reductn     | 0    | 0        | 0             | 0    | 0        | 0    | 0    | 0        | 0        | 0    | 0    | 0    |
| Reduced v/c Ratio       | 0.16 | 0.56     | 0.07          | 0.22 | 0.53     | 0.07 | 0.53 | 0.69     | 0.20     | 0.44 | 0.29 | 0.09 |

Intersection LOS: B

#### Intersection Summary

Area Type: Other

Cycle Length: 80

Actuated Cycle Length: 80

Offset: 19 (24%), Referenced to phase 2:NBT and 6:SBT, Start of Green

Natural Cycle: 70

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.69

Intersection Signal Delay: 16.8
Intersection Capacity Utilization 61.8%

stersection Capacity Utilization 61.8% ICU Level of Service B

Analysis Period (min) 15

Splits and Phases: 9: Whitman Road & Brisbin Road



| Lane Group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       | ۶     | <b>→</b> | •     | •     | +     | •     | •     | <b>†</b> | <i>&gt;</i> | <b>/</b> | <b>↓</b> | -√    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------|----------|-------|-------|-------|-------|-------|----------|-------------|----------|----------|-------|
| Tane Configurations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Lane Group            | EBL   | EBT      | EBR   | WBL   | WBT   | WBR   | NBL   | NBT      | NBR         | SBL      | SBT      | SBR   |
| Ideal Flow (ryphp)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       | *     | 44       | 1     | ሻሻ    | 44    | 1     | 75    | 44       | #           | ኝኝ       | 44       | 7     |
| Storage Length (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |       |          |       |       |       |       |       |          | 1900        |          |          | 1900  |
| Storage Lanes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ` ,                   | 400   |          | 265   | 265   |       | 400   | 265   |          | 265         | 400      |          | 400   |
| Total Lost Time (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       | 2     |          | 1     | 2     |       | 1     | 2     |          | 1           | 2        |          | 1     |
| Leading Detector (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       | 4.0   | 4.0      | 4.0   | 4.0   | 4.0   | 4.0   | 4.0   | 4.0      | 4.0         | 4.0      | 4.0      | 4.0   |
| Trailing Detector (ft) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ` ,                   | 20    | 100      | 20    | 20    | 100   | 20    | 20    | 100      | 20          | 20       | 100      | 20    |
| Turning Speed (mph)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       | 0     | 0        | 0     | 0     | 0     | 0     | 0     | 0        | 0           | 0        | 0        | 0     |
| Fith                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Turning Speed (mph)   | 15    |          | 9     | 15    |       | 9     | 15    |          | 9           | 15       |          | 9     |
| Filt Protected   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.950   0.9 | Lane Util. Factor     | 0.97  | 0.95     | 1.00  | 0.97  | 0.95  | 1.00  | 0.97  | 0.95     | 1.00        | 0.97     | 0.95     | 1.00  |
| Satd Flow (prot)   Sata   Sa | Frt                   |       |          | 0.850 |       |       | 0.850 |       |          | 0.850       |          |          | 0.850 |
| Fit Permitted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Flt Protected         | 0.950 |          |       | 0.950 |       |       | 0.950 |          |             | 0.950    |          |       |
| Satid. Flow (perm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Satd. Flow (prot)     | 3433  | 3725     | 1583  | 3433  | 3725  | 1583  | 3433  | 3725     | 1583        | 3433     | 3725     | 1583  |
| Right Turn on Red   Yes   Yes   Yes   Yes   Yes   Yes   Yes   Satd. Flow (RTOR)   Z21   126   36   36   53   53   30   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00    | Flt Permitted         | 0.950 |          |       | 0.950 |       |       | 0.950 |          |             | 0.950    |          |       |
| Satid Flow (RTOR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Satd. Flow (perm)     | 3433  | 3725     | 1583  | 3433  | 3725  | 1583  | 3433  | 3725     | 1583        | 3433     | 3725     | 1583  |
| Headway Factor   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00 | Right Turn on Red     |       |          | Yes   |       |       | Yes   |       |          | Yes         |          |          | Yes   |
| Link Speed (mph)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Satd. Flow (RTOR)     |       |          | 221   |       |       | 126   |       |          | 36          |          |          | 53    |
| Link Distance (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Headway Factor        | 1.00  | 1.00     | 1.00  | 1.00  | 1.00  | 1.00  | 1.00  | 1.00     | 1.00        | 1.00     | 1.00     | 1.00  |
| Travel Time (s)   30.0   42.7   16.4   13.0     13.0     15.0   170   120   45   375   305   510   310   50   150   150   160   150   150   170   120   45   375   305   510   310   50   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150  | Link Speed (mph)      |       | 30       |       |       | 30    |       |       | 55       |             |          | 55       |       |
| Volume (vph)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       |       | 1320     |       |       | 1878  |       |       | 1326     |             |          | 1049     |       |
| Volume (vph)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Travel Time (s)       |       | 30.0     |       |       | 42.7  |       |       | 16.4     |             |          | 13.0     |       |
| Peak Hour Factor   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0.95   0. |                       | 60    | 540      | 210   | 115   | 170   | 120   | 45    | 375      | 305         | 510      | 310      | 50    |
| Lane Group Flow (vph)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       | 0.95  | 0.95     | 0.95  | 0.95  | 0.95  | 0.95  | 0.95  | 0.95     | 0.95        | 0.95     | 0.95     | 0.95  |
| Lane Group Flow (vph)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Adj. Flow (vph)       | 63    | 568      | 221   | 121   | 179   | 126   | 47    | 395      | 321         | 537      | 326      | 53    |
| Protected Phases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Lane Group Flow (vph) | 63    | 568      | 221   | 121   | 179   | 126   | 47    | 395      | 321         | 537      | 326      | 53    |
| Permitted Phases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Turn Type             | Prot  |          | pm+ov | Prot  |       | Free  | Prot  |          | pm+ov       | Prot     |          | pm+ov |
| Detector Phases   7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Protected Phases      | 7     | 4        | 5     | 3     | 8     |       | 5     | 2        | 3           | 1        | 6        | 7     |
| Minimum Initial (s)         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         10.0         10.0         10.0         10.0         12.5         10.0         11.0         11.0         12.5         3.0         3.0         4.5         3.0         3.0         4.5         3.0         3.0         4.5         3.0         3.0         4.5         3.0         3.0         4.5         3.0         3.0         4.5         3.0         4.0         10.0         10.0         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Permitted Phases      |       |          | 4     |       |       | Free  |       |          | 2           |          |          | 6     |
| Minimum Split (s)         10.0         22.0         10.0         10.0         22.0         10.0         22.0         10.0         22.0         10.0         22.0         10.0         22.0         10.0         22.0         10.0         22.0         10.0         22.0         10.0         22.0         10.0         22.0         10.0         22.0         10.0         22.0         10.0         22.0         10.0         22.0         10.0         22.0         10.0         22.0         10.0         22.0         10.0         22.0         10.0         22.0         10.0         21.0         33.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0 <td>Detector Phases</td> <td>7</td> <td>4</td> <td>5</td> <td>3</td> <td>8</td> <td></td> <td>5</td> <td>2</td> <td>3</td> <td>1</td> <td>6</td> <td>7</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Detector Phases       | 7     | 4        | 5     | 3     | 8     |       | 5     | 2        | 3           | 1        | 6        | 7     |
| Total Split (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Minimum Initial (s)   | 4.0   | 4.0      | 4.0   | 4.0   | 4.0   |       | 4.0   | 4.0      | 4.0         | 4.0      | 4.0      | 4.0   |
| Total Split (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Minimum Split (s)     | 10.0  | 22.0     | 10.0  | 10.0  | 22.0  |       | 10.0  | 22.0     | 10.0        | 10.0     | 22.0     | 10.0  |
| Yellow Time (s)         3.0         4.5         3.0         3.0         4.5         3.0         3.0         4.5         3.0         3.0         4.5         3.0         3.0         4.5         3.0         3.0         4.5         3.0         3.0         4.5         3.0         3.0         4.5         3.0         All-Red Time (s)         1.0         1.5         1.0         1.0         1.5         1.0         1.0         1.5         1.0         1.0         1.5         1.0         1.0         1.5         1.0         1.0         1.5         1.0         1.0         1.5         1.0         1.0         1.5         1.0         1.0         1.5         1.0         1.0         1.5         1.0         1.0         1.5         1.0         1.0         1.5         1.0         1.0         1.5         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Total Split (s)       | 10.0  | 22.0     | 11.0  | 14.0  | 26.0  | 0.0   | 11.0  | 23.0     | 14.0        | 21.0     | 33.0     | 10.0  |
| All-Red Time (s)         1.0         1.5         1.0         1.5         1.0         1.5         1.0         1.5         1.0         1.5         1.0         1.5         1.0         1.5         1.0         1.5         1.0         1.5         1.0         1.5         1.0         1.5         1.0         1.5         1.0         1.0         1.5         1.0         1.0         1.5         1.0         1.0         1.5         1.0         1.0         1.5         1.0         1.0         1.5         1.0         1.0         1.5         1.0         1.0         1.5         1.0         1.0         1.0         1.5         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Total Split (%)       | 12.5% | 27.5%    | 13.8% | 17.5% | 32.5% | 0.0%  | 13.8% | 28.8%    | 17.5%       | 26.3%    | 41.3%    | 12.5% |
| Lead/Lag         Lead         Lag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Yellow Time (s)       | 3.0   | 4.5      | 3.0   | 3.0   |       |       |       |          | 3.0         | 3.0      | 4.5      | 3.0   |
| Lead-Lag Optimize?         Recall Mode         None         None         None         None         None         C-Min         None         C-Min         None           Act Effct Green (s)         6.4         18.5         28.9         8.1         22.0         80.0         6.4         21.3         33.3         16.2         31.0         41.5           Actuated g/C Ratio         0.08         0.23         0.36         0.10         0.28         1.00         0.08         0.27         0.42         0.20         0.39         0.52           v/c Ratio         0.23         0.66         0.31         0.35         0.17         0.08         0.17         0.40         0.47         0.77         0.23         0.06           Control Delay         36.5         31.9         3.9         35.9         22.8         0.1         45.4         19.8         13.0         43.1         19.0         3.8           Queue Delay         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | All-Red Time (s)      | 1.0   | 1.5      | 1.0   | 1.0   | 1.5   |       | 1.0   | 1.5      | 1.0         | 1.0      | 1.5      | 1.0   |
| Recall Mode         None         None         None         None         None         None         C-Min         No         21.2         C-Min         No         C-Min         No         C-Min         No         C-Min         No         C-Min         No         C-Min         No         C-Min <td>Lead/Lag</td> <td>Lead</td> <td>Lag</td> <td>Lead</td> <td>Lead</td> <td>Lag</td> <td></td> <td>Lead</td> <td>Lag</td> <td>Lead</td> <td>Lead</td> <td>Lag</td> <td>Lead</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Lead/Lag              | Lead  | Lag      | Lead  | Lead  | Lag   |       | Lead  | Lag      | Lead        | Lead     | Lag      | Lead  |
| Act Effct Green (s)       6.4       18.5       28.9       8.1       22.0       80.0       6.4       21.3       33.3       16.2       31.0       41.5         Actuated g/C Ratio       0.08       0.23       0.36       0.10       0.28       1.00       0.08       0.27       0.42       0.20       0.39       0.52         v/c Ratio       0.23       0.66       0.31       0.35       0.17       0.08       0.17       0.40       0.47       0.77       0.23       0.06         Control Delay       36.5       31.9       3.9       35.9       22.8       0.1       45.4       19.8       13.0       43.1       19.0       3.8         Queue Delay       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0 <td< td=""><td>Lead-Lag Optimize?</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Lead-Lag Optimize?    |       |          |       |       |       |       |       |          |             |          |          |       |
| Actuated g/C Ratio         0.08         0.23         0.36         0.10         0.28         1.00         0.08         0.27         0.42         0.20         0.39         0.52           v/c Ratio         0.23         0.66         0.31         0.35         0.17         0.08         0.17         0.40         0.47         0.77         0.23         0.06           Control Delay         36.5         31.9         3.9         35.9         22.8         0.1         45.4         19.8         13.0         43.1         19.0         3.8           Queue Delay         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Recall Mode           | None  | None     | None  | None  | None  |       | None  | C-Min    | None        | None     | C-Min    | None  |
| v/c Ratio         0.23         0.66         0.31         0.35         0.17         0.08         0.17         0.40         0.47         0.77         0.23         0.06           Control Delay         36.5         31.9         3.9         35.9         22.8         0.1         45.4         19.8         13.0         43.1         19.0         3.8           Queue Delay         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Act Effct Green (s)   | 6.4   | 18.5     | 28.9  | 8.1   | 22.0  | 80.0  | 6.4   | 21.3     | 33.3        | 16.2     | 31.0     | 41.5  |
| Control Delay       36.5       31.9       3.9       35.9       22.8       0.1       45.4       19.8       13.0       43.1       19.0       3.8         Queue Delay       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Actuated g/C Ratio    | 0.08  | 0.23     | 0.36  | 0.10  | 0.28  | 1.00  | 0.08  | 0.27     | 0.42        | 0.20     | 0.39     | 0.52  |
| Queue Delay         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0 <th< td=""><td>v/c Ratio</td><td>0.23</td><td>0.66</td><td>0.31</td><td>0.35</td><td>0.17</td><td>0.08</td><td>0.17</td><td>0.40</td><td>0.47</td><td>0.77</td><td>0.23</td><td>0.06</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | v/c Ratio             | 0.23  | 0.66     | 0.31  | 0.35  | 0.17  | 0.08  | 0.17  | 0.40     | 0.47        | 0.77     | 0.23     | 0.06  |
| Total Delay         36.5         31.9         3.9         35.9         22.8         0.1         45.4         19.8         13.0         43.1         19.0         3.8           LOS         D         C         A         D         C         A         D         B         B         D         B         A           Approach LOS         C         B         B         B         C         C         Stops (vph)         54         472         23         105         125         0         41         271         217         493         183         7           Fuel Used(gal)         1         12         2         3         4         2         2         10         7         17         7         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Control Delay         | 36.5  | 31.9     | 3.9   | 35.9  | 22.8  | 0.1   | 45.4  | 19.8     | 13.0        | 43.1     | 19.0     | 3.8   |
| LOS         D         C         A         D         C         A         D         B         B         D         B         A           Approach Delay         25.0         19.8         18.5         32.3           Approach LOS         C         B         B         C           Stops (vph)         54         472         23         105         125         0         41         271         217         493         183         7           Fuel Used(gal)         1         12         2         3         4         2         2         10         7         17         7         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Queue Delay           | 0.0   | 0.0      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0      | 0.0         | 0.0      | 0.0      | 0.0   |
| Approach Delay         25.0         19.8         18.5         32.3           Approach LOS         C         B         B         C           Stops (vph)         54         472         23         105         125         0         41         271         217         493         183         7           Fuel Used(gal)         1         12         2         3         4         2         2         10         7         17         7         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Total Delay           | 36.5  | 31.9     | 3.9   | 35.9  | 22.8  | 0.1   | 45.4  | 19.8     | 13.0        | 43.1     | 19.0     | 3.8   |
| Approach Delay         25.0         19.8         18.5         32.3           Approach LOS         C         B         B         C           Stops (vph)         54         472         23         105         125         0         41         271         217         493         183         7           Fuel Used(gal)         1         12         2         3         4         2         2         10         7         17         7         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |       |          | Α     |       |       |       |       |          |             |          |          |       |
| Approach LOS         C         B         B         C           Stops (vph)         54         472         23         105         125         0         41         271         217         493         183         7           Fuel Used(gal)         1         12         2         3         4         2         2         10         7         17         7         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Approach Delay        |       | 25.0     |       |       | 19.8  |       |       | 18.5     |             |          | 32.3     |       |
| Stops (vph)       54       472       23       105       125       0       41       271       217       493       183       7         Fuel Used(gal)       1       12       2       3       4       2       2       10       7       17       7       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |       | С        |       |       |       |       |       |          |             |          | С        |       |
| Fuel Used(gal) 1 12 2 3 4 2 2 10 7 17 7 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       | 54    |          | 23    | 105   |       | 0     | 41    | 271      | 217         | 493      |          | 7     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |       |          |       |       |       |       |       |          |             |          |          |       |
| ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CO Emissions (g/hr)   | 95    | 816      | 172   | 217   | 277   | 123   | 109   | 678      | 517         | 1190     | 465      | 35    |

|                         | ၨ    | -    | •    | •    | •    | •    | 4    | <b>†</b> | ~    | -    | <b>↓</b> | 4    |
|-------------------------|------|------|------|------|------|------|------|----------|------|------|----------|------|
| Lane Group              | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT      | NBR  | SBL  | SBT      | SBR  |
| NOx Emissions (g/hr)    | 19   | 159  | 33   | 42   | 54   | 24   | 21   | 132      | 101  | 232  | 91       | 7    |
| VOC Emissions (g/hr)    | 22   | 189  | 40   | 50   | 64   | 29   | 25   | 157      | 120  | 276  | 108      | 8    |
| Dilemma Vehicles (#)    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 21       | 0    | 0    | 59       | 0    |
| Queue Length 50th (ft)  | 15   | 131  | 0    | 29   | 35   | 0    | 11   | 93       | 116  | 143  | 55       | 0    |
| Queue Length 95th (ft)  | 34   | 191  | 43   | 53   | 60   | 0    | 31   | 42       | 16   | 196  | 74       | 9    |
| Internal Link Dist (ft) |      | 1240 |      |      | 1798 |      |      | 1246     |      |      | 969      |      |
| Turn Bay Length (ft)    | 400  |      | 265  | 265  |      | 400  | 265  |          | 265  | 400  |          | 400  |
| Base Capacity (vph)     | 280  | 893  | 724  | 429  | 1054 | 1583 | 300  | 1023     | 718  | 737  | 1465     | 848  |
| Starvation Cap Reductn  | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0        | 0    | 0    | 0        | 0    |
| Spillback Cap Reductn   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0        | 0    | 0    | 0        | 0    |
| Storage Cap Reductn     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0        | 0    | 0    | 0        | 0    |
| Reduced v/c Ratio       | 0.23 | 0.64 | 0.31 | 0.28 | 0.17 | 0.08 | 0.16 | 0.39     | 0.45 | 0.73 | 0.22     | 0.06 |

#### Intersection Summary

Area Type: Other

Cycle Length: 80

Actuated Cycle Length: 80

Offset: 16 (20%), Referenced to phase 2:NBT and 6:SBT, Start of Green

Natural Cycle: 70

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.77

Intersection Signal Delay: 24.8 Intersection LOS: C
Intersection Capacity Utilization 57.6% ICU Level of Service B

Analysis Period (min) 15

Splits and Phases: 11: U.S. 6 & Brisbin Road



|                        | ۶    | <b>→</b> | •    | •      | +    | •      | •     | <b>†</b> | ~    | <b>/</b> | <b>↓</b>   | -√     |
|------------------------|------|----------|------|--------|------|--------|-------|----------|------|----------|------------|--------|
| Lane Group             | EBL  | EBT      | EBR  | WBL    | WBT  | WBR    | NBL   | NBT      | NBR  | SBL      | SBT        | SBR    |
| Lane Configurations    |      |          |      | ሻሻ     |      | 77     | ሻሻ    | ተተተ      |      |          | <b>^</b> ^ | 77     |
| Ideal Flow (vphpl)     | 1900 | 1900     | 1900 | 1900   | 1900 | 1900   | 1900  | 2000     | 1900 | 1900     | 2000       | 1900   |
| Storage Length (ft)    | 0    |          | 0    | 0      |      | 0      | 400   |          | 0    | 0        |            | 400    |
| Storage Lanes          | 0    |          | 0    | 2      |      | 2      | 2     |          | 0    | 0        |            | 2      |
| Total Lost Time (s)    | 4.0  | 4.0      | 4.0  | 4.0    | 4.0  | 4.0    | 4.0   | 4.0      | 4.0  | 4.0      | 4.0        | 4.0    |
| Leading Detector (ft)  |      |          |      | 50     |      | 50     | 50    | 50       |      |          | 50         | 50     |
| Trailing Detector (ft) |      |          |      | 0      |      | 0      | 0     | 0        |      |          | 0          | 0      |
| Turning Speed (mph)    | 15   |          | 9    | 15     |      | 9      | 15    |          | 9    | 15       |            | 9      |
| Lane Util. Factor      | 1.00 | 1.00     | 1.00 | 0.97   | 1.00 | 0.88   | 0.97  | 0.91     | 1.00 | 1.00     | 0.91       | 0.88   |
| Frt                    |      |          |      |        |      | 0.850  |       |          |      |          |            | 0.850  |
| Flt Protected          |      |          |      | 0.950  |      |        | 0.950 |          |      |          |            |        |
| Satd. Flow (prot)      | 0    | 0        | 0    | 3433   | 0    | 2787   | 3433  | 5353     | 0    | 0        | 5353       | 2787   |
| Flt Permitted          |      |          |      | 0.950  |      |        | 0.950 |          |      |          |            |        |
| Satd. Flow (perm)      | 0    | 0        | 0    | 3433   | 0    | 2787   | 3433  | 5353     | 0    | 0        | 5353       | 2787   |
| Right Turn on Red      |      |          | Yes  |        |      | Yes    |       |          | Yes  |          |            | Yes    |
| Satd. Flow (RTOR)      |      |          |      |        |      | 9      |       |          |      |          |            | 211    |
| Headway Factor         | 1.00 | 1.00     | 1.00 | 1.00   | 1.00 | 1.00   | 1.00  | 1.00     | 1.00 | 1.00     | 1.00       | 1.00   |
| Link Speed (mph)       |      | 30       |      |        | 30   |        |       | 55       |      |          | 55         |        |
| Link Distance (ft)     |      | 402      |      |        | 422  |        |       | 1036     |      |          | 710        |        |
| Travel Time (s)        |      | 9.1      |      |        | 9.6  |        |       | 12.8     |      |          | 8.8        |        |
| Volume (vph)           | 0    | 0        | 0    | 330    | 0    | 1025   | 90    | 1370     | 0    | 0        | 410        | 200    |
| Peak Hour Factor       | 0.95 | 0.95     | 0.95 | 0.95   | 0.95 | 0.95   | 0.95  | 0.95     | 0.95 | 0.95     | 0.95       | 0.95   |
| Adj. Flow (vph)        | 0    | 0        | 0    | 347    | 0    | 1079   | 95    | 1442     | 0    | 0        | 432        | 211    |
| Lane Group Flow (vph)  | 0    | 0        | 0    | 347    | 0    | 1079   | 95    | 1442     | 0    | 0        | 432        | 211    |
| Turn Type              |      |          | (    | custom | (    | custom | Prot  |          |      |          | (          | custom |
| Protected Phases       |      |          |      |        |      |        | 5     | 2        |      |          | 6          |        |
| Permitted Phases       |      |          |      | 8      |      | 8      |       |          |      |          |            | 3 6    |
| Detector Phases        |      |          |      | 8      |      | 8      | 5     | 2        |      |          | 6          | 3 6    |
| Minimum Initial (s)    |      |          |      | 4.0    |      | 4.0    | 4.0   | 4.0      |      |          | 4.0        |        |
| Minimum Split (s)      |      |          |      | 22.0   |      | 22.0   | 10.0  | 22.0     |      |          | 22.0       |        |
| Total Split (s)        | 0.0  | 0.0      | 0.0  | 46.0   | 0.0  | 46.0   | 11.0  | 34.0     | 0.0  | 0.0      | 23.0       | 69.0   |
| Total Split (%)        | 0.0% | 0.0%     | 0.0% | 57.5%  | 0.0% | 57.5%  |       |          | 0.0% | 0.0%     | 28.8%      | 86.3%  |
| Yellow Time (s)        |      |          |      | 4.5    |      | 4.5    | 3.0   | 4.5      |      |          | 4.5        |        |
| All-Red Time (s)       |      |          |      | 1.5    |      | 1.5    | 1.0   | 1.5      |      |          | 1.5        |        |
| Lead/Lag               |      |          |      |        |      |        | Lead  |          |      |          | Lag        |        |
| Lead-Lag Optimize?     |      |          |      |        |      |        | Yes   |          |      |          | Yes        |        |
| Recall Mode            |      |          |      | None   |      | None   |       | C-Max    |      |          | C-Max      |        |
| Act Effct Green (s)    |      |          |      | 37.7   |      | 37.7   | 6.8   | 34.3     |      |          | 25.4       | 67.9   |
| Actuated g/C Ratio     |      |          |      | 0.47   |      | 0.47   | 0.08  | 0.43     |      |          | 0.32       | 0.85   |
| v/c Ratio              |      |          |      | 0.21   |      | 0.82   | 0.32  | 0.63     |      |          | 0.25       | 0.09   |
| Control Delay          |      |          |      | 12.1   |      | 23.5   | 41.9  | 12.0     |      |          | 17.9       | 1.3    |
| Queue Delay            |      |          |      | 0.0    |      | 0.0    | 0.0   | 0.0      |      |          | 0.0        | 0.0    |
| Total Delay            |      |          |      | 12.1   |      | 23.5   | 41.9  | 12.0     |      |          | 17.9       | 1.3    |
| LOS                    |      |          |      | В      |      | С      | D     | В        |      |          | В          | Α      |
| Approach Delay         |      |          |      |        |      |        |       | 13.9     |      |          | 12.5       |        |
| Approach LOS           |      |          |      |        |      |        |       | В        |      |          | В          |        |
| Stops (vph)            |      |          |      | 177    |      | 822    | 77    | 818      |      |          | 277        | 50     |
| Fuel Used(gal)         |      |          |      | 3      |      | 13     | 3     | 28       |      |          | 8          | 2      |
| CO Emissions (g/hr)    |      |          |      | 201    |      | 897    | 195   | 1925     |      |          | 593        | 132    |

| Lapie Configurations Ideal Flow (vphpl) Storage Length (ft) Storage Lanes Total Lost Time (s) Leading Detector (ft) Trailing Detector (ft) Turning Speed (mph) Lane Util. Factor Frt Flt Protected Satd. Flow (prot) Flt Permitted Satd. Flow (perm) Right Turn on Red Satd. Flow (RTOR) Headway Factor Link Speed (mph) Link Distance (ft) Travel Time (s) Volume (vph) Peak Hour Factor Adj. Flow (vph) Lane Group Flow (vph) Turn Type Protected Phases Detector Phases Minimum Initial (s) Minimum Split (s) Total Split (%) Yellow Time (s) 4.0 More Act Effct Green (s) Actuated g/C Ratio V/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Stops (vph) Fuel Used(gal) CO Emissions (g/hr) | Lane Group          | ø3   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------|
| Ideal Flow (vphpl) Storage Length (ft) Storage Lanes Total Lost Time (s) Leading Detector (ft) Trailing Detector (ft) Turning Speed (mph) Lane Util. Factor Frt Flt Protected Satd. Flow (prot) Flt Permitted Satd. Flow (perm) Right Turn on Red Satd. Flow (RTOR) Headway Factor Link Speed (mph) Link Distance (ft) Travel Time (s) Volume (vph) Peak Hour Factor Adj. Flow (vph) Lane Group Flow (vph) Turn Type Protected Phases Detector Phases Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (%) Yellow Time (s) All-Red Time (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Stops (vph) Fuel Used(gal)                                      | Lare Configurations |      |
| Storage Length (ft) Storage Lanes Total Lost Time (s) Leading Detector (ft) Trailing Detector (ft) Turning Speed (mph) Lane Util. Factor Frt Flt Protected Satd. Flow (prot) Flt Permitted Satd. Flow (perm) Right Turn on Red Satd. Flow (RTOR) Headway Factor Link Speed (mph) Link Distance (ft) Travel Time (s) Volume (vph) Peak Hour Factor Adj. Flow (vph) Lane Group Flow (vph) Turn Type Protected Phases Detector Phases Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (%) Yellow Time (s) All-Red Time (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Stops (vph) Fuel Used(gal)                                                         |                     |      |
| Storage Lanes Total Lost Time (s) Leading Detector (ft) Trailing Detector (ft) Turning Speed (mph) Lane Util. Factor Frt Flt Protected Satd. Flow (prot) Flt Permitted Satd. Flow (perm) Right Turn on Red Satd. Flow (RTOR) Headway Factor Link Speed (mph) Link Distance (ft) Travel Time (s) Volume (vph) Peak Hour Factor Adj. Flow (vph) Lane Group Flow (vph) Turn Type Protected Phases Detector Phases Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (%) Yellow Time (s) All-Red Time (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Stops (vph) Fuel Used(gal)                                                                             |                     |      |
| Total Lost Time (s) Leading Detector (ft) Trailing Detector (ft) Turning Speed (mph) Lane Util. Factor Frt Flt Protected Satd. Flow (prot) Flt Permitted Satd. Flow (perm) Right Turn on Red Satd. Flow (RTOR) Headway Factor Link Speed (mph) Link Distance (ft) Travel Time (s) Volume (vph) Peak Hour Factor Adj. Flow (vph) Lane Group Flow (vph) Turn Type Protected Phases Detector Phases Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (%) Yellow Time (s) All-Red Time (s) Lead/Lag Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio V/c Ratio Control Delay Queue Delay Total Delay Los Approach Los Stops (vph) Fuel Used(gal)                               |                     |      |
| Leading Detector (ft) Trailing Detector (ft) Turning Speed (mph) Lane Util. Factor Frt Flt Protected Satd. Flow (prot) Flt Permitted Satd. Flow (perm) Right Turn on Red Satd. Flow (RTOR) Headway Factor Link Speed (mph) Link Distance (ft) Travel Time (s) Volume (vph) Peak Hour Factor Adj. Flow (vph) Lane Group Flow (vph) Turn Type Protected Phases Detector Phases Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (%) Yellow Time (s) All-Red Time (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay Approach LOS Stops (vph) Fuel Used(gal)                                                                                                                   |                     |      |
| Trailing Detector (ft) Turning Speed (mph) Lane Util. Factor Frt Flt Protected Satd. Flow (prot) Flt Permitted Satd. Flow (perm) Right Turn on Red Satd. Flow (RTOR) Headway Factor Link Speed (mph) Link Distance (ft) Travel Time (s) Volume (vph) Peak Hour Factor Adj. Flow (vph) Lane Group Flow (vph) Turn Type Protected Phases Detector Phases Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (%) Yellow Time (s) All-Red Time (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Stops (vph) Fuel Used(gal)                                                                                                                                     |                     |      |
| Turning Speed (mph) Lane Util. Factor Frt Flt Protected Satd. Flow (prot) Flt Permitted Satd. Flow (perm) Right Turn on Red Satd. Flow (RTOR) Headway Factor Link Speed (mph) Link Distance (ft) Travel Time (s) Volume (vph) Peak Hour Factor Adj. Flow (vph) Lane Group Flow (vph) Turn Type Protected Phases Detector Phases Minimum Initial (s) Minimum Split (s) Total Split (%) Yellow Time (s) 4.5 All-Red Time (s) Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Stops (vph) Fuel Used(gal)                                                                                                                     |                     |      |
| Lane Util. Factor Frt Flt Protected Satd. Flow (prot) Flt Permitted Satd. Flow (perm) Right Turn on Red Satd. Flow (RTOR) Headway Factor Link Speed (mph) Link Distance (ft) Travel Time (s) Volume (vph) Peak Hour Factor Adj. Flow (vph) Lane Group Flow (vph) Turn Type Protected Phases Detector Phases Minimum Initial (s) Minimum Split (s) Total Split (%) Yellow Time (s) 4.5 All-Red Time (s) Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Stops (vph) Fuel Used(gal)                                                                                                                          |                     |      |
| Frt Flt Protected Satd. Flow (prot) Flt Permitted Satd. Flow (perm) Right Turn on Red Satd. Flow (RTOR) Headway Factor Link Speed (mph) Link Distance (ft) Travel Time (s) Volume (vph) Peak Hour Factor Adj. Flow (vph) Lane Group Flow (vph) Turn Type Protected Phases Detector Phases Minimum Initial (s) Minimum Split (s) Total Split (%) Yellow Time (s) 4.5 All-Red Time (s) Lead/Lag Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Stops (vph) Fuel Used(gal)                                                                                                                                                  |                     |      |
| Fit Protected Satd. Flow (prot) Fit Permitted Satd. Flow (perm) Right Turn on Red Satd. Flow (RTOR) Headway Factor Link Speed (mph) Link Distance (ft) Travel Time (s) Volume (vph) Peak Hour Factor Adj. Flow (vph) Lane Group Flow (vph) Turn Type Protected Phases Detector Phases Minimum Initial (s) Minimum Split (s) Total Split (%) Yellow Time (s) 4.5 All-Red Time (s) Lead/Lag Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Stops (vph) Fuel Used(gal)                                                                                                                                                      |                     |      |
| Satd. Flow (prot) Flt Permitted Satd. Flow (perm) Right Turn on Red Satd. Flow (RTOR) Headway Factor Link Speed (mph) Link Distance (ft) Travel Time (s) Volume (vph) Peak Hour Factor Adj. Flow (vph) Lane Group Flow (vph) Turn Type Protected Phases Detector Phases Minimum Initial (s) Minimum Split (s) Total Split (%) Yellow Time (s) 4.5 All-Red Time (s) Lead/Lag Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Stops (vph) Fuel Used(gal)                                                                                                                                                                    |                     |      |
| Fit Permitted Satd. Flow (perm) Right Turn on Red Satd. Flow (RTOR) Headway Factor Link Speed (mph) Link Distance (ft) Travel Time (s) Volume (vph) Peak Hour Factor Adj. Flow (vph) Lane Group Flow (vph) Turn Type Protected Phases Detector Phases Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (%) Yellow Time (s) All-Red Time (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay Approach LOS Stops (vph) Fuel Used(gal)                                                                                                                                                                                                                                          |                     |      |
| Satd. Flow (perm) Right Turn on Red Satd. Flow (RTOR) Headway Factor Link Speed (mph) Link Distance (ft) Travel Time (s) Volume (vph) Peak Hour Factor Adj. Flow (vph) Lane Group Flow (vph) Turn Type Protected Phases Detector Phases Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (%) Yellow Time (s) All-Red Time (s) Lead/Lag Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Stops (vph) Fuel Used(gal)                                                                                                                                                                         | ,                   |      |
| Right Turn on Red Satd. Flow (RTOR) Headway Factor Link Speed (mph) Link Distance (ft) Travel Time (s) Volume (vph) Peak Hour Factor Adj. Flow (vph) Lane Group Flow (vph) Turn Type Protected Phases Detector Phases Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (%) Yellow Time (s) All-Red Time (s) Lead/Lag Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Stops (vph) Fuel Used(gal)                                                                                                                                                                                                          |                     |      |
| Satd. Flow (RTOR) Headway Factor Link Speed (mph) Link Distance (ft) Travel Time (s) Volume (vph) Peak Hour Factor Adj. Flow (vph) Lane Group Flow (vph) Turn Type Protected Phases Detector Phases Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (%) Yellow Time (s) All-Red Time (s) Lead/Lag Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Stops (vph) Fuel Used(gal)                                                                                                                                                                                                                            |                     |      |
| Headway Factor Link Speed (mph) Link Distance (ft) Travel Time (s) Volume (vph) Peak Hour Factor Adj. Flow (vph) Lane Group Flow (vph) Turn Type Protected Phases Detector Phases Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (%) Yellow Time (s) All-Red Time (s) Lead/Lag Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Stops (vph) Fuel Used(gal)                                                                                                                                                                                                                                              |                     |      |
| Link Speed (mph) Link Distance (ft) Travel Time (s) Volume (vph) Peak Hour Factor Adj. Flow (vph) Lane Group Flow (vph) Turn Type Protected Phases Detector Phases Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (%) Yellow Time (s) All-Red Time (s) Lead/Lag Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Stops (vph) Fuel Used(gal)                                                                                                                                                                                                                                              |                     |      |
| Link Distance (ft) Travel Time (s) Volume (vph) Peak Hour Factor Adj. Flow (vph) Lane Group Flow (vph) Turn Type Protected Phases Permitted Phases Detector Phases Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (%) Yellow Time (s) All-Red Time (s) Lead/Lag Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Stops (vph) Fuel Used(gal)                                                                                                                                                                                                                                                             |                     |      |
| Travel Time (s)  Volume (vph)  Peak Hour Factor  Adj. Flow (vph)  Lane Group Flow (vph)  Turn Type  Protected Phases  Detector Phases  Minimum Initial (s)  Minimum Split (s)  Total Split (s)  Total Split (%)  Yellow Time (s)  All-Red Time (s)  Lead-Lag  Lead-Lag Optimize?  Recall Mode  Act Effct Green (s)  Actuated g/C Ratio  v/c Ratio  Control Delay  Queue Delay  Total Delay  LOS  Approach LOS  Stops (vph)  Fuel Used(gal)                                                                                                                                                                                                                                                                       |                     |      |
| Volume (vph) Peak Hour Factor Adj. Flow (vph) Lane Group Flow (vph) Turn Type Protected Phases Permitted Phases Detector Phases Minimum Initial (s) 4.0 Minimum Split (s) 10.0 Total Split (s) 46.0 Total Split (%) 58% Yellow Time (s) 4.5 All-Red Time (s) 1.5 Lead/Lag Lead-Lag Optimize? Recall Mode None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Stops (vph) Fuel Used(gal)                                                                                                                                                                                                                                                  |                     |      |
| Peak Hour Factor Adj. Flow (vph) Lane Group Flow (vph) Turn Type Protected Phases Permitted Phases Detector Phases Minimum Initial (s) 4.0 Minimum Split (s) 10.0 Total Split (s) 46.0 Total Split (%) 58% Yellow Time (s) 4.5 All-Red Time (s) 1.5 Lead/Lag Lead-Lag Optimize? Recall Mode None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Stops (vph) Fuel Used(gal)                                                                                                                                                                                                                                                                              |                     |      |
| Adj. Flow (vph)  Lane Group Flow (vph)  Turn Type  Protected Phases  Permitted Phases  Detector Phases  Minimum Initial (s) 4.0  Minimum Split (s) 10.0  Total Split (s) 46.0  Total Split (%) 58%  Yellow Time (s) 4.5  All-Red Time (s) 1.5  Lead/Lag  Lead-Lag Optimize?  Recall Mode None  Act Effct Green (s)  Actuated g/C Ratio  v/c Ratio  Control Delay  Queue Delay  Total Delay  LOS  Approach Delay  Approach LOS  Stops (vph)  Fuel Used(gal)                                                                                                                                                                                                                                                       |                     |      |
| Lane Group Flow (vph) Turn Type Protected Phases Permitted Phases Detector Phases Minimum Initial (s) 4.0 Minimum Split (s) 10.0 Total Split (s) 46.0 Total Split (%) 58% Yellow Time (s) 4.5 All-Red Time (s) 1.5 Lead/Lag Lead-Lag Optimize? Recall Mode None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Stops (vph) Fuel Used(gal)                                                                                                                                                                                                                                                                                                | Peak Hour Factor    |      |
| Lane Group Flow (vph) Turn Type Protected Phases Permitted Phases Detector Phases Minimum Initial (s) 4.0 Minimum Split (s) 10.0 Total Split (s) 46.0 Total Split (%) 58% Yellow Time (s) 4.5 All-Red Time (s) 1.5 Lead/Lag Lead-Lag Optimize? Recall Mode None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Stops (vph) Fuel Used(gal)                                                                                                                                                                                                                                                                                                |                     |      |
| Turn Type Protected Phases Permitted Phases Detector Phases Minimum Initial (s) 4.0 Minimum Split (s) 10.0 Total Split (s) 46.0 Total Split (%) 58% Yellow Time (s) 4.5 All-Red Time (s) 1.5 Lead/Lag Lead-Lag Optimize? Recall Mode None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Stops (vph) Fuel Used(gal)                                                                                                                                                                                                                                                                                                                      |                     |      |
| Protected Phases Permitted Phases Detector Phases Minimum Initial (s) 4.0 Minimum Split (s) 10.0 Total Split (s) 46.0 Total Split (%) 58% Yellow Time (s) 4.5 All-Red Time (s) 1.5 Lead/Lag Lead-Lag Optimize? Recall Mode None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Stops (vph) Fuel Used(gal)                                                                                                                                                                                                                                                                                                                                |                     |      |
| Permitted Phases Detector Phases Minimum Initial (s) 4.0 Minimum Split (s) 10.0 Total Split (s) 46.0 Total Split (%) 58% Yellow Time (s) 4.5 All-Red Time (s) 1.5 Lead/Lag Lead-Lag Optimize? Recall Mode None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Stops (vph) Fuel Used(gal)                                                                                                                                                                                                                                                                                                                                                 |                     | 3    |
| Detector Phases Minimum Initial (s) 4.0 Minimum Split (s) 10.0 Total Split (s) 46.0 Total Split (%) 58% Yellow Time (s) 4.5 All-Red Time (s) 1.5 Lead/Lag Lead-Lag Optimize? Recall Mode None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Stops (vph) Fuel Used(gal)                                                                                                                                                                                                                                                                                                                                                                  |                     |      |
| Minimum Initial (s) 4.0  Minimum Split (s) 10.0  Total Split (s) 46.0  Total Split (%) 58%  Yellow Time (s) 4.5  All-Red Time (s) 1.5  Lead/Lag  Lead-Lag Optimize?  Recall Mode None  Act Effct Green (s)  Actuated g/C Ratio  v/c Ratio  Control Delay  Queue Delay  Total Delay  LOS  Approach Delay  Approach LOS  Stops (vph)  Fuel Used(gal)                                                                                                                                                                                                                                                                                                                                                               |                     |      |
| Minimum Split (s) Total Split (s) 46.0 Total Split (%) Yellow Time (s) All-Red Time (s) Lead/Lag Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Stops (vph) Fuel Used(gal)                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | 4.0  |
| Total Split (s) 46.0  Total Split (%) 58%  Yellow Time (s) 4.5  All-Red Time (s) 1.5  Lead/Lag  Lead-Lag Optimize?  Recall Mode None  Act Effct Green (s)  Actuated g/C Ratio v/c Ratio  Control Delay  Queue Delay  Total Delay  LOS  Approach Delay  Approach LOS  Stops (vph)  Fuel Used(gal)                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |      |
| Total Split (%) 58% Yellow Time (s) 4.5 All-Red Time (s) 1.5 Lead/Lag Lead-Lag Optimize? Recall Mode None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Stops (vph) Fuel Used(gal)                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |      |
| Yellow Time (s) 4.5 All-Red Time (s) 1.5 Lead/Lag Lead-Lag Optimize? Recall Mode None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Stops (vph) Fuel Used(gal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |      |
| All-Red Time (s) 1.5 Lead/Lag Lead-Lag Optimize? Recall Mode None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Stops (vph) Fuel Used(gal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |      |
| Lead/Lag Lead-Lag Optimize? Recall Mode None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Stops (vph) Fuel Used(gal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |      |
| Recall Mode None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Stops (vph) Fuel Used(gal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     | 1.3  |
| Recall Mode None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Stops (vph) Fuel Used(gal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |      |
| Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Stops (vph) Fuel Used(gal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | Nana |
| Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Stops (vph) Fuel Used(gal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     | None |
| v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Stops (vph) Fuel Used(gal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |      |
| Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Stops (vph) Fuel Used(gal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |      |
| Queue Delay Total Delay LOS Approach Delay Approach LOS Stops (vph) Fuel Used(gal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |      |
| Total Delay LOS Approach Delay Approach LOS Stops (vph) Fuel Used(gal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |      |
| LOS Approach Delay Approach LOS Stops (vph) Fuel Used(gal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                   |      |
| Approach Delay Approach LOS Stops (vph) Fuel Used(gal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |      |
| Approach LOS<br>Stops (vph)<br>Fuel Used(gal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |      |
| Stops (vph) Fuel Used(gal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |      |
| Fuel Used(gal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Approach LOS        |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Stops (vph)         |      |
| CO Emissions (g/hr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Fuel Used(gal)      |      |
| (5 /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CO Emissions (g/hr) |      |

|                         | ᄼ   | -   | •   | •    | ←   | •    | •    | <b>†</b> | /   | -   | . ↓  | 1    |
|-------------------------|-----|-----|-----|------|-----|------|------|----------|-----|-----|------|------|
| Lane Group              | EBL | EBT | EBR | WBL  | WBT | WBR  | NBL  | NBT      | NBR | SBL | SBT  | SBR  |
| NOx Emissions (g/hr)    |     |     |     | 39   |     | 174  | 38   | 374      |     |     | 115  | 26   |
| VOC Emissions (g/hr)    |     |     |     | 47   |     | 208  | 45   | 446      |     |     | 137  | 31   |
| Dilemma Vehicles (#)    |     |     |     | 0    |     | 0    | 0    | 38       |     |     | 30   | 0    |
| Queue Length 50th (ft)  |     |     |     | 47   |     | 240  | 22   | 100      |     |     | 9    | 0    |
| Queue Length 95th (ft)  |     |     |     | 67   |     | 303  | m34  | 198      |     |     | 87   | 0    |
| Internal Link Dist (ft) |     | 322 |     |      | 342 |      |      | 956      |     |     | 630  |      |
| Turn Bay Length (ft)    |     |     |     |      |     |      | 400  |          |     |     |      | 400  |
| Base Capacity (vph)     |     |     |     | 1802 |     | 1467 | 304  | 2296     |     |     | 1702 | 2456 |
| Starvation Cap Reductn  |     |     |     | 0    |     | 0    | 0    | 0        |     |     | 0    | 0    |
| Spillback Cap Reductn   |     |     |     | 0    |     | 0    | 0    | 0        |     |     | 0    | 0    |
| Storage Cap Reductn     |     |     |     | 0    |     | 0    | 0    | 0        |     |     | 0    | 0    |
| Reduced v/c Ratio       |     |     |     | 0.19 |     | 0.74 | 0.31 | 0.63     |     |     | 0.25 | 0.09 |

