PREPARING FOR THE HEALTH IMPACTS OF CLIMATE CHANGE

Roger Racine, MS MDHHS Regional Epidemiologist for the

Michigan Climate & Health Adaptation Program (MICHAP)

Petoskey, MI September 5, 2019 Michigan Climate & Health Adaptation Program MICHAP

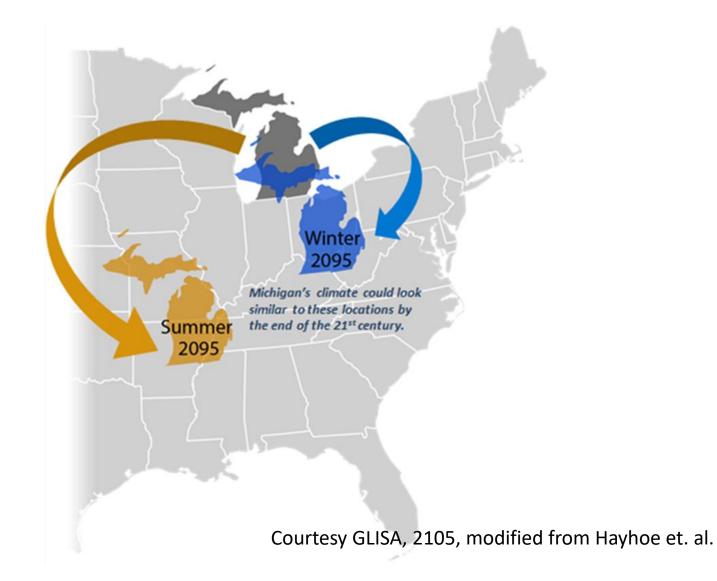
- Integrating Climate Adaptation into Public Health Practice
- Promote Adaptation Strategies to Protect Public Health

Outline

- Climate Change in Michigan
- How Climate Change Affects Health
- Climate Change Vulnerability in Your
 Community
- Public Health Response:
 <u>Mitigation</u> & <u>Adaptation</u>

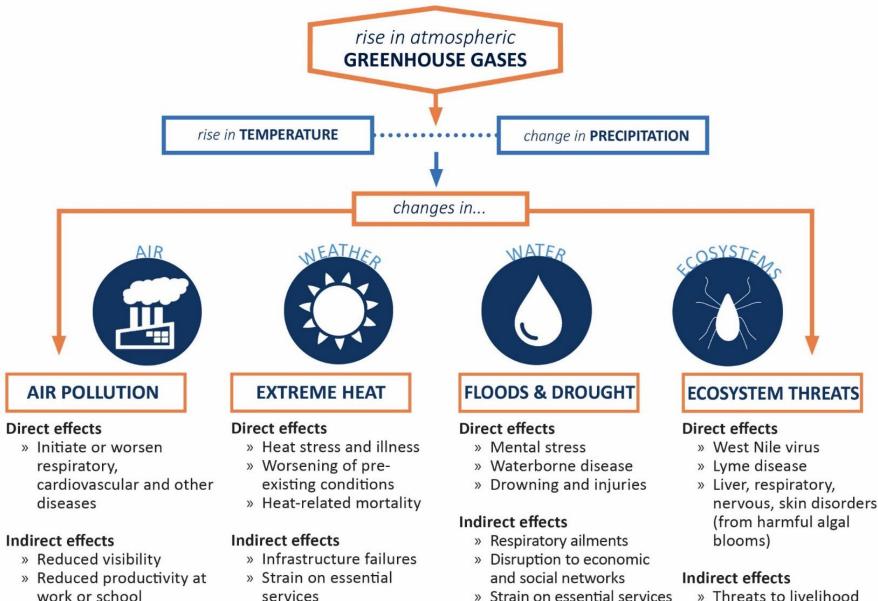
Great Lakes Climate is Changing

Temperatures are rising, especially in winter. Winters have become milder and shorter.


<u>Warming</u> winter temperatures increase <u>ice</u> and <u>freezing rain</u>

Spring is arriving earlier.

Frequency, intensity of severe rain and storms are increasing.


