Presented By Deer Lodge Park

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo o hable con alguien que lo entienda bien.

ANNUAL WATER QUALITY

WATER TESTING PERFORMED IN 2017

Quality First

Once again we are pleased to present our annual water quality report. As in years past, we are committed to delivering the best-quality drinking water possible. To that end, we remain vigilant in meeting the challenges of new regulations, source water protection, water conservation, and community outreach and education while continuing to serve the needs of all of our water users. Thank you for allowing us the opportunity to serve you and your family.

We encourage you to share your thoughts with us on the information contained in this report. After all, well-informed customers are our best allies.

Community Participation

You are invited to participate in our public forum and voice your concerns about your drinking water. Regular meetings of the Board of Directors are held on the second and fourth Tuesdays of every month (with the exception of December) at 5:30 p.m. at the District Board Room (27307 State Hwy 189, Suite 104) in Blue Jay. Special meetings may be held, if necessary, throughout the year, with dates, times, and locations to be determined.

Important Health Information

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as those with cancer undergoing chemotherapy, those who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants may be particularly at risk from

infections. These people should seek advice about drinking water from their health care providers. The U.S. EPA/ CDC (Centers for Disease Control and Prevention) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline at (800) 426-4791 or http:// water.epa.gov/drink/hotline.

Substances That Could Be in Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

In order to ensure that tap water is safe to drink, the U.S. Environmental Protection Agency (U.S. EPA) and the State Water Resources Control Board (State Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. The U.S. Food and Drug Administration regulations and California law also establish limits for contaminants in bottled water that provide the same protection for public health. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk.

Contaminants that may be present in source water include:

Microbial Contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife;

Inorganic Contaminants, such as salts and metals, that can be naturally occurring or can result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming;

Pesticides and Herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses;

Organic Chemical Contaminants, including synthetic and volatile organic chemicals, that are by-products of industrial processes and petroleum production and can also come from gas stations, urban stormwater runoff, agricultural applications, and septic systems;

Radioactive Contaminants, that can be naturally occurring or can be the result of oil and gas production and mining activities.

More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline at (800) 426-4791.

QUESTIONS?

For more information about this report, or for any questions relating to your drinking water, please call Marc Lippert, Water Treatment Supervisor, at (909) 336-7113 or Customer Service at (909) 336-7100. You may also visit our Web site at <u>http://www.lakearrowheadcsd.com</u>.

FOG (Fats, Oils, and Grease)

You may not be aware of it, but every time you pour fat, oil, or grease (FOG) down your sink (e.g., bacon grease), you are contributing to a costly problem in the sewer collection system. FOG coats the inner walls of the plumbing in your house as well as the walls of underground piping throughout the community. Over time, these greasy materials build up and form blockages in pipes, which can

lead to wastewater backing up into parks, yards, streets, and storm drains. These backups allow FOG to contaminate local waters, including drinking water. Exposure to untreated wastewater is a public health

Water treatment is a complex, time-consuming process.

hazard. FOG discharged into septic systems and drain fields can also cause malfunctions, resulting in more frequent tank pump-outs and other expenses.

Communities spend billions of dollars every year to unplug or replace grease-blocked pipes, repair pump stations, and clean up costly and illegal wastewater spills. Here are some tips that you and your family can follow to help maintain a well-run system now and in the future:

NEVER:

- Pour fats, oil, or grease down the house or storm drains.
- Dispose of food scraps by flushing them.
- Use the toilet as a waste basket.

ALWAYS:

- Scrape and collect fat, oil, and grease into a waste container such as an empty coffee can, and dispose of it with your garbage.
- Place food scraps in waste containers or garbage bags for disposal with solid wastes.
- Place a wastebasket in each bathroom for solid wastes like disposable diapers, creams and lotions, and personal hygiene products including nonbiodegradable wipes.

What's Your Water Footprint?

You may have some understanding about your carbon footprint, but how much do you know about your water footprint? The water footprint of an individual, community, or business is defined as the total volume of freshwater that is used to produce the goods and services that are consumed by the individual or community or produced by the

business. For example, 11 gallons of water are needed to irrigate and wash the fruit in one half-gallon container of orange juice. Thirty-seven gallons of water are used to grow, produce, package, and ship the beans in that morning cup of coffee. Two hundred

and sixty-four gallons of water are required to produce one quart of milk, and 4,200 gallons of water are required to produce two pounds of beef.