Intersection LOS: B

#### Intersection Summary

Area Type: Other

Cycle Length: 80

Actuated Cycle Length: 80

Offset: 2 (3%), Referenced to phase 2:NBT and 6:SBT, Start of Green

Natural Cycle: 60

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.82

Intersection Signal Delay: 16.3

Intersection Capacity Utilization 67.7% ICU Level of Service C

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 14: WB I-80 Ramps & Brisbin Road



| Lane Group              | ø3 |
|-------------------------|----|
| NOx Emissions (g/hr)    |    |
| VOC Emissions (g/hr)    |    |
| Dilemma Vehicles (#)    |    |
| Queue Length 50th (ft)  |    |
| Queue Length 95th (ft)  |    |
| Internal Link Dist (ft) |    |
| Turn Bay Length (ft)    |    |
| Base Capacity (vph)     |    |
| Starvation Cap Reductn  |    |
| Spillback Cap Reductn   |    |
| Storage Cap Reductn     |    |
| Reduced v/c Ratio       |    |
| Intersection Summary    |    |

|                        | ۶         | <b>→</b>  | •         | •         | <b>+</b>  | •     | •         | †         | <i>&gt;</i> | <b>/</b>  | <b></b>  | -√       |
|------------------------|-----------|-----------|-----------|-----------|-----------|-------|-----------|-----------|-------------|-----------|----------|----------|
| Lane Group             | EBL       | EBT       | EBR       | WBL       | WBT       | WBR   | NBL       | NBT       | NBR         | SBL       | SBT      | SBR      |
| Lane Configurations    | ሻሻ        | <b></b>   | 7         | ች         | <b></b>   | 77    | ች         | <b>^</b>  | #           | ሻሻ        | <b>^</b> | 7        |
| Ideal Flow (vphpl)     | 1900      | 2000      | 1900      | 1900      | 2000      | 1900  | 1900      | 2000      | 1900        | 1900      | 2000     | 1900     |
| Storage Length (ft)    | 300       |           | 150       | 150       |           | 300   | 150       |           | 150         | 400       |          | 400      |
| Storage Lanes          | 2         |           | 1         | 1         |           | 2     | 1         |           | 1           | 2         |          | 1        |
| Total Lost Time (s)    | 4.0       | 4.0       | 4.0       | 4.0       | 4.0       | 4.0   | 4.0       | 4.0       | 4.0         | 4.0       | 4.0      | 4.0      |
| Leading Detector (ft)  | 50        | 50        | 50        | 50        | 50        | 50    | 50        | 50        | 50          | 50        | 50       | 50       |
| Trailing Detector (ft) | 0         | 0         | 0         | 0         | 0         | 0     | 0         | 0         | 0           | 0         | 0        | 0        |
| Turning Speed (mph)    | 15        |           | 9         | 15        |           | 9     | 15        |           | 9           | 15        |          | 9        |
| Lane Util. Factor      | 0.97      | 1.00      | 1.00      | 1.00      | 1.00      | 0.88  | 1.00      | 0.95      | 1.00        | 0.97      | 0.95     | 1.00     |
| Frt                    | 0.0.      |           | 0.850     |           |           | 0.850 |           | 0.00      | 0.850       | 0.0.      | 0.00     | 0.850    |
| Flt Protected          | 0.950     |           | 0.000     | 0.950     |           | 0.000 | 0.950     |           | 0.000       | 0.950     |          | 0.000    |
| Satd. Flow (prot)      | 3433      | 1961      | 1583      | 1770      | 1961      | 2787  | 1770      | 3725      | 1583        | 3433      | 3725     | 1583     |
| Flt Permitted          | 0.950     |           | .000      | 0.950     | .00.      |       | 0.950     | 0.20      |             | 0.950     | 00       | .000     |
| Satd. Flow (perm)      | 3433      | 1961      | 1583      | 1770      | 1961      | 2787  | 1770      | 3725      | 1583        | 3433      | 3725     | 1583     |
| Right Turn on Red      | 0 100     | 1001      | Yes       | 1110      | 1001      | Yes   | 1770      | 0120      | Yes         | 0.100     | 0120     | Yes      |
| Satd. Flow (RTOR)      |           |           | 26        |           |           | 95    |           |           | 100         |           |          | 100      |
| Headway Factor         | 1.00      | 1.00      | 1.00      | 1.00      | 1.00      | 1.00  | 1.00      | 1.00      | 1.00        | 1.00      | 1.00     | 1.00     |
| Link Speed (mph)       | 1.00      | 30        | 1.00      | 1.00      | 30        | 1.00  | 1.00      | 55        | 1.00        | 1.00      | 55       | 1.00     |
| Link Distance (ft)     |           | 534       |           |           | 618       |       |           | 211       |             |           | 1326     |          |
| Travel Time (s)        |           | 12.1      |           |           | 14.0      |       |           | 2.6       |             |           | 16.4     |          |
| Volume (vph)           | 60        | 10        | 25        | 25        | 10        | 90    | 40        | 575       | 95          | 420       | 120      | 95       |
| Peak Hour Factor       | 0.95      | 0.95      | 0.95      | 0.95      | 0.95      | 0.95  | 0.95      | 0.95      | 0.95        | 0.95      | 0.95     | 0.95     |
| Adj. Flow (vph)        | 63        | 11        | 26        | 26        | 11        | 95    | 42        | 605       | 100         | 442       | 126      | 100      |
| Lane Group Flow (vph)  | 63        | 11        | 26        | 26        | 11        | 95    | 42        | 605       | 100         | 442       | 126      | 100      |
| Turn Type              | Prot      |           | pm+ov     | Prot      |           | pm+ov | Prot      |           | pm+ov       | Prot      |          | pm+ov    |
| Protected Phases       | 7         | 4         | 5         | 3         | 8         | 1     | 5         | 2         | 3           | 1 101     | 6        | 7        |
| Permitted Phases       | •         |           | 4         | 3         | U         | 8     | 3         |           | 2           | •         | U        | 6        |
| Detector Phases        | 7         | 4         | 5         | 3         | 8         | 1     | 5         | 2         | 3           | 1         | 6        | 7        |
| Minimum Initial (s)    | 4.0       | 4.0       | 4.0       | 4.0       | 4.0       | 4.0   | 4.0       | 4.0       | 4.0         | 4.0       | 4.0      | 4.0      |
| Minimum Split (s)      | 10.0      | 22.0      | 10.0      | 10.0      | 22.0      | 10.0  | 10.0      | 22.0      | 10.0        | 10.0      | 22.0     | 10.0     |
| Total Split (s)        | 11.0      | 23.0      | 11.0      | 11.0      | 23.0      | 21.0  | 11.0      | 25.0      | 11.0        | 21.0      | 35.0     | 11.0     |
|                        | 13.8%     |           |           |           |           |       |           | 31.3%     |             |           |          | 13.8%    |
| Yellow Time (s)        | 3.0       | 4.5       | 3.0       | 3.0       | 4.5       | 3.0   | 3.0       | 4.5       | 3.0         | 3.0       | 4.5      | 3.0      |
| All-Red Time (s)       | 1.0       | 1.5       | 1.0       | 1.0       | 1.5       | 1.0   | 1.0       | 1.5       | 1.0         | 1.0       | 1.5      | 1.0      |
| Lead/Lag               | Lead      | Lag       | Lead      | Lead      | Lag       | Lead  | Lead      | Lag       | Lead        | Lead      | Lag      | Lead     |
| Lead-Lag Optimize?     | Leau      | Lag       | Leau      | Leau      | Lag       | Leau  | Leau      | Lag       | Leau        | Leau      | Lag      | Leau     |
| Recall Mode            | None      | None      | None      | None      | None      | None  | None      | C-Max     | None        | None      | C-Max    | None     |
| Act Effct Green (s)    | 6.5       | 7.9       | 10.0      | 6.5       | 7.9       | 17.2  | 7.4       | 46.2      | 56.7        | 14.6      | 58.1     | 67.5     |
| Actuated g/C Ratio     | 0.08      | 0.10      | 0.12      | 0.08      | 0.10      | 0.22  | 0.09      | 0.58      | 0.71        | 0.18      | 0.73     | 0.84     |
| v/c Ratio              | 0.08      | 0.10      | 0.12      | 0.08      | 0.10      | 0.22  | 0.09      | 0.38      | 0.71        | 0.70      | 0.73     | 0.04     |
| Control Delay          | 36.2      | 33.0      | 11.3      | 37.0      | 33.0      | 4.8   | 36.9      | 11.4      | 2.3         | 27.4      | 7.3      | 2.1      |
| Queue Delay            | 0.0       | 0.0       | 0.0       | 0.0       | 0.0       | 0.0   | 0.0       | 0.0       | 0.0         | 0.0       | 0.0      | 0.0      |
| Total Delay            | 36.2      | 33.0      | 11.3      | 37.0      | 33.0      | 4.8   | 36.9      | 11.4      | 2.3         | 27.4      | 7.3      | 2.1      |
| LOS                    | 30.2<br>D | 33.0<br>C | 11.3<br>B | 37.0<br>D | 33.0<br>C |       | 36.9<br>D | 11.4<br>B |             | 27.4<br>C |          | 2.1<br>A |
|                        | U         |           | Б         | U         |           | Α     | U         |           | Α           | C         | A 10.0   | A        |
| Approach LOS           |           | 29.4      |           |           | 13.5      |       |           | 11.6      |             |           | 19.8     |          |
| Approach LOS           | E A       | C 12      | 0         | 00        | B         | 4.4   | 20        | 304       | 40          | 222       | B        | 10       |
| Stops (vph)            | 54        | 12        | 9         | 26        | 12        | 14    | 38        | 294       | 10          | 333       | 46       | 13       |
| Fuel Used(gal)         | 1         | 0         | 0         | 0         | 0         | 1     | 1         | 8         | 0           | 12        | 2        | 1        |
| CO Emissions (g/hr)    | 69        | 12        | 15        | 32        | 13        | 42    | 74        | 529       | 25          | 843       | 143      | 75       |

|                         | ᄼ    | -    | •    | •    | ←    | •    | 4    | <b>†</b> | ~    | <b>&gt;</b> | <b>↓</b> | 4    |
|-------------------------|------|------|------|------|------|------|------|----------|------|-------------|----------|------|
| Lane Group              | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT      | NBR  | SBL         | SBT      | SBR  |
| NOx Emissions (g/hr)    | 13   | 2    | 3    | 6    | 2    | 8    | 14   | 103      | 5    | 164         | 28       | 15   |
| VOC Emissions (g/hr)    | 16   | 3    | 3    | 7    | 3    | 10   | 17   | 123      | 6    | 195         | 33       | 17   |
| Dilemma Vehicles (#)    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 36       | 0    | 0           | 18       | 0    |
| Queue Length 50th (ft)  | 15   | 5    | 0    | 12   | 5    | 0    | 20   | 72       | 0    | 74          | 10       | 0    |
| Queue Length 95th (ft)  | 34   | 20   | 18   | 36   | 20   | 14   | 49   | 167      | 23   | 153         | 39       | 0    |
| Internal Link Dist (ft) |      | 454  |      |      | 538  |      |      | 131      |      |             | 1246     |      |
| Turn Bay Length (ft)    | 300  |      | 150  | 150  |      | 300  | 150  |          | 150  | 400         |          | 400  |
| Base Capacity (vph)     | 300  | 466  | 230  | 155  | 466  | 774  | 175  | 2150     | 1160 | 756         | 2705     | 1340 |
| Starvation Cap Reductn  | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0        | 0    | 0           | 0        | 0    |
| Spillback Cap Reductn   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0        | 0    | 0           | 0        | 0    |
| Storage Cap Reductn     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0        | 0    | 0           | 0        | 0    |
| Reduced v/c Ratio       | 0.21 | 0.02 | 0.11 | 0.17 | 0.02 | 0.12 | 0.24 | 0.28     | 0.09 | 0.58        | 0.05     | 0.07 |

Area Type: Other

Cycle Length: 80

Actuated Cycle Length: 80

Offset: 5 (6%), Referenced to phase 2:NBT and 6:SBT, Start of Green

Natural Cycle: 65

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.70

Intersection Signal Delay: 16.2 Intersection LOS: B
Intersection Capacity Utilization 45.5% ICU Level of Service A

Analysis Period (min) 15

Splits and Phases: 16: Access "F" & Brisbin Road



|                        | ۶      | <b>→</b> | •      | •    | <b>←</b> | •    | 1    | <b>†</b> | ~      | <b>/</b> | <b>↓</b> | -√   |
|------------------------|--------|----------|--------|------|----------|------|------|----------|--------|----------|----------|------|
| Lane Group             | EBL    | EBT      | EBR    | WBL  | WBT      | WBR  | NBL  | NBT      | NBR    | SBL      | SBT      | SBR  |
| Lane Configurations    | ሻሻ     |          | 77     |      |          |      |      | ተተተ      | 77     | ሻሻ       | ተተተ      |      |
| Ideal Flow (vphpl)     | 1900   | 1900     | 1900   | 1900 | 1900     | 1900 | 1900 | 2000     | 1900   | 1900     | 2000     | 1900 |
| Storage Length (ft)    | 0      |          | 0      | 0    |          | 0    | 0    |          | 400    | 400      |          | 0    |
| Storage Lanes          | 2      |          | 2      | 0    |          | 0    | 0    |          | 2      | 2        |          | 0    |
| Total Lost Time (s)    | 4.0    | 4.0      | 4.0    | 4.0  | 4.0      | 4.0  | 4.0  | 4.0      | 4.0    | 4.0      | 4.0      | 4.0  |
| Leading Detector (ft)  | 50     |          | 50     |      |          |      |      | 50       | 50     | 50       | 50       |      |
| Trailing Detector (ft) | 0      |          | 0      |      |          |      |      | 0        | 0      | 0        | 0        |      |
| Turning Speed (mph)    | 15     |          | 9      | 15   |          | 9    | 15   |          | 9      | 15       |          | 9    |
| Lane Util. Factor      | 0.97   | 1.00     | 0.88   | 1.00 | 1.00     | 1.00 | 1.00 | 0.91     | 0.88   | 0.97     | 0.91     | 1.00 |
| Frt                    |        |          | 0.850  |      |          |      |      |          | 0.850  |          |          |      |
| Flt Protected          | 0.950  |          |        |      |          |      |      |          |        | 0.950    |          |      |
| Satd. Flow (prot)      | 3433   | 0        | 2787   | 0    | 0        | 0    | 0    | 5353     | 2787   | 3433     | 5353     | 0    |
| Flt Permitted          | 0.950  |          |        |      |          |      |      |          |        | 0.950    |          |      |
| Satd. Flow (perm)      | 3433   | 0        | 2787   | 0    | 0        | 0    | 0    | 5353     | 2787   | 3433     | 5353     | 0    |
| Right Turn on Red      |        |          | Yes    |      |          | Yes  |      |          | Yes    |          |          | Yes  |
| Satd. Flow (RTOR)      |        |          | 347    |      |          |      |      |          | 95     |          |          |      |
| Headway Factor         | 1.00   | 1.00     | 1.00   | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00   | 1.00     | 1.00     | 1.00 |
| Link Speed (mph)       |        | 30       |        |      | 30       |      |      | 55       |        |          | 55       |      |
| Link Distance (ft)     |        | 405      |        |      | 451      |      |      | 1049     |        |          | 1036     |      |
| Travel Time (s)        |        | 9.2      |        |      | 10.3     |      |      | 13.0     |        |          | 12.8     |      |
| Volume (vph)           | 950    | 0        | 330    | 0    | 0        | 0    | 0    | 435      | 90     | 200      | 495      | 0    |
| Peak Hour Factor       | 0.95   | 0.95     | 0.95   | 0.95 | 0.95     | 0.95 | 0.95 | 0.95     | 0.95   | 0.95     | 0.95     | 0.95 |
| Adj. Flow (vph)        | 1000   | 0        | 347    | 0    | 0        | 0    | 0    | 458      | 95     | 211      | 521      | 0    |
| Lane Group Flow (vph)  | 1000   | 0        | 347    | 0    | 0        | 0    | 0    | 458      | 95     | 211      | 521      | 0    |
| Turn Type              | custom | (        | custom |      |          |      |      |          | custom | Prot     |          |      |
| Protected Phases       |        |          |        |      |          |      |      | 2        |        | 1        | 6        |      |
| Permitted Phases       | 4      |          | 4      |      |          |      |      |          | 2 4    |          |          |      |
| Detector Phases        | 4      |          | 4      |      |          |      |      | 2        | 2 4    | 1        | 6        |      |
| Minimum Initial (s)    | 4.0    |          | 4.0    |      |          |      |      | 4.0      |        | 4.0      | 4.0      |      |
| Minimum Split (s)      | 22.0   |          | 22.0   |      |          |      |      | 22.0     |        | 10.0     | 22.0     |      |
| Total Split (s)        | 39.0   | 0.0      | 39.0   | 0.0  | 0.0      | 0.0  | 0.0  | 25.0     | 64.0   | 16.0     | 41.0     | 0.0  |
| Total Split (%)        | 48.8%  | 0.0%     | 48.8%  | 0.0% | 0.0%     | 0.0% | 0.0% | 31.3%    | 80.0%  | 20.0%    | 51.3%    | 0.0% |
| Yellow Time (s)        | 4.5    |          | 4.5    |      |          |      |      | 4.5      |        | 3.0      | 4.5      |      |
| All-Red Time (s)       | 1.5    |          | 1.5    |      |          |      |      | 1.5      |        | 1.0      | 1.5      |      |
| Lead/Lag               |        |          |        |      |          |      |      | Lag      |        | Lead     |          |      |
| Lead-Lag Optimize?     |        |          |        |      |          |      |      | Yes      |        | Yes      |          |      |
| Recall Mode            | None   |          | None   |      |          |      |      | C-Max    |        |          | C-Max    |      |
| Act Effct Green (s)    | 30.9   |          | 30.9   |      |          |      |      | 26.6     | 61.5   | 10.5     | 41.1     |      |
| Actuated g/C Ratio     | 0.39   |          | 0.39   |      |          |      |      | 0.33     | 0.77   | 0.13     | 0.51     |      |
| v/c Ratio              | 0.76   |          | 0.27   |      |          |      |      | 0.26     | 0.04   | 0.47     | 0.19     |      |
| Control Delay          | 24.9   |          | 2.3    |      |          |      |      | 7.6      | 0.4    | 27.4     | 5.1      |      |
| Queue Delay            | 0.0    |          | 0.0    |      |          |      |      | 0.0      | 0.0    | 0.0      | 0.0      |      |
| Total Delay            | 24.9   |          | 2.3    |      |          |      |      | 7.6      | 0.4    | 27.4     | 5.1      |      |
| LOS                    | С      |          | Α      |      |          |      |      | Α        | Α      | С        | Α        |      |
| Approach Delay         |        |          |        |      |          |      |      | 6.3      |        |          | 11.6     |      |
| Approach LOS           |        |          |        |      |          |      |      | Α        |        |          | В        |      |
| Stops (vph)            | 772    |          | 25     |      |          |      |      | 205      | 6      | 177      | 257      |      |
| Fuel Used(gal)         | 12     |          | 1      |      |          |      |      | 7        | 1      | 6        | 9        |      |
| CO Emissions (g/hr)    | 845    |          | 93     |      |          |      |      | 515      | 50     | 400      | 597      |      |

|                         | ᄼ    | -   | •    | •   | ←   | •   | 4   | <b>†</b> | -    | -    | . ↓  | 4   |
|-------------------------|------|-----|------|-----|-----|-----|-----|----------|------|------|------|-----|
| Lane Group              | EBL  | EBT | EBR  | WBL | WBT | WBR | NBL | NBT      | NBR  | SBL  | SBT  | SBR |
| NOx Emissions (g/hr)    | 164  |     | 18   |     |     |     |     | 100      | 10   | 78   | 116  |     |
| VOC Emissions (g/hr)    | 196  |     | 22   |     |     |     |     | 119      | 12   | 93   | 138  |     |
| Dilemma Vehicles (#)    | 0    |     | 0    |     |     |     |     | 25       | 0    | 0    | 14   |     |
| Queue Length 50th (ft)  | 208  |     | 0    |     |     |     |     | 13       | 0    | 27   | 14   |     |
| Queue Length 95th (ft)  | 262  |     | 24   |     |     |     |     | 28       | 0    | 43   | 21   |     |
| Internal Link Dist (ft) |      | 325 |      |     | 371 |     |     | 969      |      |      | 956  |     |
| Turn Bay Length (ft)    |      |     |      |     |     |     |     |          | 400  | 400  |      |     |
| Base Capacity (vph)     | 1502 |     | 1415 |     |     |     |     | 1781     | 2303 | 515  | 2753 |     |
| Starvation Cap Reductn  | 0    |     | 0    |     |     |     |     | 0        | 0    | 0    | 0    |     |
| Spillback Cap Reductn   | 0    |     | 0    |     |     |     |     | 0        | 0    | 0    | 0    |     |
| Storage Cap Reductn     | 0    |     | 0    |     |     |     |     | 0        | 0    | 0    | 0    |     |
| Reduced v/c Ratio       | 0.67 |     | 0.25 |     |     |     |     | 0.26     | 0.04 | 0.41 | 0.19 |     |

Area Type: Other

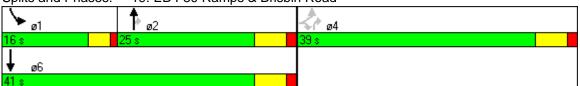
Cycle Length: 80

Actuated Cycle Length: 80

Offset: 32 (40%), Referenced to phase 2:NBT and 6:SBT, Start of Green

Natural Cycle: 60

Control Type: Actuated-Coordinated


Maximum v/c Ratio: 0.76

Intersection Signal Delay: 14.3
Intersection Capacity Utilization 67.7%

Intersection LOS: B
ICU Level of Service C

Analysis Period (min) 15

Splits and Phases: 19: EB I-80 Ramps & Brisbin Road



|                        |       |          |       |       |          | _     |       |       |       |       |          |       |
|------------------------|-------|----------|-------|-------|----------|-------|-------|-------|-------|-------|----------|-------|
|                        | _     | -        | •     | •     | •        | •     | 1     | T     | _     | -     | ¥        | *     |
| Lane Group             | EBL   | EBT      | EBR   | WBL   | WBT      | WBR   | NBL   | NBT   | NBR   | SBL   | SBT      | SBR   |
| Lane Configurations    | *     | <b>^</b> | 77    | 7     | <b>^</b> | 7     | ሻሻ    | ተተተ   | 7     | Ť     | <b>^</b> | 7     |
| Ideal Flow (vphpl)     | 1900  | 2000     | 1900  | 1900  | 2000     | 1900  | 1900  | 2000  | 1900  | 1900  | 2000     | 1900  |
| Storage Length (ft)    | 265   |          | 400   | 400   |          | 265   | 400   |       | 400   | 265   |          | 265   |
| Storage Lanes          | 1     |          | 2     | 1     |          | 1     | 2     |       | 1     | 1     |          | 1     |
| Total Lost Time (s)    | 4.0   | 4.0      | 4.0   | 4.0   | 4.0      | 4.0   | 4.0   | 4.0   | 4.0   | 4.0   | 4.0      | 4.0   |
| Leading Detector (ft)  | 50    | 50       | 50    | 50    | 50       | 50    | 50    | 50    | 50    | 50    | 50       | 50    |
| Trailing Detector (ft) | 0     | 0        | 0     | 0     | 0        | 0     | 0     | 0     | 0     | 0     | 0        | 0     |
| Turning Speed (mph)    | 15    |          | 9     | 15    |          | 9     | 15    |       | 9     | 15    |          | 9     |
| Lane Util. Factor      | 1.00  | 0.95     | 0.88  | 1.00  | 0.95     | 1.00  | 0.97  | 0.91  | 1.00  | 1.00  | 0.91     | 1.00  |
| Frt                    |       |          | 0.850 |       |          | 0.850 |       |       | 0.850 |       |          | 0.850 |
| Flt Protected          | 0.950 |          |       | 0.950 |          |       | 0.950 |       |       | 0.950 |          |       |
| Satd. Flow (prot)      | 1770  | 3725     | 2787  | 1770  | 3725     | 1583  | 3433  | 5353  | 1583  | 1770  | 5353     | 1583  |
| Flt Permitted          | 0.477 |          |       | 0.629 |          |       | 0.950 |       |       | 0.950 |          |       |
| Satd. Flow (perm)      | 889   | 3725     | 2787  | 1172  | 3725     | 1583  | 3433  | 5353  | 1583  | 1770  | 5353     | 1583  |
| Right Turn on Red      |       |          | Yes   |       |          | Yes   |       |       | Yes   |       |          | Yes   |
| Satd. Flow (RTOR)      |       |          | 58    |       |          | 68    |       |       | 63    |       |          | 53    |
| Headway Factor         | 1.00  | 1.00     | 1.00  | 1.00  | 1.00     | 1.00  | 1.00  | 1.00  | 1.00  | 1.00  | 1.00     | 1.00  |
| Link Speed (mph)       |       | 30       |       |       | 30       |       |       | 55    |       |       | 55       |       |
| Link Distance (ft)     |       | 414      |       |       | 426      |       |       | 710   |       |       | 975      |       |
| Travel Time (s)        |       | 9.4      |       |       | 9.7      |       |       | 8.8   |       |       | 12.1     |       |
| Volume (vph)           | 30    | 185      | 55    | 20    | 310      | 65    | 205   | 2130  | 60    | 35    | 535      | 50    |
| Peak Hour Factor       | 0.95  | 0.95     | 0.95  | 0.95  | 0.95     | 0.95  | 0.95  | 0.95  | 0.95  | 0.95  | 0.95     | 0.95  |
| Adj. Flow (vph)        | 32    | 195      | 58    | 21    | 326      | 68    | 216   | 2242  | 63    | 37    | 563      | 53    |
| Lane Group Flow (vph)  | 32    | 195      | 58    | 21    | 326      | 68    | 216   | 2242  | 63    | 37    | 563      | 53    |
| Turn Type              | pm+pt |          | pm+ov | pm+pt |          | pm+ov | Prot  |       | pm+ov | Prot  |          | pm+ov |
| Protected Phases       | 7     | 4        | 5     | 3     | 8        | 1     | 5     | 2     | 3     | 1     | 6        | 7     |
| Permitted Phases       | 4     |          | 4     | 8     |          | 8     |       |       | 2     |       |          | 6     |
| Detector Phases        | 7     | 4        | 5     | 3     | 8        | 1     | 5     | 2     | 3     | 1     | 6        | 7     |
| Minimum Initial (s)    | 4.0   | 4.0      | 4.0   | 4.0   | 4.0      | 4.0   | 4.0   | 4.0   | 4.0   | 4.0   | 4.0      | 4.0   |
| Minimum Split (s)      | 10.0  | 22.0     | 10.0  | 10.0  | 22.0     | 10.0  | 10.0  | 22.0  | 10.0  | 10.0  | 22.0     | 10.0  |
| Total Split (s)        | 10.0  | 22.0     | 13.0  | 10.0  | 22.0     | 10.0  | 13.0  | 38.0  | 10.0  | 10.0  | 35.0     | 10.0  |
| Total Split (%)        | 12.5% | 27.5%    | 16.3% | 12.5% | 27.5%    | 12.5% | 16.3% | 47.5% | 12.5% | 12.5% | 43.8%    | 12.5% |
| Yellow Time (s)        | 3.0   | 4.5      | 3.0   | 3.0   | 4.5      | 3.0   | 3.0   | 4.5   | 3.0   | 3.0   | 4.5      | 3.0   |
| All-Red Time (s)       | 1.0   | 1.5      | 1.0   | 1.0   | 1.5      | 1.0   | 1.0   | 1.5   | 1.0   | 1.0   | 1.5      | 1.0   |
| Lead/Lag               | Lead  | Lag      | Lead  | Lead  | Lag      | Lead  | Lead  | Lag   | Lead  | Lead  | Lag      | Lead  |
| Lead-Lag Optimize?     |       |          |       |       |          |       |       |       |       |       |          |       |
| Recall Mode            | None  | None     | None  | None  | None     | None  |       | C-Max |       |       | C-Max    | None  |
| Act Effct Green (s)    | 18.8  | 14.1     | 27.7  | 18.7  | 14.0     | 24.7  | 9.7   | 41.2  | 51.0  | 6.7   | 36.4     | 46.2  |
| Actuated g/C Ratio     | 0.24  | 0.18     | 0.35  | 0.23  | 0.18     | 0.31  | 0.12  | 0.52  | 0.64  | 0.08  | 0.46     | 0.58  |
| v/c Ratio              | 0.12  | 0.30     | 0.06  | 0.07  | 0.50     | 0.13  | 0.52  | 0.81  | 0.06  | 0.25  | 0.23     | 0.06  |
| Control Delay          | 20.0  | 29.3     | 4.9   | 19.2  | 32.2     | 5.6   | 37.1  | 15.4  | 1.8   | 32.2  | 18.0     | 5.7   |
| Queue Delay            | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0      | 0.0   |
| Total Delay            | 20.0  | 29.3     | 4.9   | 19.2  | 32.2     | 5.6   | 37.1  | 15.4  | 1.8   | 32.2  | 18.0     | 5.7   |
| LOS                    | В     | С        | Α     | В     | С        | Α     | D     | В     | Α     | С     | В        | Α     |
| Approach Delay         |       | 23.3     |       |       | 27.2     |       |       | 16.9  |       |       | 17.8     |       |
| Approach LOS           |       | С        |       |       | С        |       |       | В     |       |       | В        |       |
| Stops (vph)            | 23    | 152      | 10    | 16    | 267      | 12    | 187   | 1121  | 6     | 36    | 326      | 13    |
| Fuel Used(gal)         | 0     | 3        | 0     | 0     | 5        | 0     | 6     | 37    | 0     | 1     | 11       | 1     |
| CO Emissions (g/hr)    | 24    | 178      | 20    | 16    | 317      | 25    | 416   | 2592  | 28    | 78    | 792      | 42    |

|                         | ۶    | <b>→</b> | •    | •    | <b>←</b> | •    | •    | <b>†</b> | <b>/</b> | <b>\</b> | ļ    | 4    |
|-------------------------|------|----------|------|------|----------|------|------|----------|----------|----------|------|------|
| Lane Group              | EBL  | EBT      | EBR  | WBL  | WBT      | WBR  | NBL  | NBT      | NBR      | SBL      | SBT  | SBR  |
| NOx Emissions (g/hr)    | 5    | 35       | 4    | 3    | 62       | 5    | 81   | 504      | 5        | 15       | 154  | 8    |
| VOC Emissions (g/hr)    | 6    | 41       | 5    | 4    | 73       | 6    | 96   | 601      | 7        | 18       | 183  | 10   |
| Dilemma Vehicles (#)    | 0    | 0        | 0    | 0    | 0        | 0    | 0    | 116      | 0        | 0        | 61   | 0    |
| Queue Length 50th (ft)  | 11   | 45       | 0    | 7    | 78       | 0    | 53   | 217      | 1        | 19       | 75   | 1    |
| Queue Length 95th (ft)  | 29   | 71       | 11   | 22   | 112      | 25   | m78  | #506     | m3       | 50       | 105  | 0    |
| Internal Link Dist (ft) |      | 334      |      |      | 346      |      |      | 630      |          |          | 895  |      |
| Turn Bay Length (ft)    | 265  |          | 400  | 400  |          | 265  | 400  |          | 400      | 265      |      | 265  |
| Base Capacity (vph)     | 276  | 838      | 1014 | 320  | 838      | 538  | 428  | 2757     | 1036     | 151      | 2433 | 940  |
| Starvation Cap Reductn  | 0    | 0        | 0    | 0    | 0        | 0    | 0    | 0        | 0        | 0        | 0    | 0    |
| Spillback Cap Reductn   | 0    | 0        | 0    | 0    | 0        | 0    | 0    | 0        | 0        | 0        | 0    | 0    |
| Storage Cap Reductn     | 0    | 0        | 0    | 0    | 0        | 0    | 0    | 0        | 0        | 0        | 0    | 0    |
| Reduced v/c Ratio       | 0.12 | 0.23     | 0.06 | 0.07 | 0.39     | 0.13 | 0.50 | 0.81     | 0.06     | 0.25     | 0.23 | 0.06 |