Michigan's Changing Climate

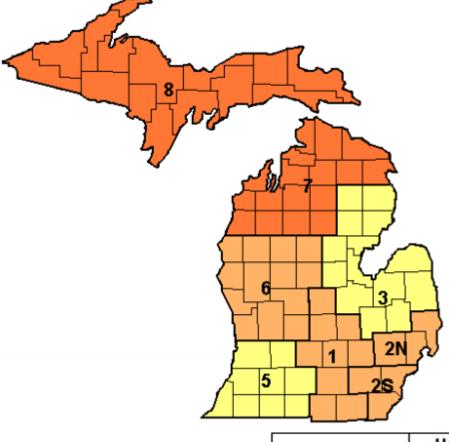
How Climate Change Affects Health

CLIMATE CHANGES LEAD TO HEALTH EFFECTS

» Wildfires

services

» Degradation of crops

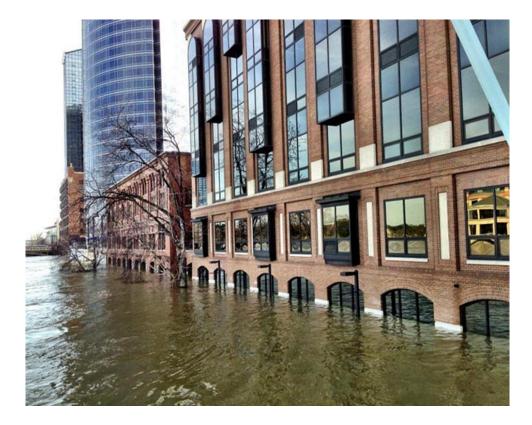

and water bodies

» Disruption to key social networks

» Financial strains

Priority Climate-Related Health Impacts

Key Health Outcome	Biophysical Parameter Changes	Predicted Change
Heat Morbidity, Mortality	More frequent, longer Heat Events; Warmer minimum temperatures	
Respiratory Diseases	Air Pollutants increase with high temps; Pollen, Mold levels increase with longer growing season & more moisture	
Injury, CO Poisonings	More frequent Ice Storms, Extreme Rain leading to more Power Outages & Cleanup; changes in other storm types unclear	1?
Waterborne Diseases, Toxins	Algal blooms, other Flood-related contaminations more frequent	
Vector borne Diseases	Impact on Mosquito & Tick lifecycle unclear	???



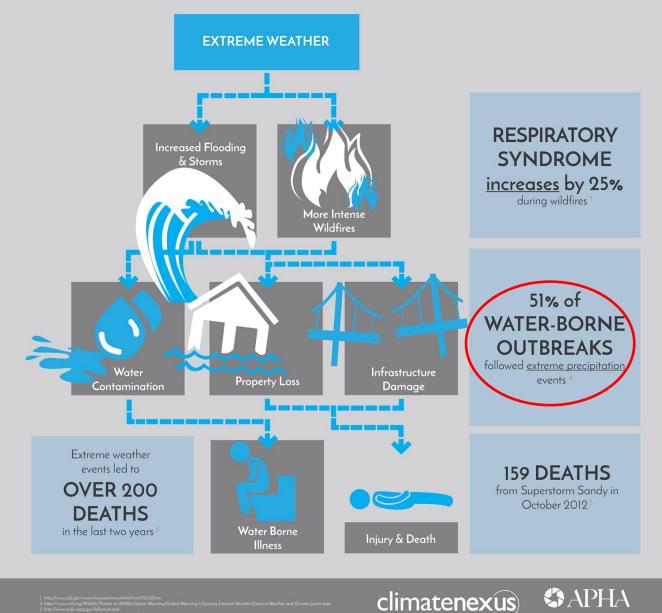
Extreme Heat Events Impacts on Health

Summary of Heat-Related ED Visits by Region (April 1 – August 31, 2016)

Region	Heat- Related ED Visits	All ED Visit	Proportion of Heat- Related ED Visits	Distribution of Heat- Related ED Visits Across Regions
1	524	248,482	0.211%	11.54%
2N	832	319,918	0.260%	18.32%
25	1124	503,790	0.047%	24.75%
3	438	221,386	0.198%	9.65%
5	384	205,490	0.187%	8.46%
6	847	299,551	0.283%	18.65%
7	271	84,011	0.323%	5.97%
8	121	39,798	0.304%	2.66%
Michigan Total	4541	1,922,426	0.236%	100.0%