According to the U.S. EPA, the average American uses over 180 gallons of water daily. In fact, in the developed world, one flush of a toilet

uses as much water as the average person in the developing world allocates for an entire day's cooking, washing, cleaning, and drinking. The annual American per-capita water footprint is about 8,000 cubic feet, twice the global per-capita average. With water use increasing six-fold in the past century, our

demands for freshwater are rapidly outstripping what the planet can replenish.

To check out your own water footprint, go to <u>http://goo.gl/QMoIXT</u>.

Where Does My Water Come From?

The sources of the water supplied to District customers in Deer Lodge Park include two groundwater wells and purchased water from Crestline-Lake Arrowhead Water Agency (CLAWA). During the winter, when the water table is higher, the two wells are the primary source of water. CLAWA water is held at standby for supplemental or emergency use. During the summer, when the water table drops, CLAWA water is delivered at the minimum amount needed to compensate for the additional customer demand. The wells are running at this time, but at a reduced rate, so that we will not exceed the "Safe Yield" of the wells.

The purchased water comes from Northern California via the California Aqueduct and flows into Lake Silverwood. CLAWA treats the water and delivers it into the District's distribution system, where it is blended with local well water. State-of-the-art treatment processes are used to ensure that the water delivered to your home is safe and pleasant tasting.

Source Water Assessment

A Source Water Assessment Plan (SWAP) was completed in November 2002 and January 2003 for both active wells. You may request a copy of the plans at our District Office. The plan is an assessment of the delineated area around our listed sources through which contaminants , if present, could migrate and reach our source water. It also includes an inventory of potential sources of contamination within the delineated area and a determination of the water supply's susceptibility to contamination by the identified potential sources.

The Vulnerability Summary concluded that the wells are at low risk for contamination and that the sources are considered most vulnerable to the following activities and are not associated with any detected contaminants: Managed Forests and Wells-Water Supply.

Water Conservation

You can play a role in conserving water and save yourself money in the process by becoming conscious of the amount of water your household is using and by looking for ways to use less whenever you can. It is not hard to conserve water. Here are a few tips:

- Automatic dishwashers use 15 gallons for every cycle, regardless of how many dishes are loaded. So get a run for your money and load it to capacity.
- Turn off the tap when brushing your teeth.
- Check every faucet in your home for leaks. Just a slow drip can waste 15 to 20 gallons a day. Fix it and you can save almost 6,000 gallons per year.
- Check your toilets for leaks by putting a few drops of food coloring in the tank. Watch for a few minutes to see if the color shows up in the bowl. It is not uncommon to lose up to 100 gallons

a day from an invisible toilet leak. Fix it and you save more than 30,000 gallons a year.

> • Use your water meter to detect hidden leaks. Simply turn off all taps and waterusing appliances. Then check the meter after 15 minutes. If it moved, you have a leak.

Lead in Home Plumbing

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high-quality drinking water, but we

cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30

seconds to 2 minutes before using water for drinking or cooking. (If you do so, you may wish to collect the flushed water and reuse it for another beneficial purpose, such as watering plants.) If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at <u>www.epa.gov/lead</u>.

Test Results

Our water is monitored for many different kinds of substances on a very strict sampling schedule. The information in the data tables shows only those substances that were detected between January 1 and December 31, 2017. Remember that detecting a substance does not necessarily mean the water is unsafe to drink; our goal is to keep all detects below their respective maximum allowed levels. The State recommends monitoring for certain substances less often than once per year because the concentrations of these substances do not change frequently. In these cases, the most recent sample data are included, along with the year in which the sample was taken.

REGULATED SUBSTANCES

							Crestline-Lake Arrowhead Water Agency (CLAWA)				
SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	MCL [MRDL]	PHG (MCLG) [MRDLG]	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	VIOLATION	TYPICAL SOURCE		
Chlorine (ppm)	2017	[4.0 (as Cl2)]	[4 (as Cl2)]	0.73	0.24-1.71	NA	NA	No	Drinking water disinfectant added for treatment		
Fluoride (ppm)	2017	2.0	1	0.11	0.11-0.11	0.04	0–0.59	No	Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum factories		
Gross Alpha Particle Activity (pCi/L)	2017	15	(0)	1.27	ND-3.80	NA	NA	No	Erosion of natural deposits		
Haloacetic Acids ¹ (ppb)	2017	60	NA	2.79	ND-7.80	10	0-8.30	No	By-product of drinking water disinfection		
Nitrate [as nitrogen] (ppm)	2017	10	10	ND	NA	0.26	0–0.58	No	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits		
TTHMs [Total Trihalomethanes] ¹ (ppb)	2017	80	NA	19.99	2.10–34	44	12.50–56.10	No	By-product of drinking water disinfection		
Turbidity ² (NTU)	2017	ΤT	NA	0.159	0.04-0.650	NA	NA	No	Soil runoff		
Tap water samples were collected for lead and copper analyses from sample sites throughout the community.											

SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	AL	PHG (MCLG)	AMOUNT DETECTED (90TH%TILE)	SITES ABOVE AL/TOTAL SITES	VIOLATION	TYPICAL SOURCE
Copper (ppm)	2016	1.3	0.3	1.1	0/9	No	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives

SECONDARY SUBSTANCES

				Deer L	odge Park	Crestline-Lak Water Agenc				
SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	SMCL	PHG (MCLG)	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	VIOLATION	TYPICAL SOURCE	
Chloride (ppm)	2017	500	NS	18	18–18	52.44	27-110	No	Runoff/leaching from natural deposits; seawater influence	
Color (Units)	2017	15	NS	2.37	1–9	NA	NA	No	Naturally occurring organic materials	
Corrosivity (Units)	2017	Non-corrosive	NS	11.79	11.79–11.79	NA	NA	No	Natural or industrially influenced balance of hydrogen, carbon and oxygen in the water; affected by temperature and other factors	
Odor–Threshold (TON)	2017	3	NS	1.09	1–2	1	1-1	No	Naturally occurring organic materials	
Specific Conductance (µS/cm)	2017	1,600	NS	403.20	251–623	NA	NA	No	Substances that form ions when in water; seawater influence	
Sulfate (ppm)	2017	500	NS	3.9	3.9–3.9	37.75	28–47	No	Runoff/leaching from natural deposits; industrial wastes	
Total Dissolved Solids (ppm)	2017	1,000	NS	250	250–250	225	130-320	No	Runoff/leaching from natural deposits	
Turbidity (Units)	2017	5	NS	0.260	0.07-1.08	NA	NA	No	Soil runoff	

UNREGULATED AND OTHER SUBSTANCES³

		Deer L	odge Park	Crestline-Lake Arrowhead Water Agency (CLAWA)	
SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH
Boron (ppb)	2017	NA	NA	81.25	0-140
Calcium (ppm)	2017	52	52–52	NA	NA
Magnesium (ppm)	2017	11	11–11	NA	NA
pH (Units)	2017	7.95	7.11-8.79	7.85	7.40-8.10
Potasium (ppm)	2017	3	3–3	NA	NA
Sodium (ppm)	2017	24	24-24	47.44	34–73
Total Hardness (ppm)	2017	180	180–180	67.25	47–92
Vanadium (ppb)	2017	ND	NA	1.30	0-4.70

¹Total Trihalomethanes and Haloacetic Acids are reported as the Highest Locational Running Annual Average.

²Turbidity is a measure of the cloudiness of the water. We monitor it because it is a good indicator of water quality. High turbidity can hinder the effectiveness of disinfectants.

³ Unregulated contaminant monitoring helps the U.S. EPA and the State Water Resources Control Board to determine where certain contaminants occur and whether the contaminants need to be regulated.

Definitions

AL (Regulatory Action Level): The concentration of a contaminant that, if exceeded, triggers treatment or other requirements that a water system must follow.

 μ S/cm (microsiemens per centimeter): A unit expressing the amount of electrical conductivity of a solution.

MCL (Maximum Contaminant Level): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs (SMCLs) are set to protect the odor, taste, and appearance of drinking water.

MCLG (Maximum Contaminant Level Goal): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. EPA.

MRDL (Maximum Residual Disinfectant Level): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MRDLG (Maximum Residual Disinfectant Level Goal): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

NA: Not applicable

ND (Not detected): Indicates that the substance was not found by laboratory analysis.

NS: No standard

NTU (Nephelometric Turbidity Units): Measurement of the clarity, or turbidity, of water. Turbidity in excess of 5 NTU is just noticeable to the average person.

pCi/L (picocuries per liter): A measure of radioactivity.

PDWS (Primary Drinking Water Standard): MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.

PHG (Public Health Goal): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California EPA.

ppb (**parts per billion**): One part substance per billion parts water (or micrograms per liter).

ppm (parts per million): One part substance per million parts water (or milligrams per liter).

TON (Threshold Odor Number): A measure of odor in water.

TT (Treatment Technique): A required process intended to reduce the level of a contaminant in drinking water.