Area Type: Other

Cycle Length: 80

Actuated Cycle Length: 80

Offset: 69 (86%), Referenced to phase 2:NBT and 6:SBT, Start of Green

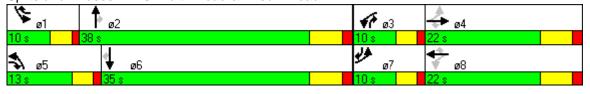
Natural Cycle: 80

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.81

Intersection Signal Delay: 18.6 Intersection Capacity Utilization 67.2%

Intersection LOS: B ICU Level of Service C


Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

23: North Road & Brisbin Road Splits and Phases:



|                        | ۶     | <b>→</b>  | •     | •         | +           | •     | •         | †        | <i>&gt;</i> | <b>/</b> | <b></b> | -√    |
|------------------------|-------|-----------|-------|-----------|-------------|-------|-----------|----------|-------------|----------|---------|-------|
| Lane Group             | EBL   | EBT       | EBR   | WBL       | WBT         | WBR   | NBL       | NBT      | NBR         | SBL      | SBT     | SBR   |
| Lane Configurations    | ች     | <b></b>   | 1     | ች         | 4           |       | *         | <b>^</b> | 1           | ች        | ተተተ     | 7     |
| Ideal Flow (vphpl)     | 1900  | 1900      | 1900  | 1900      | 1900        | 1900  | 1900      | 2000     | 1900        | 1900     | 2000    | 1900  |
| Storage Length (ft)    | 150   |           | 0     | 400       |             | 0     | 400       |          | 400         | 265      |         | 265   |
| Storage Lanes          | 1     |           | 1     | 1         |             | 0     | 1         |          | 1           | 1        |         | 1     |
| Total Lost Time (s)    | 4.0   | 4.0       | 4.0   | 4.0       | 4.0         | 4.0   | 4.0       | 4.0      | 4.0         | 4.0      | 4.0     | 4.0   |
| Leading Detector (ft)  | 50    | 50        | 50    | 50        | 50          |       | 50        | 50       | 50          | 50       | 50      | 50    |
| Trailing Detector (ft) | 0     | 0         | 0     | 0         | 0           |       | 0         | 0        | 0           | 0        | 0       | 0     |
| Turning Speed (mph)    | 15    |           | 9     | 15        |             | 9     | 15        |          | 9           | 15       |         | 9     |
| Lane Util. Factor      | 1.00  | 1.00      | 1.00  | 1.00      | 1.00        | 1.00  | 1.00      | 0.91     | 1.00        | 1.00     | 0.91    | 1.00  |
| Frt                    |       |           | 0.850 |           | 0.902       |       |           |          | 0.850       |          |         | 0.850 |
| Flt Protected          | 0.950 |           |       | 0.950     |             |       | 0.950     |          |             | 0.950    |         |       |
| Satd. Flow (prot)      | 1770  | 1863      | 1583  | 1770      | 1680        | 0     | 1770      | 5353     | 1583        | 1770     | 5353    | 1583  |
| Flt Permitted          | 0.736 |           |       | 0.750     |             |       | 0.950     |          |             | 0.950    |         |       |
| Satd. Flow (perm)      | 1371  | 1863      | 1583  | 1397      | 1680        | 0     | 1770      | 5353     | 1583        | 1770     | 5353    | 1583  |
| Right Turn on Red      |       |           | Yes   |           |             | Yes   |           |          | Yes         |          |         | Yes   |
| Satd. Flow (RTOR)      |       |           | 47    |           | 21          |       |           |          | 142         |          |         | 58    |
| Headway Factor         | 1.00  | 1.00      | 1.00  | 1.00      | 1.00        | 1.00  | 1.00      | 1.00     | 1.00        | 1.00     | 1.00    | 1.00  |
| Link Speed (mph)       |       | 30        |       |           | 30          |       |           | 55       |             |          | 55      |       |
| Link Distance (ft)     |       | 431       |       |           | 457         |       |           | 975      |             |          | 974     |       |
| Travel Time (s)        |       | 9.8       |       |           | 10.4        |       |           | 12.1     |             |          | 12.1    |       |
| Volume (vph)           | 15    | 10        | 45    | 45        | 10          | 20    | 160       | 1930     | 135         | 60       | 530     | 55    |
| Peak Hour Factor       | 0.95  | 0.95      | 0.95  | 0.95      | 0.95        | 0.95  | 0.95      | 0.95     | 0.95        | 0.95     | 0.95    | 0.95  |
| Adj. Flow (vph)        | 16    | 11        | 47    | 47        | 11          | 21    | 168       | 2032     | 142         | 63       | 558     | 58    |
| Lane Group Flow (vph)  | 16    | 11        | 47    | 47        | 32          | 0     | 168       | 2032     | 142         | 63       | 558     | 58    |
| Turn Type              | pm+pt |           |       | pm+pt     | ~_          |       | Prot      |          | pm+ov       | Prot     |         | pm+ov |
| Protected Phases       | 7     | 4         | 5     | 3         | 8           |       | 5         | 2        | 3           | 1        | 6       | 7     |
| Permitted Phases       | 4     | •         | 4     | 8         |             |       |           | _        | 2           | •        |         | 6     |
| Detector Phases        | 7     | 4         | 5     | 3         | 8           |       | 5         | 2        | 3           | 1        | 6       | 7     |
| Minimum Initial (s)    | 4.0   | 4.0       | 4.0   | 4.0       | 4.0         |       | 4.0       | 4.0      | 4.0         | 4.0      | 4.0     | 4.0   |
| Minimum Split (s)      | 10.0  | 22.0      | 10.0  | 10.0      | 22.0        |       | 10.0      | 22.0     | 10.0        | 10.0     | 22.0    | 10.0  |
| Total Split (s)        | 10.0  | 22.0      | 19.0  | 10.0      | 22.0        | 0.0   | 19.0      | 38.0     | 10.0        | 10.0     | 29.0    | 10.0  |
| Total Split (%)        |       | 27.5%     |       | 12.5%     |             |       |           | 47.5%    |             |          |         | 12.5% |
| Yellow Time (s)        | 3.0   | 4.5       | 3.0   | 3.0       | 4.5         | 0.070 | 3.0       | 4.5      | 3.0         | 3.0      | 4.5     | 3.0   |
| All-Red Time (s)       | 0.0   | 1.5       | 1.0   | 0.0       | 1.5         |       | 1.0       |          | 0.0         | 1.0      | 1.5     | 0.0   |
| Lead/Lag               | Lead  | Lag       | Lead  | Lead      | Lag         |       | Lead      | Lag      | Lead        | Lead     | Lag     | Lead  |
| Lead-Lag Optimize?     | 2000  | Lag       | Load  | 2044      | <b>-</b> 49 |       | 2000      | Lag      | 2044        | 2044     | Lag     | 2044  |
| Recall Mode            | None  | None      | None  | None      | None        |       | None      | C-Max    | None        | None     | C-Max   | None  |
| Act Effct Green (s)    | 7.6   | 8.2       | 15.7  | 10.8      | 8.3         |       | 12.9      | 52.2     | 66.5        | 8.3      | 43.6    | 53.2  |
| Actuated g/C Ratio     | 0.10  | 0.10      | 0.20  | 0.14      | 0.10        |       | 0.16      | 0.65     | 0.83        | 0.10     | 0.54    | 0.66  |
| v/c Ratio              | 0.10  | 0.06      | 0.14  | 0.21      | 0.16        |       | 0.59      | 0.58     | 0.11        | 0.34     | 0.19    | 0.05  |
| Control Delay          | 30.1  | 32.5      | 7.0   | 29.3      | 20.3        |       | 49.9      | 1.3      | 0.1         | 30.1     | 17.3    | 0.6   |
| Queue Delay            | 0.0   | 0.0       | 0.0   | 0.0       | 0.0         |       | 0.0       | 0.0      | 0.0         | 0.0      | 0.0     | 0.0   |
| Total Delay            | 30.1  | 32.5      | 7.0   | 29.3      | 20.3        |       | 49.9      | 1.3      | 0.1         | 30.1     | 17.3    | 0.6   |
| LOS                    | C     | 02.0<br>C | Α.    | 23.5<br>C | 20.5<br>C   |       | 49.9<br>D | Α        | Α           | C        | В       | A     |
| Approach Delay         |       | 15.7      |       |           | 25.6        |       |           | 4.7      |             |          | 17.0    |       |
| Approach LOS           |       | 13.7<br>B |       |           | 25.0<br>C   |       |           | 4.7<br>A |             |          | 17.0    |       |
| Stops (vph)            | 15    | 12        | 11    | 39        | 16          |       | 153       | 129      | 0           | 56       | 256     | 2     |
| Fuel Used(gal)         | 0     | 0         | 0     | 1         | 0           |       | 5         | 15       | 1           | 2        | 10      | 0     |
|                        |       | 12        | 19    | 45        | 22          |       |           | 1035     |             |          |         | 27    |
| CO Emissions (g/hr)    | 16    | 12        | 19    | 45        | 22          |       | 381       | 1035     | 58          | 124      | 691     | 21    |

|                         | ۶    | <b>→</b> | $\rightarrow$ | •    | <b>←</b> | •   | 4    | <b>†</b> | ~    | -    | ļ    | 4    |
|-------------------------|------|----------|---------------|------|----------|-----|------|----------|------|------|------|------|
| Lane Group              | EBL  | EBT      | EBR           | WBL  | WBT      | WBR | NBL  | NBT      | NBR  | SBL  | SBT  | SBR  |
| NOx Emissions (g/hr)    | 3    | 2        | 4             | 9    | 4        |     | 74   | 201      | 11   | 24   | 135  | 5    |
| VOC Emissions (g/hr)    | 4    | 3        | 4             | 10   | 5        |     | 88   | 240      | 14   | 29   | 160  | 6    |
| Dilemma Vehicles (#)    | 0    | 0        | 0             | 0    | 0        |     | 0    | 17       | 0    | 0    | 126  | 0    |
| Queue Length 50th (ft)  | 8    | 5        | 0             | 23   | 5        |     | 93   | 8        | 0    | 28   | 30   | 0    |
| Queue Length 95th (ft)  | 21   | 20       | 19            | 44   | 30       |     | m109 | 16       | m0   | 72   | 115  | 0    |
| Internal Link Dist (ft) |      | 351      |               |      | 377      |     |      | 895      |      |      | 894  |      |
| Turn Bay Length (ft)    | 150  |          |               | 400  |          |     | 400  |          | 400  | 265  |      | 265  |
| Base Capacity (vph)     | 168  | 419      | 401           | 231  | 394      |     | 346  | 3493     | 1328 | 186  | 2916 | 1080 |
| Starvation Cap Reductn  | 0    | 0        | 0             | 0    | 0        |     | 0    | 0        | 0    | 0    | 0    | 0    |
| Spillback Cap Reductn   | 0    | 0        | 0             | 0    | 0        |     | 0    | 0        | 0    | 0    | 0    | 0    |
| Storage Cap Reductn     | 0    | 0        | 0             | 0    | 0        |     | 0    | 0        | 0    | 0    | 0    | 0    |
| Reduced v/c Ratio       | 0.10 | 0.03     | 0.12          | 0.20 | 0.08     |     | 0.49 | 0.58     | 0.11 | 0.34 | 0.19 | 0.05 |

Area Type: Other

Cycle Length: 80

Actuated Cycle Length: 80

Offset: 9 (11%), Referenced to phase 2:NBT and 6:SBT, Start of Green

Natural Cycle: 75

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.59

Intersection Signal Delay: 8.1
Intersection Capacity Utilization 57.9%

Utilization 57.9% ICU Level of Service B

Intersection LOS: A

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 26: Access "E" & Brisbin Road



|                         | ۶         | <b>→</b>  | •         | •         | <b>+</b>  | •     | •         | †        | <i>&gt;</i> | <b>/</b>  | <b></b>  | -√    |
|-------------------------|-----------|-----------|-----------|-----------|-----------|-------|-----------|----------|-------------|-----------|----------|-------|
| Lane Group              | EBL       | EBT       | EBR       | WBL       | WBT       | WBR   | NBL       | NBT      | NBR         | SBL       | SBT      | SBR   |
| Lane Configurations     | ች         | <b></b>   | 7         | ኝኝ        | 1>        |       | ች         | <b>^</b> | 7           | ች         | <b>^</b> | 7     |
| Ideal Flow (vphpl)      | 1900      | 1900      | 1900      | 1900      | 1900      | 1900  | 1900      | 2000     | 1900        | 1900      | 2000     | 1900  |
| Storage Length (ft)     | 265       |           | 0         | 400       |           | 0     | 400       |          | 400         | 265       |          | 265   |
| Storage Lanes           | 1         |           | 1         | 2         |           | 0     | 1         |          | 1           | 1         |          | 1     |
| Total Lost Time (s)     | 4.0       | 4.0       | 4.0       | 4.0       | 4.0       | 4.0   | 4.0       | 4.0      | 4.0         | 4.0       | 4.0      | 4.0   |
| Leading Detector (ft)   | 50        | 50        | 50        | 50        | 50        |       | 50        | 50       | 50          | 50        | 50       | 50    |
| Trailing Detector (ft)  | 0         | 0         | 0         | 0         | 0         |       | 0         | 0        | 0           | 0         | 0        | 0     |
| Turning Speed (mph)     | 15        |           | 9         | 15        |           | 9     | 15        |          | 9           | 15        |          | 9     |
| Lane Util. Factor       | 1.00      | 1.00      | 1.00      | 0.97      | 1.00      | 1.00  | 1.00      | 0.95     | 1.00        | 1.00      | 0.95     | 1.00  |
| Frt                     | 1100      | 1.00      | 0.850     | 0.01      | 0.902     | 1.00  | 1100      | 0.00     | 0.850       | 1.00      | 0.00     | 0.850 |
| Flt Protected           | 0.950     |           | 0.000     | 0.950     | 0.002     |       | 0.950     |          | 0.000       | 0.950     |          | 0.000 |
| Satd. Flow (prot)       | 1770      | 1863      | 1583      | 3433      | 1680      | 0     | 1770      | 3725     | 1583        | 1770      | 3725     | 1583  |
| Flt Permitted           | 0.950     | .000      | .000      | 0.950     | .000      | · ·   | 0.249     | 0.20     | .000        | 0.138     | 0.20     | .000  |
| Satd. Flow (perm)       | 1770      | 1863      | 1583      | 3433      | 1680      | 0     | 464       | 3725     | 1583        | 257       | 3725     | 1583  |
| Right Turn on Red       | 1770      | 1000      | Yes       | 0 100     | 1000      | Yes   | 101       | 0120     | Yes         | 201       | 0,20     | Yes   |
| Satd. Flow (RTOR)       |           |           | 32        |           | 21        | 100   |           |          | 300         |           |          | 89    |
| Headway Factor          | 1.00      | 1.00      | 1.00      | 1.00      | 1.00      | 1.00  | 1.00      | 1.00     | 1.00        | 1.00      | 1.00     | 1.00  |
| Link Speed (mph)        | 1.00      | 30        | 1.00      | 1.00      | 30        | 1.00  | 1.00      | 55       | 1.00        | 1.00      | 55       | 1.00  |
| Link Distance (ft)      |           | 601       |           |           | 563       |       |           | 1489     |             |           | 1482     |       |
| Travel Time (s)         |           | 13.7      |           |           | 12.8      |       |           | 18.5     |             |           | 18.4     |       |
| Volume (vph)            | 15        | 10.7      | 30        | 40        | 10        | 20    | 195       | 1195     | 285         | 125       | 635      | 85    |
| Peak Hour Factor        | 0.95      | 0.95      | 0.95      | 0.95      | 0.95      | 0.95  | 0.95      | 0.95     | 0.95        | 0.95      | 0.95     | 0.95  |
| Adj. Flow (vph)         | 16        | 11        | 32        | 42        | 11        | 21    | 205       | 1258     | 300         | 132       | 668      | 89    |
| Lane Group Flow (vph)   | 16        | 11        | 32        | 42        | 32        | 0     | 205       | 1258     | 300         | 132       | 668      | 89    |
| Turn Type               | Prot      |           | pm+ov     | Prot      | 02        | U     | pm+pt     |          | pm+ov       |           |          | pm+ov |
| Protected Phases        | 7         | 4         | 5         | 3         | 8         |       | 5         | 2        | 3           | 1         | 6        | 7     |
| Permitted Phases        | •         |           | 4         | U         | U         |       | 2         | _        | 2           | 6         | U        | 6     |
| Detector Phases         | 7         | 4         | 5         | 3         | 8         |       | 5         | 2        | 3           | 1         | 6        | 7     |
| Minimum Initial (s)     | 4.0       | 4.0       | 4.0       | 4.0       | 4.0       |       | 4.0       | 4.0      | 4.0         | 4.0       | 4.0      | 4.0   |
| Minimum Split (s)       | 10.0      | 22.0      | 10.0      | 10.0      | 22.0      |       | 10.0      | 22.0     | 10.0        | 10.0      | 22.0     | 10.0  |
| Total Split (s)         | 10.0      | 22.0      | 15.0      | 10.0      | 22.0      | 0.0   | 15.0      | 37.0     | 10.0        | 11.0      | 33.0     | 10.0  |
| Total Split (%)         |           |           |           | 12.5%     |           |       |           | 46.3%    |             |           |          | 12.5% |
| Yellow Time (s)         | 3.0       | 4.5       | 3.0       | 3.0       | 4.5       | 0.070 | 3.0       | 4.5      | 3.0         | 3.0       | 4.5      | 3.0   |
| All-Red Time (s)        | 1.0       | 1.5       | 1.0       | 1.0       | 1.5       |       | 1.0       |          | 1.0         | 1.0       | 1.5      | 1.0   |
| Lead/Lag                | Lead      | Lag       | Lead      | Lead      | Lag       |       | Lead      | Lag      | Lead        | Lead      | Lag      | Lead  |
| Lead-Lag Optimize?      | Leau      | Lag       | Leau      | Leau      | Lag       |       | Leau      | Lag      | Leau        | Leau      | Lag      | Leau  |
| Recall Mode             | None      | None      | None      | None      | None      |       | None      | C-Max    | None        | None      | C-Max    | None  |
| Act Effct Green (s)     | 5.9       | 8.2       | 9.7       | 8.8       | 8.3       |       | 54.1      | 47.1     | 60.0        | 58.6      | 49.4     | 59.3  |
| Actuated g/C Ratio      | 0.07      | 0.10      | 0.12      | 0.11      | 0.10      |       | 0.68      | 0.59     | 0.75        | 0.73      | 0.62     | 0.74  |
| v/c Ratio               | 0.07      | 0.10      | 0.12      | 0.11      | 0.16      |       | 0.08      | 0.59     | 0.73        | 0.73      | 0.02     | 0.74  |
| Control Delay           | 36.9      | 32.5      | 10.5      | 32.3      | 20.3      |       | 14.1      | 5.4      | 1.4         | 19.1      | 8.2      | 0.07  |
| -                       | 0.0       | 0.0       | 0.0       | 0.0       | 0.0       |       | 0.0       | 0.0      | 0.0         | 0.0       | 0.0      |       |
| Queue Delay Total Delay | 36.9      | 32.5      | 10.5      | 32.3      | 20.3      |       | 14.1      | 5.4      | 1.4         | 19.1      | 8.2      | 0.0   |
| LOS                     | 30.9<br>D | 32.5<br>C | 10.5<br>B | 32.3<br>C | 20.3<br>C |       | 14.1<br>B |          |             | 19.1<br>B | 0.2<br>A | 0.2   |
|                         | U         |           | Б         | C         |           |       | Ь         | A        | Α           | Б         |          | Α     |
| Approach LOS            |           | 21.8      |           |           | 27.1      |       |           | 5.7      |             |           | 9.0      |       |
| Approach LOS            | 40        | C 12      | 40        | 07        | C<br>16   |       | 70        | A 529    | 40          | 0.0       | 170      |       |
| Stops (vph)             | 16        | 12        | 10        | 37        | 16        |       | 78        | 528      | 49          | 80        | 178      | 0     |
| Fuel Used(gal)          | 0         | 0         | 0         | 1         | 0         |       | 4         | 22       | 4           | 3         | 10       | 1     |
| CO Emissions (g/hr)     | 19        | 13        | 18        | 45        | 24        |       | 269       | 1565     | 257         | 220       | 722      | 56    |

|                         | ۶    | <b>→</b> | $\rightarrow$ | •    | <b>←</b> | •   | •    | <b>†</b> | _    | -    | ļ    | 4    |
|-------------------------|------|----------|---------------|------|----------|-----|------|----------|------|------|------|------|
| Lane Group              | EBL  | EBT      | EBR           | WBL  | WBT      | WBR | NBL  | NBT      | NBR  | SBL  | SBT  | SBR  |
| NOx Emissions (g/hr)    | 4    | 2        | 4             | 9    | 5        |     | 52   | 305      | 50   | 43   | 140  | 11   |
| VOC Emissions (g/hr)    | 4    | 3        | 4             | 10   | 6        |     | 62   | 363      | 60   | 51   | 167  | 13   |
| Dilemma Vehicles (#)    | 0    | 0        | 0             | 0    | 0        |     | 0    | 4        | 0    | 0    | 95   | 0    |
| Queue Length 50th (ft)  | 8    | 5        | 0             | 10   | 5        |     | 9    | 4        | 0    | 39   | 34   | 0    |
| Queue Length 95th (ft)  | 26   | 20       | 19            | 25   | 30       |     | m70  | 425      | m35  | 97   | 106  | 1    |
| Internal Link Dist (ft) |      | 521      |               |      | 483      |     |      | 1409     |      |      | 1402 |      |
| Turn Bay Length (ft)    | 265  |          |               | 400  |          |     | 400  |          | 400  | 265  |      | 265  |
| Base Capacity (vph)     | 133  | 419      | 301           | 380  | 394      |     | 516  | 2195     | 1262 | 368  | 2301 | 1199 |
| Starvation Cap Reductn  | 0    | 0        | 0             | 0    | 0        |     | 0    | 0        | 0    | 0    | 0    | 0    |
| Spillback Cap Reductn   | 0    | 0        | 0             | 0    | 0        |     | 0    | 0        | 0    | 0    | 0    | 0    |
| Storage Cap Reductn     | 0    | 0        | 0             | 0    | 0        |     | 0    | 0        | 0    | 0    | 0    | 0    |
| Reduced v/c Ratio       | 0.12 | 0.03     | 0.11          | 0.11 | 0.08     |     | 0.40 | 0.57     | 0.24 | 0.36 | 0.29 | 0.07 |

Area Type: Other

Cycle Length: 80

Actuated Cycle Length: 80

Offset: 44 (55%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 70

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.57
Intersection Signal Delay: 7.7

Intersection Signal Delay: 7.7 Intersection LOS: A
Intersection Capacity Utilization 56.1% ICU Level of Service B

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 30: Access "D" & Brisbin Road



|                        | ♪     | <b>→</b>   | •     | •     | +        | •     | •     | <b>†</b> | ~     | <b>/</b> | <b>+</b> | -√    |
|------------------------|-------|------------|-------|-------|----------|-------|-------|----------|-------|----------|----------|-------|
| Lane Group             | EBL   | EBT        | EBR   | WBL   | WBT      | WBR   | NBL   | NBT      | NBR   | SBL      | SBT      | SBR   |
| Lane Configurations    | ሻ     | <b>†</b> † | 7     | *     | <b>^</b> | 7     | ች     | <b>^</b> | 7     | *        | <b>^</b> | 7     |
| Ideal Flow (vphpl)     | 1900  | 2000       | 1900  | 1900  | 2000     | 1900  | 1900  | 2000     | 1900  | 1900     | 2000     | 1900  |
| Storage Length (ft)    | 265   |            | 265   | 400   |          | 265   | 400   |          | 400   | 265      |          | 265   |
| Storage Lanes          | 1     |            | 1     | 1     |          | 1     | 1     |          | 1     | 1        |          | 1     |
| Total Lost Time (s)    | 4.0   | 4.0        | 4.0   | 4.0   | 4.0      | 4.0   | 4.0   | 4.0      | 4.0   | 4.0      | 4.0      | 4.0   |
| Leading Detector (ft)  | 50    | 50         | 50    | 50    | 50       | 50    | 50    | 50       | 50    | 50       | 50       | 50    |
| Trailing Detector (ft) | 0     | 0          | 0     | 0     | 0        | 0     | 0     | 0        | 0     | 0        | 0        | 0     |
| Turning Speed (mph)    | 15    |            | 9     | 15    |          | 9     | 15    |          | 9     | 15       |          | 9     |
| Lane Util. Factor      | 1.00  | 0.95       | 1.00  | 1.00  | 0.95     | 1.00  | 1.00  | 0.95     | 1.00  | 1.00     | 0.95     | 1.00  |
| Frt                    |       |            | 0.850 |       |          | 0.850 |       |          | 0.850 |          |          | 0.850 |
| Flt Protected          | 0.950 |            |       | 0.950 |          |       | 0.950 |          |       | 0.950    |          |       |
| Satd. Flow (prot)      | 1770  | 3725       | 1583  | 1770  | 3725     | 1583  | 1770  | 3725     | 1583  | 1770     | 3725     | 1583  |
| Flt Permitted          | 0.301 |            |       | 0.235 |          |       | 0.284 |          |       | 0.140    |          |       |
| Satd. Flow (perm)      | 561   | 3725       | 1583  | 438   | 3725     | 1583  | 529   | 3725     | 1583  | 261      | 3725     | 1583  |
| Right Turn on Red      |       |            | Yes   |       |          | Yes   |       |          | Yes   |          |          | Yes   |
| Satd. Flow (RTOR)      |       |            | 47    |       |          | 37    |       |          | 144   |          |          | 74    |
| Headway Factor         | 1.00  | 1.00       | 1.00  | 1.00  | 1.00     | 1.00  | 1.00  | 1.00     | 1.00  | 1.00     | 1.00     | 1.00  |
| Link Speed (mph)       |       | 30         |       |       | 30       |       |       | 55       |       |          | 55       |       |
| Link Distance (ft)     |       | 653        |       |       | 563      |       |       | 1482     |       |          | 1489     |       |
| Travel Time (s)        |       | 14.8       |       |       | 12.8     |       |       | 18.4     |       |          | 18.5     |       |
| Volume (vph)           | 30    | 540        | 45    | 50    | 470      | 35    | 125   | 910      | 195   | 120      | 735      | 70    |
| Peak Hour Factor       | 0.95  | 0.95       | 0.95  | 0.95  | 0.95     | 0.95  | 0.95  | 0.95     | 0.95  | 0.95     | 0.95     | 0.95  |
| Adj. Flow (vph)        | 32    | 568        | 47    | 53    | 495      | 37    | 132   | 958      | 205   | 126      | 774      | 74    |
| Lane Group Flow (vph)  | 32    | 568        | 47    | 53    | 495      | 37    | 132   | 958      | 205   | 126      | 774      | 74    |
| Turn Type              | pm+pt |            | pm+ov | pm+pt |          | pm+ov |       |          | pm+ov | pm+pt    |          | pm+ov |
| Protected Phases       | 7     | 4          | 5     | 3     | 8        | 1     | 5     | 2        |       | 1        | 6        | 7     |
| Permitted Phases       | 4     |            | 4     | 8     |          | 8     | 2     |          | 2     | 6        |          | 6     |
| Detector Phases        | 7     | 4          | 5     | 3     | 8        | 1     | 5     | 2        | 3     | 1        | 6        | 7     |
| Minimum Initial (s)    | 4.0   | 4.0        | 4.0   | 4.0   | 4.0      | 4.0   | 4.0   | 4.0      | 4.0   | 4.0      | 4.0      | 4.0   |
| Minimum Split (s)      | 10.0  | 22.0       | 10.0  | 10.0  | 22.0     | 10.0  | 10.0  | 22.0     | 10.0  | 10.0     | 22.0     | 10.0  |
| Total Split (s)        | 10.0  | 22.0       | 10.0  | 10.0  | 22.0     | 13.0  | 10.0  | 35.0     | 10.0  | 13.0     | 38.0     | 10.0  |
| Total Split (%)        |       | 27.5%      |       | 12.5% | 27.5%    | 16.3% |       | 43.8%    | 12.5% |          | 47.5%    |       |
| Yellow Time (s)        | 3.0   | 4.5        | 3.0   | 3.0   | 4.5      | 3.0   | 3.0   | 4.5      | 3.0   | 3.0      | 4.5      | 3.0   |
| All-Red Time (s)       | 1.0   | 1.5        | 1.0   | 1.0   | 1.5      | 1.0   |       | 1.5      | 1.0   | 1.0      | 1.5      | 1.0   |
| Lead/Lag               | Lead  | Lag        | Lead  | Lead  | Lag      | Lead  | Lead  | Lag      | Lead  | Lead     | Lag      | Lead  |
| Lead-Lag Optimize?     |       |            |       |       |          |       |       | 0.14     |       |          | 0.14     |       |
| Recall Mode            | None  | None       | None  | None  | None     | None  |       | C-Max    |       |          | C-Max    | None  |
| Act Effct Green (s)    | 23.1  | 17.2       | 27.1  | 23.9  | 19.1     | 29.9  | 40.9  | 36.2     | 46.1  | 41.8     | 35.0     | 44.9  |
| Actuated g/C Ratio     | 0.29  | 0.22       | 0.34  | 0.30  | 0.24     | 0.37  | 0.51  | 0.45     | 0.58  | 0.52     | 0.44     | 0.56  |
| v/c Ratio              | 0.13  | 0.71       | 0.08  | 0.23  | 0.56     | 0.06  | 0.36  | 0.57     | 0.21  | 0.48     | 0.47     | 0.08  |
| Control Delay          | 18.7  | 34.4       | 6.2   | 20.3  | 30.0     | 5.9   | 10.8  | 11.3     | 1.1   | 16.9     | 6.4      | 1.1   |
| Queue Delay            | 0.0   | 0.0        | 0.0   | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      | 0.0   | 0.0      | 0.0      | 0.0   |
| Total Delay            | 18.7  | 34.4       | 6.2   | 20.3  | 30.0     | 5.9   | 10.8  | 11.3     | 1.1   | 16.9     | 6.4      | 1.1   |
| LOS                    | В     | C          | Α     | С     | C        | Α     | В     | В        | Α     | В        | A        | Α     |
| Approach LOS           |       | 31.6       |       |       | 27.6     |       |       | 9.7      |       |          | 7.4      |       |
| Approach LOS           | 00    | C          | 4.4   | 0.5   | C        | _     | 00    | A        | _     |          | Α        | 10    |
| Stops (vph)            | 23    | 483        | 11    | 35    | 402      | 9     | 33    | 215      | 8     | 52       | 367      | 10    |
| Fuel Used(gal)         | 0     | 9          | 0     | 1     | 7        | 0     | 2     | 15       | 2     |          |          | 1     |
| CO Emissions (g/hr)    | 28    | 643        | 24    | 43    | 500      | 17    | 144   | 1023     | 142   | 176      | 1028     | 60    |

|                         | ᄼ    | -    | •    | •    | •    | •    | •    | <b>†</b> | ~    | -    | <b>↓</b> | 4    |
|-------------------------|------|------|------|------|------|------|------|----------|------|------|----------|------|
| Lane Group              | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT      | NBR  | SBL  | SBT      | SBR  |
| NOx Emissions (g/hr)    | 5    | 125  | 5    | 8    | 97   | 3    | 28   | 199      | 28   | 34   | 200      | 12   |
| VOC Emissions (g/hr)    | 6    | 149  | 6    | 10   | 116  | 4    | 33   | 237      | 33   | 41   | 238      | 14   |
| Dilemma Vehicles (#)    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 102      | 0    | 0    | 1        | 0    |
| Queue Length 50th (ft)  | 10   | 137  | 0    | 18   | 116  | 0    | 7    | 29       | 1    | 11   | 56       | 1    |
| Queue Length 95th (ft)  | 29   | 191  | 21   | 41   | 166  | 18   | m62  | 163      | 0    | 42   | 75       | 3    |
| Internal Link Dist (ft) |      | 573  |      |      | 483  |      |      | 1402     |      |      | 1409     |      |
| Turn Bay Length (ft)    | 265  |      | 265  | 400  |      | 265  | 400  |          | 400  | 265  |          | 265  |
| Base Capacity (vph)     | 253  | 838  | 569  | 231  | 895  | 658  | 364  | 1684     | 975  | 313  | 1630     | 923  |
| Starvation Cap Reductn  | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0        | 0    | 0    | 0        | 0    |
| Spillback Cap Reductn   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0        | 0    | 0    | 0        | 0    |
| Storage Cap Reductn     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0        | 0    | 0    | 0        | 0    |
| Reduced v/c Ratio       | 0.13 | 0.68 | 0.08 | 0.23 | 0.55 | 0.06 | 0.36 | 0.57     | 0.21 | 0.40 | 0.47     | 0.08 |

Area Type: Other

Cycle Length: 80

Actuated Cycle Length: 80

Offset: 44 (55%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 65

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.71 Intersection Signal Delay: 16.1

Intersection LOS: B Intersection Capacity Utilization 61.4% ICU Level of Service B

Analysis Period (min) 15

Volume for 95th percentile queue is metered by upstream signal.





|                        | ۶         | <b>→</b>  | •     | •         | <b>+</b>  | •     | •        | †         | <i>&gt;</i> | <b>/</b>  | <b>↓</b>   | -√    |
|------------------------|-----------|-----------|-------|-----------|-----------|-------|----------|-----------|-------------|-----------|------------|-------|
| Lane Group             | EBL       | EBT       | EBR   | WBL       | WBT       | WBR   | NBL      | NBT       | NBR         | SBL       | SBT        | SBR   |
| Lane Configurations    | ች         | 4         |       | ች         | 4         |       | ች        | <b>^</b>  | #           | *         | <b>†</b> † | 1     |
| Ideal Flow (vphpl)     | 1900      | 1900      | 1900  | 1900      | 1900      | 1900  | 1900     | 2000      | 1900        | 1900      | 2000       | 1900  |
| Storage Length (ft)    | 265       |           | 400   | 400       |           | 265   | 400      |           | 400         | 265       |            | 265   |
| Storage Lanes          | 1         |           | 0     | 1         |           | 0     | 1        |           | 1           | 1         |            | 1     |
| Total Lost Time (s)    | 4.0       | 4.0       | 4.0   | 4.0       | 4.0       | 4.0   | 4.0      | 4.0       | 4.0         | 4.0       | 4.0        | 4.0   |
| Leading Detector (ft)  | 50        | 50        |       | 50        | 50        |       | 50       | 50        | 50          | 50        | 50         | 50    |
| Trailing Detector (ft) | 0         | 0         |       | 0         | 0         |       | 0        | 0         | 0           | 0         | 0          | 0     |
| Turning Speed (mph)    | 15        |           | 9     | 15        |           | 9     | 15       |           | 9           | 15        |            | 9     |
| Lane Util. Factor      | 1.00      | 1.00      | 1.00  | 1.00      | 1.00      | 1.00  | 1.00     | 0.95      | 1.00        | 1.00      | 0.95       | 1.00  |
| Frt                    |           | 0.911     |       |           | 0.895     |       |          | 0.00      | 0.850       |           | 0.00       | 0.850 |
| Flt Protected          | 0.950     | 0.0       |       | 0.950     | 0.000     |       | 0.950    |           | 0.000       | 0.950     |            | 0.000 |
| Satd. Flow (prot)      | 1770      | 1697      | 0     | 1770      | 1667      | 0     | 1770     | 3725      | 1583        | 1770      | 3725       | 1583  |
| Flt Permitted          | 0.733     |           |       | 0.740     |           |       | 0.199    | 0.20      |             | 0.160     | 0.20       | .000  |
| Satd. Flow (perm)      | 1365      | 1697      | 0     | 1378      | 1667      | 0     | 371      | 3725      | 1583        | 298       | 3725       | 1583  |
| Right Turn on Red      | 1000      | 1001      | Yes   | 1070      | 1001      | Yes   | 071      | 0120      | Yes         | 200       | 0,20       | Yes   |
| Satd. Flow (RTOR)      |           | 16        | 100   |           | 26        | 100   |          |           | 153         |           |            | 116   |
| Headway Factor         | 1.00      | 1.00      | 1.00  | 1.00      | 1.00      | 1.00  | 1.00     | 1.00      | 1.00        | 1.00      | 1.00       | 1.00  |
| Link Speed (mph)       | 1.00      | 30        | 1.00  | 1.00      | 30        | 1.00  | 1.00     | 55        | 1.00        | 1.00      | 55         | 1.00  |
| Link Distance (ft)     |           | 698       |       |           | 590       |       |          | 1489      |             |           | 1482       |       |
| Travel Time (s)        |           | 15.9      |       |           | 13.4      |       |          | 18.5      |             |           | 18.4       |       |
| Volume (vph)           | 20        | 10.0      | 15    | 15        | 10.4      | 25    | 95       | 735       | 145         | 175       | 895        | 110   |
| Peak Hour Factor       | 0.95      | 0.95      | 0.95  | 0.95      | 0.95      | 0.95  | 0.95     | 0.95      | 0.95        | 0.95      | 0.95       | 0.95  |
| Adj. Flow (vph)        | 21        | 11        | 16    | 16        | 11        | 26    | 100      | 774       | 153         | 184       | 942        | 116   |
| Lane Group Flow (vph)  | 21        | 27        | 0     | 16        | 37        | 0     | 100      | 774       | 153         | 184       | 942        | 116   |
| Turn Type              | pm+pt     | 21        | U     | pm+pt     | 01        | U     | pm+pt    |           | pm+ov       |           |            | pm+ov |
| Protected Phases       | 7         | 4         |       | 3         | 8         |       | 5        | 2         | 3           | 1         | 6          | 7     |
| Permitted Phases       | 4         | -         |       | 8         | U         |       | 2        |           | 2           | 6         | U          | 6     |
| Detector Phases        | 7         | 4         |       | 3         | 8         |       | 5        | 2         | 3           | 1         | 6          | 7     |
| Minimum Initial (s)    | 4.0       | 4.0       |       | 4.0       | 4.0       |       | 4.0      | 4.0       | 4.0         | 4.0       | 4.0        | 4.0   |
| Minimum Split (s)      | 10.0      | 22.0      |       | 10.0      | 22.0      |       | 10.0     | 22.0      | 10.0        | 10.0      | 22.0       | 10.0  |
| Total Split (s)        | 11.0      | 23.0      | 0.0   | 11.0      | 23.0      | 0.0   | 11.0     | 29.0      | 11.0        | 17.0      | 35.0       | 11.0  |
| Total Split (%)        | 13.8%     |           |       | 13.8%     |           |       |          | 36.3%     |             |           |            | 13.8% |
| Yellow Time (s)        | 3.0       | 4.5       | 0.070 | 3.0       | 4.5       | 0.070 | 3.0      | 4.5       | 3.0         | 3.0       | 4.5        | 3.0   |
| All-Red Time (s)       | 0.0       | 1.5       |       | 0.0       |           |       | 1.0      |           | 0.0         | 1.0       | 1.5        | 0.0   |
| Lead/Lag               | Lead      | Lag       |       | Lead      | Lag       |       | Lead     | Lag       | Lead        | Lead      | Lag        | Lead  |
| Lead-Lag Optimize?     | Leau      | Lag       |       | Leau      | Lag       |       | Leau     | Lag       | Leau        | Leau      | Lag        | Leau  |
| Recall Mode            | None      | None      |       | None      | None      |       | None     | C-Max     | None        | None      | C-Max      | None  |
| Act Effct Green (s)    | 9.3       | 8.5       |       | 9.7       | 8.4       |       | 55.0     | 47.6      | 57.5        | 59.1      | 51.2       | 60.6  |
| Actuated g/C Ratio     | 0.12      | 0.11      |       | 0.12      | 0.10      |       | 0.69     | 0.60      | 0.72        | 0.74      | 0.64       | 0.76  |
| v/c Ratio              | 0.12      | 0.11      |       | 0.12      | 0.10      |       | 0.09     | 0.35      | 0.72        | 0.74      | 0.40       | 0.76  |
| Control Delay          | 27.0      | 21.3      |       | 26.2      | 19.0      |       | 6.3      | 16.1      | 9.0         | 20.0      | 1.4        | 0.03  |
| Queue Delay            | 0.0       | 0.0       |       | 0.0       | 0.0       |       | 0.0      | 0.0       | 0.0         | 0.0       | 0.0        | 0.0   |
| Total Delay            | 27.0      | 21.3      |       | 26.2      | 19.0      |       | 6.3      | 16.1      | 9.0         | 20.0      | 1.4        | 0.0   |
| LOS                    | 27.0<br>C | 21.3<br>C |       | 20.2<br>C | 19.0<br>B |       | 6.5<br>A | В         | 9.0<br>A    | 20.0<br>C |            | Ο. 1  |
|                        | C         |           |       | C         |           |       | А        |           | A           | C         | A          | A     |
| Approach LOS           |           | 23.8      |       |           | 21.2<br>C |       |          | 14.1<br>B |             |           | 4.0        |       |
| Approach LOS           | 40        | C<br>16   |       | 4.4       |           |       | 1 1      |           | 04          | 400       | A 27       |       |
| Stops (vph)            | 19        | 16        |       | 14        | 18        |       | 44       | 621       | 94          | 126       | 37         | 0     |
| Fuel Used(gal)         | 0         | 0         |       | 0         | 0         |       | 2        | 21        | 3           | 5         | 9          | 1     |
| CO Emissions (g/hr)    | 23        | 24        |       | 16        | 28        |       | 128      | 1460      | 236         | 328       | 653        | 72    |

|                         | ᄼ    | -    | •   | •    | ←    | •   | •    | <b>†</b> | -    | -    | ļ    | 4    |
|-------------------------|------|------|-----|------|------|-----|------|----------|------|------|------|------|
| Lane Group              | EBL  | EBT  | EBR | WBL  | WBT  | WBR | NBL  | NBT      | NBR  | SBL  | SBT  | SBR  |
| NOx Emissions (g/hr)    | 4    | 5    |     | 3    | 5    |     | 25   | 284      | 46   | 64   | 127  | 14   |
| VOC Emissions (g/hr)    | 5    | 6    |     | 4    | 6    |     | 30   | 338      | 55   | 76   | 151  | 17   |
| Dilemma Vehicles (#)    | 0    | 0    |     | 0    | 0    |     | 0    | 2        | 0    | 0    | 32   | 0    |
| Queue Length 50th (ft)  | 10   | 5    |     | 8    | 5    |     | 2    | 106      | 7    | 31   | 8    | 0    |
| Queue Length 95th (ft)  | 25   | 27   |     | 21   | 31   |     | m44  | 280      | 103  | m91  | 17   | m0   |
| Internal Link Dist (ft) |      | 618  |     |      | 510  |     |      | 1409     |      |      | 1402 |      |
| Turn Bay Length (ft)    | 265  |      |     | 400  |      |     | 400  |          | 400  | 265  |      | 265  |
| Base Capacity (vph)     | 223  | 415  |     | 223  | 416  |     | 401  | 2218     | 1203 | 467  | 2384 | 1257 |
| Starvation Cap Reductn  | 0    | 0    |     | 0    | 0    |     | 0    | 0        | 0    | 0    | 0    | 0    |
| Spillback Cap Reductn   | 0    | 0    |     | 0    | 0    |     | 0    | 0        | 0    | 0    | 0    | 0    |
| Storage Cap Reductn     | 0    | 0    |     | 0    | 0    |     | 0    | 0        | 0    | 0    | 0    | 0    |
| Reduced v/c Ratio       | 0.09 | 0.07 |     | 0.07 | 0.09 |     | 0.25 | 0.35     | 0.13 | 0.39 | 0.40 | 0.09 |

Area Type: Other

Cycle Length: 80

Actuated Cycle Length: 80

Offset: 24 (30%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 65

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.48

Intersection LOS: A Intersection Signal Delay: 9.2 Intersection Capacity Utilization 46.8% ICU Level of Service A