Severe Storms: Floods, Snow/Ice

Downtown Grand Rapids, April 2013


- Physical Injuries (drowning, accidents)
- Allergies (mold)
- Food and Water-borne Illnesses
- Displacement
- Mental Health Issues
- Interruption of Emergency Services
- Carbon Monoxide
 poisoning

Severe Storms May 1999-Ap 2019 in Emmet County, MI

	Number of	% Total	Average per
St <u>or</u> m Type	Storms	Storms	Year
Winter Storm (ice, snow)	95	60.1	4.75
Thunderstorm w/ Excess			
Wind	27	17.1	1.35
High/Strong Winds	14	8.9	0.70
Hail	10	6.4	0.50
Extreme Heat/Drought	4	2.5	0.20
Extreme Cold/Freeze	4	2.5	0.20
Other	4	2.5	0.20
Total	158	100	7.90

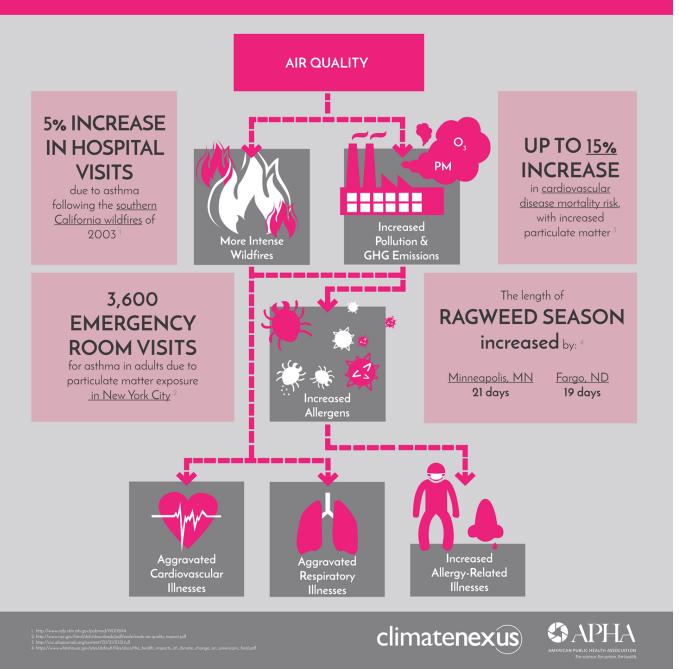
Data from the NOAA Storm Events Database: www.ncdc.noaa.gov/stormevents/

HOW CLIMATE CHANGE AFFECTS YOUR HEALTH

Potential Sources of Waterborne Disease Exposure

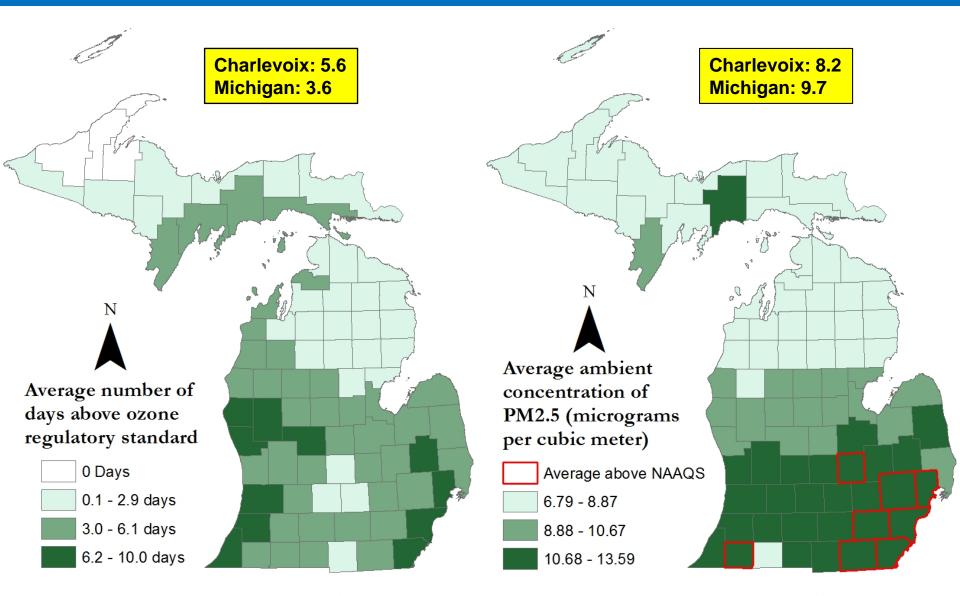
Local Risk Factors for Waterborne Disease Exposure