Analysis Period (min) 15

Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 36: Access "C" & Brisbin Road



|                        | ۶     | <b>→</b> | •    | •     | <b>+</b> | •    | •     | †        | ~     | <b>/</b> | <b>↓</b> | -√    |
|------------------------|-------|----------|------|-------|----------|------|-------|----------|-------|----------|----------|-------|
| Lane Group             | EBL   | EBT      | EBR  | WBL   | WBT      | WBR  | NBL   | NBT      | NBR   | SBL      | SBT      | SBR   |
| Lane Configurations    | ች     | 4        |      | ች     | 4        |      | ች     | <b>^</b> | 7     | ች        | <b>^</b> | 7     |
| Ideal Flow (vphpl)     | 1900  | 1900     | 1900 | 1900  | 1900     | 1900 | 1900  | 2000     | 1900  | 1900     | 2000     | 1900  |
| Storage Length (ft)    | 265   |          | 400  | 400   |          | 0    | 400   |          | 265   | 265      |          | 265   |
| Storage Lanes          | 1     |          | 0    | 1     |          | 0    | 1     |          | 1     | 1        |          | 1     |
| Total Lost Time (s)    | 4.0   | 4.0      | 4.0  | 4.0   | 4.0      | 4.0  | 4.0   | 4.0      | 4.0   | 4.0      | 4.0      | 4.0   |
| Leading Detector (ft)  | 50    | 50       |      | 50    | 50       |      | 50    | 50       | 50    | 50       | 50       | 50    |
| Trailing Detector (ft) | 0     | 0        |      | 0     | 0        |      | 0     | 0        | 0     | 0        | 0        | 0     |
| Turning Speed (mph)    | 15    |          | 9    | 15    |          | 9    | 15    |          | 9     | 15       |          | 9     |
| Lane Util. Factor      | 1.00  | 1.00     | 1.00 | 1.00  | 1.00     | 1.00 | 1.00  | 0.95     | 1.00  | 1.00     | 0.95     | 1.00  |
| Frt                    |       | 0.902    |      |       | 0.895    |      |       |          | 0.850 |          |          | 0.850 |
| Flt Protected          | 0.950 |          |      | 0.950 |          |      | 0.950 |          |       | 0.950    |          |       |
| Satd. Flow (prot)      | 1770  | 1680     | 0    | 1770  | 1667     | 0    | 1770  | 3725     | 1583  | 1770     | 3725     | 1583  |
| Flt Permitted          | 0.733 |          |      | 0.736 |          |      | 0.118 |          |       | 0.405    |          |       |
| Satd. Flow (perm)      | 1365  | 1680     | 0    | 1371  | 1667     | 0    | 220   | 3725     | 1583  | 754      | 3725     | 1583  |
| Right Turn on Red      |       |          | Yes  |       |          | Yes  |       |          | Yes   |          |          | Yes   |
| Satd. Flow (RTOR)      |       | 21       |      |       | 26       |      |       |          | 68    |          |          | 126   |
| Headway Factor         | 1.00  | 1.00     | 1.00 | 1.00  | 1.00     | 1.00 | 1.00  | 1.00     | 1.00  | 1.00     | 1.00     | 1.00  |
| Link Speed (mph)       |       | 30       |      |       | 30       |      |       | 55       |       |          | 55       |       |
| Link Distance (ft)     |       | 807      |      |       | 661      |      |       | 1320     |       |          | 1319     |       |
| Travel Time (s)        |       | 18.3     |      |       | 15.0     |      |       | 16.4     |       |          | 16.4     |       |
| Volume (vph)           | 25    | 10       | 20   | 10    | 10       | 25   | 105   | 490      | 65    | 80       | 1285     | 120   |
| Peak Hour Factor       | 0.95  | 0.95     | 0.95 | 0.95  | 0.95     | 0.95 | 0.95  | 0.95     | 0.95  | 0.95     | 0.95     | 0.95  |
| Adj. Flow (vph)        | 26    | 11       | 21   | 11    | 11       | 26   | 111   | 516      | 68    | 84       | 1353     | 126   |
| Lane Group Flow (vph)  | 26    | 32       | 0    | 11    | 37       | 0    | 111   | 516      | 68    | 84       | 1353     | 126   |
| Turn Type              | pm+pt |          |      | pm+pt |          |      | pm+pt |          | pm+ov |          |          | pm+ov |
| Protected Phases       | 7     | 4        |      | 3     | 8        |      | 5     | 2        | 3     | 1        | 6        | 7     |
| Permitted Phases       | 4     |          |      | 8     |          |      | 2     |          | 2     | 6        |          | 6     |
| Detector Phases        | 7     | 4        |      | 3     | 8        |      | 5     | 2        | 3     | 1        | 6        | 7     |
| Minimum Initial (s)    | 4.0   | 4.0      |      | 4.0   | 4.0      |      | 4.0   | 4.0      | 4.0   | 4.0      | 4.0      | 4.0   |
| Minimum Split (s)      | 10.0  | 22.0     |      | 10.0  | 22.0     |      | 10.0  | 22.0     | 10.0  | 10.0     | 22.0     | 10.0  |
| Total Split (s)        | 10.0  | 22.0     | 0.0  | 10.0  | 22.0     | 0.0  | 10.0  | 38.0     | 10.0  | 10.0     | 38.0     | 10.0  |
| Total Split (%)        | 12.5% |          | 0.0% | 12.5% |          |      |       |          | 12.5% |          | 47.5%    | 12.5% |
| Yellow Time (s)        | 3.0   | 4.5      |      | 3.0   | 4.5      |      | 3.0   | 4.5      | 3.0   | 3.0      | 4.5      | 3.0   |
| All-Red Time (s)       | 0.0   | 1.5      |      | 0.0   |          |      | 1.0   |          | 0.0   | 1.0      | 1.5      | 0.0   |
| Lead/Lag               | Lead  | Lag      |      | Lead  | Lag      |      | Lead  | Lag      | Lead  | Lead     | Lag      | Lead  |
| Lead-Lag Optimize?     |       |          |      |       |          |      |       | J        |       |          | Ŭ        |       |
| Recall Mode            | None  | None     |      | None  | None     |      | None  | C-Max    | None  | None     | C-Max    | None  |
| Act Effct Green (s)    | 9.2   | 8.4      |      | 9.2   | 8.4      |      | 62.0  | 56.0     | 63.7  | 56.1     | 52.5     | 60.2  |
| Actuated g/C Ratio     | 0.12  | 0.10     |      | 0.12  | 0.10     |      | 0.78  | 0.70     | 0.80  | 0.70     | 0.66     | 0.75  |
| v/c Ratio              | 0.14  | 0.16     |      | 0.06  | 0.19     |      | 0.32  | 0.20     | 0.05  | 0.14     | 0.55     | 0.10  |
| Control Delay          | 27.8  | 20.1     |      | 25.5  | 19.0     |      | 16.7  | 17.5     | 3.9   | 0.8      | 2.1      | 0.1   |
| Queue Delay            | 0.0   | 0.0      |      | 0.0   | 0.0      |      | 0.0   | 0.0      | 0.0   | 0.0      | 0.0      | 0.0   |
| Total Delay            | 27.8  | 20.1     |      | 25.5  | 19.0     |      | 16.7  | 17.5     | 3.9   | 0.8      | 2.1      | 0.1   |
| LOS                    | С     | С        |      | С     | В        |      | В     | В        | Α     | Α        | Α        | Α     |
| Approach Delay         |       | 23.6     |      |       | 20.5     |      |       | 16.0     |       |          | 1.9      |       |
| Approach LOS           |       | C        |      |       | C        |      |       | В        |       |          | Α        |       |
| Stops (vph)            | 23    | 16       |      | 10    | 18       |      | 44    | 350      | 14    | 2        | 61       | 0     |
| Fuel Used(gal)         | 0     | 0        |      | 0     | 0        |      | 2     | 12       | 1     |          | 12       | 1     |
| CO Emissions (g/hr)    | 30    | 28       |      | 11    | 29       |      | 143   | 863      | 60    | 50       | 869      | 70    |

|                         | ᄼ    | -    | •   | •    | •    | •   | •    | <b>†</b> | -    | -    | <b>↓</b> | 4    |
|-------------------------|------|------|-----|------|------|-----|------|----------|------|------|----------|------|
| Lane Group              | EBL  | EBT  | EBR | WBL  | WBT  | WBR | NBL  | NBT      | NBR  | SBL  | SBT      | SBR  |
| NOx Emissions (g/hr)    | 6    | 5    |     | 2    | 6    |     | 28   | 168      | 12   | 10   | 169      | 14   |
| VOC Emissions (g/hr)    | 7    | 6    |     | 3    | 7    |     | 33   | 200      | 14   | 12   | 201      | 16   |
| Dilemma Vehicles (#)    | 0    | 0    |     | 0    | 0    |     | 0    | 62       | 0    | 0    | 60       | 0    |
| Queue Length 50th (ft)  | 13   | 5    |     | 5    | 5    |     | 10   | 38       | 3    | 1    | 7        | 0    |
| Queue Length 95th (ft)  | 29   | 29   |     | 16   | 31   |     | 104  | 184      | 8    | m2   | #18      | m0   |
| Internal Link Dist (ft) |      | 727  |     |      | 581  |     |      | 1240     |      |      | 1239     |      |
| Turn Bay Length (ft)    | 265  |      |     | 400  |      |     | 400  |          | 265  | 265  |          | 265  |
| Base Capacity (vph)     | 199  | 394  |     | 199  | 395  |     | 349  | 2608     | 1280 | 608  | 2444     | 1227 |
| Starvation Cap Reductn  | 0    | 0    |     | 0    | 0    |     | 0    | 0        | 0    | 0    | 0        | 0    |
| Spillback Cap Reductn   | 0    | 0    |     | 0    | 0    |     | 0    | 0        | 0    | 0    | 0        | 0    |
| Storage Cap Reductn     | 0    | 0    |     | 0    | 0    |     | 0    | 0        | 0    | 0    | 0        | 0    |
| Reduced v/c Ratio       | 0.13 | 0.08 |     | 0.06 | 0.09 |     | 0.32 | 0.20     | 0.05 | 0.14 | 0.55     | 0.10 |

Area Type: Other

Cycle Length: 80

Actuated Cycle Length: 80

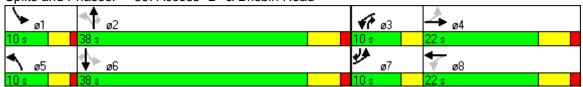
Offset: 60 (75%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 75

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.55

Intersection Signal Delay: 7.0 Intersection LOS: A
Intersection Capacity Utilization 57.6% ICU Level of Service B


Analysis Period (min) 15

# 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 39: Access "B" & Brisbin Road



|                        | ۶     | <b>→</b> | •     | •     | <b>←</b> | •     | •     | †        | <i>&gt;</i> | <b>/</b> | <b>↓</b> | -√    |
|------------------------|-------|----------|-------|-------|----------|-------|-------|----------|-------------|----------|----------|-------|
| Lane Group             | EBL   | EBT      | EBR   | WBL   | WBT      | WBR   | NBL   | NBT      | NBR         | SBL      | SBT      | SBR   |
| Lane Configurations    | ች     | <b>^</b> | 7     | ች     | <b>^</b> | 7     | *     | <b>^</b> | 7           | ች        | <b>^</b> | 7     |
| Ideal Flow (vphpl)     | 1900  | 2000     | 1900  | 1900  | 2000     | 1900  | 1900  | 2000     | 1900        | 1900     | 2000     | 1900  |
| Storage Length (ft)    | 265   |          | 265   | 265   |          | 265   | 265   |          | 265         | 265      |          | 265   |
| Storage Lanes          | 1     |          | 1     | 1     |          | 1     | 1     |          | 1           | 1        |          | 1     |
| Total Lost Time (s)    | 4.0   | 4.0      | 4.0   | 4.0   | 4.0      | 4.0   | 4.0   | 4.0      | 4.0         | 4.0      | 4.0      | 4.0   |
| Leading Detector (ft)  | 50    | 50       | 50    | 50    | 50       | 50    | 50    | 50       | 50          | 50       | 50       | 50    |
| Trailing Detector (ft) | 0     | 0        | 0     | 0     | 0        | 0     | 0     | 0        | 0           | 0        | 0        | 0     |
| Turning Speed (mph)    | 15    |          | 9     | 15    |          | 9     | 15    |          | 9           | 15       |          | 9     |
| Lane Util. Factor      | 1.00  | 0.95     | 1.00  | 1.00  | 0.95     | 1.00  | 1.00  | 0.95     | 1.00        | 1.00     | 0.95     | 1.00  |
| Frt                    |       |          | 0.850 |       |          | 0.850 |       |          | 0.850       |          |          | 0.850 |
| Flt Protected          | 0.950 |          |       | 0.950 |          |       | 0.950 |          |             | 0.950    |          |       |
| Satd. Flow (prot)      | 1770  | 3725     | 1583  | 1770  | 3725     | 1583  | 1770  | 3725     | 1583        | 1770     | 3725     | 1583  |
| Flt Permitted          | 0.296 |          |       | 0.629 |          |       | 0.118 |          |             | 0.455    |          |       |
| Satd. Flow (perm)      | 551   | 3725     | 1583  | 1172  | 3725     | 1583  | 220   | 3725     | 1583        | 848      | 3725     | 1583  |
| Right Turn on Red      |       |          | Yes   |       |          | Yes   |       |          | Yes         |          |          | Yes   |
| Satd. Flow (RTOR)      |       |          | 21    |       |          | 37    |       |          | 37          |          |          | 105   |
| Headway Factor         | 1.00  | 1.00     | 1.00  | 1.00  | 1.00     | 1.00  | 1.00  | 1.00     | 1.00        | 1.00     | 1.00     | 1.00  |
| Link Speed (mph)       |       | 30       |       |       | 30       |       |       | 55       |             |          | 55       |       |
| Link Distance (ft)     |       | 827      |       |       | 693      |       |       | 1319     |             |          | 1311     |       |
| Travel Time (s)        |       | 18.8     |       |       | 15.8     |       |       | 16.4     |             |          | 16.3     |       |
| Volume (vph)           | 10    | 185      | 20    | 25    | 475      | 35    | 85    | 420      | 35          | 40       | 1445     | 100   |
| Peak Hour Factor       | 0.95  | 0.95     | 0.95  | 0.95  | 0.95     | 0.95  | 0.95  | 0.95     | 0.95        | 0.95     | 0.95     | 0.95  |
| Adj. Flow (vph)        | 11    | 195      | 21    | 26    | 500      | 37    | 89    | 442      | 37          | 42       | 1521     | 105   |
| Lane Group Flow (vph)  | 11    | 195      | 21    | 26    | 500      | 37    | 89    | 442      | 37          | 42       | 1521     | 105   |
| Turn Type              | pm+pt |          | pm+ov | pm+pt |          | pm+ov | pm+pt |          | pm+ov       | pm+pt    |          | pm+ov |
| Protected Phases       | 7     | 4        | 5     | 3     | 8        | 1     | 5     | 2        | 3           | 1        | 6        | 7     |
| Permitted Phases       | 4     |          | 4     | 8     |          | 8     | 2     |          | 2           | 6        |          | 6     |
| Detector Phases        | 7     | 4        | 5     | 3     | 8        | 1     | 5     | 2        | 3           | 1        | 6        | 7     |
| Minimum Initial (s)    | 4.0   | 4.0      | 4.0   | 4.0   | 4.0      | 4.0   | 4.0   | 4.0      | 4.0         | 4.0      | 4.0      | 4.0   |
| Minimum Split (s)      | 10.0  | 22.0     | 10.0  | 10.0  | 22.0     | 10.0  | 10.0  | 22.0     | 10.0        | 10.0     | 22.0     | 10.0  |
| Total Split (s)        | 10.0  | 22.0     | 10.0  | 10.0  | 22.0     | 10.0  | 10.0  | 38.0     | 10.0        | 10.0     | 38.0     | 10.0  |
| Total Split (%)        | 12.5% | 27.5%    | 12.5% | 12.5% | 27.5%    | 12.5% | 12.5% | 47.5%    | 12.5%       | 12.5%    | 47.5%    | 12.5% |
| Yellow Time (s)        | 3.0   | 4.5      | 3.0   | 3.0   | 4.5      | 3.0   | 3.0   | 4.5      | 3.0         | 3.0      | 4.5      | 3.0   |
| All-Red Time (s)       | 0.0   | 1.5      | 1.0   | 0.0   | 1.5      | 1.0   | 1.0   | 1.5      | 0.0         | 1.0      | 1.5      | 0.0   |
| Lead/Lag               | Lead  | Lag      | Lead  | Lead  | Lag      | Lead  | Lead  | Lag      | Lead        | Lead     | Lag      | Lead  |
| Lead-Lag Optimize?     |       |          |       |       | J        |       |       | Ŭ        |             |          |          |       |
| Recall Mode            | None  | None     | None  | None  | None     | None  | None  | C-Max    | None        | None     | C-Max    | None  |
| Act Effct Green (s)    | 21.5  | 18.3     | 28.3  | 21.2  | 16.9     | 26.4  | 45.8  | 42.1     | 51.4        | 44.3     | 39.8     | 48.8  |
| Actuated g/C Ratio     | 0.27  | 0.23     | 0.35  | 0.26  | 0.21     | 0.33  | 0.57  | 0.53     | 0.64        | 0.55     | 0.50     | 0.61  |
| v/c Ratio              | 0.05  | 0.23     | 0.04  | 0.07  | 0.64     | 0.07  | 0.37  | 0.23     | 0.04        | 0.08     | 0.82     | 0.10  |
| Control Delay          | 17.9  | 25.8     | 7.8   | 18.2  | 32.5     | 6.6   | 25.3  | 6.2      | 0.4         | 0.8      | 8.7      | 0.4   |
| Queue Delay            | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      | 0.0         | 0.0      | 0.0      | 0.0   |
| Total Delay            | 17.9  | 25.8     | 7.8   | 18.2  | 32.5     | 6.6   | 25.3  | 6.2      | 0.4         | 0.8      | 8.7      | 0.4   |
| LOS                    | В     | С        | Α     | В     | С        | Α     | С     | Α        | Α           | Α        | Α        | Α     |
| Approach Delay         |       | 23.8     |       |       | 30.2     |       |       | 8.8      |             |          | 8.0      |       |
| Approach LOS           |       | C        |       |       | C        |       |       | A        |             |          | A        |       |
| Stops (vph)            | 8     | 144      | 7     | 18    | 416      | 9     | 56    | 92       | 0           | 2        | 426      | 2     |
| Fuel Used(gal)         | 0     | 3        | 0     | 0     | 8        | 0     | 2     |          | 0           | 0        | 22       | 1     |
| (0)                    |       |          |       |       |          |       |       |          |             |          |          |       |

|                         | ۶    | <b>→</b> | $\rightarrow$ | •    | <b>←</b> | •    | 4    | <b>†</b> | <b>/</b> | <b>&gt;</b> | ļ    | 4    |
|-------------------------|------|----------|---------------|------|----------|------|------|----------|----------|-------------|------|------|
| Lane Group              | EBL  | EBT      | EBR           | WBL  | WBT      | WBR  | NBL  | NBT      | NBR      | SBL         | SBT  | SBR  |
| NOx Emissions (g/hr)    | 2    | 40       | 3             | 4    | 109      | 4    | 30   | 78       | 4        | 5           | 306  | 12   |
| VOC Emissions (g/hr)    | 2    | 48       | 3             | 5    | 130      | 5    | 35   | 93       | 5        | 6           | 364  | 14   |
| Dilemma Vehicles (#)    | 0    | 0        | 0             | 0    | 0        | 0    | 0    | 56       | 0        | 0           | 61   | 0    |
| Queue Length 50th (ft)  | 4    | 42       | 0             | 9    | 118      | 0    | 11   | 20       | 1        | 1           | 13   | 1    |
| Queue Length 95th (ft)  | 14   | 70       | 14            | 25   | 166      | 19   | 74   | 67       | 0        | m1          | #505 | m0   |
| Internal Link Dist (ft) |      | 747      |               |      | 613      |      |      | 1239     |          |             | 1231 |      |
| Turn Bay Length (ft)    | 265  |          | 265           | 265  |          | 265  | 265  |          | 265      | 265         |      | 265  |
| Base Capacity (vph)     | 243  | 899      | 575           | 363  | 848      | 557  | 243  | 1962     | 1045     | 542         | 1854 | 1025 |
| Starvation Cap Reductn  | 0    | 0        | 0             | 0    | 0        | 0    | 0    | 0        | 0        | 0           | 0    | 0    |
| Spillback Cap Reductn   | 0    | 0        | 0             | 0    | 0        | 0    | 0    | 0        | 0        | 0           | 0    | 0    |
| Storage Cap Reductn     | 0    | 0        | 0             | 0    | 0        | 0    | 0    | 0        | 0        | 0           | 0    | 0    |
| Reduced v/c Ratio       | 0.05 | 0.22     | 0.04          | 0.07 | 0.59     | 0.07 | 0.37 | 0.23     | 0.04     | 0.08        | 0.82 | 0.10 |

Area Type: Other

Cycle Length: 80

Actuated Cycle Length: 80

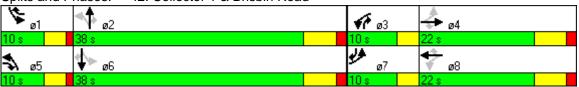
Offset: 44 (55%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 80

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.82
Intersection Signal Delay: 13.4

Intersection Signal Delay: 13.4 Intersection LOS: B
Intersection Capacity Utilization 71.8% ICU Level of Service C


Analysis Period (min) 15

# 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 42: Collector 1 & Brisbin Road



|                        | ۶     | <b>→</b> | •    | •     | +     | •    | •     | †        | <i>&gt;</i> | <b>/</b> | <b></b>  | -√    |
|------------------------|-------|----------|------|-------|-------|------|-------|----------|-------------|----------|----------|-------|
| Lane Group             | EBL   | EBT      | EBR  | WBL   | WBT   | WBR  | NBL   | NBT      | NBR         | SBL      | SBT      | SBR   |
| Lane Configurations    | ች     | ₽        |      | ች     | 4     |      | *     | <b>^</b> | #           | ች        | <b>^</b> | 7     |
| Ideal Flow (vphpl)     | 1900  | 1900     | 1900 | 1900  | 1900  | 1900 | 1900  | 2000     | 1900        | 1900     | 2000     | 1900  |
| Storage Length (ft)    | 265   |          | 0    | 265   |       | 0    | 265   |          | 265         | 265      |          | 265   |
| Storage Lanes          | 1     |          | 0    | 1     |       | 0    | 1     |          | 1           | 1        |          | 1     |
| Total Lost Time (s)    | 4.0   | 4.0      | 4.0  | 4.0   | 4.0   | 4.0  | 4.0   | 4.0      | 4.0         | 4.0      | 4.0      | 4.0   |
| Leading Detector (ft)  | 50    | 50       |      | 50    | 50    |      | 50    | 50       | 50          | 50       | 50       | 50    |
| Trailing Detector (ft) | 0     | 0        |      | 0     | 0     |      | 0     | 0        | 0           | 0        | 0        | 0     |
| Turning Speed (mph)    | 15    |          | 9    | 15    |       | 9    | 15    |          | 9           | 15       |          | 9     |
| Lane Util. Factor      | 1.00  | 1.00     | 1.00 | 1.00  | 1.00  | 1.00 | 1.00  | 0.95     | 1.00        | 1.00     | 0.95     | 1.00  |
| Frt                    |       | 0.902    |      |       | 0.902 |      |       |          | 0.850       |          |          | 0.850 |
| Flt Protected          | 0.950 |          |      | 0.950 |       |      | 0.950 |          |             | 0.950    |          |       |
| Satd. Flow (prot)      | 1770  | 1680     | 0    | 1770  | 1680  | 0    | 1770  | 3725     | 1583        | 1770     | 3725     | 1583  |
| Flt Permitted          | 0.736 |          |      | 0.736 |       |      | 0.118 |          |             | 0.512    |          |       |
| Satd. Flow (perm)      | 1371  | 1680     | 0    | 1371  | 1680  | 0    | 220   | 3725     | 1583        | 954      | 3725     | 1583  |
| Right Turn on Red      |       |          | Yes  |       |       | Yes  |       |          | Yes         |          |          | Yes   |
| Satd. Flow (RTOR)      |       | 21       |      |       | 21    |      |       |          | 5           |          |          | 132   |
| Headway Factor         | 1.00  | 1.00     | 1.00 | 1.00  | 1.00  | 1.00 | 1.00  | 1.00     | 1.00        | 1.00     | 1.00     | 1.00  |
| Link Speed (mph)       |       | 30       |      |       | 30    |      |       | 55       |             |          | 55       |       |
| Link Distance (ft)     |       | 846      |      |       | 726   |      |       | 1311     |             |          | 1320     |       |
| Travel Time (s)        |       | 19.2     |      |       | 16.5  |      |       | 16.3     |             |          | 16.4     |       |
| Volume (vph)           | 20    | 10       | 20   | 10    | 10    | 20   | 115   | 345      | 5           | 10       | 1555     | 125   |
| Peak Hour Factor       | 0.95  | 0.95     | 0.95 | 0.95  | 0.95  | 0.95 | 0.95  | 0.95     | 0.95        | 0.95     | 0.95     | 0.95  |
| Adj. Flow (vph)        | 21    | 11       | 21   | 11    | 11    | 21   | 121   | 363      | 5           | 11       | 1637     | 132   |
| Lane Group Flow (vph)  |       | 32       | 0    | 11    | 32    | 0    | 121   | 363      | 5           | 11       | 1637     | 132   |
| Turn Type              | pm+pt |          |      | pm+pt |       |      | pm+pt |          | pm+ov       | pm+pt    |          | pm+ov |
| Protected Phases       | 7     | 4        |      | 3     | 8     |      | 5     | 2        | 3           | 1        | 6        | 7     |
| Permitted Phases       | 4     |          |      | 8     |       |      | 2     |          | 2           | 6        |          | 6     |
| Detector Phases        | 7     | 4        |      | 3     | 8     |      | 5     | 2        | 3           | 1        | 6        | 7     |
| Minimum Initial (s)    | 4.0   | 4.0      |      | 4.0   | 4.0   |      | 4.0   | 4.0      | 4.0         | 4.0      | 4.0      | 4.0   |
| Minimum Split (s)      | 10.0  | 22.0     |      | 10.0  | 22.0  |      | 10.0  | 22.0     | 10.0        | 10.0     | 22.0     | 10.0  |
| Total Split (s)        | 10.0  | 22.0     | 0.0  | 10.0  | 22.0  | 0.0  | 10.0  | 38.0     | 10.0        | 10.0     | 38.0     | 10.0  |
| Total Split (%)        | 12.5% | 27.5%    | 0.0% | 12.5% | 27.5% | 0.0% | 12.5% | 47.5%    | 12.5%       | 12.5%    | 47.5%    | 12.5% |
| Yellow Time (s)        | 3.0   | 4.5      |      | 3.0   | 4.5   |      | 3.0   | 4.5      | 3.0         | 3.0      | 4.5      | 3.0   |
| All-Red Time (s)       | 0.0   | 1.5      |      | 0.0   | 1.5   |      | 1.0   | 1.5      | 0.0         | 1.0      | 1.5      | 0.0   |
| Lead/Lag               | Lead  | Lag      |      | Lead  | Lag   |      | Lead  | Lag      | Lead        | Lead     | Lag      | Lead  |
| Lead-Lag Optimize?     |       |          |      |       |       |      |       |          |             |          |          |       |
| Recall Mode            | None  | None     |      | None  | None  |      | None  | C-Max    | None        | None     | C-Max    | None  |
| Act Effct Green (s)    | 10.8  | 8.5      |      | 8.8   | 8.3   |      | 59.7  | 57.8     | 66.8        | 52.4     | 48.0     | 59.7  |
| Actuated g/C Ratio     | 0.14  | 0.11     |      | 0.11  | 0.10  |      | 0.75  | 0.72     | 0.84        | 0.66     | 0.60     | 0.75  |
| v/c Ratio              | 0.10  | 0.16     |      | 0.06  | 0.16  |      | 0.34  | 0.13     | 0.00        | 0.02     | 0.73     | 0.11  |
| Control Delay          | 26.4  | 20.1     |      | 25.9  | 20.3  |      | 11.3  | 8.2      | 3.4         | 0.3      | 6.2      | 0.1   |
| Queue Delay            | 0.0   | 0.0      |      | 0.0   | 0.0   |      | 0.0   | 0.0      | 0.0         | 0.0      | 0.0      | 0.0   |
| Total Delay            | 26.4  | 20.1     |      | 25.9  | 20.3  |      | 11.3  | 8.2      | 3.4         | 0.3      | 6.2      | 0.1   |
| LOS                    | С     | С        |      | С     | С     |      | В     | Α        | Α           | Α        | Α        | Α     |
| Approach Delay         |       | 22.6     |      |       | 21.7  |      |       | 8.9      |             |          | 5.7      |       |
| Approach LOS           |       | C        |      |       | С     |      |       | A        |             |          | Α        |       |
| Stops (vph)            | 19    | 16       |      | 11    | 16    |      | 81    | 218      | 2           | 0        | 234      | 0     |
| Fuel Used(gal)         | 0     | 0        |      | 0     | 0     |      | 3     | 7        | 0           | 0        | 19       | 1     |
| CO Emissions (g/hr)    | 24    | 29       |      | 12    | 27    |      | 190   | 524      | 6           | 6        | 1350     | 73    |

|                         | ۶    | <b>→</b> | $\rightarrow$ | •    | <b>←</b> | •   | 1    | <b>†</b> | _    | -    | ţ    | 4    |
|-------------------------|------|----------|---------------|------|----------|-----|------|----------|------|------|------|------|
| Lane Group              | EBL  | EBT      | EBR           | WBL  | WBT      | WBR | NBL  | NBT      | NBR  | SBL  | SBT  | SBR  |
| NOx Emissions (g/hr)    | 5    | 6        |               | 2    | 5        |     | 37   | 102      | 1    | 1    | 263  | 14   |
| VOC Emissions (g/hr)    | 6    | 7        |               | 3    | 6        |     | 44   | 121      | 1    | 1    | 313  | 17   |
| Dilemma Vehicles (#)    | 0    | 0        |               | 0    | 0        |     | 0    | 57       | 0    | 0    | 46   | 0    |
| Queue Length 50th (ft)  | 10   | 5        |               | 5    | 5        |     | 27   | 48       | 0    | 0    | 6    | 0    |
| Queue Length 95th (ft)  | 25   | 29       |               | 16   | 30       |     | 88   | 119      | m3   | m0   | #581 | m0   |
| Internal Link Dist (ft) |      | 766      |               |      | 646      |     |      | 1231     |      |      | 1240 |      |
| Turn Bay Length (ft)    | 265  |          |               | 265  |          |     | 265  |          | 265  | 265  |      | 265  |
| Base Capacity (vph)     | 221  | 394      |               | 198  | 394      |     | 353  | 2692     | 1343 | 690  | 2233 | 1215 |
| Starvation Cap Reductn  | 0    | 0        |               | 0    | 0        |     | 0    | 0        | 0    | 0    | 0    | 0    |
| Spillback Cap Reductn   | 0    | 0        |               | 0    | 0        |     | 0    | 0        | 0    | 0    | 0    | 0    |
| Storage Cap Reductn     | 0    | 0        |               | 0    | 0        |     | 0    | 0        | 0    | 0    | 0    | 0    |
| Reduced v/c Ratio       | 0.10 | 0.08     |               | 0.06 | 0.08     |     | 0.34 | 0.13     | 0.00 | 0.02 | 0.73 | 0.11 |

Area Type: Other

Cycle Length: 80

Actuated Cycle Length: 80

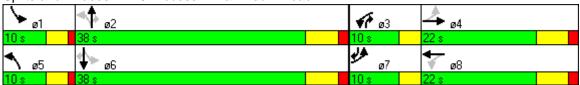
Offset: 28 (35%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 80

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.73
Intersection Signal Delay: 7.0

Intersection Signal Delay: 7.0 Intersection LOS: A
Intersection Capacity Utilization 65.0% ICU Level of Service C


Analysis Period (min) 15

# 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 45: Access "A" & Brisbin Road



|                             | ۶         | <b>→</b>   | •        | •         | <b>+</b>   | •     | 4        | <b>†</b>   | <i>&gt;</i> | <b>/</b> | <b>+</b>   | -√       |
|-----------------------------|-----------|------------|----------|-----------|------------|-------|----------|------------|-------------|----------|------------|----------|
| Lane Group                  | EBL       | EBT        | EBR      | WBL       | WBT        | WBR   | NBL      | NBT        | NBR         | SBL      | SBT        | SBR      |
| Lane Configurations         | ች         | <b>*</b>   | 1        | ች         | <b>*</b>   | 7     | *        | <b>^</b>   | 1           | ች        | <b>^</b>   | 7        |
| Ideal Flow (vphpl)          | 1900      | 2000       | 1900     | 1900      | 2000       | 1900  | 1900     | 2000       | 1900        | 1900     | 2000       | 1900     |
| Storage Length (ft)         | 265       |            | 265      | 265       |            | 265   | 265      |            | 265         | 265      |            | 265      |
| Storage Lanes               | 1         |            | 1        | 1         |            | 1     | 1        |            | 1           | 1        |            | 1        |
| Total Lost Time (s)         | 4.0       | 4.0        | 4.0      | 4.0       | 4.0        | 4.0   | 4.0      | 4.0        | 4.0         | 4.0      | 4.0        | 4.0      |
| Leading Detector (ft)       | 50        | 50         | 50       | 50        | 50         | 50    | 50       | 50         | 50          | 50       | 50         | 50       |
| Trailing Detector (ft)      | 0         | 0          | 0        | 0         | 0          | 0     | 0        | 0          | 0           | 0        | 0          | 0        |
| Turning Speed (mph)         | 15        |            | 9        | 15        |            | 9     | 15       |            | 9           | 15       |            | 9        |
| Lane Util. Factor           | 1.00      | 1.00       | 1.00     | 1.00      | 1.00       | 1.00  | 1.00     | 0.95       | 1.00        | 1.00     | 0.95       | 1.00     |
| Frt                         |           |            | 0.850    |           |            | 0.850 |          |            | 0.850       |          |            | 0.850    |
| Flt Protected               | 0.950     |            |          | 0.950     |            |       | 0.950    |            |             | 0.950    |            |          |
| Satd. Flow (prot)           | 1770      | 1961       | 1583     | 1770      | 1961       | 1583  | 1770     | 3725       | 1583        | 1770     | 3725       | 1583     |
| Flt Permitted               | 0.652     |            |          | 0.222     |            |       | 0.265    |            |             | 0.062    |            |          |
| Satd. Flow (perm)           | 1215      | 1961       | 1583     | 414       | 1961       | 1583  | 494      | 3725       | 1583        | 115      | 3725       | 1583     |
| Right Turn on Red           |           |            | Yes      |           |            | Yes   |          |            | Yes         |          |            | Yes      |
| Satd. Flow (RTOR)           |           |            | 53       |           |            | 11    |          |            | 31          |          |            | 11       |
| Headway Factor              | 1.00      | 1.00       | 1.00     | 1.00      | 1.00       | 1.00  | 1.00     | 1.00       | 1.00        | 1.00     | 1.00       | 1.00     |
| Link Speed (mph)            |           | 30         |          |           | 30         |       |          | 55         |             |          | 55         |          |
| Link Distance (ft)          |           | 1533       |          |           | 1607       |       |          | 1320       |             |          | 1102       |          |
| Travel Time (s)             |           | 34.8       |          |           | 36.5       |       |          | 16.4       |             |          | 13.7       |          |
| Volume (vph)                | 55        | 280        | 50       | 5         | 90         | 10    | 5        | 2145       | 30          | 15       | 830        | 10       |
| Peak Hour Factor            | 0.95      | 0.95       | 0.95     | 0.95      | 0.95       | 0.95  | 0.95     | 0.95       | 0.95        | 0.95     | 0.95       | 0.95     |
| Adj. Flow (vph)             | 58        | 295        | 53       | 5         | 95         | 11    | 5        | 2258       | 32          | 16       | 874        | 11       |
| Lane Group Flow (vph)       | 58        | 295        | 53       | 5         | 95         | 11    | 5        | 2258       | 32          | 16       | 874        | 11       |
| Turn Type                   | pm+pt     |            | •        | pm+pt     |            | pm+ov |          |            | pm+ov       |          |            | pm+ov    |
| Protected Phases            | 7         | 4          | 5        | 3         | 8          | 1     | 5        | 2          | 3           | 1        | 6          | 7        |
| Permitted Phases            | 4         |            | 4        | 8         | •          | 8     | 2        | •          | 2           | 6        | •          | 6        |
| Detector Phases             | 7         | 4          | 5        | 3         | 8          | 1     | 5        | 2          | 3           | 1        | 6          | 7        |
| Minimum Initial (s)         | 4.0       | 4.0        | 4.0      | 4.0       | 4.0        | 4.0   | 4.0      | 4.0        | 4.0         | 4.0      | 4.0        | 4.0      |
| Minimum Split (s)           | 10.0      | 22.0       | 10.0     | 10.0      | 22.0       | 10.0  | 10.0     | 22.0       | 10.0        | 10.0     | 22.0       | 10.0     |
| Total Split (s)             | 10.0      | 22.0       | 10.0     | 10.0      | 22.0       | 10.0  | 10.0     | 68.0       | 10.0        | 10.0     | 68.0       | 10.0     |
| Total Split (%)             |           | 20.0%      | 9.1%     |           | 20.0%      | 9.1%  |          | 61.8%      | 9.1%        |          | 61.8%      | 9.1%     |
| Yellow Time (s)             | 3.0       | 4.5<br>1.5 | 3.0      | 3.0       | 4.5<br>1.5 | 3.0   | 3.0      | 4.5<br>1.5 | 3.0         | 3.0      | 4.5<br>1.5 | 3.0      |
| All-Red Time (s)            | 0.0       |            | 1.0      |           |            | 1.0   | 1.0      |            | 0.0         | 1.0      |            | 0.0      |
| Lead/Lag Lead-Lag Optimize? | Lead      | Lag        | Lead     | Lead      | Lag        | Lead  | Lead     | Lag        | Lead        | Lead     | Lag        | Lead     |
| Recall Mode                 | None      | None       | None     | None      | None       | None  | None     | C-Max      | None        | None     | C-Max      | None     |
| Act Effct Green (s)         | 23.8      | 20.2       | 29.7     | 21.5      | 17.6       | 27.3  | 73.8     | 70.5       | 79.3        | 73.4     | 68.8       | 78.5     |
| Actuated g/C Ratio          | 0.22      | 0.18       | 0.27     | 0.20      | 0.16       | 0.25  | 0.67     | 0.64       | 0.72        | 0.67     | 0.63       | 0.71     |
| v/c Ratio                   | 0.22      | 0.18       | 0.27     | 0.20      | 0.10       | 0.23  | 0.07     | 0.04       | 0.72        | 0.07     | 0.03       | 0.71     |
| Control Delay               | 34.0      | 63.1       | 9.3      | 31.4      | 43.8       | 15.6  | 3.8      | 16.7       | 0.03        | 7.2      | 11.5       | 2.9      |
| Queue Delay                 | 0.0       | 0.0        | 0.0      | 0.0       | 0.0        | 0.0   | 0.0      | 0.0        | 0.0         | 0.0      | 0.0        | 0.0      |
| Total Delay                 | 34.0      | 63.1       | 9.3      | 31.4      | 43.8       | 15.6  | 3.8      | 16.7       | 0.0         | 7.2      | 11.5       | 2.9      |
| LOS                         | 04.0<br>C | 03.1       | 9.5<br>A | 01.4<br>C | 43.0<br>D  | В     | 3.0<br>A | В          | Α           | Α        | В          | 2.9<br>A |
| Approach Delay              | U         | 51.9       | Λ.       | C         | 40.5       | D     |          | 16.5       | Α           | А        | 11.3       | $\wedge$ |
| Approach LOS                |           | 51.9<br>D  |          |           | 40.5<br>D  |       |          | 10.5<br>B  |             |          | П.3        |          |
| Stops (vph)                 | 42        | 245        | 10       | 6         | 78         | 5     | 1        | 917        | 0           | 6        | 394        | 2        |
| Fuel Used(gal)              | 1         | 8          | 10       | 0         | 2          | 0     | 0        | 42         | 0           | 0        | 15         | 0        |
| CO Emissions (g/hr)         | 89        | 580        | 52       | 9         | 165        | 13    | 4        | 2955       | 18          | 17       | 1052       | 8        |
| CO LITIISSIOTIS (9/111)     | 09        | 300        | 52       | 9         | 100        | 13    | 4        | 2300       | 10          | 17       | 1002       |          |

PM Peak Hour - Projected Traffic 11/10/2011 11-100, Brisbin Rd Kenig, Lindgren, O'Hara, Aboona, Inc

|                         | ۶    | -    | $\rightarrow$ | •    | <b>←</b> | •    | 1    | <b>†</b> | /    | -    | ļ    | 4    |
|-------------------------|------|------|---------------|------|----------|------|------|----------|------|------|------|------|
| Lane Group              | EBL  | EBT  | EBR           | WBL  | WBT      | WBR  | NBL  | NBT      | NBR  | SBL  | SBT  | SBR  |
| NOx Emissions (g/hr)    | 17   | 113  | 10            | 2    | 32       | 3    | 1    | 575      | 3    | 3    | 205  | 2    |
| VOC Emissions (g/hr)    | 21   | 134  | 12            | 2    | 38       | 3    | 1    | 685      | 4    | 4    | 244  | 2    |
| Dilemma Vehicles (#)    | 0    | 0    | 0             | 0    | 0        | 0    | 0    | 119      | 0    | 0    | 38   | 0    |
| Queue Length 50th (ft)  | 32   | 204  | 0             | 3    | 60       | 0    | 0    | ~891     | 1    | 3    | 165  | 0    |
| Queue Length 95th (ft)  | 66   | #361 | 31            | 12   | 110      | 15   | m1   | #1033    | m0   | 11   | 207  | 6    |
| Internal Link Dist (ft) |      | 1453 |               |      | 1527     |      |      | 1240     |      |      | 1022 |      |
| Turn Bay Length (ft)    | 265  |      | 265           | 265  |          | 265  | 265  |          | 265  | 265  |      | 265  |
| Base Capacity (vph)     | 293  | 359  | 473           | 158  | 327      | 405  | 402  | 2386     | 1166 | 167  | 2329 | 1137 |
| Starvation Cap Reductn  | 0    | 0    | 0             | 0    | 0        | 0    | 0    | 0        | 0    | 0    | 0    | 0    |
| Spillback Cap Reductn   | 0    | 0    | 0             | 0    | 0        | 0    | 0    | 0        | 0    | 0    | 0    | 0    |
| Storage Cap Reductn     | 0    | 0    | 0             | 0    | 0        | 0    | 0    | 0        | 0    | 0    | 0    | 0    |
| Reduced v/c Ratio       | 0.20 | 0.82 | 0.11          | 0.03 | 0.29     | 0.03 | 0.01 | 0.95     | 0.03 | 0.10 | 0.38 | 0.01 |

Area Type: Other

Cycle Length: 110

Actuated Cycle Length: 110

Offset: 20 (18%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 110

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.95

Intersection Signal Delay: 19.8 Intersection LOS: B
Intersection Capacity Utilization 77.0% ICU Level of Service D

Analysis Period (min) 15

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

# 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 4: Sherrill Road & Brisbin Road



|                        | ۶     | <b>→</b> | •     | •     | +        | •     | •     | <b>†</b> | ~     | <b>/</b> | <b>↓</b> | -√    |
|------------------------|-------|----------|-------|-------|----------|-------|-------|----------|-------|----------|----------|-------|
| Lane Group             | EBL   | EBT      | EBR   | WBL   | WBT      | WBR   | NBL   | NBT      | NBR   | SBL      | SBT      | SBR   |
| Lane Configurations    | *     | <b>^</b> | 7     | *     | <b>^</b> | 7     | *     | <b>^</b> | 7     | ች        | <b>^</b> | 7     |
| Ideal Flow (vphpl)     | 1900  | 2000     | 1900  | 1900  | 2000     | 1900  | 1900  | 2000     | 1900  | 1900     | 2000     | 1900  |
| Storage Length (ft)    | 265   |          | 400   | 400   |          | 265   | 400   |          | 400   | 265      |          | 265   |
| Storage Lanes          | 1     |          | 1     | 1     |          | 1     | 1     |          | 1     | 1        |          | 1     |
| Total Lost Time (s)    | 4.0   | 4.0      | 4.0   | 4.0   | 4.0      | 4.0   | 4.0   | 4.0      | 4.0   | 4.0      | 4.0      | 4.0   |
| Leading Detector (ft)  | 50    | 50       | 50    | 50    | 50       | 50    | 50    | 50       | 50    | 50       | 50       | 50    |
| Trailing Detector (ft) | 0     | 0        | 0     | 0     | 0        | 0     | 0     | 0        | 0     | 0        | 0        | 0     |
| Turning Speed (mph)    | 15    |          | 9     | 15    |          | 9     | 15    |          | 9     | 15       |          | 9     |
| Lane Util. Factor      | 1.00  | 0.95     | 1.00  | 1.00  | 0.95     | 1.00  | 1.00  | 0.95     | 1.00  | 1.00     | 0.95     | 1.00  |
| Frt                    |       |          | 0.850 |       |          | 0.850 |       |          | 0.850 |          |          | 0.850 |
| Flt Protected          | 0.950 |          |       | 0.950 |          |       | 0.950 |          |       | 0.950    |          |       |
| Satd. Flow (prot)      | 1770  | 3725     | 1583  | 1770  | 3725     | 1583  | 1770  | 3725     | 1583  | 1770     | 3725     | 1583  |
| Flt Permitted          | 0.205 |          |       | 0.148 |          |       | 0.153 |          |       | 0.074    |          |       |
| Satd. Flow (perm)      | 382   | 3725     | 1583  | 276   | 3725     | 1583  | 285   | 3725     | 1583  | 138      | 3725     | 1583  |
| Right Turn on Red      |       |          | Yes   |       |          | Yes   |       |          | Yes   |          |          | Yes   |
| Satd. Flow (RTOR)      |       |          | 82    |       |          | 44    |       |          | 53    |          |          | 42    |
| Headway Factor         | 1.00  | 1.00     | 1.00  | 1.00  | 1.00     | 1.00  | 1.00  | 1.00     | 1.00  | 1.00     | 1.00     | 1.00  |
| Link Speed (mph)       |       | 30       |       |       | 30       |       |       | 55       |       |          | 55       |       |
| Link Distance (ft)     |       | 739      |       |       | 617      |       |       | 1482     |       |          | 1320     |       |
| Travel Time (s)        |       | 16.8     |       |       | 14.0     |       |       | 18.4     |       |          | 16.4     |       |
| Volume (vph)           | 115   | 675      | 90    | 110   | 585      | 140   | 35    | 1505     | 50    | 65       | 1040     | 40    |
| Peak Hour Factor       | 0.95  | 0.95     | 0.95  | 0.95  | 0.95     | 0.95  | 0.95  | 0.95     | 0.95  | 0.95     | 0.95     | 0.95  |
| Adj. Flow (vph)        | 121   | 711      | 95    | 116   | 616      | 147   | 37    | 1584     | 53    | 68       | 1095     | 42    |
| Lane Group Flow (vph)  | 121   | 711      | 95    | 116   | 616      | 147   | 37    | 1584     | 53    | 68       | 1095     | 42    |
| Turn Type              | pm+pt |          | pm+ov | pm+pt |          | pm+ov | pm+pt |          | pm+ov | pm+pt    |          | pm+ov |
| Protected Phases       | 7     | 4        | 5     | 3     | 8        | 1     | 5     | 2        | 3     | 1        | 6        | 7     |
| Permitted Phases       | 4     |          | 4     | 8     |          | 8     | 2     |          | 2     | 6        |          | 6     |
| Detector Phases        | 7     | 4        | 5     | 3     | 8        | 1     | 5     | 2        | 3     | 1        | 6        | 7     |
| Minimum Initial (s)    | 4.0   | 4.0      | 4.0   | 4.0   | 4.0      | 4.0   | 4.0   | 4.0      | 4.0   | 4.0      | 4.0      | 4.0   |
| Minimum Split (s)      | 10.0  | 22.0     | 10.0  | 10.0  | 22.0     | 10.0  | 10.0  | 22.0     | 10.0  | 10.0     | 22.0     | 10.0  |
| Total Split (s)        | 11.0  | 30.0     | 10.0  | 12.0  | 31.0     | 10.0  | 10.0  | 58.0     | 12.0  | 10.0     | 58.0     | 11.0  |
| Total Split (%)        | 10.0% | 27.3%    | 9.1%  | 10.9% | 28.2%    | 9.1%  |       | 52.7%    |       | 9.1%     | 52.7%    | 10.0% |
| Yellow Time (s)        | 3.0   | 4.5      | 3.0   | 3.0   | 4.5      | 3.0   | 3.0   | 4.5      | 3.0   | 3.0      | 4.5      | 3.0   |
| All-Red Time (s)       | 1.0   | 1.5      | 1.0   | 1.0   | 1.5      | 1.0   | 1.0   | 1.5      | 1.0   | 1.0      | 1.5      | 1.0   |
| Lead/Lag               | Lead  | Lag      | Lead  | Lead  | Lag      | Lead  | Lead  | Lag      | Lead  | Lead     | Lag      | Lead  |
| Lead-Lag Optimize?     |       |          |       |       |          |       |       |          |       |          |          |       |
| Recall Mode            | None  | None     | None  | None  | None     | None  |       | C-Max    |       | None     | C-Max    | None  |
| Act Effct Green (s)    | 32.2  | 25.2     | 35.1  | 33.9  | 26.1     | 36.0  | 60.9  | 55.0     | 66.8  | 61.0     | 55.1     | 66.1  |
| Actuated g/C Ratio     | 0.29  | 0.23     | 0.32  | 0.31  | 0.24     | 0.33  | 0.55  | 0.50     | 0.61  | 0.55     | 0.50     | 0.60  |
| v/c Ratio              | 0.60  | 0.83     | 0.17  | 0.61  | 0.70     | 0.27  | 0.16  | 0.85     | 0.05  | 0.41     | 0.59     | 0.04  |
| Control Delay          | 39.9  | 49.9     | 8.3   | 39.9  | 43.0     | 19.9  | 6.3   | 15.6     | 0.3   | 27.7     | 25.9     | 3.2   |
| Queue Delay            | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      | 0.0   | 0.0      | 0.0      | 0.0   |
| Total Delay            | 39.9  | 49.9     | 8.3   | 39.9  | 43.0     | 19.9  | 6.3   | 15.6     | 0.3   | 27.7     | 25.9     | 3.2   |
| LOS                    | D     | D        | Α     | D     | D        | В     | Α     | В        | Α     | С        | С        | Α     |
| Approach Delay         |       | 44.3     |       |       | 38.8     |       |       | 14.9     |       |          | 25.2     |       |
| Approach LOS           |       | D        |       |       | D        |       |       | В        |       |          | С        |       |
| Stops (vph)            | 86    | 622      | 19    | 79    | 520      | 70    | 7     | 938      | 1     | 42       | 754      | 9     |
| Fuel Used(gal)         | 2     | 14       | 1     | 2     | 11       | 2     | 1     | 36       | 0     | 2        | 28       | 1     |
| CO Emissions (g/hr)    | 145   | 991      | 54    | 130   | 756      | 114   | 35    | 2539     | 34    | 118      | 1970     | 37    |

PM Peak Hour - Projected Traffic 11/10/2011 11-100, Brisbin Rd Kenig, Lindgren, O'Hara, Aboona, Inc

|                         | ᄼ    | -    | •    | •    | •    | •    | 1    | <b>†</b> | ~    | -    | <b>↓</b> | 4    |
|-------------------------|------|------|------|------|------|------|------|----------|------|------|----------|------|
| Lane Group              | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT      | NBR  | SBL  | SBT      | SBR  |
| NOx Emissions (g/hr)    | 28   | 193  | 11   | 25   | 147  | 22   | 7    | 494      | 7    | 23   | 383      | 7    |
| VOC Emissions (g/hr)    | 34   | 230  | 13   | 30   | 175  | 26   | 8    | 588      | 8    | 27   | 457      | 9    |
| Dilemma Vehicles (#)    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 39       | 0    | 0    | 118      | 0    |
| Queue Length 50th (ft)  | 60   | 250  | 6    | 57   | 207  | 51   | 5    | 173      | 0    | 29   | 329      | 1    |
| Queue Length 95th (ft)  | #105 | 321  | 43   | 101  | 271  | 102  | m10  | 163      | m1   | 63   | 412      | m9   |
| Internal Link Dist (ft) |      | 659  |      |      | 537  |      |      | 1402     |      |      | 1240     |      |
| Turn Bay Length (ft)    | 265  |      | 400  | 400  |      | 265  | 400  |          | 400  | 265  |          | 265  |
| Base Capacity (vph)     | 200  | 880  | 563  | 194  | 914  | 549  | 239  | 1863     | 985  | 165  | 1865     | 968  |
| Starvation Cap Reductn  | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0        | 0    | 0    | 0        | 0    |
| Spillback Cap Reductn   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0        | 0    | 0    | 0        | 0    |
| Storage Cap Reductn     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0        | 0    | 0    | 0        | 0    |
| Reduced v/c Ratio       | 0.61 | 0.81 | 0.17 | 0.60 | 0.67 | 0.27 | 0.15 | 0.85     | 0.05 | 0.41 | 0.59     | 0.04 |

Area Type: Other

Cycle Length: 110

Actuated Cycle Length: 110

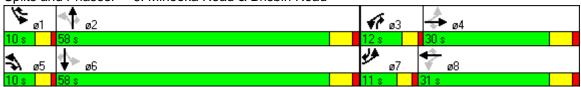
Offset: 92 (84%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 80

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.85

Intersection Signal Delay: 27.8 Intersection LOS: C
Intersection Capacity Utilization 80.3% ICU Level of Service D


Analysis Period (min) 15

# 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 6: Minooka Road & Brisbin Road



|                        | ۶     | <b>→</b> | •     | •     | +        | •     | •     | <b>†</b> | ~     | <b>/</b> | <b>↓</b>   | 4     |
|------------------------|-------|----------|-------|-------|----------|-------|-------|----------|-------|----------|------------|-------|
| Lane Group             | EBL   | EBT      | EBR   | WBL   | WBT      | WBR   | NBL   | NBT      | NBR   | SBL      | SBT        | SBR   |
| Lane Configurations    | ች     | <b>^</b> | 7     | ች     | <b>^</b> | 7     | ች     | <b>^</b> | 7     | ች        | <b>^</b> ^ | 7     |
| Ideal Flow (vphpl)     | 1900  | 2000     | 1900  | 1900  | 2000     | 1900  | 1900  | 2000     | 1900  | 1900     | 2000       | 1900  |
| Storage Length (ft)    | 200   |          | 265   | 400   |          | 200   | 400   |          | 400   | 265      |            | 265   |
| Storage Lanes          | 1     |          | 1     | 1     |          | 1     | 1     |          | 1     | 1        |            | 1     |
| Total Lost Time (s)    | 4.0   | 4.0      | 4.0   | 4.0   | 4.0      | 4.0   | 4.0   | 4.0      | 4.0   | 4.0      | 4.0        | 4.0   |
| Leading Detector (ft)  | 50    | 50       | 50    | 50    | 50       | 50    | 50    | 50       | 50    | 50       | 50         | 50    |
| Trailing Detector (ft) | 0     | 0        | 0     | 0     | 0        | 0     | 0     | 0        | 0     | 0        | 0          | 0     |
| Turning Speed (mph)    | 15    |          | 9     | 15    |          | 9     | 15    |          | 9     | 15       |            | 9     |
| Lane Util. Factor      | 1.00  | 0.95     | 1.00  | 1.00  | 0.95     | 1.00  | 1.00  | 0.91     | 1.00  | 1.00     | 0.91       | 1.00  |
| Frt                    |       |          | 0.850 |       |          | 0.850 |       |          | 0.850 |          |            | 0.850 |
| Flt Protected          | 0.950 |          |       | 0.950 |          |       | 0.950 |          |       | 0.950    |            |       |
| Satd. Flow (prot)      | 1770  | 3725     | 1583  | 1770  | 3725     | 1583  | 1770  | 5353     | 1583  | 1770     | 5353       | 1583  |
| Flt Permitted          | 0.222 |          |       | 0.148 |          |       | 0.950 |          |       | 0.950    |            |       |
| Satd. Flow (perm)      | 414   | 3725     | 1583  | 276   | 3725     | 1583  | 1770  | 5353     | 1583  | 1770     | 5353       | 1583  |
| Right Turn on Red      |       |          | Yes   |       |          | Yes   |       |          | Yes   |          |            | Yes   |
| Satd. Flow (RTOR)      |       |          | 25    |       |          | 89    |       |          | 128   |          |            | 59    |
| Headway Factor         | 1.00  | 1.00     | 1.00  | 1.00  | 1.00     | 1.00  | 1.00  | 1.00     | 1.00  | 1.00     | 1.00       | 1.00  |
| Link Speed (mph)       |       | 30       |       |       | 30       |       |       | 55       |       |          | 55         |       |
| Link Distance (ft)     |       | 484      |       |       | 484      |       |       | 974      |       |          | 1489       |       |
| Travel Time (s)        |       | 11.0     |       |       | 11.0     |       |       | 12.1     |       |          | 18.5       |       |
| Volume (vph)           | 110   | 720      | 295   | 280   | 715      | 100   | 170   | 835      | 145   | 70       | 1955       | 85    |
| Peak Hour Factor       | 0.95  | 0.95     | 0.95  | 0.95  | 0.95     | 0.95  | 0.95  | 0.95     | 0.95  | 0.95     | 0.95       | 0.95  |
| Adj. Flow (vph)        | 116   | 758      | 311   | 295   | 753      | 105   | 179   | 879      | 153   | 74       | 2058       | 89    |
| Lane Group Flow (vph)  | 116   | 758      | 311   | 295   | 753      | 105   | 179   | 879      | 153   | 74       | 2058       | 89    |
| Turn Type              | pm+pt |          | pm+ov | pm+pt |          | pm+ov | Prot  |          | pm+ov | Prot     |            | pm+ov |
| Protected Phases       | 7     | 4        | 5     | 3     | 8        | 1     | 5     | 2        | 3     | 1        | 6          | 7     |
| Permitted Phases       | 4     |          | 4     | 8     |          | 8     |       |          | 2     |          |            | 6     |
| Detector Phases        | 7     | 4        | 5     | 3     | 8        | 1     | 5     | 2        | 3     | 1        | 6          | 7     |
| Minimum Initial (s)    | 4.0   | 4.0      | 4.0   | 4.0   | 4.0      | 4.0   | 4.0   | 4.0      | 4.0   | 4.0      | 4.0        | 4.0   |
| Minimum Split (s)      | 10.0  | 22.0     | 10.0  | 10.0  | 22.0     | 10.0  | 10.0  | 22.0     | 10.0  | 10.0     | 22.0       | 10.0  |
| Total Split (s)        | 10.0  | 27.0     | 16.0  | 19.0  | 36.0     | 14.0  | 16.0  | 50.0     | 19.0  | 14.0     | 48.0       | 10.0  |
| Total Split (%)        |       |          | 14.5% |       | 32.7%    | 12.7% |       |          | 17.3% |          |            | 9.1%  |
| Yellow Time (s)        | 3.0   | 4.5      | 3.0   | 3.0   | 4.5      | 3.0   | 3.0   | 4.5      | 3.0   | 3.0      | 4.5        | 3.0   |
| All-Red Time (s)       | 1.0   | 1.5      | 1.0   | 1.0   | 1.5      | 1.0   | 1.0   | 1.5      | 1.0   | 1.0      | 1.5        | 1.0   |
| Lead/Lag               | Lead  | Lag      | Lead  | Lead  | Lag      | Lead  | Lead  | Lag      | Lead  | Lead     | Lag        | Lead  |
| Lead-Lag Optimize?     |       |          |       |       |          |       |       |          |       |          |            |       |
| Recall Mode            | None  | None     | None  | None  | None     | None  |       | C-Max    |       |          | C-Max      | None  |
| Act Effct Green (s)    | 29.0  | 23.0     | 39.0  | 42.0  | 32.0     | 44.8  | 12.0  | 47.2     | 66.2  | 8.8      | 44.0       | 54.0  |
| Actuated g/C Ratio     | 0.26  | 0.21     | 0.35  | 0.38  | 0.29     | 0.41  | 0.11  | 0.43     | 0.60  | 0.08     | 0.40       | 0.49  |
| v/c Ratio              | 0.63  | 0.97     | 0.54  | 0.95  | 0.69     | 0.15  | 0.93  | 0.38     | 0.15  | 0.52     | 0.96       | 0.11  |
| Control Delay          | 41.7  | 70.1     | 30.1  | 70.7  | 38.7     | 6.2   | 102.1 | 24.3     | 1.1   | 59.7     | 31.3       | 3.7   |
| Queue Delay            | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      | 0.0   | 0.0      | 0.0        | 0.0   |
| Total Delay            | 41.7  | 70.1     | 30.1  | 70.7  | 38.7     | 6.2   | 102.1 | 24.3     | 1.1   | 59.7     | 31.3       | 3.7   |
| LOS                    | D     | Е        | С     | Е     | D        | Α     | F     | С        | Α     | Е        | С          | Α     |
| Approach Delay         |       | 56.8     |       |       | 43.9     |       |       | 32.9     |       |          | 31.1       |       |
| Approach LOS           |       | E 0.47   | 0.10  | 105   | D        |       | 4=6   | C        |       |          | C          |       |
| Stops (vph)            | 86    | 647      | 213   | 185   | 619      | 17    | 150   | 435      | 8     | 63       | 1734       | 21    |
| Fuel Used(gal)         | 2     | 17       | 4     | 6     | 12       | 1     | 7     | 17       | 1     | 3        | 63         | 1     |
| CO Emissions (g/hr)    | 127   | 1158     | 286   | 427   | 821      | 42    | 515   | 1214     | 75    | 187      | 4411       | 88    |

|                         | ۶    | <b>→</b> | $\rightarrow$ | •    | <b>←</b> | •    | 4     | <b>†</b> | <b>/</b> | <b>\</b> | ļ    | 4    |
|-------------------------|------|----------|---------------|------|----------|------|-------|----------|----------|----------|------|------|
| Lane Group              | EBL  | EBT      | EBR           | WBL  | WBT      | WBR  | NBL   | NBT      | NBR      | SBL      | SBT  | SBR  |
| NOx Emissions (g/hr)    | 25   | 225      | 56            | 83   | 160      | 8    | 100   | 236      | 15       | 36       | 858  | 17   |
| VOC Emissions (g/hr)    | 30   | 268      | 66            | 99   | 190      | 10   | 119   | 281      | 17       | 43       | 1022 | 20   |
| Dilemma Vehicles (#)    | 0    | 0        | 0             | 0    | 0        | 0    | 0     | 82       | 0        | 0        | 57   | 0    |
| Queue Length 50th (ft)  | 53   | 282      | 160           | 157  | 248      | 7    | 136   | 114      | 1        | 47       | 511  | 10   |
| Queue Length 95th (ft)  | #104 | #407     | 249           | #329 | 317      | 39 ı | m#264 | 146      | m6       | m59      | #623 | m16  |
| Internal Link Dist (ft) |      | 404      |               |      | 404      |      |       | 894      |          |          | 1409 |      |
| Turn Bay Length (ft)    | 200  |          | 265           | 400  |          | 200  | 400   |          | 400      | 265      |      | 265  |
| Base Capacity (vph)     | 183  | 779      | 577           | 309  | 1084     | 714  | 193   | 2296     | 1003     | 161      | 2141 | 807  |
| Starvation Cap Reductn  | 0    | 0        | 0             | 0    | 0        | 0    | 0     | 0        | 0        | 0        | 0    | 0    |
| Spillback Cap Reductn   | 0    | 0        | 0             | 0    | 0        | 0    | 0     | 0        | 0        | 0        | 0    | 0    |
| Storage Cap Reductn     | 0    | 0        | 0             | 0    | 0        | 0    | 0     | 0        | 0        | 0        | 0    | 0    |
| Reduced v/c Ratio       | 0.63 | 0.97     | 0.54          | 0.95 | 0.69     | 0.15 | 0.93  | 0.38     | 0.15     | 0.46     | 0.96 | 0.11 |

Area Type: Other

Cycle Length: 110

Actuated Cycle Length: 110

Offset: 4 (4%), Referenced to phase 2:NBT and 6:SBT, Start of Green

Natural Cycle: 90

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.97

Intersection Signal Delay: 39.3 Intersection Capacity Utilization 93.1%

Intersection LOS: D ICU Level of Service F


Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

9: Whitman Road & Brisbin Road Splits and Phases:



|                        | •     | <b>→</b> | •     | •     | +        | •     | •     | †        | <i>&gt;</i> | <b>/</b> | <b>↓</b> | -√    |
|------------------------|-------|----------|-------|-------|----------|-------|-------|----------|-------------|----------|----------|-------|
| Lane Group             | EBL   | EBT      | EBR   | WBL   | WBT      | WBR   | NBL   | NBT      | NBR         | SBL      | SBT      | SBR   |
| Lane Configurations    | ሻሻ    | <b>^</b> | 7     | ሻሻ    | <b>^</b> | 7     | ሻሻ    | <b>^</b> | 7           | ሻሻ       | <b>^</b> | 7     |
| Ideal Flow (vphpl)     | 1900  | 2000     | 1900  | 1900  | 2000     | 1900  | 1900  | 2000     | 1900        | 1900     | 2000     | 1900  |
| Storage Length (ft)    | 400   |          | 265   | 265   |          | 400   | 265   |          | 265         | 400      |          | 400   |
| Storage Lanes          | 2     |          | 1     | 2     |          | 1     | 2     |          | 1           | 2        |          | 1     |
| Total Lost Time (s)    | 4.0   | 4.0      | 4.0   | 4.0   | 4.0      | 4.0   | 4.0   | 4.0      | 4.0         | 4.0      | 4.0      | 4.0   |
| Leading Detector (ft)  | 20    | 100      | 20    | 20    | 100      | 20    | 20    | 100      | 20          | 20       | 100      | 20    |
| Trailing Detector (ft) | 0     | 0        | 0     | 0     | 0        | 0     | 0     | 0        | 0           | 0        | 0        | 0     |
| Turning Speed (mph)    | 15    |          | 9     | 15    |          | 9     | 15    |          | 9           | 15       |          | 9     |
| Lane Util. Factor      | 0.97  | 0.95     | 1.00  | 0.97  | 0.95     | 1.00  | 0.97  | 0.95     | 1.00        | 0.97     | 0.95     | 1.00  |
| Frt                    |       |          | 0.850 |       |          | 0.850 |       |          | 0.850       |          |          | 0.850 |
| Flt Protected          | 0.950 |          |       | 0.950 |          |       | 0.950 |          |             | 0.950    |          |       |
| Satd. Flow (prot)      | 3433  | 3725     | 1583  | 3433  | 3725     | 1583  | 3433  | 3725     | 1583        | 3433     | 3725     | 1583  |
| Flt Permitted          | 0.950 |          |       | 0.950 |          |       | 0.950 |          |             | 0.950    |          |       |
| Satd. Flow (perm)      | 3433  | 3725     | 1583  | 3433  | 3725     | 1583  | 3433  | 3725     | 1583        | 3433     | 3725     | 1583  |
| Right Turn on Red      |       |          | Yes   |       |          | Yes   |       |          | Yes         |          |          | Yes   |
| Satd. Flow (RTOR)      |       |          | 22    |       |          | 594   |       |          | 21          |          |          | 16    |
| Headway Factor         | 1.00  | 1.00     | 1.00  | 1.00  | 1.00     | 1.00  | 1.00  | 1.00     | 1.00        | 1.00     | 1.00     | 1.00  |
| Link Speed (mph)       |       | 30       |       |       | 30       |       |       | 55       |             |          | 55       |       |
| Link Distance (ft)     |       | 1320     |       |       | 1878     |       |       | 1326     |             |          | 1049     |       |
| Travel Time (s)        |       | 30.0     |       |       | 42.7     |       |       | 16.4     |             |          | 13.0     |       |
| Volume (vph)           | 390   | 680      | 150   | 625   | 990      | 815   | 290   | 660      | 435         | 480      | 750      | 190   |
| Peak Hour Factor       | 0.95  | 0.95     | 0.95  | 0.95  | 0.95     | 0.95  | 0.95  | 0.95     | 0.95        | 0.95     | 0.95     | 0.95  |
| Adj. Flow (vph)        | 411   | 716      | 158   | 658   | 1042     | 858   | 305   | 695      | 458         | 505      | 789      | 200   |
| Lane Group Flow (vph)  | 411   | 716      | 158   | 658   | 1042     | 858   | 305   | 695      | 458         | 505      | 789      | 200   |
| Turn Type              | Prot  |          | pm+ov | Prot  |          | Free  | Prot  |          | pm+ov       | Prot     |          | pm+ov |
| Protected Phases       | 7     | 4        | 5     | 3     | 8        |       | 5     | 2        | 3           | 1        | 6        | 7     |
| Permitted Phases       |       |          | 4     |       |          | Free  |       |          | 2           |          |          | 6     |
| Detector Phases        | 7     | 4        | 5     | 3     | 8        |       | 5     | 2        | 3           | 1        | 6        | 7     |
| Minimum Initial (s)    | 4.0   | 4.0      | 4.0   | 4.0   | 4.0      |       | 4.0   | 4.0      | 4.0         | 4.0      | 4.0      | 4.0   |
| Minimum Split (s)      | 10.0  | 22.0     | 10.0  | 10.0  | 22.0     |       | 10.0  | 22.0     | 10.0        | 10.0     | 22.0     | 10.0  |
| Total Split (s)        | 20.0  | 31.0     | 16.0  | 28.0  | 39.0     | 0.0   | 16.0  | 28.0     | 28.0        | 23.0     | 35.0     | 20.0  |
| Total Split (%)        | 18.2% | 28.2%    | 14.5% | 25.5% | 35.5%    | 0.0%  | 14.5% | 25.5%    | 25.5%       | 20.9%    | 31.8%    | 18.2% |
| Yellow Time (s)        | 3.0   | 4.5      | 3.0   | 3.0   | 4.5      |       | 3.0   | 4.5      | 3.0         | 3.0      | 4.5      | 3.0   |
| All-Red Time (s)       | 1.0   | 1.5      | 1.0   | 1.0   | 1.5      |       | 1.0   | 1.5      | 1.0         | 1.0      | 1.5      | 1.0   |
| Lead/Lag               | Lead  | Lag      | Lead  | Lead  | Lag      |       | Lead  | Lag      | Lead        | Lead     | Lag      | Lead  |
| Lead-Lag Optimize?     |       |          |       |       |          |       |       |          |             |          |          |       |
| Recall Mode            | None  | None     | None  | None  | None     |       | None  | C-Min    | None        | None     | C-Min    | None  |
| Act Effct Green (s)    | 15.6  | 27.0     | 42.7  | 23.3  | 34.7     | 110.0 | 11.7  | 25.2     | 52.5        | 18.5     | 32.0     | 51.6  |
| Actuated g/C Ratio     | 0.14  | 0.25     | 0.39  | 0.21  | 0.32     | 1.00  | 0.11  | 0.23     | 0.48        | 0.17     | 0.29     | 0.47  |
| v/c Ratio              | 0.84  | 0.78     | 0.25  | 0.91  | 0.89     | 0.54  | 0.83  | 0.81     | 0.60        | 0.88     | 0.73     | 0.27  |
| Control Delay          | 62.7  | 45.9     | 20.7  | 59.5  | 46.3     | 1.3   | 62.2  | 41.8     | 20.6        | 57.2     | 34.4     | 14.1  |
| Queue Delay            | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      | 0.0         | 0.0      | 0.0      | 0.0   |
| Total Delay            | 62.7  | 45.9     | 20.7  | 59.5  | 46.3     | 1.3   | 62.2  | 41.8     | 20.6        | 57.2     | 34.4     | 14.1  |
| LOS                    | Е     | D        | С     | Е     | D        | Α     | Е     | D        | С           | Е        | С        | В     |
| Approach Delay         |       | 48.2     |       |       | 34.6     |       |       | 39.4     |             |          | 39.4     |       |
| Approach LOS           |       | D        |       |       | С        |       |       | D        |             |          | D        |       |
| Stops (vph)            | 362   | 621      | 84    | 576   | 894      | 0     | 248   | 592      | 313         | 429      | 682      | 108   |
| Fuel Used(gal)         | 11    | 17       | 3     | 20    | 29       | 12    | 11    | 22       | 11          | 17       | 23       | 4     |
| CO Emissions (g/hr)    | 768   | 1173     | 184   | 1391  | 2012     | 850   | 749   | 1549     | 789         | 1171     | 1601     | 267   |

|                         | ၨ    | <b>→</b> | $\rightarrow$ | •    | <b>←</b> | •    | 4     | <b>†</b> | <i>&gt;</i> | <b>&gt;</b> | ļ    | 4    |
|-------------------------|------|----------|---------------|------|----------|------|-------|----------|-------------|-------------|------|------|
| Lane Group              | EBL  | EBT      | EBR           | WBL  | WBT      | WBR  | NBL   | NBT      | NBR         | SBL         | SBT  | SBR  |
| NOx Emissions (g/hr)    | 149  | 228      | 36            | 271  | 391      | 165  | 146   | 301      | 154         | 228         | 311  | 52   |
| VOC Emissions (g/hr)    | 178  | 272      | 43            | 322  | 466      | 197  | 174   | 359      | 183         | 271         | 371  | 62   |
| Dilemma Vehicles (#)    | 0    | 0        | 0             | 0    | 0        | 0    | 0     | 27       | 0           | 0           | 18   | 0    |
| Queue Length 50th (ft)  | 146  | 249      | 63            | 232  | 365      | 0    | 96    | 251      | 240         | 162         | 284  | 82   |
| Queue Length 95th (ft)  | #222 | 320      | 113           | #329 | #479     | 0    | m#161 | #349     | 321         | #260        | 333  | 120  |
| Internal Link Dist (ft) |      | 1240     |               |      | 1798     |      |       | 1246     |             |             | 969  |      |
| Turn Bay Length (ft)    | 400  |          | 265           | 265  |          | 400  | 265   |          | 265         | 400         |      | 400  |
| Base Capacity (vph)     | 499  | 914      | 631           | 749  | 1185     | 1583 | 375   | 855      | 777         | 593         | 1084 | 757  |
| Starvation Cap Reductn  | 0    | 0        | 0             | 0    | 0        | 0    | 0     | 0        | 0           | 0           | 0    | 0    |
| Spillback Cap Reductn   | 0    | 0        | 0             | 0    | 0        | 0    | 0     | 0        | 0           | 0           | 0    | 0    |
| Storage Cap Reductn     | 0    | 0        | 0             | 0    | 0        | 0    | 0     | 0        | 0           | 0           | 0    | 0    |
| Reduced v/c Ratio       | 0.82 | 0.78     | 0.25          | 0.88 | 0.88     | 0.54 | 0.81  | 0.81     | 0.59        | 0.85        | 0.73 | 0.26 |

Area Type: Other

Cycle Length: 110

Actuated Cycle Length: 110

Offset: 82 (75%), Referenced to phase 2:NBT and 6:SBT, Start of Green

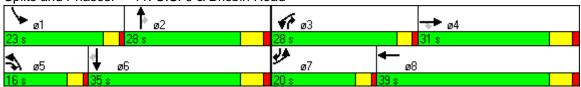
Natural Cycle: 90

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.91

Intersection Signal Delay: 39.3

Intersection LOS: D Intersection Capacity Utilization 81.5% ICU Level of Service D


Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 11: U.S. 6 & Brisbin Road



|                        | ۶    | <b>→</b> | •    | •      | +    | •      | •     | <b>†</b> | ~    | <b>/</b> | <b>↓</b> | -√     |
|------------------------|------|----------|------|--------|------|--------|-------|----------|------|----------|----------|--------|
| Lane Group             | EBL  | EBT      | EBR  | WBL    | WBT  | WBR    | NBL   | NBT      | NBR  | SBL      | SBT      | SBR    |
| Lane Configurations    |      |          |      | ሻሻ     |      | 77     | ሻሻ    | ተተተ      |      |          | ተተተ      | 77     |
| Ideal Flow (vphpl)     | 1900 | 1900     | 1900 | 1900   | 1900 | 1900   | 1900  | 2000     | 1900 | 1900     | 2000     | 1900   |
| Storage Length (ft)    | 0    |          | 0    | 0      |      | 0      | 400   |          | 0    | 0        |          | 400    |
| Storage Lanes          | 0    |          | 0    | 2      |      | 2      | 2     |          | 0    | 0        |          | 2      |
| Total Lost Time (s)    | 4.0  | 4.0      | 4.0  | 4.0    | 4.0  | 4.0    | 4.0   | 4.0      | 4.0  | 4.0      | 4.0      | 4.0    |
| Leading Detector (ft)  |      |          |      | 50     |      | 50     | 50    | 50       |      |          | 50       | 50     |
| Trailing Detector (ft) |      |          |      | 0      |      | 0      | 0     | 0        |      |          | 0        | 0      |
| Turning Speed (mph)    | 15   |          | 9    | 15     |      | 9      | 15    |          | 9    | 15       |          | 9      |
| Lane Util. Factor      | 1.00 | 1.00     | 1.00 | 0.97   | 1.00 | 0.88   | 0.97  | 0.91     | 1.00 | 1.00     | 0.91     | 0.88   |
| Frt                    |      |          |      |        |      | 0.850  |       |          |      |          |          | 0.850  |
| Flt Protected          |      |          |      | 0.950  |      |        | 0.950 |          |      |          |          |        |
| Satd. Flow (prot)      | 0    | 0        | 0    | 3433   | 0    | 2787   | 3433  | 5353     | 0    | 0        | 5353     | 2787   |
| Flt Permitted          |      |          |      | 0.950  |      |        | 0.950 |          |      |          |          |        |
| Satd. Flow (perm)      | 0    | 0        | 0    | 3433   | 0    | 2787   | 3433  | 5353     | 0    | 0        | 5353     | 2787   |
| Right Turn on Red      |      |          | Yes  |        |      | Yes    |       |          | Yes  |          |          | Yes    |
| Satd. Flow (RTOR)      |      |          |      |        |      | 282    |       |          |      |          |          | 39     |
| Headway Factor         | 1.00 | 1.00     | 1.00 | 1.00   | 1.00 | 1.00   | 1.00  | 1.00     | 1.00 | 1.00     | 1.00     | 1.00   |
| Link Speed (mph)       |      | 30       |      |        | 30   |        |       | 55       |      |          | 55       |        |
| Link Distance (ft)     |      | 402      |      |        | 422  |        |       | 1036     |      |          | 710      |        |
| Travel Time (s)        |      | 9.1      |      |        | 9.6  |        |       | 12.8     |      |          | 8.8      |        |
| Volume (vph)           | 0    | 0        | 0    | 405    | 0    | 490    | 595   | 970      | 0    | 0        | 1925     | 1315   |
| Peak Hour Factor       | 0.95 | 0.95     | 0.95 | 0.95   | 0.95 | 0.95   | 0.95  | 0.95     | 0.95 | 0.95     | 0.95     | 0.95   |
| Adj. Flow (vph)        | 0    | 0        | 0    | 426    | 0    | 516    | 626   | 1021     | 0    | 0        | 2026     | 1384   |
| Lane Group Flow (vph)  | 0    | 0        | 0    | 426    | 0    | 516    | 626   | 1021     | 0    | 0        | 2026     | 1384   |
| Turn Type              |      |          | (    | custom | (    | custom | Prot  |          |      |          | (        | custom |
| Protected Phases       |      |          |      |        |      |        | 5     | 2        |      |          | 6        |        |
| Permitted Phases       |      |          |      | 8      |      | 8      |       |          |      |          |          | 3 6    |
| Detector Phases        |      |          |      | 8      |      | 8      | 5     | 2        |      |          | 6        | 3 6    |
| Minimum Initial (s)    |      |          |      | 4.0    |      | 4.0    | 4.0   | 4.0      |      |          | 4.0      |        |
| Minimum Split (s)      |      |          |      | 22.0   |      | 22.0   | 10.0  | 22.0     |      |          | 22.0     |        |
| Total Split (s)        | 0.0  | 0.0      | 0.0  | 29.0   | 0.0  | 29.0   | 28.0  | 81.0     | 0.0  | 0.0      | 53.0     | 82.0   |
| Total Split (%)        | 0.0% | 0.0%     | 0.0% | 26.4%  | 0.0% |        | 25.5% | 73.6%    | 0.0% | 0.0%     | 48.2%    | 74.5%  |
| Yellow Time (s)        |      |          |      | 4.5    |      | 4.5    | 3.0   | 4.5      |      |          | 4.5      |        |
| All-Red Time (s)       |      |          |      | 1.5    |      | 1.5    | 1.0   | 1.5      |      |          | 1.5      |        |
| Lead/Lag               |      |          |      |        |      |        | Lead  |          |      |          | Lag      |        |
| Lead-Lag Optimize?     |      |          |      |        |      |        | Yes   |          |      |          | Yes      |        |
| Recall Mode            |      |          |      | None   |      | None   |       | C-Max    |      |          | C-Max    |        |
| Act Effct Green (s)    |      |          |      | 21.6   |      | 21.6   | 23.4  | 80.4     |      |          | 53.0     | 78.6   |
| Actuated g/C Ratio     |      |          |      | 0.20   |      | 0.20   | 0.21  | 0.73     |      |          | 0.48     | 0.71   |
| v/c Ratio              |      |          |      | 0.63   |      | 0.67   | 0.86  | 0.26     |      |          | 0.79     | 0.69   |
| Control Delay          |      |          |      | 44.6   |      | 22.1   | 58.2  | 0.4      |      |          | 11.9     | 6.0    |
| Queue Delay            |      |          |      | 0.0    |      | 0.0    | 0.0   | 0.0      |      |          | 0.0      | 0.2    |
| Total Delay            |      |          |      | 44.6   |      | 22.1   | 58.2  | 0.4      |      |          | 11.9     | 6.2    |
| LOS                    |      |          |      | D      |      | С      | Е     | Α        |      |          | В        | Α      |
| Approach Delay         |      |          |      |        |      |        |       | 22.4     |      |          | 9.6      |        |
| Approach LOS           |      |          |      |        |      |        |       | С        |      |          | Α        |        |
| Stops (vph)            |      |          |      | 359    |      | 207    | 517   | 50       |      |          | 1174     | 732    |
| Fuel Used(gal)         |      |          |      | 7      |      | 5      | 21    | 7        |      |          | 35       | 21     |
| CO Emissions (g/hr)    |      |          |      | 489    |      | 347    | 1437  | 515      |      |          | 2456     | 1476   |