Exposure Source	Estimated no. housing units (2018) ^b	Emmet percent (1990) ^a	Michigan percent (1990)ª
Private well	13,324	61.2	57.6
Septic system	12,628	58.0	57.3
Estimated Failed Septics ^c			10-25%
'Too Old' Septic systems ^d		33.0%	
Watersheds w. human fec	100.0%		

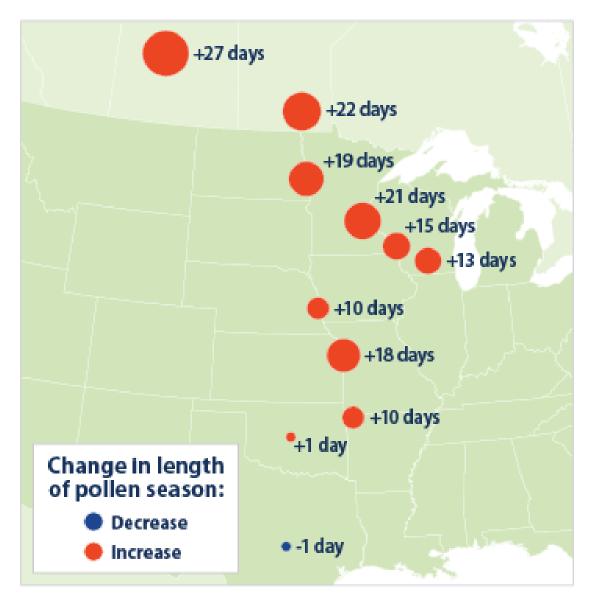

- a. Percent calculated using data from the 1990 Census of Housing;
- b. Number calculated using (a) times number of 2018 Emmet Co. housing units from Census Quick Facts;
- c. From 21st Century infrastructure Commission Report to Gov. Snyder, Nov. 30, 2016.
- d. From **2016 Septic Question Project Report**, NW Michigan Health Dept. and Tip of the Mitt Watershed Council.
- e. **PNAS** Aug 18, 2015 vol. 112 (33):10419-10424.

Climate Change → Disrupted Ecosystems

Disruptions → New Opportunities for Diseases To Thrive



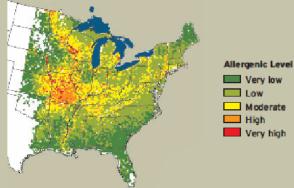
HOW CLIMATE CHANGE AFFECTS YOUR HEALTH


Climate Change Affects Air Pollutants

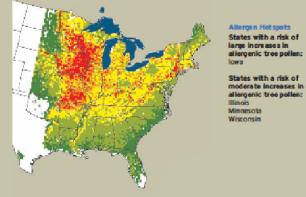
Distribution of Poor Air Quality by County

Source: Environmental Health Tracking Network (2005-2011) *Includes both counties with monitors and counties which values were mathematically modelled *Ozone regulatory standard changed from 80 ppb to 75 ppb in 2008 Source: Environmental Health Tracking Network (2005-2011) *Includes both counties with monitors and counties which values were mathematically modelled National Ambient Air Quality Standard = 12 micrograms PM2.5 per cubic meter

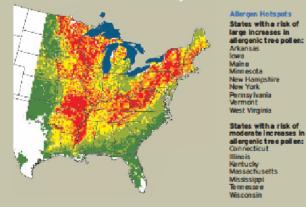
Change in Length of Ragweed Pollen Season, 1995–2013



Data source: Ziska et al., 2014


Example: Increased amounts of Tree Pollen in the air

ANNUAL ALLERGENIC TREE POLLEN POTENTIAL


Current Tree Habitat Distribution

2100 Tree Habitat Distribution—Low Emissions Scenario

2100 Tree Habitat Distribution—High Emissions Scenario

global warming pollution can make a big difference in the future potential for allergenic tree pollen. These maps show the annual allergenic potential from tree pollen for the current distribution of tree species habitat and for projected distributions of tree species habitat under two future climate scenarios-one in which greenhouse gas emissions are higher and one with lower emissions. Following the lower emissions pathway will help curb the possibility of expanding the range of trees, like oaks and hickories, that are known to produce highly allergenic pollen.