| Lafie Configurations Ideal Flow (vphpl) Storage Length (ft) Storage Lanes Total Lost Time (s) Leading Detector (ft) Trailing Detector (ft) Turning Speed (mph) Lane Util. Factor Frt Flt Protected Satd. Flow (prot) Flt Permitted Satd. Flow (perm) Right Turn on Red Satd. Flow (RTOR) Headway Factor Link Speed (mph) Link Distance (ft) Travel Time (s) Volume (vph) Peak Hour Factor Adj. Flow (vph) Lane Group Flow (vph) Turn Type Protected Phases Detector Phases Detector Phases Minimum Initial (s) Minimum Split (s) Total Split (%) Yellow Time (s) 4.5 All-Red Time (s) Lead/Lag Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Stops (vph) Fuel Used(gal) CO Emissions (g/hr) | Lane Group          | ø3   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------|
| Ideal Flow (vphpl) Storage Length (ft) Storage Lanes Total Lost Time (s) Leading Detector (ft) Trailing Detector (ft) Turning Speed (mph) Lane Util. Factor Frt Flt Protected Satd. Flow (prot) Flt Permitted Satd. Flow (perm) Right Turn on Red Satd. Flow (RTOR) Headway Factor Link Speed (mph) Link Distance (ft) Travel Time (s) Volume (vph) Peak Hour Factor Adj. Flow (vph) Lane Group Flow (vph) Turn Type Protected Phases Detector Phases Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (%) Yellow Time (s) All-Red Time (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Stops (vph) Fuel Used(gal)                                                                                                          | Lare Configurations |      |
| Storage Length (ft) Storage Lanes Total Lost Time (s) Leading Detector (ft) Trailing Detector (ft) Turning Speed (mph) Lane Util. Factor Frt Flt Protected Satd. Flow (prot) Flt Permitted Satd. Flow (perm) Right Turn on Red Satd. Flow (RTOR) Headway Factor Link Speed (mph) Link Distance (ft) Travel Time (s) Volume (vph) Peak Hour Factor Adj. Flow (vph) Lane Group Flow (vph) Turn Type Protected Phases Detector Phases Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (%) Yellow Time (s) All-Red Time (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Stops (vph) Fuel Used(gal)                                                                                                                             |                     |      |
| Storage Lanes Total Lost Time (s) Leading Detector (ft) Trailing Detector (ft) Turning Speed (mph) Lane Util. Factor Frt Flt Protected Satd. Flow (prot) Flt Permitted Satd. Flow (perm) Right Turn on Red Satd. Flow (RTOR) Headway Factor Link Speed (mph) Link Distance (ft) Travel Time (s) Volume (vph) Peak Hour Factor Adj. Flow (vph) Lane Group Flow (vph) Turn Type Protected Phases Detector Phases Minimum Initial (s) Minimum Split (s) Total Split (%) Yellow Time (s) All-Red Time (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Stops (vph) Fuel Used(gal)                                                                                                                                                                 |                     |      |
| Total Lost Time (s) Leading Detector (ft) Trailing Detector (ft) Turning Speed (mph) Lane Util. Factor Frt Flt Protected Satd. Flow (prot) Flt Permitted Satd. Flow (perm) Right Turn on Red Satd. Flow (RTOR) Headway Factor Link Speed (mph) Link Distance (ft) Travel Time (s) Volume (vph) Peak Hour Factor Adj. Flow (vph) Lane Group Flow (vph) Turn Type Protected Phases Detector Phases Minimum Initial (s) Minimum Split (s) Total Split (s) Yellow Time (s) 4.5 All-Red Time (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay Los Approach Los Stops (vph) Fuel Used(gal)                                                                                                                                                                           |                     |      |
| Leading Detector (ft) Trailing Detector (ft) Turning Speed (mph) Lane Util. Factor Frt Flt Protected Satd. Flow (prot) Flt Permitted Satd. Flow (perm) Right Turn on Red Satd. Flow (RTOR) Headway Factor Link Speed (mph) Link Distance (ft) Travel Time (s) Volume (vph) Peak Hour Factor Adj. Flow (vph) Lane Group Flow (vph) Turn Type Protected Phases Detector Phases Minimum Initial (s) Minimum Split (s) Total Split (%) Yellow Time (s) All-Red Time (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay Approach LOS Stops (vph) Fuel Used(gal)                                                                                                                                                                                                       |                     |      |
| Trailing Detector (ft) Turning Speed (mph) Lane Util. Factor Frt Flt Protected Satd. Flow (prot) Flt Permitted Satd. Flow (perm) Right Turn on Red Satd. Flow (RTOR) Headway Factor Link Speed (mph) Link Distance (ft) Travel Time (s) Volume (vph) Peak Hour Factor Adj. Flow (vph) Lane Group Flow (vph) Turn Type Protected Phases Detector Phases Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (%) Yellow Time (s) All-Red Time (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Stops (vph) Fuel Used(gal)                                                                                                                                                                                                         |                     |      |
| Turning Speed (mph) Lane Util. Factor Frt Flt Protected Satd. Flow (prot) Flt Permitted Satd. Flow (perm) Right Turn on Red Satd. Flow (RTOR) Headway Factor Link Speed (mph) Link Distance (ft) Travel Time (s) Volume (vph) Peak Hour Factor Adj. Flow (vph) Lane Group Flow (vph) Turn Type Protected Phases Detector Phases Minimum Initial (s) Minimum Split (s) Total Split (%) Yellow Time (s) 4.5 All-Red Time (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Stops (vph) Fuel Used(gal)                                                                                                                                                                                                                                            |                     |      |
| Lane Util. Factor Frt Flt Protected Satd. Flow (prot) Flt Permitted Satd. Flow (perm) Right Turn on Red Satd. Flow (RTOR) Headway Factor Link Speed (mph) Link Distance (ft) Travel Time (s) Volume (vph) Peak Hour Factor Adj. Flow (vph) Lane Group Flow (vph) Turn Type Protected Phases Detector Phases Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (%) Yellow Time (s) All-Red Time (s) Lead/Lag Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Stops (vph) Fuel Used(gal)                                                                                                                                                                                        |                     |      |
| Frt Flt Protected Satd. Flow (prot) Flt Permitted Satd. Flow (perm) Right Turn on Red Satd. Flow (RTOR) Headway Factor Link Speed (mph) Link Distance (ft) Travel Time (s) Volume (vph) Peak Hour Factor Adj. Flow (vph) Lane Group Flow (vph) Turn Type Protected Phases Detector Phases Minimum Initial (s) Minimum Split (s) Total Split (%) Yellow Time (s) 4.5 All-Red Time (s) Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Stops (vph) Fuel Used(gal)                                                                                                                                                                                                                               |                     |      |
| Fit Protected Satd. Flow (prot) Fit Permitted Satd. Flow (perm) Right Turn on Red Satd. Flow (RTOR) Headway Factor Link Speed (mph) Link Distance (ft) Travel Time (s) Volume (vph) Peak Hour Factor Adj. Flow (vph) Lane Group Flow (vph) Turn Type Protected Phases Detector Phases Minimum Initial (s) Minimum Split (s) Total Split (%) Yellow Time (s) 4.5 All-Red Time (s) Lead/Lag Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Stops (vph) Fuel Used(gal)                                                                                                                                                                                                                          |                     |      |
| Satd. Flow (prot) Flt Permitted Satd. Flow (perm) Right Turn on Red Satd. Flow (RTOR) Headway Factor Link Speed (mph) Link Distance (ft) Travel Time (s) Volume (vph) Peak Hour Factor Adj. Flow (vph) Lane Group Flow (vph) Turn Type Protected Phases Detector Phases Minimum Initial (s) Minimum Split (s) Total Split (%) Yellow Time (s) 4.5 All-Red Time (s) Lead/Lag Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Stops (vph) Fuel Used(gal)                                                                                                                                                                                                                         |                     |      |
| Fit Permitted Satd. Flow (perm) Right Turn on Red Satd. Flow (RTOR) Headway Factor Link Speed (mph) Link Distance (ft) Travel Time (s) Volume (vph) Peak Hour Factor Adj. Flow (vph) Lane Group Flow (vph) Turn Type Protected Phases Detector Phases Minimum Initial (s) Minimum Split (s) Total Split (s) Yellow Time (s) All-Red Time (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Sploy (vph) Fuel Used(gal)                                                                                                                                                                                                                                                                                                                                                 |                     |      |
| Satd. Flow (perm) Right Turn on Red Satd. Flow (RTOR) Headway Factor Link Speed (mph) Link Distance (ft) Travel Time (s) Volume (vph) Peak Hour Factor Adj. Flow (vph) Lane Group Flow (vph) Turn Type Protected Phases Detector Phases Minimum Initial (s) Minimum Split (s) Total Split (s) Yellow Time (s) All-Red Time (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Sploy (vph) Fuel Used(gal)                                                                                                                                                                                                                                                                                                                                                               | ,                   |      |
| Right Turn on Red Satd. Flow (RTOR) Headway Factor Link Speed (mph) Link Distance (ft) Travel Time (s) Volume (vph) Peak Hour Factor Adj. Flow (vph) Lane Group Flow (vph) Turn Type Protected Phases Detector Phases Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (%) Yellow Time (s) All-Red Time (s) Lead/Lag Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Stops (vph) Fuel Used(gal)                                                                                                                                                                                                                                                                              |                     |      |
| Satd. Flow (RTOR) Headway Factor Link Speed (mph) Link Distance (ft) Travel Time (s) Volume (vph) Peak Hour Factor Adj. Flow (vph) Lane Group Flow (vph) Turn Type Protected Phases Detector Phases Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (%) Yellow Time (s) All-Red Time (s) Lead/Lag Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Stops (vph) Fuel Used(gal)                                                                                                                                                                                                                                                                                                |                     |      |
| Headway Factor Link Speed (mph) Link Distance (ft) Travel Time (s) Volume (vph) Peak Hour Factor Adj. Flow (vph) Lane Group Flow (vph) Turn Type Protected Phases Detector Phases Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (%) Yellow Time (s) All-Red Time (s) Lead/Lag Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Stops (vph) Fuel Used(gal)                                                                                                                                                                                                                                                                                                                  |                     |      |
| Link Speed (mph) Link Distance (ft) Travel Time (s) Volume (vph) Peak Hour Factor Adj. Flow (vph) Lane Group Flow (vph) Turn Type Protected Phases Detector Phases Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (%) Yellow Time (s) All-Red Time (s) Lead/Lag Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Stops (vph) Fuel Used(gal)                                                                                                                                                                                                                                                                                                                                 |                     |      |
| Link Distance (ft)  Travel Time (s)  Volume (vph)  Peak Hour Factor  Adj. Flow (vph)  Lane Group Flow (vph)  Turn Type  Protected Phases  Permitted Phases  Detector Phases  Minimum Initial (s)  Minimum Split (s)  Total Split (s)  29.0  Total Split (%)  Yellow Time (s)  All-Red Time (s)  Lead-Lag  Lead-Lag Optimize?  Recall Mode  Act Effct Green (s)  Actuated g/C Ratio  v/c Ratio  Control Delay  Queue Delay  Total Delay  LOS  Approach Delay  Approach LOS  Stops (vph)  Fuel Used(gal)                                                                                                                                                                                                                                                                               |                     |      |
| Travel Time (s)  Volume (vph)  Peak Hour Factor  Adj. Flow (vph)  Lane Group Flow (vph)  Turn Type  Protected Phases  Detector Phases  Minimum Initial (s)  Minimum Split (s)  Total Split (s)  Yellow Time (s)  All-Red Time (s)  Lead-Lag Optimize?  Recall Mode  Act Effct Green (s)  Actuated g/C Ratio  v/c Ratio  Control Delay  Queue Delay  Total Delay  Approach LOS  Stops (vph)  Fuel Used(gal)                                                                                                                                                                                                                                                                                                                                                                           |                     |      |
| Volume (vph) Peak Hour Factor Adj. Flow (vph) Lane Group Flow (vph) Turn Type Protected Phases Permitted Phases Detector Phases Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (%) Yellow Time (s) All-Red Time (s) Lead/Lag Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Stops (vph) Fuel Used(gal)                                                                                                                                                                                                                                                                                                                                                                    |                     |      |
| Peak Hour Factor Adj. Flow (vph) Lane Group Flow (vph) Turn Type Protected Phases Permitted Phases Detector Phases Minimum Initial (s) 4.0 Minimum Split (s) 10.0 Total Split (s) 29.0 Total Split (%) 26% Yellow Time (s) 4.5 All-Red Time (s) 1.5 Lead/Lag Lead-Lag Optimize? Recall Mode None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach LOS Stops (vph) Fuel Used(gal)                                                                                                                                                                                                                                                                                                                                                  |                     |      |
| Adj. Flow (vph)  Lane Group Flow (vph)  Turn Type  Protected Phases  Permitted Phases  Detector Phases  Minimum Initial (s) 4.0  Minimum Split (s) 10.0  Total Split (s) 29.0  Total Split (%) 26%  Yellow Time (s) 4.5  All-Red Time (s) 1.5  Lead/Lag  Lead-Lag Optimize?  Recall Mode None  Act Effct Green (s)  Actuated g/C Ratio  v/c Ratio  Control Delay  Queue Delay  Total Delay  LOS  Approach Delay  Approach LOS  Stops (vph)  Fuel Used(gal)                                                                                                                                                                                                                                                                                                                           |                     |      |
| Lane Group Flow (vph) Turn Type Protected Phases Permitted Phases Detector Phases Minimum Initial (s) 4.0 Minimum Split (s) 10.0 Total Split (s) 29.0 Total Split (%) 26% Yellow Time (s) 4.5 All-Red Time (s) 1.5 Lead/Lag Lead-Lag Optimize? Recall Mode None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Stops (vph) Fuel Used(gal)                                                                                                                                                                                                                                                                                                                                                                    | Peak Hour Factor    |      |
| Lane Group Flow (vph) Turn Type Protected Phases Permitted Phases Detector Phases Minimum Initial (s) 4.0 Minimum Split (s) 10.0 Total Split (s) 29.0 Total Split (%) 26% Yellow Time (s) 4.5 All-Red Time (s) 1.5 Lead/Lag Lead-Lag Optimize? Recall Mode None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Stops (vph) Fuel Used(gal)                                                                                                                                                                                                                                                                                                                                                                    |                     |      |
| Turn Type Protected Phases Permitted Phases Detector Phases Minimum Initial (s) 4.0 Minimum Split (s) 10.0 Total Split (s) 29.0 Total Split (%) 26% Yellow Time (s) 4.5 All-Red Time (s) 1.5 Lead/Lag Lead-Lag Optimize? Recall Mode None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Stops (vph) Fuel Used(gal)                                                                                                                                                                                                                                                                                                                                                                                          |                     |      |
| Protected Phases Permitted Phases Detector Phases Minimum Initial (s) 4.0 Minimum Split (s) 10.0 Total Split (s) 29.0 Total Split (%) 26% Yellow Time (s) 4.5 All-Red Time (s) 1.5 Lead/Lag Lead-Lag Optimize? Recall Mode None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Stops (vph) Fuel Used(gal)                                                                                                                                                                                                                                                                                                                                                                                                    |                     |      |
| Permitted Phases Detector Phases Minimum Initial (s) 4.0 Minimum Split (s) 10.0 Total Split (s) 29.0 Total Split (%) 26% Yellow Time (s) 4.5 All-Red Time (s) 1.5 Lead/Lag Lead-Lag Optimize? Recall Mode None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Stops (vph) Fuel Used(gal)                                                                                                                                                                                                                                                                                                                                                                                                                     |                     | 3    |
| Detector Phases Minimum Initial (s) 4.0 Minimum Split (s) 10.0 Total Split (s) 29.0 Total Split (%) 26% Yellow Time (s) 4.5 All-Red Time (s) 1.5 Lead/Lag Lead-Lag Optimize? Recall Mode None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Stops (vph) Fuel Used(gal)                                                                                                                                                                                                                                                                                                                                                                                                                                      | Permitted Phases    |      |
| Minimum Initial (s) 4.0  Minimum Split (s) 10.0  Total Split (s) 29.0  Total Split (%) 26%  Yellow Time (s) 4.5  All-Red Time (s) 1.5  Lead/Lag  Lead-Lag Optimize?  Recall Mode None  Act Effct Green (s)  Actuated g/C Ratio  v/c Ratio  Control Delay  Queue Delay  Total Delay  LOS  Approach Delay  Approach LOS  Stops (vph)  Fuel Used(gal)                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |      |
| Minimum Split (s)  Total Split (s)  29.0  Total Split (%)  Yellow Time (s)  All-Red Time (s)  Lead/Lag  Lead-Lag Optimize?  Recall Mode  Act Effct Green (s)  Actuated g/C Ratio  v/c Ratio  Control Delay  Queue Delay  Total Delay  LOS  Approach Delay  Approach LOS  Stops (vph)  Fuel Used(gal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     | 4.0  |
| Total Split (s) 29.0 Total Split (%) 26% Yellow Time (s) 4.5 All-Red Time (s) 1.5 Lead/Lag Lead-Lag Optimize? Recall Mode None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Stops (vph) Fuel Used(gal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |      |
| Total Split (%) 26% Yellow Time (s) 4.5 All-Red Time (s) 1.5 Lead/Lag Lead-Lag Optimize? Recall Mode None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Stops (vph) Fuel Used(gal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |      |
| Yellow Time (s) 4.5 All-Red Time (s) 1.5 Lead/Lag Lead-Lag Optimize? Recall Mode None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Stops (vph) Fuel Used(gal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |      |
| All-Red Time (s) 1.5 Lead/Lag Lead-Lag Optimize? Recall Mode None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Stops (vph) Fuel Used(gal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |      |
| Lead/Lag Lead-Lag Optimize? Recall Mode None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Stops (vph) Fuel Used(gal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |      |
| Recall Mode None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Stops (vph) Fuel Used(gal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     | 1.0  |
| Recall Mode None Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Stops (vph) Fuel Used(gal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |      |
| Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Stops (vph) Fuel Used(gal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     | None |
| Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Stops (vph) Fuel Used(gal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     | None |
| v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Stops (vph) Fuel Used(gal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |      |
| Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS Stops (vph) Fuel Used(gal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |      |
| Queue Delay Total Delay LOS Approach Delay Approach LOS Stops (vph) Fuel Used(gal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |      |
| Total Delay LOS Approach Delay Approach LOS Stops (vph) Fuel Used(gal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |      |
| Approach LOS Stops (vph) Fuel Used(gal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                   |      |
| Approach Delay Approach LOS Stops (vph) Fuel Used(gal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |      |
| Approach LOS<br>Stops (vph)<br>Fuel Used(gal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |      |
| Stops (vph) Fuel Used(gal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |      |
| Fuel Used(gal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |      |
| CO Emissions (g/hr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Fuel Used(gal)      |      |
| (5 /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CO Emissions (g/hr) |      |

|                         | ၨ   | -   | •   | •    | <b>←</b> | •     | •     | <b>†</b> | _   | -   | <b>↓</b> | 4    |
|-------------------------|-----|-----|-----|------|----------|-------|-------|----------|-----|-----|----------|------|
| Lane Group              | EBL | EBT | EBR | WBL  | WBT      | WBR   | NBL   | NBT      | NBR | SBL | SBT      | SBR  |
| NOx Emissions (g/hr)    |     |     |     | 95   |          | 67    | 280   | 100      |     |     | 478      | 287  |
| VOC Emissions (g/hr)    |     |     |     | 113  |          | 80    | 333   | 119      |     |     | 569      | 342  |
| Dilemma Vehicles (#)    |     |     |     | 0    |          | 0     | 0     | 0        |     |     | 40       | 0    |
| Queue Length 50th (ft)  |     |     |     | 142  |          | 84    | 198   | 0        |     |     | 306      | 230  |
| Queue Length 95th (ft)  |     |     |     | 188  |          | 144 r | n#257 | 2        |     |     | m349     | m328 |
| Internal Link Dist (ft) |     | 322 |     |      | 342      |       |       | 956      |     |     | 630      |      |
| Turn Bay Length (ft)    |     |     |     |      |          |       | 400   |          |     |     |          | 400  |
| Base Capacity (vph)     |     |     |     | 780  |          | 851   | 758   | 3912     |     |     | 2580     | 2088 |
| Starvation Cap Reductn  |     |     |     | 0    |          | 0     | 0     | 0        |     |     | 0        | 184  |
| Spillback Cap Reductn   |     |     |     | 0    |          | 0     | 0     | 0        |     |     | 0        | 0    |
| Storage Cap Reductn     |     |     |     | 0    |          | 0     | 0     | 0        |     |     | 0        | 0    |
| Reduced v/c Ratio       |     |     |     | 0.55 |          | 0.61  | 0.83  | 0.26     |     |     | 0.79     | 0.73 |

Area Type: Other

Cycle Length: 110

Actuated Cycle Length: 110

Offset: 23 (21%), Referenced to phase 2:NBT and 6:SBT, Start of Green

Natural Cycle: 80

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.86
Intersection Signal Delay: 16.7

Intersection Signal Delay: 16.7 Intersection LOS: B
Intersection Capacity Utilization 84.5% ICU Level of Service E

Analysis Period (min) 15

# 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 14: WB I-80 Ramps & Brisbin Road



| Lane Group              | ø3 |  |  |
|-------------------------|----|--|--|
| NOx Emissions (g/hr)    |    |  |  |
| VOC Emissions (g/hr)    |    |  |  |
| Dilemma Vehicles (#)    |    |  |  |
| Queue Length 50th (ft)  |    |  |  |
| Queue Length 95th (ft)  |    |  |  |
| Internal Link Dist (ft) |    |  |  |
| Turn Bay Length (ft)    |    |  |  |
| Base Capacity (vph)     |    |  |  |
| Starvation Cap Reductn  |    |  |  |
| Spillback Cap Reductn   |    |  |  |
| Storage Cap Reductn     |    |  |  |
| Reduced v/c Ratio       |    |  |  |
| Intersection Summary    |    |  |  |

|                        |       |          |       |       |          | _     |       |          |       |        |          |       |
|------------------------|-------|----------|-------|-------|----------|-------|-------|----------|-------|--------|----------|-------|
|                        | ᄼ     | -        | •     | •     | •        | •     | 1     | <b>†</b> | ~     | -      | ţ        | 4     |
| Lane Group             | EBL   | EBT      | EBR   | WBL   | WBT      | WBR   | NBL   | NBT      | NBR   | SBL    | SBT      | SBR   |
| Lane Configurations    | ቪቪ    | <b>^</b> | 7     | ሻ     | <b>^</b> | 77    | *     | <b>^</b> | 7     | 1,1    | <b>^</b> | 7     |
| Ideal Flow (vphpl)     | 1900  | 2000     | 1900  | 1900  | 2000     | 1900  | 1900  | 2000     | 1900  | 1900   | 2000     | 1900  |
| Storage Length (ft)    | 300   |          | 150   | 150   |          | 300   | 150   |          | 150   | 400    |          | 400   |
| Storage Lanes          | 2     |          | 1     | 1     |          | 2     | 1     |          | 1     | 2      |          | 1     |
| Total Lost Time (s)    | 4.0   | 4.0      | 4.0   | 4.0   | 4.0      | 4.0   | 4.0   | 4.0      | 4.0   | 4.0    | 4.0      | 4.0   |
| Leading Detector (ft)  | 50    | 50       | 50    | 50    | 50       | 50    | 50    | 50       | 50    | 50     | 50       | 50    |
| Trailing Detector (ft) | 0     | 0        | 0     | 0     | 0        | 0     | 0     | 0        | 0     | 0      | 0        | 0     |
| Turning Speed (mph)    | 15    |          | 9     | 15    |          | 9     | 15    |          | 9     | 15     |          | 9     |
| Lane Util. Factor      | 0.97  | 1.00     | 1.00  | 1.00  | 1.00     | 0.88  | 1.00  | 0.95     | 1.00  | 0.97   | 0.95     | 1.00  |
| Frt                    |       |          | 0.850 |       |          | 0.850 |       |          | 0.850 |        |          | 0.850 |
| Flt Protected          | 0.950 |          |       | 0.950 |          |       | 0.950 |          |       | 0.950  |          |       |
| Satd. Flow (prot)      | 3433  | 1961     | 1583  | 1770  | 1961     | 2787  | 1770  | 3725     | 1583  | 3433   | 3725     | 1583  |
| Flt Permitted          | 0.950 |          |       | 0.950 |          |       | 0.950 |          |       | 0.950  |          |       |
| Satd. Flow (perm)      | 3433  | 1961     | 1583  | 1770  | 1961     | 2787  | 1770  | 3725     | 1583  | 3433   | 3725     | 1583  |
| Right Turn on Red      |       |          | Yes   |       |          | Yes   |       |          | Yes   |        |          | Yes   |
| Satd. Flow (RTOR)      |       |          | 121   |       |          | 299   |       |          | 116   |        |          | 395   |
| Headway Factor         | 1.00  | 1.00     | 1.00  | 1.00  | 1.00     | 1.00  | 1.00  | 1.00     | 1.00  | 1.00   | 1.00     | 1.00  |
| Link Speed (mph)       |       | 30       |       |       | 30       |       |       | 55       |       | ,,,,,, | 55       |       |
| Link Distance (ft)     |       | 534      |       |       | 618      |       |       | 211      |       |        | 1326     |       |
| Travel Time (s)        |       | 12.1     |       |       | 14.0     |       |       | 2.6      |       |        | 16.4     |       |
| Volume (vph)           | 390   | 10       | 155   | 170   | 10       | 585   | 150   | 410      | 110   | 305    | 840      | 375   |
| Peak Hour Factor       | 0.95  | 0.95     | 0.95  | 0.95  | 0.95     | 0.95  | 0.95  | 0.95     | 0.95  | 0.95   | 0.95     | 0.95  |
| Adj. Flow (vph)        | 411   | 11       | 163   | 179   | 11       | 616   | 158   | 432      | 116   | 321    | 884      | 395   |
| Lane Group Flow (vph)  |       | 11       | 163   | 179   | 11       | 616   | 158   | 432      | 116   | 321    | 884      | 395   |
| Turn Type              | Prot  |          | pm+ov | Prot  |          | pm+ov | Prot  |          | pm+ov | Prot   |          | pm+ov |
| Protected Phases       | 7     | 4        | 5     | 3     | 8        | 1     | 5     | 2        |       | 1      | 6        | 7     |
| Permitted Phases       |       |          | 4     |       |          | 8     |       |          | 2     |        |          | 6     |
| Detector Phases        | 7     | 4        | 5     | 3     | 8        | 1     | 5     | 2        | 3     | 1      | 6        | 7     |
| Minimum Initial (s)    | 4.0   | 4.0      | 4.0   | 4.0   | 4.0      | 4.0   | 4.0   | 4.0      | 4.0   | 4.0    | 4.0      | 4.0   |
| Minimum Split (s)      | 10.0  | 22.0     | 10.0  | 10.0  | 22.0     | 10.0  | 10.0  | 22.0     | 10.0  | 10.0   | 22.0     | 10.0  |
| Total Split (s)        | 24.0  | 23.0     | 22.0  | 23.0  | 22.0     | 20.0  | 22.0  | 44.0     | 23.0  | 20.0   | 42.0     | 24.0  |
| Total Split (%)        | 21.8% | 20.9%    | 20.0% | 20.9% | 20.0%    | 18.2% | 20.0% | 40.0%    | 20.9% | 18.2%  | 38.2%    | 21.8% |
| Yellow Time (s)        | 3.0   | 4.5      | 3.0   | 3.0   | 4.5      | 3.0   | 3.0   | 4.5      | 3.0   | 3.0    | 4.5      | 3.0   |
| All-Red Time (s)       | 1.0   | 1.5      | 1.0   | 1.0   | 1.5      | 1.0   | 1.0   | 1.5      | 1.0   | 1.0    | 1.5      | 1.0   |
| Lead/Lag               | Lead  | Lag      | Lead  | Lead  | Lag      | Lead  | Lead  | Lag      | Lead  | Lead   | Lag      | Lead  |
| Lead-Lag Optimize?     |       |          |       |       |          |       |       |          |       |        |          |       |
| Recall Mode            | None  | None     | None  | None  | None     | None  | None  | C-Max    | None  | None   | C-Max    | None  |
| Act Effct Green (s)    | 17.4  | 8.3      | 17.8  | 17.2  | 8.1      | 22.1  | 14.9  | 58.5     | 79.7  | 19.4   | 63.0     | 84.4  |
| Actuated g/C Ratio     | 0.16  | 0.08     | 0.16  | 0.16  | 0.07     | 0.20  | 0.14  | 0.53     | 0.72  | 0.18   | 0.57     | 0.77  |
| v/c Ratio              | 0.76  | 0.07     | 0.46  | 0.65  | 0.08     | 0.77  | 0.66  | 0.22     | 0.10  | 0.53   | 0.41     | 0.30  |
| Control Delay          | 53.5  | 47.8     | 15.3  | 54.5  | 48.3     | 26.8  | 57.5  | 16.3     | 1.9   | 56.1   | 6.8      | 0.7   |
| Queue Delay            | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      | 0.0   | 0.0    | 0.0      | 0.0   |
| Total Delay            | 53.5  | 47.8     | 15.3  | 54.5  | 48.3     | 26.8  | 57.5  | 16.3     | 1.9   | 56.1   | 6.8      | 0.7   |
| LOS                    | D     | D        | В     | D     | D        | С     | Е     | В        | Α     | Е      | Α        | Α     |
| Approach Delay         |       | 42.7     |       |       | 33.2     |       |       | 23.2     |       |        | 15.2     |       |
| Approach LOS           |       | D        |       |       | С        |       |       | С        |       |        | В        |       |
| Stops (vph)            | 364   | 11       | 40    | 157   | 11       | 285   | 139   | 219      | 9     | 287    | 203      | 19    |
| Fuel Used(gal)         | 8     | 0        | 1     | 4     | 0        | 8     | 5     | 6        | 0     | 11     | 12       | 4     |
| CO Emissions (g/hr)    | 551   | 14       | 94    | 250   | 14       | 530   | 317   | 418      | 25    | 795    | 838      | 249   |

|                         | ۶    | <b>→</b> | $\rightarrow$ | •    | <b>←</b> | •    | 4    | <b>†</b> | /    | <b>&gt;</b> | ļ    | 4    |
|-------------------------|------|----------|---------------|------|----------|------|------|----------|------|-------------|------|------|
| Lane Group              | EBL  | EBT      | EBR           | WBL  | WBT      | WBR  | NBL  | NBT      | NBR  | SBL         | SBT  | SBR  |
| NOx Emissions (g/hr)    | 107  | 3        | 18            | 49   | 3        | 103  | 62   | 81       | 5    | 155         | 163  | 48   |
| VOC Emissions (g/hr)    | 128  | 3        | 22            | 58   | 3        | 123  | 74   | 97       | 6    | 184         | 194  | 58   |
| Dilemma Vehicles (#)    | 0    | 0        | 0             | 0    | 0        | 0    | 0    | 19       | 0    | 0           | 48   | 0    |
| Queue Length 50th (ft)  | 143  | 7        | 27            | 119  | 7        | 125  | 108  | 79       | 0    | 124         | 38   | 0    |
| Queue Length 95th (ft)  | 193  | 25       | 70            | 192  | 26       | 157  | 166  | 155      | 24   | m130        | m207 | m26  |
| Internal Link Dist (ft) |      | 454      |               |      | 538      |      |      | 131      |      |             | 1246 |      |
| Turn Bay Length (ft)    | 300  |          | 150           | 150  |          | 300  | 150  |          | 150  | 400         |      | 400  |
| Base Capacity (vph)     | 624  | 339      | 406           | 309  | 321      | 819  | 300  | 1982     | 1206 | 635         | 2133 | 1334 |
| Starvation Cap Reductn  | 0    | 0        | 0             | 0    | 0        | 0    | 0    | 0        | 0    | 0           | 0    | 0    |
| Spillback Cap Reductn   | 0    | 0        | 0             | 0    | 0        | 0    | 0    | 0        | 0    | 0           | 0    | 0    |
| Storage Cap Reductn     | 0    | 0        | 0             | 0    | 0        | 0    | 0    | 0        | 0    | 0           | 0    | 0    |
| Reduced v/c Ratio       | 0.66 | 0.03     | 0.40          | 0.58 | 0.03     | 0.75 | 0.53 | 0.22     | 0.10 | 0.51        | 0.41 | 0.30 |

Area Type: Other

Cycle Length: 110

Actuated Cycle Length: 110

Offset: 108 (98%), Referenced to phase 2:NBT and 6:SBT, Start of Green

Natural Cycle: 70

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.77

Intersection Signal Delay: 25.0
Intersection Capacity Utilization 58.2%

Intersection LOS: C
ICU Level of Service B

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 16: Access "F" & Brisbin Road



|        |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                    |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                     | ,    |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------|
| •      | -                                                                                                                                                                                                                               | *                                                                                                                                                                                                                   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | T                                                                                                                                                                                                                                                                                                                  |                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ¥                                                   | *    |
| EBL    | EBT                                                                                                                                                                                                                             | EBR                                                                                                                                                                                                                 | WBL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | WBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | WBR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NBL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NBT                                                                                                                                                                                                                                                                                                                | NBR                                           | SBL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SBT                                                 | SBR  |
| 1,1    |                                                                                                                                                                                                                                 | 77                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>^</b> ^                                                                                                                                                                                                                                                                                                         | 77                                            | 14.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>^</b> ^                                          |      |
| 1900   | 1900                                                                                                                                                                                                                            | 1900                                                                                                                                                                                                                | 1900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2000                                                                                                                                                                                                                                                                                                               | 1900                                          | 1900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2000                                                | 1900 |
| 0      |                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                    | 400                                           | 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                     | 0    |
| 2      |                                                                                                                                                                                                                                 | 2                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                    | 2                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                     | 0    |
| 4.0    | 4.0                                                                                                                                                                                                                             | 4.0                                                                                                                                                                                                                 | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.0                                                                                                                                                                                                                                                                                                                | 4.0                                           | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.0                                                 | 4.0  |
| 50     |                                                                                                                                                                                                                                 | 50                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50                                                                                                                                                                                                                                                                                                                 | 50                                            | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50                                                  |      |
| 0      |                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                  | 0                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                   |      |
| 15     |                                                                                                                                                                                                                                 | 9                                                                                                                                                                                                                   | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                    | 9                                             | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     | 9    |
| 0.97   | 1.00                                                                                                                                                                                                                            | 0.88                                                                                                                                                                                                                | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.91                                                                                                                                                                                                                                                                                                               | 0.88                                          | 0.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.91                                                | 1.00 |
|        |                                                                                                                                                                                                                                 | 0.850                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                    | 0.850                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                     |      |
| 0.950  |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                    |                                               | 0.950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |      |
| 3433   | 0                                                                                                                                                                                                                               | 2787                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5353                                                                                                                                                                                                                                                                                                               | 2787                                          | 3433                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5353                                                | 0    |
| 0.950  |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                    |                                               | 0.950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |      |
|        | 0                                                                                                                                                                                                                               | 2787                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5353                                                                                                                                                                                                                                                                                                               | 2787                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5353                                                | 0    |
|        |                                                                                                                                                                                                                                 | Yes                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                    | Yes                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                     | Yes  |
|        |                                                                                                                                                                                                                                 | 405                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                    | 30                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                     |      |
| 1.00   | 1.00                                                                                                                                                                                                                            | 1.00                                                                                                                                                                                                                | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.00                                                                                                                                                                                                                                                                                                               | 1.00                                          | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.00                                                | 1.00 |
|        | 30                                                                                                                                                                                                                              |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 55                                                                                                                                                                                                                                                                                                                 |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 55                                                  |      |
|        | 405                                                                                                                                                                                                                             |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 451                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1049                                                                                                                                                                                                                                                                                                               |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1036                                                |      |
|        |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13.0                                                                                                                                                                                                                                                                                                               |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                     |      |
| 480    | 0                                                                                                                                                                                                                               | 405                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                    | 595                                           | 1315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 845                                                 | 0    |
|        |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                    |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                     | 0.95 |
|        | 0                                                                                                                                                                                                                               |                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                    |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                     | 0    |
|        | 0                                                                                                                                                                                                                               |                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                    |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                     | 0    |
| custom | С                                                                                                                                                                                                                               | ustom                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (                                                                                                                                                                                                                                                                                                                  | custom                                        | Prot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                     |      |
|        |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                                                                                                                                                                                                                                  |                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6                                                   |      |
| 4      |                                                                                                                                                                                                                                 | 4                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                    | 24                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                     |      |
| 4      |                                                                                                                                                                                                                                 | 4                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                                                                                                                                                                                                                                  | 24                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6                                                   |      |
| 4.0    |                                                                                                                                                                                                                                 | 4.0                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.0                                                                                                                                                                                                                                                                                                                |                                               | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.0                                                 |      |
| 22.0   |                                                                                                                                                                                                                                 | 22.0                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 22.0                                                                                                                                                                                                                                                                                                               |                                               | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 22.0                                                |      |
| 24.0   | 0.0                                                                                                                                                                                                                             | 24.0                                                                                                                                                                                                                | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 32.0                                                                                                                                                                                                                                                                                                               | 56.0                                          | 54.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 86.0                                                | 0.0  |
| 21.8%  | 0.0%                                                                                                                                                                                                                            | 21.8%                                                                                                                                                                                                               | 0.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 29.1%                                                                                                                                                                                                                                                                                                              | 50.9%                                         | 49.1%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 78.2%                                               | 0.0% |
| 4.5    |                                                                                                                                                                                                                                 | 4.5                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.5                                                                                                                                                                                                                                                                                                                |                                               | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.5                                                 |      |
| 1.5    |                                                                                                                                                                                                                                 | 1.5                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.5                                                                                                                                                                                                                                                                                                                |                                               | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.5                                                 |      |
|        |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Lead                                                                                                                                                                                                                                                                                                               |                                               | Lag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                     |      |
|        |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Yes                                                                                                                                                                                                                                                                                                                |                                               | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                     |      |
| None   |                                                                                                                                                                                                                                 | None                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C-Max                                                                                                                                                                                                                                                                                                              |                                               | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C-Max                                               |      |
| 20.0   |                                                                                                                                                                                                                                 | 20.0                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 28.0                                                                                                                                                                                                                                                                                                               | 52.0                                          | 50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 82.0                                                |      |
| 0.18   |                                                                                                                                                                                                                                 | 0.18                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.25                                                                                                                                                                                                                                                                                                               | 0.47                                          | 0.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.75                                                |      |
| 0.81   |                                                                                                                                                                                                                                 | 0.51                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.83                                                                                                                                                                                                                                                                                                               | 0.47                                          | 0.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.22                                                |      |
| 54.5   |                                                                                                                                                                                                                                 | 7.3                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 26.6                                                                                                                                                                                                                                                                                                               | 7.7                                           | 19.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.6                                                 |      |
| 0.0    |                                                                                                                                                                                                                                 | 0.0                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0                                                                                                                                                                                                                                                                                                                | 0.0                                           | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0                                                 |      |
|        |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 26.6                                                                                                                                                                                                                                                                                                               | 7.7                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                     |      |
| D      |                                                                                                                                                                                                                                 | Α                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | С                                                                                                                                                                                                                                                                                                                  | Α                                             | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Α                                                   |      |
|        |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 19.9                                                                                                                                                                                                                                                                                                               |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13.6                                                |      |
|        |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | В                                                                                                                                                                                                                                                                                                                  |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | В                                                   |      |
| 442    |                                                                                                                                                                                                                                 | 47                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 872                                                                                                                                                                                                                                                                                                                | 133                                           | 1061                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 168                                                 |      |
| 9      |                                                                                                                                                                                                                                 | 2                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 29                                                                                                                                                                                                                                                                                                                 |                                               | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9                                                   |      |
| 649    |                                                                                                                                                                                                                                 | 149                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2039                                                                                                                                                                                                                                                                                                               | 514                                           | 2354                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 649                                                 |      |
|        | 1900<br>0<br>2<br>4.0<br>50<br>0<br>15<br>0.97<br>0.950<br>3433<br>0.950<br>3433<br>1.00<br>480<br>0.95<br>505<br>505<br>custom<br>4<br>4.0<br>22.0<br>24.0<br>21.8%<br>4.5<br>1.5<br>None<br>20.0<br>0.18<br>0.81<br>54.5<br>D | EBL EBT  1900 1900 0 2 4.0 4.0 50 0 15 0.97 1.00  0.950 3433 0 0.950 3433 0 1.00 1.00 30 405 9.2 480 0 0.95 0.95 505 0 505 0 custom c 4 4 4.0 22.0 24.0 0.0 21.8% 0.0% 4.5 1.5  None 20.0 0.18 0.81 54.5 0.0 54.5 D | EBL         EBT         EBR           1900         1900         1900           0         0         0           2         2         2           4.0         4.0         50           0         0         0           15         9         0.950           3433         0         2787           0.950         3433         0         2787           Yes         405         1.00         1.00           30         405         9.2         480         0         405           0.95         0.95         0.95         505         50         95           505         0         426         20         20         20           24.0         0.0         24.0         22.0         22.0         22.0         22.0         22.0         22.0         22.0         22.0         22.0         22.0         22.0         21.8%         4.5         4.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5 | EBL EBT EBR WBL  1900 1900 1900 1900 0 0 0 2 2 2 2 0 4.0 4.0 4.0 4.0 4.0 50 50 50 0 0 0 15 9 15 0.97 1.00 0.88 1.00 0.950 3433 0 2787 0 0.950 3433 0 2787 0 7 yes 405 1.00 1.00 1.00 1.00 30 405 9.2 480 0 405 0 0.95 0.95 0.95 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 0 505 0 426 | EBL EBT EBR WBL WBT  1900 1900 1900 1900 1900 0 0 0 2 2 2 2 0 4.0 4.0 4.0 4.0 4.0 4.0 50 50 50 0 0 0 15 9 15 0.97 1.00 0.88 1.00 1.00 0.850 0.950 3433 0 2787 0 0 0.950 3433 0 2787 0 0 0.950 3405 451 9.2 10.3 480 0 405 0 0 0.95 0.95 0.95 0.95 505 0 426 0 0 5055 0 426 0 0 5055 0 426 0 0 5055 0 426 0 0 5055 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 0 0 505 0 426 | EBL         EBT         EBR         WBL         WBT         WBR           1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 | EBL EBT EBR WBL WBT WBR NBL  1900 1900 1900 1900 1900 1900 1900 0 0 0 0 0 0 0 2 2 2 0 0 0 0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 50 50 50 0 0 0 15 9 15 9 15 0.97 1.00 0.88 1.00 1.00 1.00 1.00 0.850 0.950 3433 0 2787 0 0 0 0 0 0.950 3433 0 2787 0 0 0 0 0 0.950 3443 0 2787 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1. | BBL   BBT   BBR   WBL   WBT   WBR   NBL   NBT | Fig.   Fig. | BBL   BBR   BBR   WBL   WBR   NBL   NBT   NBR   SBL | BBL  |

|                         | ᄼ    | -   | •    | •   | ←   | •   | 4   | <b>†</b> | ~    | -    | <b>↓</b> | 1   |
|-------------------------|------|-----|------|-----|-----|-----|-----|----------|------|------|----------|-----|
| Lane Group              | EBL  | EBT | EBR  | WBL | WBT | WBR | NBL | NBT      | NBR  | SBL  | SBT      | SBR |
| NOx Emissions (g/hr)    | 126  |     | 29   |     |     |     |     | 397      | 100  | 458  | 126      |     |
| VOC Emissions (g/hr)    | 150  |     | 35   |     |     |     |     | 473      | 119  | 546  | 150      |     |
| Dilemma Vehicles (#)    | 0    |     | 0    |     |     |     |     | 40       | 0    | 0    | 45       |     |
| Queue Length 50th (ft)  | 178  |     | 6    |     |     |     |     | 229      | 55   | 159  | 48       |     |
| Queue Length 95th (ft)  | #252 |     | 53   |     |     |     |     | 282      | m75  | #192 | 59       |     |
| Internal Link Dist (ft) |      | 325 |      |     | 371 |     |     | 969      |      |      | 956      |     |
| Turn Bay Length (ft)    |      |     |      |     |     |     |     |          | 400  | 400  |          |     |
| Base Capacity (vph)     | 624  |     | 838  |     |     |     |     | 1363     | 1333 | 1560 | 3990     |     |
| Starvation Cap Reductn  | 0    |     | 0    |     |     |     |     | 0        | 0    | 0    | 0        |     |
| Spillback Cap Reductn   | 0    |     | 0    |     |     |     |     | 0        | 0    | 0    | 0        |     |
| Storage Cap Reductn     | 0    |     | 0    |     |     |     |     | 0        | 0    | 0    | 0        |     |
| Reduced v/c Ratio       | 0.81 |     | 0.51 |     |     |     |     | 0.83     | 0.47 | 0.89 | 0.22     |     |