Choices we make now about

How the Maps Were Made:

The potential tree habitat distributions for 134 species are from the USDA Forest Service's Climate Change Tree Atlas, available at http://www.nrs.fs.fed.us/atlas/tree. Future distributions based on the average of three global climate models, each run for two emissions scenarios (low carbon dioxide increases to 550) ppm by 2100; high: carbon dioxide increases to 970 ppm by 2100). The Tree Atlas calculates Importance Values (IV) for each species for each 20 km by 20 km gridbox in the Eastern half of the United States. We scaled these Importance Values by how allergenic the pollen from each species is, as indicated in the Researchers Allergy and Botany Library available at http://www.pollenlibrary.com (highly allergenic= IV*3, moderately allergenic = IV*2, low allergenic = IV*1, not allergenic = IV*0). Then, we summed the contributions from all 134 species to calculate the total annual allergenic potential for each grid box. Note that the actual future distribution of trees and annual allergenic potential will also depend on many factors that this model does not consider, such as fragmentation of landscapes and competition with other species.

Climate Change Vulnerability

Who is affected by Climate Change?

Everyone is impacted; Some are more likely to be harmed than others.

Vulnerable People include:

- Elderly, and very young children
- Persons with pre-existing conditions
- Persons taking certain medications
- Socially isolated, homeless
- Lower income
- Outdoor workers

Vulnerable People (Emmet County)

	Emmet County		Michigan
Health Risk Factor	<u>Number</u>	<u>Percent</u>	<u>Percent</u>
Age under 5 yrs	1,233	4.8	5.7
Age 65 + yrs	5,799	22.5	17.2
Non-white	1,181	7.6	20.7
In poverty	3,306	8.5	14.2
Adult smokers*		18	20
Adult excessive drinking*		21	21
Adult Obesity*		30	30

Data from Census Quick Facts 2018 estimates, and

* 2015 Community Health Assessment, NW Michigan Health Dept. www.nwmich.org

Vulnerable People NW MI Health District (Antrim, Charlevoix, Emmet & Otsego Cos.)

Chronic Health Conditions

Self-Reported from the Behavioral Risk Factor Survey

	NW MI Health District		Michigan	
	<u>rate %</u>	<u>95% CI</u>	<u>rate %</u>	<u>95% CI</u>
Disability	24.7	19.9-30.1	25.6	25.0-26.2
Asthma(Still)	8.9	6.2-12.6	10.7	10.2-11.2
Asthma(Ever)	12.8	9.3-17.2	15.8	15.2-16.3
Diabetes	12.3	8.5-17.4	10.8	10.4-11.2
Any Cardiovascular Disease	11.3	8.0-15.8	9.7	9.3-10.1
Obesity	29.3	23.9-35.3	31.4	30.7-32.1
Arthritis	34.8	29.2-40.7	31.1	30.7-31.9

All data from the 2014-2016 Combined Michigan BRFS Regional and Local Health Department Estimates

Characteristics of Vulnerable Places

Exposure = Place

Geographic

Urban/Rural/Farm Topography/Flood Plain Storm Frequency/Projections

Infrastructural

Septic Systems Combined Sewers Housing Quality Private Wells Green space/Trees Heavy traffic exhaust

How Do We Respond to Protect Human Health?

Public Health Strategies

<u>Mitigation</u>: Reduce, Prevent Carbon Emissions

- Reduce energy consumption
- Use fossil fuel alternatives
- Reduce necessary fossil fuel combustion
- Control emissions

<u>Adaptation</u>: Actions that Moderate Harm

- Monitor conditions, inform the public
- Community, infrastructure planning
- Emergency preparedness

<u>Climate Change Response</u> also has several <u>Co-Benefits</u>

Co-Benefits: actions that benefit the community regardless of future climate changes.

Examples:

- Increase energy efficiency / <u>saving money</u>
- Promote walking, biking / improved fitness
- Improve greenspaces / more desirable communities
- Build rain gardens / fewer mosquitoes

These are the Characteristics of:

Resilient Communities!

For further information:

APHA Climate Change

www.apha.org/topics-and-issues/climate-change

CDC Climate and Health Program

www.cdc.gov/climateandhealth/

National Climate & Health Assessment

https://health2016.globalchange.gov/

Contact Us at MDHHS: <u>CameronL@michigan.gov</u> <u>www.Michigan.gov\climateandhealth</u>