Area Type: Other

Cycle Length: 110

Actuated Cycle Length: 110

Offset: 0 (0%), Referenced to phase 2:NBT and 6:SBT, Start of Green

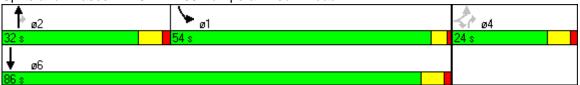
Natural Cycle: 90

Control Type: Actuated-Coordinated

Intersection Capacity Utilization 84.5%

Maximum v/c Ratio: 0.89
Intersection Signal Delay: 19.4

Intersection LOS: B
ICU Level of Service E


Analysis Period (min) 15

# 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 19: EB I-80 Ramps & Brisbin Road



|                        | ۶     | <b>→</b> | •     | •     | <b>←</b> | •     | •     | †        | <i>&gt;</i> | <b>&gt;</b> | <b></b> |       |
|------------------------|-------|----------|-------|-------|----------|-------|-------|----------|-------------|-------------|---------|-------|
| Lane Group             | EBL   | EBT      | EBR   | WBL   | WBT      | WBR   | NBL   | NBT      | NBR         | SBL         | SBT     | SBR   |
| Lane Configurations    | ች     | <b>^</b> | 77    | ች     | <b>^</b> | 7     | ሻሻ    | <b>^</b> | 1           | ች           | ተተተ     | 7     |
| Ideal Flow (vphpl)     | 1900  | 2000     | 1900  | 1900  | 2000     | 1900  | 1900  | 2000     | 1900        | 1900        | 2000    | 1900  |
| Storage Length (ft)    | 265   |          | 400   | 400   |          | 265   | 400   |          | 400         | 265         |         | 265   |
| Storage Lanes          | 1     |          | 2     | 1     |          | 1     | 2     |          | 1           | 1           |         | 1     |
| Total Lost Time (s)    | 4.0   | 4.0      | 4.0   | 4.0   | 4.0      | 4.0   | 4.0   | 4.0      | 4.0         | 4.0         | 4.0     | 4.0   |
| Leading Detector (ft)  | 50    | 50       | 50    | 50    | 50       | 50    | 50    | 50       | 50          | 50          | 50      | 50    |
| Trailing Detector (ft) | 0     | 0        | 0     | 0     | 0        | 0     | 0     | 0        | 0           | 0           | 0       | 0     |
| Turning Speed (mph)    | 15    |          | 9     | 15    |          | 9     | 15    |          | 9           | 15          |         | 9     |
| Lane Util. Factor      | 1.00  | 0.95     | 0.88  | 1.00  | 0.95     | 1.00  | 0.97  | 0.91     | 1.00        | 1.00        | 0.91    | 1.00  |
| Frt                    |       |          | 0.850 |       |          | 0.850 |       |          | 0.850       |             |         | 0.850 |
| Flt Protected          | 0.950 |          |       | 0.950 |          |       | 0.950 |          |             | 0.950       |         |       |
| Satd. Flow (prot)      | 1770  | 3725     | 2787  | 1770  | 3725     | 1583  | 3433  | 5353     | 1583        | 1770        | 5353    | 1583  |
| Flt Permitted          | 0.211 |          |       | 0.211 |          |       | 0.950 |          |             | 0.950       |         |       |
| Satd. Flow (perm)      | 393   | 3725     | 2787  | 393   | 3725     | 1583  | 3433  | 5353     | 1583        | 1770        | 5353    | 1583  |
| Right Turn on Red      |       |          | Yes   |       |          | Yes   |       |          | Yes         |             |         | Yes   |
| Satd. Flow (RTOR)      |       |          | 26    |       |          | 62    |       |          | 105         |             |         | 15    |
| Headway Factor         | 1.00  | 1.00     | 1.00  | 1.00  | 1.00     | 1.00  | 1.00  | 1.00     | 1.00        | 1.00        | 1.00    | 1.00  |
| Link Speed (mph)       |       | 30       |       |       | 30       |       |       | 55       |             |             | 55      |       |
| Link Distance (ft)     |       | 414      |       |       | 426      |       |       | 710      |             |             | 975     |       |
| Travel Time (s)        |       | 9.4      |       |       | 9.7      |       |       | 8.8      |             |             | 12.1    |       |
| Volume (vph)           | 100   | 600      | 360   | 135   | 495      | 115   | 235   | 1125     | 100         | 135         | 2745    | 80    |
| Peak Hour Factor       | 0.95  | 0.95     | 0.95  | 0.95  | 0.95     | 0.95  | 0.95  | 0.95     | 0.95        | 0.95        | 0.95    | 0.95  |
| Adj. Flow (vph)        | 105   | 632      | 379   | 142   | 521      | 121   | 247   | 1184     | 105         | 142         | 2889    | 84    |
| Lane Group Flow (vph)  | 105   | 632      | 379   | 142   | 521      | 121   | 247   | 1184     | 105         | 142         | 2889    | 84    |
| Turn Type              | pm+pt |          |       | pm+pt |          | pm+ov | Prot  |          | pm+ov       | Prot        |         | om+ov |
| Protected Phases       | 7     | 4        | 5     | 3     | 8        | 1     | 5     | 2        | 3           | 1           | 6       | 7     |
| Permitted Phases       | 4     |          | 4     | 8     |          | 8     |       |          | 2           |             |         | 6     |
| Detector Phases        | 7     | 4        | 5     | 3     | 8        | 1     | 5     | 2        | 3           | 1           | 6       | 7     |
| Minimum Initial (s)    | 4.0   | 4.0      | 4.0   | 4.0   | 4.0      | 4.0   | 4.0   | 4.0      | 4.0         | 4.0         | 4.0     | 4.0   |
| Minimum Split (s)      | 10.0  | 22.0     | 10.0  | 10.0  | 22.0     | 10.0  | 10.0  | 22.0     | 10.0        | 10.0        | 22.0    | 10.0  |
| Total Split (s)        | 10.0  | 23.0     | 12.0  | 10.0  | 23.0     | 20.0  | 12.0  | 57.0     | 10.0        | 20.0        | 65.0    | 10.0  |
| Total Split (%)        |       | 20.9%    | 10.9% | 9.1%  | 20.9%    | 18.2% | 10.9% | 51.8%    | 9.1%        | 18.2%       | 59.1%   | 9.1%  |
| Yellow Time (s)        | 3.0   | 4.5      | 3.0   | 3.0   | 4.5      | 3.0   | 3.0   | 4.5      | 3.0         | 3.0         | 4.5     | 3.0   |
| All-Red Time (s)       | 1.0   | 1.5      | 1.0   | 1.0   | 1.5      | 1.0   | 1.0   | 1.5      | 1.0         | 1.0         | 1.5     | 1.0   |
| Lead/Lag               | Lead  | Lag      | Lead  | Lead  | Lag      | Lead  | Lead  | Lag      | Lead        | Lead        | Lag     | Lead  |
| Lead-Lag Optimize?     |       |          |       |       |          |       |       | J        |             |             |         |       |
| Recall Mode            | None  | None     | None  | None  | None     | None  | None  | C-Max    | None        | None        | C-Max   | None  |
| Act Effct Green (s)    | 25.0  | 19.0     | 31.0  | 25.0  | 19.0     | 36.3  | 8.0   | 55.7     | 65.7        | 13.3        | 61.0    | 71.0  |
| Actuated g/C Ratio     | 0.23  | 0.17     | 0.28  | 0.23  | 0.17     | 0.33  | 0.07  | 0.51     | 0.60        | 0.12        | 0.55    | 0.65  |
| v/c Ratio              | 0.64  | 0.98     | 0.47  | 0.87  | 0.81     | 0.21  | 0.99  | 0.44     | 0.11        | 0.66        | 0.97    | 0.08  |
| Control Delay          | 51.7  | 77.5     | 32.6  | 78.9  | 54.8     | 14.0  | 114.8 | 9.9      | 2.1         | 61.4        | 17.7    | 2.0   |
| Queue Delay            | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      | 0.0         | 0.0         | 0.0     | 0.0   |
| Total Delay            | 51.7  | 77.5     | 32.6  | 78.9  | 54.8     | 14.0  | 114.8 | 9.9      | 2.1         | 61.4        | 17.7    | 2.0   |
| LOS                    | D     | Е        | С     | Е     | D        | В     | F     | Α        | Α           | Е           | В       | Α     |
| Approach Delay         |       | 59.8     |       |       | 52.9     |       |       | 26.2     |             |             | 19.3    |       |
| Approach LOS           |       | E        |       |       | D        |       |       | С        |             |             | В       |       |
| Stops (vph)            | 79    | 538      | 271   | 103   | 456      | 40    | 209   | 510      | 15          | 131         | 1242    | 9     |
|                        |       |          |       |       |          |       |       |          | . •         |             |         |       |
| Fuel Used(gal)         | 2     | 14       | 5     | 3     | 10       | 1     | 10    | 17       | 1           | 5           | 50      | 1     |

|                         | ۶    | -    | $\rightarrow$ | •    | <b>←</b> | *    | 1    | <b>†</b> | <b>/</b> | -    | <b>↓</b> | 4    |
|-------------------------|------|------|---------------|------|----------|------|------|----------|----------|------|----------|------|
| Lane Group              | EBL  | EBT  | EBR           | WBL  | WBT      | WBR  | NBL  | NBT      | NBR      | SBL  | SBT      | SBR  |
| NOx Emissions (g/hr)    | 25   | 195  | 69            | 43   | 132      | 13   | 142  | 228      | 10       | 67   | 679      | 9    |
| VOC Emissions (g/hr)    | 29   | 233  | 82            | 52   | 157      | 15   | 169  | 272      | 13       | 80   | 809      | 11   |
| Dilemma Vehicles (#)    | 0    | 0    | 0             | 0    | 0        | 0    | 0    | 10       | 0        | 0    | 168      | 0    |
| Queue Length 50th (ft)  | 58   | 236  | 117           | 80   | 187      | 29   | 95   | 147      | 3        | 105  | 243      | 3    |
| Queue Length 95th (ft)  | #118 | #356 | 168           | #165 | #263     | 70   | #180 | 183      | m10      | m114 | m#354    | m8   |
| Internal Link Dist (ft) |      | 334  |               |      | 346      |      |      | 630      |          |      | 895      |      |
| Turn Bay Length (ft)    | 265  |      | 400           | 400  |          | 265  | 400  |          | 400      | 265  |          | 265  |
| Base Capacity (vph)     | 164  | 643  | 804           | 164  | 643      | 601  | 250  | 2710     | 987      | 257  | 2968     | 1027 |
| Starvation Cap Reductn  | 0    | 0    | 0             | 0    | 0        | 0    | 0    | 0        | 0        | 0    | 0        | 0    |
| Spillback Cap Reductn   | 0    | 0    | 0             | 0    | 0        | 0    | 0    | 0        | 0        | 0    | 0        | 0    |
| Storage Cap Reductn     | 0    | 0    | 0             | 0    | 0        | 0    | 0    | 0        | 0        | 0    | 0        | 0    |
| Reduced v/c Ratio       | 0.64 | 0.98 | 0.47          | 0.87 | 0.81     | 0.20 | 0.99 | 0.44     | 0.11     | 0.55 | 0.97     | 0.08 |

Area Type: Other

Cycle Length: 110

Actuated Cycle Length: 110

Offset: 10 (9%), Referenced to phase 2:NBT and 6:SBT, Start of Green

Natural Cycle: 100

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.99

Intersection Signal Delay: 31.8 Intersection LOS: C
Intersection Capacity Utilization 93.7% ICU Level of Service F

Analysis Period (min) 15

# 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 23: North Road & Brisbin Road



|                        | ۶     | <b>→</b> | •     | •     | +     | •    | •     | †        | <i>&gt;</i> | <b>/</b> | <b></b> | -√    |
|------------------------|-------|----------|-------|-------|-------|------|-------|----------|-------------|----------|---------|-------|
| Lane Group             | EBL   | EBT      | EBR   | WBL   | WBT   | WBR  | NBL   | NBT      | NBR         | SBL      | SBT     | SBR   |
| Lane Configurations    | ች     | <b></b>  | 1     | ች     | 4     |      | ች     | <b>^</b> | #           | ች        | ተተተ     | 7     |
| Ideal Flow (vphpl)     | 1900  | 1900     | 1900  | 1900  | 1900  | 1900 | 1900  | 2000     | 1900        | 1900     | 2000    | 1900  |
| Storage Length (ft)    | 150   |          | 0     | 400   |       | 0    | 400   |          | 400         | 265      |         | 265   |
| Storage Lanes          | 1     |          | 1     | 1     |       | 0    | 1     |          | 1           | 1        |         | 1     |
| Total Lost Time (s)    | 4.0   | 4.0      | 4.0   | 4.0   | 4.0   | 4.0  | 4.0   | 4.0      | 4.0         | 4.0      | 4.0     | 4.0   |
| Leading Detector (ft)  | 50    | 50       | 50    | 50    | 50    |      | 50    | 50       | 50          | 50       | 50      | 50    |
| Trailing Detector (ft) | 0     | 0        | 0     | 0     | 0     |      | 0     | 0        | 0           | 0        | 0       | 0     |
| Turning Speed (mph)    | 15    |          | 9     | 15    |       | 9    | 15    |          | 9           | 15       |         | 9     |
| Lane Util. Factor      | 1.00  | 1.00     | 1.00  | 1.00  | 1.00  | 1.00 | 1.00  | 0.91     | 1.00        | 1.00     | 0.91    | 1.00  |
| Frt                    |       |          | 0.850 |       | 0.862 |      |       |          | 0.850       |          |         | 0.850 |
| Flt Protected          | 0.950 |          |       | 0.950 |       |      | 0.950 |          |             | 0.950    |         |       |
| Satd. Flow (prot)      | 1770  | 1863     | 1583  | 1770  | 1606  | 0    | 1770  | 5353     | 1583        | 1770     | 5353    | 1583  |
| Flt Permitted          | 0.590 |          |       | 0.711 |       |      | 0.070 |          |             | 0.242    |         |       |
| Satd. Flow (perm)      | 1099  | 1863     | 1583  | 1324  | 1606  | 0    | 130   | 5353     | 1583        | 451      | 5353    | 1583  |
| Right Turn on Red      |       |          | Yes   |       |       | Yes  |       |          | Yes         |          |         | Yes   |
| Satd. Flow (RTOR)      |       |          | 17    |       | 121   |      |       |          | 221         |          |         | 68    |
| Headway Factor         | 1.00  | 1.00     | 1.00  | 1.00  | 1.00  | 1.00 | 1.00  | 1.00     | 1.00        | 1.00     | 1.00    | 1.00  |
| Link Speed (mph)       |       | 30       |       |       | 30    |      |       | 55       |             |          | 55      |       |
| Link Distance (ft)     |       | 431      |       |       | 457   |      |       | 975      |             |          | 974     |       |
| Travel Time (s)        |       | 9.8      |       |       | 10.4  |      |       | 12.1     |             |          | 12.1    |       |
| Volume (vph)           | 100   | 10       | 290   | 290   | 10    | 115  | 195   | 935      | 210         | 85       | 2380    | 65    |
| Peak Hour Factor       | 0.95  | 0.95     | 0.95  | 0.95  | 0.95  | 0.95 | 0.95  | 0.95     | 0.95        | 0.95     | 0.95    | 0.95  |
| Adj. Flow (vph)        | 105   | 11       | 305   | 305   | 11    | 121  | 205   | 984      | 221         | 89       | 2505    | 68    |
| Lane Group Flow (vph)  | 105   | 11       | 305   | 305   | 132   | 0    | 205   | 984      | 221         | 89       | 2505    | 68    |
| Turn Type              | pm+pt |          | pm+ov | pm+pt |       |      | pm+pt |          | pm+ov       | pm+pt    |         | pm+ov |
| Protected Phases       | 7     | 4        | 5     | 3     | 8     |      | 5     | 2        | 3           | 1        | 6       | 7     |
| Permitted Phases       | 4     |          | 4     | 8     |       |      | 2     |          | 2           | 6        |         | 6     |
| Detector Phases        | 7     | 4        | 5     | 38    | 8     |      | 5     | 2        | 3           | 1        | 6       | 7     |
| Minimum Initial (s)    | 4.0   | 4.0      | 4.0   | 4.0   | 4.0   |      | 4.0   | 4.0      | 4.0         | 4.0      | 4.0     | 4.0   |
| Minimum Split (s)      | 10.0  | 22.0     | 10.0  | 10.0  | 22.0  |      | 10.0  | 22.0     | 10.0        | 10.0     | 22.0    | 10.0  |
| Total Split (s)        | 10.0  | 22.0     | 18.0  | 11.0  | 23.0  | 0.0  | 18.0  | 61.0     | 11.0        | 16.0     | 59.0    | 10.0  |
| Total Split (%)        | 9.1%  | 20.0%    | 16.4% | 10.0% | 20.9% | 0.0% | 16.4% | 55.5%    | 10.0%       | 14.5%    | 53.6%   | 9.1%  |
| Yellow Time (s)        | 3.0   | 4.5      | 3.0   | 3.0   | 4.5   |      | 3.0   | 4.5      | 3.0         | 3.0      | 4.5     | 3.0   |
| All-Red Time (s)       | 0.0   | 1.5      | 1.0   | 0.0   | 1.5   |      | 1.0   | 1.5      | 0.0         | 1.0      | 1.5     | 0.0   |
| Lead/Lag               | Lead  | Lag      | Lead  | Lead  | Lag   |      | Lead  | Lag      | Lead        | Lead     | Lag     | Lead  |
| Lead-Lag Optimize?     |       |          |       |       |       |      |       |          |             |          |         |       |
| Recall Mode            | None  | None     | None  | None  | None  |      | None  | C-Max    | None        | None     | C-Max   | None  |
| Act Effct Green (s)    | 9.6   | 9.8      | 18.9  | 27.6  | 18.2  |      | 73.8  | 65.3     | 93.9        | 61.7     | 55.2    | 65.2  |
| Actuated g/C Ratio     | 0.09  | 0.09     | 0.17  | 0.25  | 0.17  |      | 0.67  | 0.59     | 0.85        | 0.56     | 0.50    | 0.59  |
| v/c Ratio              | 0.79  | 0.07     | 1.06  | 0.71  | 0.36  |      | 0.67  | 0.31     | 0.16        | 0.27     | 0.93    | 0.07  |
| Control Delay          | 83.5  | 44.0     | 111.7 | 48.1  | 11.8  |      | 53.5  | 4.1      | 0.3         | 3.9      | 12.1    | 0.1   |
| Queue Delay            | 0.0   | 0.0      | 0.0   | 0.0   | 0.0   |      | 0.0   | 0.0      | 0.0         | 0.0      | 0.0     | 0.0   |
| Total Delay            | 83.5  | 44.0     | 111.7 | 48.1  | 11.8  |      | 53.5  | 4.1      | 0.3         | 3.9      | 12.1    | 0.1   |
| LOS                    | F     | D        | F     | D     | В     |      | D     | Α        | Α           | Α        | В       | Α     |
| Approach Delay         |       | 102.9    |       |       | 37.2  |      |       | 10.7     |             |          | 11.5    |       |
| Approach LOS           |       | F        |       |       | D     |      |       | В        |             |          | В       |       |
| Stops (vph)            | 90    | 11       | 219   | 247   | 26    |      | 215   | 145      | 1           | 12       | 619     | 0     |
| Fuel Used(gal)         | 3     | 0        | 9     | 5     | 1     |      | 7     |          | 1           | 1        | 32      | 0     |
| CO Emissions (g/hr)    | 177   | 13       | 614   | 366   | 62    |      | 512   | 647      | 93          | 57       | 2240    | 28    |

|                         | ۶    | <b>→</b> | •    | •    | <b>←</b> | •   | 4    | <b>†</b> | <b>/</b> | <b>&gt;</b> | <b>↓</b> | 4    |
|-------------------------|------|----------|------|------|----------|-----|------|----------|----------|-------------|----------|------|
| Lane Group              | EBL  | EBT      | EBR  | WBL  | WBT      | WBR | NBL  | NBT      | NBR      | SBL         | SBT      | SBR  |
| NOx Emissions (g/hr)    | 34   | 3        | 119  | 71   | 12       |     | 100  | 126      | 18       | 11          | 436      | 5    |
| VOC Emissions (g/hr)    | 41   | 3        | 142  | 85   | 14       |     | 119  | 150      | 21       | 13          | 519      | 7    |
| Dilemma Vehicles (#)    | 0    | 0        | 0    | 0    | 0        |     | 0    | 31       | 0        | 0           | 53       | 0    |
| Queue Length 50th (ft)  | ~84  | 7        | ~281 | 192  | 7        |     | 116  | 41       | 0        | 10          | 156      | 0    |
| Queue Length 95th (ft)  | 105  | 23       | 260  | #370 | 60       |     | #204 | 54       | 0        | m10         | m164     | m0   |
| Internal Link Dist (ft) |      | 351      |      |      | 377      |     |      | 895      |          |             | 894      |      |
| Turn Bay Length (ft)    | 150  |          |      | 400  |          |     | 400  |          | 400      | 265         |          | 265  |
| Base Capacity (vph)     | 133  | 305      | 287  | 439  | 378      |     | 304  | 3176     | 1384     | 420         | 2688     | 966  |
| Starvation Cap Reductn  | 0    | 0        | 0    | 0    | 0        |     | 0    | 0        | 0        | 0           | 0        | 0    |
| Spillback Cap Reductn   | 0    | 0        | 0    | 0    | 0        |     | 0    | 0        | 0        | 0           | 0        | 0    |
| Storage Cap Reductn     | 0    | 0        | 0    | 0    | 0        |     | 0    | 0        | 0        | 0           | 0        | 0    |
| Reduced v/c Ratio       | 0.79 | 0.04     | 1.06 | 0.69 | 0.35     |     | 0.67 | 0.31     | 0.16     | 0.21        | 0.93     | 0.07 |

Area Type: Other

Cycle Length: 110

Actuated Cycle Length: 110

Offset: 5 (5%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 90

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.06
Intersection Signal Delay: 21.4

Intersection Signal Delay: 21.4 Intersection LOS: C
Intersection Capacity Utilization 87.7% ICU Level of Service E

Analysis Period (min) 15

~ Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

# 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 26: Access "E" & Brisbin Road



|                        | ۶         | <b>→</b>  | •         | •         | +         | •     | •         | †         | <i>&gt;</i> | <b>&gt;</b> | <b></b>    | -√       |
|------------------------|-----------|-----------|-----------|-----------|-----------|-------|-----------|-----------|-------------|-------------|------------|----------|
| Lane Group             | EBL       | EBT       | EBR       | WBL       | WBT       | WBR   | NBL       | NBT       | NBR         | SBL         | SBT        | SBR      |
| Lane Configurations    | ች         | <b></b>   | 7         | ኝኝ        | 4         |       | ች         | <b>^</b>  | #           | *           | <b>†</b> † | 1        |
| Ideal Flow (vphpl)     | 1900      | 1900      | 1900      | 1900      | 1900      | 1900  | 1900      | 2000      | 1900        | 1900        | 2000       | 1900     |
| Storage Length (ft)    | 265       |           | 0         | 400       |           | 0     | 400       |           | 400         | 265         |            | 265      |
| Storage Lanes          | 1         |           | 1         | 2         |           | 0     | 1         |           | 1           | 1           |            | 1        |
| Total Lost Time (s)    | 4.0       | 4.0       | 4.0       | 4.0       | 4.0       | 4.0   | 4.0       | 4.0       | 4.0         | 4.0         | 4.0        | 4.0      |
| Leading Detector (ft)  | 50        | 50        | 50        | 50        | 50        |       | 50        | 50        | 50          | 50          | 50         | 50       |
| Trailing Detector (ft) | 0         | 0         | 0         | 0         | 0         |       | 0         | 0         | 0           | 0           | 0          | 0        |
| Turning Speed (mph)    | 15        |           | 9         | 15        |           | 9     | 15        |           | 9           | 15          |            | 9        |
| Lane Util. Factor      | 1.00      | 1.00      | 1.00      | 0.97      | 1.00      | 1.00  | 1.00      | 0.95      | 1.00        | 1.00        | 0.95       | 1.00     |
| Frt                    |           |           | 0.850     | 0.0.      | 0.862     |       |           | 0.00      | 0.850       |             | 0.00       | 0.850    |
| Flt Protected          | 0.950     |           | 0.000     | 0.950     | 0.002     |       | 0.950     |           | 0.000       | 0.950       |            | 0.000    |
| Satd. Flow (prot)      | 1770      | 1863      | 1583      | 3433      | 1606      | 0     | 1770      | 3725      | 1583        | 1770        | 3725       | 1583     |
| Flt Permitted          | 0.950     | .000      |           | 0.950     |           |       | 0.068     | 0.20      | .000        | 0.196       | 0.20       | .000     |
| Satd. Flow (perm)      | 1770      | 1863      | 1583      | 3433      | 1606      | 0     | 127       | 3725      | 1583        | 365         | 3725       | 1583     |
| Right Turn on Red      | 1770      | 1000      | Yes       | 0 100     | 1000      | Yes   | 121       | 0120      | Yes         | 000         | 0,20       | Yes      |
| Satd. Flow (RTOR)      |           |           | 10        |           | 132       | 100   |           |           | 47          |             |            | 16       |
| Headway Factor         | 1.00      | 1.00      | 1.00      | 1.00      | 1.00      | 1.00  | 1.00      | 1.00      | 1.00        | 1.00        | 1.00       | 1.00     |
| Link Speed (mph)       | 1.00      | 30        | 1.00      | 1.00      | 30        | 1.00  | 1.00      | 55        | 1.00        | 1.00        | 55         | 1.00     |
| Link Distance (ft)     |           | 601       |           |           | 563       |       |           | 1489      |             |             | 1482       |          |
| Travel Time (s)        |           | 13.7      |           |           | 12.8      |       |           | 18.5      |             |             | 18.4       |          |
| Volume (vph)           | 90        | 10        | 200       | 290       | 10        | 125   | 30        | 970       | 45          | 20          | 1785       | 15       |
| Peak Hour Factor       | 0.95      | 0.95      | 0.95      | 0.95      | 0.95      | 0.95  | 0.95      | 0.95      | 0.95        | 0.95        | 0.95       | 0.95     |
| Adj. Flow (vph)        | 95        | 11        | 211       | 305       | 11        | 132   | 32        | 1021      | 47          | 21          | 1879       | 16       |
| Lane Group Flow (vph)  | 95        | 11        | 211       | 305       | 143       | 0     | 32        | 1021      | 47          | 21          | 1879       | 16       |
| Turn Type              | Prot      |           | pm+ov     | Prot      | 140       | U     | pm+pt     |           | pm+ov       |             |            | pm+ov    |
| Protected Phases       | 7         | 4         | 5         | 3         | 8         |       | 5         | 2         | 3           | 1           | 6          | 7        |
| Permitted Phases       | •         |           | 4         | U         | U         |       | 2         | _         | 2           | 6           | U          | 6        |
| Detector Phases        | 7         | 4         | 5         | 3         | 8         |       | 5         | 2         | 3           | 1           | 6          | 7        |
| Minimum Initial (s)    | 4.0       | 4.0       | 4.0       | 4.0       | 4.0       |       | 4.0       | 4.0       | 4.0         | 4.0         | 4.0        | 4.0      |
| Minimum Split (s)      | 10.0      | 22.0      | 10.0      | 10.0      | 22.0      |       | 10.0      | 22.0      | 10.0        | 10.0        | 22.0       | 10.0     |
| Total Split (s)        | 13.0      | 22.0      | 10.0      | 15.0      | 24.0      | 0.0   | 10.0      | 63.0      | 15.0        | 10.0        | 63.0       | 13.0     |
| Total Split (%)        | 11.8%     |           |           | 13.6%     |           | 0.0%  |           | 57.3%     |             |             |            | 11.8%    |
| Yellow Time (s)        | 3.0       | 4.5       | 3.0       | 3.0       | 4.5       | 0.070 | 3.0       | 4.5       | 3.0         | 3.0         | 4.5        | 3.0      |
| All-Red Time (s)       | 1.0       | 1.5       | 1.0       | 1.0       |           |       | 1.0       | 1.5       | 1.0         | 1.0         | 1.5        | 1.0      |
| Lead/Lag               | Lead      | Lag       | Lead      | Lead      | Lag       |       | Lead      | Lag       | Lead        | Lead        | Lag        | Lead     |
| Lead-Lag Optimize?     | Leau      | Lag       | Leau      | Leau      | Lag       |       | Leau      | Lag       | Leau        | Leau        | Lag        | Leau     |
| Recall Mode            | None      | None      | None      | None      | None      |       | None      | C-Max     | None        | None        | C-Max      | None     |
| Act Effct Green (s)    | 8.6       | 8.7       | 18.1      | 19.0      | 9.7       |       | 79.7      | 75.7      |             | 66.6        | 60.9       | 73.5     |
| Actuated g/C Ratio     | 0.08      | 0.08      | 0.16      | 0.17      | 0.09      |       | 0.72      | 0.69      | 0.92        | 0.61        | 0.55       | 0.67     |
| v/c Ratio              | 0.08      | 0.08      | 0.78      | 0.17      | 0.09      |       | 0.72      | 0.40      | 0.92        | 0.07        | 0.55       | 0.07     |
| Control Delay          | 73.9      | 46.7      | 61.6      | 45.7      | 17.9      |       | 12.4      | 22.5      | 1.2         | 3.4         | 15.1       | 0.02     |
| Queue Delay            | 0.0       | 0.0       | 0.0       | 0.0       | 0.0       |       | 0.0       | 0.0       | 0.0         | 0.0         | 0.0        | 0.0      |
| Total Delay            | 73.9      | 46.7      | 61.6      | 45.7      | 17.9      |       | 12.4      | 22.5      | 1.2         | 3.4         | 15.1       | 0.0      |
| LOS                    | 73.9<br>E | 40.7<br>D | 61.6<br>E | 45.7<br>D | 17.9<br>B |       | 12.4<br>B | 22.5<br>C |             | 3.4<br>A    | 13.1<br>B  | 0.5<br>A |
|                        |           |           |           | U         |           |       | Б         |           | Α           | А           |            | A        |
| Approach LOS           |           | 64.7      |           |           | 36.8      |       |           | 21.3      |             |             | 14.8       |          |
| Approach LOS           | 00        | 11        | 171       | 240       | D         |       | 40        | C 920     | F           | 1           | B          |          |
| Stops (vph)            | 82        | 11        | 174       | 240       | 29        |       | 16        | 829       | 5           | 4           | 660        | 0        |
| Fuel Used(gal)         | 2         | 0         | 4         | 5         | 1         |       | 1         | 29        | 1           | 0           | 34         | 0        |
| CO Emissions (g/hr)    | 156       | 14        | 308       | 370       | 88        |       | 46        | 2026      | 37          | 19          | 2411       | 10       |

|                         | ۶    | <b>→</b> | $\rightarrow$ | •    | <b>←</b> | •   | 4    | <b>†</b> | /    | <b>\</b> | ļ    | 4    |
|-------------------------|------|----------|---------------|------|----------|-----|------|----------|------|----------|------|------|
| Lane Group              | EBL  | EBT      | EBR           | WBL  | WBT      | WBR | NBL  | NBT      | NBR  | SBL      | SBT  | SBR  |
| NOx Emissions (g/hr)    | 30   | 3        | 60            | 72   | 17       |     | 9    | 394      | 7    | 4        | 469  | 2    |
| VOC Emissions (g/hr)    | 36   | 3        | 71            | 86   | 20       |     | 11   | 470      | 9    | 4        | 559  | 2    |
| Dilemma Vehicles (#)    | 0    | 0        | 0             | 0    | 0        |     | 0    | 45       | 0    | 0        | 39   | 0    |
| Queue Length 50th (ft)  | 66   | 7        | 138           | 98   | 7        |     | 11   | 303      | 0    | 2        | 158  | 0    |
| Queue Length 95th (ft)  | #141 | 25       | 199           | #190 | 65       |     | m31  | 439      | m7   | m4       | #224 | m0   |
| Internal Link Dist (ft) |      | 521      |               |      | 483      |     |      | 1409     |      |          | 1402 |      |
| Turn Bay Length (ft)    | 265  |          |               | 400  |          |     | 400  |          | 400  | 265      |      | 265  |
| Base Capacity (vph)     | 145  | 305      | 269           | 594  | 400      |     | 313  | 2564     | 1459 | 299      | 2061 | 1068 |
| Starvation Cap Reductn  | 0    | 0        | 0             | 0    | 0        |     | 0    | 0        | 0    | 0        | 0    | 0    |
| Spillback Cap Reductn   | 0    | 0        | 0             | 0    | 0        |     | 0    | 0        | 0    | 0        | 0    | 0    |
| Storage Cap Reductn     | 0    | 0        | 0             | 0    | 0        |     | 0    | 0        | 0    | 0        | 0    | 0    |
| Reduced v/c Ratio       | 0.66 | 0.04     | 0.78          | 0.51 | 0.36     |     | 0.10 | 0.40     | 0.03 | 0.07     | 0.91 | 0.01 |

Area Type: Other

Cycle Length: 110

Actuated Cycle Length: 110

Offset: 68 (62%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 90

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.91

Intersection Signal Delay: 23.5 Intersection LOS: C
Intersection Capacity Utilization 77.5% ICU Level of Service D

Analysis Period (min) 15

# 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 30: Access "D" & Brisbin Road



|                               | •     |          | _     |       |          | •     |       | •          | _     |       | ı        |       |
|-------------------------------|-------|----------|-------|-------|----------|-------|-------|------------|-------|-------|----------|-------|
|                               |       | <b>→</b> | *     | •     | •        | _     | 7     | I          |       | *     | +        | *     |
| Lane Group                    | EBL   | EBT      | EBR   | WBL   | WBT      | WBR   | NBL   | NBT        | NBR   | SBL   | SBT      | SBR   |
| Lane Configurations           | ሻ     | <b>^</b> | 7     | ሻ     | <b>^</b> | 7     | ሻ     | <b>^</b>   | 7     | ሻ     | <b>^</b> | 7     |
| Ideal Flow (vphpl)            | 1900  | 2000     | 1900  | 1900  | 2000     | 1900  | 1900  | 2000       | 1900  | 1900  | 2000     | 1900  |
| Storage Length (ft)           | 265   |          | 265   | 400   |          | 265   | 400   |            | 400   | 265   |          | 265   |
| Storage Lanes                 | 1     |          | 1     | 1     |          | 1     | 1     |            | 1     | 1     |          | 1     |
| Total Lost Time (s)           | 4.0   | 4.0      | 4.0   | 4.0   | 4.0      | 4.0   | 4.0   | 4.0        | 4.0   | 4.0   | 4.0      | 4.0   |
| Leading Detector (ft)         | 50    | 50       | 50    | 50    | 50       | 50    | 50    | 50         | 50    | 50    | 50       | 50    |
| Trailing Detector (ft)        | 0     | 0        | 0     | 0     | 0        | 0     | 0     | 0          | 0     | 0     | 0        | 0     |
| Turning Speed (mph)           | 15    |          | 9     | 15    |          | 9     | 15    |            | 9     | 15    |          | 9     |
| Lane Util. Factor             | 1.00  | 0.95     | 1.00  | 1.00  | 0.95     | 1.00  | 1.00  | 0.95       | 1.00  | 1.00  | 0.95     | 1.00  |
| Frt                           | 0.050 |          | 0.850 | 0.050 |          | 0.850 | 0.050 |            | 0.850 | 0.050 |          | 0.850 |
| Flt Protected                 | 0.950 | 0705     | 4500  | 0.950 | 0705     | 4500  | 0.950 | 0705       | 4500  | 0.950 | 0705     | 4500  |
| Satd. Flow (prot)             | 1770  | 3725     | 1583  | 1770  | 3725     | 1583  | 1770  | 3725       | 1583  | 1770  | 3725     | 1583  |
| Flt Permitted                 | 0.213 | 0705     | 4500  | 0.154 | 0705     | 4500  | 0.083 | 0705       | 4500  | 0.110 | 0705     | 4500  |
| Satd. Flow (perm)             | 397   | 3725     | 1583  | 287   | 3725     | 1583  | 155   | 3725       | 1583  | 205   | 3725     | 1583  |
| Right Turn on Red             |       |          | Yes   |       |          | Yes   |       |            | Yes   |       |          | Yes   |
| Satd. Flow (RTOR)             | 4.00  | 4.00     | 76    | 4.00  | 4.00     | 123   | 4.00  | 4.00       | 58    | 4.00  | 4.00     | 53    |
| Headway Factor                | 1.00  | 1.00     | 1.00  | 1.00  | 1.00     | 1.00  | 1.00  | 1.00<br>55 | 1.00  | 1.00  | 1.00     | 1.00  |
| Link Speed (mph)              |       | 653      |       |       | 563      |       |       | 1482       |       |       | 1489     |       |
| Link Distance (ft)            |       | 14.8     |       |       | 12.8     |       |       | 18.4       |       |       | 18.5     |       |
| Travel Time (s)               | 95    | 570      | 130   | 200   | 640      | 145   | 50    | 1080       | 55    | 60    | 1325     | 50    |
| Volume (vph) Peak Hour Factor | 0.95  | 0.95     | 0.95  | 0.95  | 0.95     | 0.95  | 0.95  | 0.95       | 0.95  | 0.95  | 0.95     | 0.95  |
| Adj. Flow (vph)               | 100   | 600      | 137   | 211   | 674      | 153   | 53    | 1137       | 58    | 63    | 1395     | 53    |
| Lane Group Flow (vph)         | 100   | 600      | 137   | 211   | 674      | 153   | 53    | 1137       | 58    | 63    | 1395     | 53    |
| Turn Type                     | pm+pt |          |       | pm+pt |          | pm+ov |       | 1101       | pm+ov |       |          | pm+ov |
| Protected Phases              | 7     | 4        | 5     | 3     | 8        | 1     | 5     | 2          |       | 1     | 6        | 7     |
| Permitted Phases              | 4     | •        | 4     | 8     | U        | 8     | 2     | _          | 2     | 6     | U        | 6     |
| Detector Phases               | 7     | 4        | 5     | 3     | 8        | 1     | 5     | 2          | _     | 1     | 6        | 7     |
| Minimum Initial (s)           | 4.0   | 4.0      | 4.0   | 4.0   | 4.0      | 4.0   | 4.0   | 4.0        | 4.0   | 4.0   | 4.0      | 4.0   |
| Minimum Split (s)             | 10.0  | 22.0     | 10.0  | 10.0  | 22.0     | 10.0  | 10.0  | 22.0       | 10.0  | 10.0  | 22.0     | 10.0  |
| Total Split (s)               | 16.0  | 26.0     | 10.0  | 22.0  | 32.0     | 10.0  | 10.0  | 52.0       | 22.0  | 10.0  | 52.0     | 16.0  |
| Total Split (%)               | 14.5% | 23.6%    | 9.1%  | 20.0% | 29.1%    | 9.1%  | 9.1%  | 47.3%      | 20.0% | 9.1%  | 47.3%    | 14.5% |
| Yellow Time (s)               | 3.0   | 4.5      | 3.0   | 3.0   | 4.5      | 3.0   | 3.0   | 4.5        | 3.0   | 3.0   | 4.5      | 3.0   |
| All-Red Time (s)              | 1.0   | 1.5      | 1.0   | 1.0   | 1.5      | 1.0   | 1.0   | 1.5        | 1.0   | 1.0   | 1.5      | 1.0   |
| Lead/Lag                      | Lead  | Lag      | Lead  | Lead  | Lag      | Lead  | Lead  | Lag        | Lead  | Lead  | Lag      | Lead  |
| Lead-Lag Optimize?            |       |          |       |       |          |       |       |            |       |       |          |       |
| Recall Mode                   | None  | None     | None  | None  | None     | None  | None  | C-Max      | None  | None  | C-Max    | None  |
| Act Effct Green (s)           | 32.1  | 22.7     | 32.5  | 41.0  | 27.7     | 37.7  | 56.7  | 50.9       | 69.3  | 57.1  | 51.1     | 64.5  |
| Actuated g/C Ratio            | 0.29  | 0.21     | 0.30  | 0.37  | 0.25     | 0.34  | 0.52  | 0.46       | 0.63  | 0.52  | 0.46     | 0.59  |
| v/c Ratio                     | 0.43  | 0.78     | 0.26  | 0.70  | 0.72     | 0.25  | 0.32  | 0.66       | 0.06  | 0.33  | 0.81     | 0.06  |
| Control Delay                 | 28.3  | 49.4     | 15.2  | 37.4  | 42.4     | 8.0   | 21.9  | 10.1       | 0.4   | 18.5  | 32.2     | 10.2  |
| Queue Delay                   | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      | 0.0   | 0.0   | 0.0        | 0.0   | 0.0   | 0.0      | 0.0   |
| Total Delay                   | 28.3  | 49.4     | 15.2  | 37.4  | 42.4     | 8.0   | 21.9  | 10.1       | 0.4   | 18.5  | 32.2     | 10.2  |
| LOS                           | С     | D        | В     | D     | D        | Α     | С     | В          | Α     | В     | С        | В     |
| Approach Delay                |       | 41.3     |       |       | 36.3     |       |       | 10.2       |       |       | 30.8     |       |
| Approach LOS                  |       | D        |       |       | D        |       |       | В          |       |       | С        |       |
| Stops (vph)                   | 66    | 519      | 46    | 139   | 569      | 28    | 22    | 347        | 1     | 38    | 1009     | 30    |
| Fuel Used(gal)                | 1     | 11       | 1     | 3     | 11       | 1     | _1    | 19         | 1     | 1     | 40       | 1     |
| CO Emissions (g/hr)           | 98    | 804      | 92    | 222   | 802      | 72    | 77    | 1315       | 38    | 105   | 2790     | 79    |

|                         | ۶    | -    | •    | •    | ←    | •    | •    | <b>†</b> | ~    | -    | <b>↓</b> | 4    |
|-------------------------|------|------|------|------|------|------|------|----------|------|------|----------|------|
| Lane Group              | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT      | NBR  | SBL  | SBT      | SBR  |
| NOx Emissions (g/hr)    | 19   | 156  | 18   | 43   | 156  | 14   | 15   | 256      | 7    | 20   | 543      | 15   |
| VOC Emissions (g/hr)    | 23   | 186  | 21   | 51   | 186  | 17   | 18   | 305      | 9    | 24   | 647      | 18   |
| Dilemma Vehicles (#)    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 47       | 0    | 0    | 38       | 0    |
| Queue Length 50th (ft)  | 44   | 205  | 30   | 100  | 221  | 14   | 7    | 85       | 0    | 28   | 408      | 10   |
| Queue Length 95th (ft)  | 81   | #282 | 81   | 164  | 294  | 59   | m44  | 176      | m1   | m61  | 495      | m26  |
| Internal Link Dist (ft) |      | 573  |      |      | 483  |      |      | 1402     |      |      | 1409     |      |
| Turn Bay Length (ft)    | 265  |      | 265  | 400  |      | 265  | 400  |          | 400  | 265  |          | 265  |
| Base Capacity (vph)     | 275  | 785  | 524  | 350  | 974  | 625  | 168  | 1723     | 1068 | 193  | 1729     | 986  |
| Starvation Cap Reductn  | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0        | 0    | 0    | 0        | 0    |
| Spillback Cap Reductn   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0        | 0    | 0    | 0        | 0    |
| Storage Cap Reductn     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0        | 0    | 0    | 0        | 0    |
| Reduced v/c Ratio       | 0.36 | 0.76 | 0.26 | 0.60 | 0.69 | 0.24 | 0.32 | 0.66     | 0.05 | 0.33 | 0.81     | 0.05 |

Area Type: Other

Cycle Length: 110

Actuated Cycle Length: 110

Offset: 62 (56%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 80

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.81
Intersection Signal Delay: 28.4

Intersection Signal Delay: 28.4 Intersection LOS: C
Intersection Capacity Utilization 77.5% ICU Level of Service D

Analysis Period (min) 15

# 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 33: Collector "2" & Brisbin Road



|                        | ۶     | <b>→</b> | •    | •     | +     | •    | •     | †        | <i>&gt;</i> | <b>/</b> | <b></b>  | -√    |
|------------------------|-------|----------|------|-------|-------|------|-------|----------|-------------|----------|----------|-------|
| Lane Group             | EBL   | EBT      | EBR  | WBL   | WBT   | WBR  | NBL   | NBT      | NBR         | SBL      | SBT      | SBR   |
| Lane Configurations    | ች     | 4        |      | ች     | 4     |      | ች     | <b>^</b> | 7           | ች        | <b>^</b> | 7     |
| Ideal Flow (vphpl)     | 1900  | 1900     | 1900 | 1900  | 1900  | 1900 | 1900  | 2000     | 1900        | 1900     | 2000     | 1900  |
| Storage Length (ft)    | 265   |          | 400  | 400   |       | 265  | 400   |          | 400         | 265      |          | 265   |
| Storage Lanes          | 1     |          | 0    | 1     |       | 0    | 1     |          | 1           | 1        |          | 1     |
| Total Lost Time (s)    | 4.0   | 4.0      | 4.0  | 4.0   | 4.0   | 4.0  | 4.0   | 4.0      | 4.0         | 4.0      | 4.0      | 4.0   |
| Leading Detector (ft)  | 50    | 50       |      | 50    | 50    |      | 50    | 50       | 50          | 50       | 50       | 50    |
| Trailing Detector (ft) | 0     | 0        |      | 0     | 0     |      | 0     | 0        | 0           | 0        | 0        | 0     |
| Turning Speed (mph)    | 15    |          | 9    | 15    |       | 9    | 15    |          | 9           | 15       |          | 9     |
| Lane Util. Factor      | 1.00  | 1.00     | 1.00 | 1.00  | 1.00  | 1.00 | 1.00  | 0.95     | 1.00        | 1.00     | 0.95     | 1.00  |
| Frt                    |       | 0.863    |      |       | 0.858 |      |       |          | 0.850       |          |          | 0.850 |
| Flt Protected          | 0.950 |          |      | 0.950 |       |      | 0.950 |          |             | 0.950    |          |       |
| Satd. Flow (prot)      | 1770  | 1608     | 0    | 1770  | 1598  | 0    | 1770  | 3725     | 1583        | 1770     | 3725     | 1583  |
| Flt Permitted          | 0.436 |          |      | 0.527 |       |      | 0.107 |          |             | 0.077    |          |       |
| Satd. Flow (perm)      | 812   | 1608     | 0    | 982   | 1598  | 0    | 199   | 3725     | 1583        | 143      | 3725     | 1583  |
| Right Turn on Red      |       |          | Yes  |       |       | Yes  |       |          | Yes         |          |          | Yes   |
| Satd. Flow (RTOR)      |       | 116      |      |       | 205   |      |       |          | 32          |          |          | 42    |
| Headway Factor         | 1.00  | 1.00     | 1.00 | 1.00  | 1.00  | 1.00 | 1.00  | 1.00     | 1.00        | 1.00     | 1.00     | 1.00  |
| Link Speed (mph)       |       | 30       |      |       | 30    |      |       | 55       |             |          | 55       |       |
| Link Distance (ft)     |       | 698      |      |       | 590   |      |       | 1489     |             |          | 1482     |       |
| Travel Time (s)        |       | 15.9     |      |       | 13.4  |      |       | 18.5     |             |          | 18.4     |       |
| Volume (vph)           | 135   | 10       | 110  | 170   | 10    | 195  | 30    | 1260     | 30          | 45       | 1155     | 40    |
| Peak Hour Factor       | 0.95  | 0.95     | 0.95 | 0.95  | 0.95  | 0.95 | 0.95  | 0.95     | 0.95        | 0.95     | 0.95     | 0.95  |
| Adj. Flow (vph)        | 142   | 11       | 116  | 179   | 11    | 205  | 32    | 1326     | 32          | 47       | 1216     | 42    |
| Lane Group Flow (vph)  | 142   | 127      | 0    | 179   | 216   | 0    | 32    | 1326     | 32          | 47       | 1216     | 42    |
| Turn Type              | pm+pt |          |      | pm+pt |       |      | pm+pt |          | pm+ov       | pm+pt    |          | pm+ov |
| Protected Phases       | 7     | 4        |      | 3     | 8     |      | 5     | 2        | 3           | 1        | 6        | 7     |
| Permitted Phases       | 4     |          |      | 8     |       |      | 2     |          | 2           | 6        |          | 6     |
| Detector Phases        | 7     | 4        |      | 3     | 8     |      | 5     | 2        | 3           | 1        | 6        | 7     |
| Minimum Initial (s)    | 4.0   | 4.0      |      | 4.0   | 4.0   |      | 4.0   | 4.0      | 4.0         | 4.0      | 4.0      | 4.0   |
| Minimum Split (s)      | 10.0  | 22.0     |      | 10.0  | 22.0  |      | 10.0  | 22.0     | 10.0        | 10.0     | 22.0     | 10.0  |
| Total Split (s)        | 16.0  | 24.0     | 0.0  | 18.0  | 26.0  | 0.0  | 12.0  | 56.0     | 18.0        | 12.0     | 56.0     | 16.0  |
| Total Split (%)        | 14.5% | 21.8%    | 0.0% | 16.4% | 23.6% | 0.0% | 10.9% | 50.9%    | 16.4%       | 10.9%    | 50.9%    | 14.5% |
| Yellow Time (s)        | 3.0   | 4.5      |      | 3.0   | 4.5   |      | 3.0   | 4.5      | 3.0         | 3.0      | 4.5      | 3.0   |
| All-Red Time (s)       | 0.0   | 1.5      |      | 0.0   | 1.5   |      | 1.0   | 1.5      | 0.0         | 1.0      | 1.5      | 0.0   |
| Lead/Lag               | Lead  | Lag      |      | Lead  | Lag   |      | Lead  | Lag      | Lead        | Lead     | Lag      | Lead  |
| Lead-Lag Optimize?     |       |          |      |       |       |      |       |          |             |          |          |       |
| Recall Mode            | None  | None     |      | None  | None  |      |       | C-Max    | None        |          | C-Max    | None  |
| Act Effct Green (s)    | 20.2  | 9.6      |      | 24.1  | 11.5  |      | 71.8  | 67.1     | 83.6        | 74.2     | 69.8     | 84.4  |
| Actuated g/C Ratio     | 0.18  | 0.09     |      | 0.22  | 0.10  |      | 0.65  | 0.61     | 0.76        | 0.67     | 0.63     | 0.77  |
| v/c Ratio              | 0.59  | 0.52     |      | 0.59  | 0.62  |      | 0.15  | 0.58     | 0.03        | 0.24     | 0.51     | 0.03  |
| Control Delay          | 44.1  | 18.2     |      | 42.9  | 15.4  |      | 3.1   | 3.8      | 0.1         | 14.8     | 8.7      | 2.3   |
| Queue Delay            | 0.0   | 0.0      |      | 0.0   | 0.0   |      | 0.0   | 0.0      | 0.0         | 0.0      | 0.0      | 0.0   |
| Total Delay            | 44.1  | 18.2     |      | 42.9  | 15.4  |      | 3.1   | 3.8      | 0.1         | 14.8     | 8.7      | 2.3   |
| LOS                    | D     | В        |      | D     | В     |      | Α     | Α        | Α           | В        | Α        | Α     |
| Approach Delay         |       | 31.9     |      |       | 27.8  |      |       | 3.7      |             |          | 8.7      |       |
| Approach LOS           |       | С        |      |       | С     |      |       | Α        |             |          | Α        |       |
| Stops (vph)            | 112   | 27       |      | 140   | 34    |      | 3     | 214      | 0           | 19       | 382      | 7     |
| Fuel Used(gal)         | 3     | 1        |      | 3     | 2     |      | 0     | 17       | 0           | 1        | 20       | 1     |
| CO Emissions (g/hr)    | 179   | 88       |      | 212   | 124   |      | 25    | 1178     | 20          | 64       | 1398     | 37    |

|                         | ᄼ    | -    | •   | •    | •    | •   |      | <b>†</b> | -    | -    | ţ    | 4    |
|-------------------------|------|------|-----|------|------|-----|------|----------|------|------|------|------|
| Lane Group              | EBL  | EBT  | EBR | WBL  | WBT  | WBR | NBL  | NBT      | NBR  | SBL  | SBT  | SBR  |
| NOx Emissions (g/hr)    | 35   | 17   |     | 41   | 24   |     | 5    | 229      | 4    | 12   | 272  | 7    |
| VOC Emissions (g/hr)    | 42   | 20   |     | 49   | 29   |     | 6    | 273      | 5    | 15   | 324  | 8    |
| Dilemma Vehicles (#)    | 0    | 0    |     | 0    | 0    |     | 0    | 11       | 0    | 0    | 41   | 0    |
| Queue Length 50th (ft)  | 84   | 7    |     | 108  | 7    |     | 2    | 41       | 0    | 7    | 143  | 1    |
| Queue Length 95th (ft)  | 131  | 62   |     | 162  | 76   |     | m4   | 234      | m0   | m27  | 189  | m1   |
| Internal Link Dist (ft) |      | 618  |     |      | 510  |     |      | 1409     |      |      | 1402 |      |
| Turn Bay Length (ft)    | 265  |      |     | 400  |      |     | 400  |          | 400  | 265  |      | 265  |
| Base Capacity (vph)     | 264  | 387  |     | 324  | 484  |     | 247  | 2271     | 1231 | 218  | 2365 | 1244 |
| Starvation Cap Reductn  | 0    | 0    |     | 0    | 0    |     | 0    | 0        | 0    | 0    | 0    | 0    |
| Spillback Cap Reductn   | 0    | 0    |     | 0    | 0    |     | 0    | 0        | 0    | 0    | 0    | 0    |
| Storage Cap Reductn     | 0    | 0    |     | 0    | 0    |     | 0    | 0        | 0    | 0    | 0    | 0    |
| Reduced v/c Ratio       | 0.54 | 0.33 |     | 0.55 | 0.45 |     | 0.13 | 0.58     | 0.03 | 0.22 | 0.51 | 0.03 |

Area Type: Other

Cycle Length: 110

Actuated Cycle Length: 110

Offset: 88 (80%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 75

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.62

Intersection Signal Delay: 10.8
Intersection Capacity Utilization 67.5%

Intersection LOS: B
ICU Level of Service C

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 36: Access "C" & Brisbin Road



|                        | ۶     | <b>→</b> | •    | •     | +     | •    | •     | †        | <b>/</b> | <b>/</b> | <b>↓</b> | -√    |
|------------------------|-------|----------|------|-------|-------|------|-------|----------|----------|----------|----------|-------|
| Lane Group             | EBL   | EBT      | EBR  | WBL   | WBT   | WBR  | NBL   | NBT      | NBR      | SBL      | SBT      | SBR   |
| Lane Configurations    | ች     | 4        |      | ች     | 4     |      | *     | <b>^</b> | 7        | ች        | <b>^</b> | 7     |
| Ideal Flow (vphpl)     | 1900  | 1900     | 1900 | 1900  | 1900  | 1900 | 1900  | 2000     | 1900     | 1900     | 2000     | 1900  |
| Storage Length (ft)    | 265   |          | 400  | 400   |       | 0    | 400   |          | 265      | 265      |          | 265   |
| Storage Lanes          | 1     |          | 0    | 1     |       | 0    | 1     |          | 1        | 1        |          | 1     |
| Total Lost Time (s)    | 4.0   | 4.0      | 4.0  | 4.0   | 4.0   | 4.0  | 4.0   | 4.0      | 4.0      | 4.0      | 4.0      | 4.0   |
| Leading Detector (ft)  | 50    | 50       |      | 50    | 50    |      | 50    | 50       | 50       | 50       | 50       | 50    |
| Trailing Detector (ft) | 0     | 0        |      | 0     | 0     |      | 0     | 0        | 0        | 0        | 0        | 0     |
| Turning Speed (mph)    | 15    |          | 9    | 15    |       | 9    | 15    |          | 9        | 15       |          | 9     |
| Lane Util. Factor      | 1.00  | 1.00     | 1.00 | 1.00  | 1.00  | 1.00 | 1.00  | 0.95     | 1.00     | 1.00     | 0.95     | 1.00  |
| Frt                    |       | 0.862    |      |       | 0.864 |      |       |          | 0.850    |          |          | 0.850 |
| Flt Protected          | 0.950 |          |      | 0.950 |       |      | 0.950 |          |          | 0.950    |          |       |
| Satd. Flow (prot)      | 1770  | 1606     | 0    | 1770  | 1609  | 0    | 1770  | 3725     | 1583     | 1770     | 3725     | 1583  |
| Flt Permitted          | 0.563 |          |      | 0.590 |       |      | 0.233 |          |          | 0.063    |          |       |
| Satd. Flow (perm)      | 1049  | 1606     | 0    | 1099  | 1609  | 0    | 434   | 3725     | 1583     | 117      | 3725     | 1583  |
| Right Turn on Red      |       |          | Yes  |       |       | Yes  |       |          | Yes      |          |          | Yes   |
| Satd. Flow (RTOR)      |       | 121      |      |       | 105   |      |       |          | 26       |          |          | 37    |
| Headway Factor         | 1.00  | 1.00     | 1.00 | 1.00  | 1.00  | 1.00 | 1.00  | 1.00     | 1.00     | 1.00     | 1.00     | 1.00  |
| Link Speed (mph)       |       | 30       |      |       | 30    |      |       | 55       |          |          | 55       |       |
| Link Distance (ft)     |       | 807      |      |       | 661   |      |       | 1320     |          |          | 1319     |       |
| Travel Time (s)        |       | 18.3     |      |       | 15.0  |      |       | 16.4     |          |          | 16.4     |       |
| Volume (vph)           | 140   | 10       | 115  | 85    | 10    | 100  | 30    | 1705     | 25       | 40       | 905      | 35    |
| Peak Hour Factor       | 0.95  | 0.95     | 0.95 | 0.95  | 0.95  | 0.95 | 0.95  | 0.95     | 0.95     | 0.95     | 0.95     | 0.95  |
| Adj. Flow (vph)        | 147   | 11       | 121  | 89    | 11    | 105  | 32    | 1795     | 26       | 42       | 953      | 37    |
| Lane Group Flow (vph)  | 147   | 132      | 0    | 89    | 116   | 0    | 32    | 1795     | 26       | 42       | 953      | 37    |
| Turn Type              | pm+pt |          |      | pm+pt |       |      | pm+pt |          | pm+ov    | pm+pt    |          | pm+ov |
| Protected Phases       | 7     | 4        |      | 3     | 8     |      | 5     | 2        | 3        | 1        | 6        | 7     |
| Permitted Phases       | 4     |          |      | 8     |       |      | 2     |          | 2        | 6        |          | 6     |
| Detector Phases        | 7     | 4        |      | 3     | 8     |      | 5     | 2        | 3        | 1        | 6        | 7     |
| Minimum Initial (s)    | 4.0   | 4.0      |      | 4.0   | 4.0   |      | 4.0   | 4.0      | 4.0      | 4.0      | 4.0      | 4.0   |
| Minimum Split (s)      | 10.0  | 22.0     |      | 10.0  | 22.0  |      | 10.0  | 22.0     | 10.0     | 10.0     | 22.0     | 10.0  |
| Total Split (s)        | 11.0  | 23.0     | 0.0  | 10.0  | 22.0  | 0.0  | 10.0  | 67.0     | 10.0     | 10.0     | 67.0     | 11.0  |
| Total Split (%)        | 10.0% | 20.9%    | 0.0% | 9.1%  | 20.0% | 0.0% | 9.1%  | 60.9%    | 9.1%     | 9.1%     | 60.9%    | 10.0% |
| Yellow Time (s)        | 3.0   | 4.5      |      | 3.0   | 4.5   |      | 3.0   | 4.5      | 3.0      | 3.0      | 4.5      | 3.0   |
| All-Red Time (s)       | 0.0   | 1.5      |      | 0.0   | 1.5   |      | 1.0   | 1.5      | 0.0      | 1.0      | 1.5      | 0.0   |
| Lead/Lag               | Lead  | Lag      |      | Lead  | Lag   |      | Lead  | Lag      | Lead     | Lead     | Lag      | Lead  |
| Lead-Lag Optimize?     |       |          |      |       |       |      |       |          |          |          |          |       |
| Recall Mode            | None  | None     |      | None  | None  |      | None  | C-Max    | None     | None     | C-Max    | None  |
| Act Effct Green (s)    | 18.1  | 12.5     |      | 15.4  | 9.5   |      | 78.6  | 75.0     | 84.9     | 79.7     | 75.5     | 86.5  |
| Actuated g/C Ratio     | 0.16  | 0.11     |      | 0.14  | 0.09  |      | 0.71  | 0.68     | 0.77     | 0.72     | 0.69     | 0.79  |
| v/c Ratio              | 0.67  | 0.46     |      | 0.47  | 0.50  |      | 0.08  | 0.71     | 0.02     | 0.23     | 0.37     | 0.03  |
| Control Delay          | 56.2  | 15.4     |      | 46.8  | 18.6  |      | 3.5   | 5.9      | 0.2      | 14.8     | 5.3      | 1.3   |
| Queue Delay            | 0.0   | 0.0      |      | 0.0   | 0.0   |      | 0.0   | 0.0      | 0.0      | 0.0      | 0.0      | 0.0   |
| Total Delay            | 56.2  | 15.4     |      | 46.8  | 18.6  |      | 3.5   | 5.9      | 0.2      | 14.8     | 5.3      | 1.3   |
| LOS                    | Е     | В        |      | D     | В     |      | Α     | Α        | Α        | В        | Α        | Α     |
| Approach Delay         |       | 36.9     |      |       | 30.9  |      |       | 5.8      |          |          | 5.5      |       |
| Approach LOS           |       | D        |      |       | С     |      |       | Α        |          |          | Α        |       |
| Stops (vph)            | 132   | 27       |      | 74    | 26    |      | 5     | 310      | 0        | 21       | 270      | 4     |
| Fuel Used(gal)         | 3     | 1        |      | 2     | 1     |      | 0     | 22       | 0        | 1        | 14       | 0     |
| (0)                    |       |          |      |       |       |      |       |          |          |          |          |       |

|                         | ۶    | <b>→</b> | $\rightarrow$ | •    | <b>←</b> | •   | 4    | <b>†</b> | ~    | <b>\</b> | ļ    | 4    |
|-------------------------|------|----------|---------------|------|----------|-----|------|----------|------|----------|------|------|
| Lane Group              | EBL  | EBT      | EBR           | WBL  | WBT      | WBR | NBL  | NBT      | NBR  | SBL      | SBT  | SBR  |
| NOx Emissions (g/hr)    | 44   | 18       |               | 23   | 15       |     | 5    | 300      | 3    | 11       | 184  | 5    |
| VOC Emissions (g/hr)    | 52   | 22       |               | 27   | 18       |     | 6    | 358      | 3    | 14       | 219  | 6    |
| Dilemma Vehicles (#)    | 0    | 0        |               | 0    | 0        |     | 0    | 89       | 0    | 0        | 27   | 0    |
| Queue Length 50th (ft)  | 95   | 7        |               | 55   | 7        |     | 2    | 114      | 0    | 0        | 98   | 0    |
| Queue Length 95th (ft)  | 149  | 63       |               | 97   | 60       |     | m6   | 198      | m0   | 38       | 112  | m0   |
| Internal Link Dist (ft) |      | 727      |               |      | 581      |     |      | 1240     |      |          | 1239 |      |
| Turn Bay Length (ft)    | 265  |          |               | 400  |          |     | 400  |          | 265  | 265      |      | 265  |
| Base Capacity (vph)     | 218  | 378      |               | 191  | 351      |     | 384  | 2540     | 1229 | 183      | 2557 | 1253 |
| Starvation Cap Reductn  | 0    | 0        |               | 0    | 0        |     | 0    | 0        | 0    | 0        | 0    | 0    |
| Spillback Cap Reductn   | 0    | 0        |               | 0    | 0        |     | 0    | 0        | 0    | 0        | 0    | 0    |
| Storage Cap Reductn     | 0    | 0        |               | 0    | 0        |     | 0    | 0        | 0    | 0        | 0    | 0    |
| Reduced v/c Ratio       | 0.67 | 0.35     |               | 0.47 | 0.33     |     | 0.08 | 0.71     | 0.02 | 0.23     | 0.37 | 0.03 |

Area Type: Other

Cycle Length: 110

Actuated Cycle Length: 110

Offset: 92 (84%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 90

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.71

Intersection Signal Delay: 9.8
Intersection Capacity Utilization 69.2%

Intersection LOS: A ICU Level of Service C

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 39: Access "B" & Brisbin Road



|                        | •     | -        | •     | •     | •        | •     | 1     | <b>†</b> | ~     | -     | ţ        | 4     |
|------------------------|-------|----------|-------|-------|----------|-------|-------|----------|-------|-------|----------|-------|
| Lane Group             | EBL   | EBT      | EBR   | WBL   | WBT      | WBR   | NBL   | NBT      | NBR   | SBL   | SBT      | SBR   |
| Lane Configurations    | 7     | <b>^</b> | 7     |
| Ideal Flow (vphpl)     | 1900  | 2000     | 1900  | 1900  | 2000     | 1900  | 1900  | 2000     | 1900  | 1900  | 2000     | 1900  |
| Storage Length (ft)    | 265   |          | 265   | 265   |          | 265   | 265   |          | 265   | 265   |          | 265   |
| Storage Lanes          | 1     |          | 1     | 1     |          | 1     | 1     |          | 1     | 1     |          | 1     |
| Total Lost Time (s)    | 4.0   | 4.0      | 4.0   | 4.0   | 4.0      | 4.0   | 4.0   | 4.0      | 4.0   | 4.0   | 4.0      | 4.0   |
| Leading Detector (ft)  | 50    | 50       | 50    | 50    | 50       | 50    | 50    | 50       | 50    | 50    | 50       | 50    |
| Trailing Detector (ft) | 0     | 0        | 0     | 0     | 0        | 0     | 0     | 0        | 0     | 0     | 0        | 0     |
| Turning Speed (mph)    | 15    |          | 9     | 15    |          | 9     | 15    |          | 9     | 15    |          | 9     |
| Lane Util. Factor      | 1.00  | 0.95     | 1.00  | 1.00  | 0.95     | 1.00  | 1.00  | 0.95     | 1.00  | 1.00  | 0.95     | 1.00  |
| Frt                    |       |          | 0.850 |       |          | 0.850 |       |          | 0.850 |       |          | 0.850 |
| Flt Protected          | 0.950 |          |       | 0.950 |          |       | 0.950 |          |       | 0.950 |          |       |
| Satd. Flow (prot)      | 1770  | 3725     | 1583  | 1770  | 3725     | 1583  | 1770  | 3725     | 1583  | 1770  | 3725     | 1583  |
| Flt Permitted          | 0.372 |          |       | 0.211 |          |       | 0.236 |          |       | 0.065 |          |       |
| Satd. Flow (perm)      | 693   | 3725     | 1583  | 393   | 3725     | 1583  | 440   | 3725     | 1583  | 121   | 3725     | 1583  |
| Right Turn on Red      |       |          | Yes   |       |          | Yes   |       |          | Yes   |       |          | Yes   |
| Satd. Flow (RTOR)      |       |          | 95    |       |          | 45    |       |          | 32    |       |          | 21    |
| Headway Factor         | 1.00  | 1.00     | 1.00  | 1.00  | 1.00     | 1.00  | 1.00  | 1.00     | 1.00  | 1.00  | 1.00     | 1.00  |
| Link Speed (mph)       |       | 30       |       |       | 30       |       |       | 55       |       |       | 55       |       |
| Link Distance (ft)     |       | 827      |       |       | 693      |       |       | 1319     |       |       | 1311     |       |
| Travel Time (s)        |       | 18.8     |       |       | 15.8     |       |       | 16.4     |       |       | 16.3     |       |
| Volume (vph)           | 110   | 620      | 90    | 40    | 310      | 60    | 25    | 1890     | 30    | 60    | 890      | 20    |
| Peak Hour Factor       | 0.95  | 0.95     | 0.95  | 0.95  | 0.95     | 0.95  | 0.95  | 0.95     | 0.95  | 0.95  | 0.95     | 0.95  |
| Adj. Flow (vph)        | 116   | 653      | 95    | 42    | 326      | 63    | 26    | 1989     | 32    | 63    | 937      | 21    |
| Lane Group Flow (vph)  |       | 653      | 95    | 42    | 326      | 63    | 26    | 1989     | 32    | 63    | 937      | 21    |
| Turn Type              | pm+pt |          | pm+ov |
| Protected Phases       | . 7   | 4        | 5     | 3     | 8        | 1     | 5     | 2        | 3     | 1     | 6        | 7     |
| Permitted Phases       | 4     |          | 4     | 8     |          | 8     | 2     |          | 2     | 6     |          | 6     |
| Detector Phases        | 7     | 4        | 5     | 3     | 8        | 1     | 5     | 2        | 3     | 1     | 6        | 7     |
| Minimum Initial (s)    | 4.0   | 4.0      | 4.0   | 4.0   | 4.0      | 4.0   | 4.0   | 4.0      | 4.0   | 4.0   | 4.0      | 4.0   |
| Minimum Split (s)      | 10.0  | 22.0     | 10.0  | 10.0  | 22.0     | 10.0  | 10.0  | 22.0     | 10.0  | 10.0  | 22.0     | 10.0  |
| Total Split (s)        | 11.0  | 24.0     | 10.0  | 10.0  | 23.0     | 10.0  | 10.0  | 66.0     | 10.0  | 10.0  | 66.0     | 11.0  |
| Total Split (%)        | 10.0% | 21.8%    | 9.1%  | 9.1%  | 20.9%    | 9.1%  | 9.1%  | 60.0%    | 9.1%  | 9.1%  | 60.0%    | 10.0% |
| Yellow Time (s)        | 3.0   | 4.5      | 3.0   | 3.0   | 4.5      | 3.0   | 3.0   | 4.5      | 3.0   | 3.0   | 4.5      | 3.0   |
| All-Red Time (s)       | 0.0   | 1.5      | 1.0   | 0.0   | 1.5      | 1.0   | 1.0   | 1.5      | 0.0   | 1.0   | 1.5      | 0.0   |
| Lead/Lag               | Lead  | Lag      | Lead  |
| Lead-Lag Optimize?     |       |          |       |       |          |       |       |          |       |       |          |       |
| Recall Mode            | None  | None     | None  | None  | None     | None  |       | C-Max    | None  |       | C-Max    | None  |
| Act Effct Green (s)    | 26.5  | 20.9     | 30.7  | 23.6  | 18.0     | 27.9  | 69.8  | 65.2     | 74.8  | 69.3  | 63.4     | 74.3  |
| Actuated g/C Ratio     | 0.24  | 0.19     | 0.28  | 0.21  | 0.16     | 0.25  | 0.63  | 0.59     | 0.68  | 0.63  | 0.58     | 0.68  |
| v/c Ratio              | 0.49  | 0.92     | 0.19  | 0.27  | 0.54     | 0.15  | 0.07  | 0.90     | 0.03  | 0.38  | 0.44     | 0.02  |
| Control Delay          | 39.8  | 63.8     | 7.2   | 34.6  | 45.5     | 14.1  | 4.0   | 13.7     | 0.2   | 25.0  | 20.0     | 2.2   |
| Queue Delay            | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      | 0.0   |
| Total Delay            | 39.8  | 63.8     | 7.2   | 34.6  | 45.5     | 14.1  | 4.0   | 13.7     | 0.2   | 25.0  | 20.0     | 2.2   |
| LOS                    | D     | Е        | Α     | С     | D        | В     | Α     | В        | Α     | С     | С        | Α     |
| Approach Delay         |       | 54.4     |       |       | 39.8     |       |       | 13.4     |       |       | 20.0     |       |
| Approach LOS           |       | D        |       |       | D        |       |       | В        |       |       | В        |       |
| Stops (vph)            | 88    | 550      | 14    | 30    | 277      | 19    | 4     | 692      | 0     | 40    | 499      | 2     |
| Fuel Used(gal)         | 2     | 15       | 1     | 1     | 6        | 1     | 0     | 34       | 0     | 2     | 20       | 0     |
| CO Emissions (g/hr)    | 146   | 1055     | 55    | 46    | 425      | 42    | 21    | 2371     | 18    | 108   | 1418     | 15    |

|                         | ၨ    | <b>→</b> | $\rightarrow$ | •    | <b>←</b> | •    | •    | <b>†</b> | <b>/</b> | <b>&gt;</b> | ļ    | ✓    |
|-------------------------|------|----------|---------------|------|----------|------|------|----------|----------|-------------|------|------|
| Lane Group              | EBL  | EBT      | EBR           | WBL  | WBT      | WBR  | NBL  | NBT      | NBR      | SBL         | SBT  | SBR  |
| NOx Emissions (g/hr)    | 28   | 205      | 11            | 9    | 83       | 8    | 4    | 461      | 3        | 21          | 276  | 3    |
| VOC Emissions (g/hr)    | 34   | 244      | 13            | 11   | 98       | 10   | 5    | 549      | 4        | 25          | 329  | 3    |
| Dilemma Vehicles (#)    | 0    | 0        | 0             | 0    | 0        | 0    | 0    | 100      | 0        | 0           | 117  | 0    |
| Queue Length 50th (ft)  | 64   | 243      | 0             | 22   | 111      | 10   | 2    | 222      | 0        | 27          | 195  | 0    |
| Queue Length 95th (ft)  | 113  | #360     | 39            | 50   | 157      | 43   | m4   | #849     | m0       | m57         | 255  | m5   |
| Internal Link Dist (ft) |      | 747      |               |      | 613      |      |      | 1239     |          |             | 1231 |      |
| Turn Bay Length (ft)    | 265  |          | 265           | 265  |          | 265  | 265  |          | 265      | 265         |      | 265  |
| Base Capacity (vph)     | 236  | 709      | 514           | 160  | 643      | 436  | 353  | 2207     | 1092     | 166         | 2147 | 1077 |
| Starvation Cap Reductn  | 0    | 0        | 0             | 0    | 0        | 0    | 0    | 0        | 0        | 0           | 0    | 0    |
| Spillback Cap Reductn   | 0    | 0        | 0             | 0    | 0        | 0    | 0    | 0        | 0        | 0           | 0    | 0    |
| Storage Cap Reductn     | 0    | 0        | 0             | 0    | 0        | 0    | 0    | 0        | 0        | 0           | 0    | 0    |
| Reduced v/c Ratio       | 0.49 | 0.92     | 0.18          | 0.26 | 0.51     | 0.14 | 0.07 | 0.90     | 0.03     | 0.38        | 0.44 | 0.02 |

Area Type: Other

Cycle Length: 110

Actuated Cycle Length: 110

Offset: 106 (96%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 90

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.92

Intersection Signal Delay: 25.6 Intersection LOS: C
Intersection Capacity Utilization 79.5% ICU Level of Service D

Analysis Period (min) 15

# 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 42: Collector 1 & Brisbin Road



| Lane Group EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT                | 4     |
|-----------------------------------------------------------------------|-------|
|                                                                       |       |
|                                                                       | SBR   |
| Lane Configurations \\ \bar{\bar{\bar{\bar{\bar{\bar{\bar{\bar        | 7     |
|                                                                       | 1900  |
| Storage Length (ft) 265 0 265 0 265 265                               | 265   |
| Storage Lanes 1 0 1 0 1 1 1                                           | 1     |
| Total Lost Time (s) 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0           | 4.0   |
| Leading Detector (ft) 50 50 50 50 50 50 50                            | 50    |
| Trailing Detector (ft) 0 0 0 0 0 0 0                                  | 0     |
| Turning Speed (mph) 15 9 15 9 15                                      | 9     |
| Lane Util. Factor 1.00 1.00 1.00 1.00 1.00 1.00 0.95 1.00 1.00 0.95   | 1.00  |
| Frt 0.862 0.902 0.850 0                                               | 0.850 |
| Flt Protected 0.950 0.950 0.950 0.950                                 |       |
| Satd. Flow (prot) 1770 1606 0 1770 1680 0 1770 3725 1583 1770 3725    | 1583  |
| Flt Permitted 0.736 0.536 0.261 0.062                                 |       |
| Satd. Flow (perm) 1371 1606 0 998 1680 0 486 3725 1583 115 3725       | 1583  |
| Right Turn on Red Yes Yes Yes                                         | Yes   |
| Satd. Flow (RTOR) 126 21 16                                           | 21    |
| Headway Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0                 | 1.00  |
| Link Speed (mph) 30 30 55 55                                          |       |
| Link Distance (ft) 846 726 1311 1320                                  |       |
| Travel Time (s) 19.2 16.5 16.3 16.4                                   |       |
| Volume (vph) 135 10 120 10 10 20 20 2025 15 25 840                    | 20    |
| Peak Hour Factor 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95              | 0.95  |
| Adj. Flow (vph) 142 11 126 11 11 21 21 2132 16 26 884                 | 21    |
| Lane Group Flow (vph) 142 137 0 11 32 0 21 2132 16 26 884             | 21    |
| Turn Type pm+pt pm+pt pm+ov pm+pt pr                                  | m+ov  |
| Protected Phases 7 4 3 8 5 2 3 1 6                                    | 7     |
| Permitted Phases 4 8 2 2 6                                            | 6     |
| Detector Phases 7 4 3 8 5 2 3 1 6                                     | 7     |
| Minimum Initial (s) 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0                   | 4.0   |
| Minimum Split (s) 10.0 22.0 10.0 22.0 10.0 22.0 10.0 22.0             | 10.0  |
| Total Split (s) 10.0 22.0 0.0 10.0 22.0 0.0 10.0 68.0 10.0 10.0 68.0  | 10.0  |
| Total Split (%) 9.1% 20.0% 0.0% 9.1% 20.0% 0.0% 9.1% 61.8% 9.1% 61.8% | 9.1%  |
| Yellow Time (s) 3.0 4.5 3.0 4.5 3.0 4.5 3.0 4.5                       | 3.0   |
| All-Red Time (s) 0.0 1.5 0.0 1.5 1.0 1.5 0.0 1.5                      | 0.0   |
|                                                                       | Lead  |
| Lead-Lag Optimize?                                                    |       |
| Recall Mode None None None None C-Max None None C-Max I               | None  |
| Act Effct Green (s) 13.4 9.8 11.6 9.5 83.7 80.4 89.5 85.2 82.6        | 94.8  |
| Actuated g/C Ratio 0.12 0.09 0.11 0.09 0.76 0.73 0.81 0.77 0.75       | 0.86  |
| v/c Ratio 0.74 0.53 0.08 0.20 0.05 0.78 0.01 0.15 0.32                | 0.02  |
| Control Delay 66.5 17.8 37.2 26.6 1.6 4.2 0.0 9.8 5.0                 | 1.2   |
| Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0                       | 0.0   |
| Total Delay 66.5 17.8 37.2 26.6 1.6 4.2 0.0 9.8 5.0                   | 1.2   |
| LOS E B D C A A A A                                                   | Α     |
| Approach Delay 42.6 29.3 4.2 5.1                                      |       |
| Approach LOS D C A A                                                  |       |
| Stops (vph) 136 28 9 15 2 197 0 11 187                                | 1     |
| Fuel Used(gal) 3 1 0 0 0 22 0 0 11                                    | 0     |
| CO Emissions (g/hr) 242 104 13 29 15 1553 9 32 794                    | 13    |

|                         | ۶    | <b>→</b> | $\rightarrow$ | •    | <b>←</b> | •   | •    | <b>†</b> | <b>/</b> | -    | ļ    | 4    |
|-------------------------|------|----------|---------------|------|----------|-----|------|----------|----------|------|------|------|
| Lane Group              | EBL  | EBT      | EBR           | WBL  | WBT      | WBR | NBL  | NBT      | NBR      | SBL  | SBT  | SBR  |
| NOx Emissions (g/hr)    | 47   | 20       |               | 2    | 6        |     | 3    | 302      | 2        | 6    | 155  | 3    |
| VOC Emissions (g/hr)    | 56   | 24       |               | 3    | 7        |     | 3    | 360      | 2        | 8    | 184  | 3    |
| Dilemma Vehicles (#)    | 0    | 0        |               | 0    | 0        |     | 0    | 76       | 0        | 0    | 37   | 0    |
| Queue Length 50th (ft)  | 92   | 7        |               | 7    | 7        |     | 1    | 66       | 0        | 4    | 84   | 0    |
| Queue Length 95th (ft)  | 146  | 64       |               | 22   | 36       |     | m2   | #104     | m0       | 19   | 114  | m3   |
| Internal Link Dist (ft) |      | 766      |               |      | 646      |     |      | 1231     |          |      | 1240 |      |
| Turn Bay Length (ft)    | 265  |          |               | 265  |          |     | 265  |          | 265      | 265  |      | 265  |
| Base Capacity (vph)     | 191  | 368      |               | 156  | 292      |     | 441  | 2721     | 1303     | 182  | 2798 | 1367 |
| Starvation Cap Reductn  | 0    | 0        |               | 0    | 0        |     | 0    | 0        | 0        | 0    | 0    | 0    |
| Spillback Cap Reductn   | 0    | 0        |               | 0    | 0        |     | 0    | 0        | 0        | 0    | 0    | 0    |
| Storage Cap Reductn     | 0    | 0        |               | 0    | 0        |     | 0    | 0        | 0        | 0    | 0    | 0    |
| Reduced v/c Ratio       | 0.74 | 0.37     |               | 0.07 | 0.11     |     | 0.05 | 0.78     | 0.01     | 0.14 | 0.32 | 0.02 |

Area Type: Other

Cycle Length: 110

Actuated Cycle Length: 110

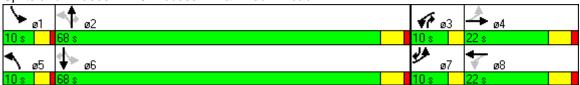
Offset: 9 (8%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 100

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.78
Intersection Signal Delay: 7.9

Intersection Signal Delay: 7.9 Intersection LOS: A
Intersection Capacity Utilization 74.0% ICU Level of Service D


Analysis Period (min) 15

# 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 45: Access "A" & Brisbin Road

