

PLANNING & ZONING COMMISSION AGENDA July 19, 2023 at 6:30 PM Council Chambers

Chair: Tyler Harriman **Vice-Chair:** Brad Swank **Members:** Jody Carney, Dustin Adler, Tom Jaskiewicz

A. Call to Order

- 1. Roll Call
- 2. Approval of Minutes
 - i. Planning and Zoning Commission Meeting June 21, 2023

B. Communication

- 1. Planning and Zoning Mr. Hutchinson
- 2. BZA Mr. Jaskiewicz
- 3. Council Mayor Carney
- C. Public Comment

D. Old Business

E. New Business

- 1. Public Hearing for PZ-23-4 and PZ-23-5.
- PZ-23-4: 225 Guy Street (Parcel #04-00230.000); Rezoning of 3.82 +/acres from Restricted Industrial District ("I1") to Community Business District ("B2"); and, PZ-23-5: 265 Jefferson Street (Parcel #04-00503.001); Rezoning of 6.94 +/- acres from Restricted Industrial District ("I1") to Community Business District ("B2"); Applicant: Steven D. Bell.
- 3. PUD-23-7: Preliminary Development Plan, The Spot, Perry Pike Development LLC.
- F. Discussion Items
- G. Adjourn

PLANNING & ZONING COMMISSION MINUTES June 21, 2023 at 6:30 PM Council Chambers

Chair: Tyler Harriman **Vice-Chair:** Brad Swank **Members:** Jody Carney, Dustin Adler, Tom Jaskiewicz

Call to Order:

Mr. Harriman called the meeting to order at 6:31pm.

Roll Call:

Present: T. Harriman, J. Carney, D. Adler, T. Jaskiewicz.

Absent: B. Swank

Approval of Minutes:

Planning and Zoning Commission Meeting – May 17, 2023 Mr. Jaskiewicz motioned to approve the May 17, 2023 minutes, seconded by Mr. Harriman. All in favor.

Communication:

Planning and Zoning - Nothing to report.

BZA - Nothing to report.

Council – Mayor Carney discussed the MORPC (Mid-Ohio Regional Planning Commission) Rural Housing Event, which was hosted in the municipal building during the day on Wednesday, June 21. Participants in the event included roughly nineteen municipalities in and around the central Ohio region as well as MORPC staff and interns. The event focused on the housing shortage that many communities are or will be facing, and it discussed solutions for meeting demand and getting ahead of future housing challenges. Participants of the event were also given a tour of the Village. She also expressed gratitude to the Village Police Department for their continued efforts regarding a recent investigation in the Village. Mayor Carney will assist with the upcoming Safety Town program launch; over sixty kindergarten-aged children will participate in the event at the elementary school. The Mayor welcomed Plain City Nutrition to the Village and recommended supporting the Village's youngest business owner at this location. The Mayor acknowledged the many new businesses that are arriving in the Village.

Mr. Harriman expressed condolences to the Police Department for the recent loss of K9 dog Andor.

Public Comment: None.

Old Business: None.

New Business:

PUD-23-6: Preliminary Development Plan, Madison Meadows Subarea B, DR Horton

Joe Looby with EMHT introduced himself and the representative from DR Horton. Mr. Looby explained that the proposed townhomes for Madison Meadows, Subarea B will be platted lots on private streets with an access easement for everyone. Further, the townhomes and lots associated with each townhome will be owner-occupied.

Mr. Harriman inquired about the traffic patterns in and around this site, especially considering the traffic study was conducted in 2019. Mr. VanTilburg expressed that traffic studies are occurring with multiple developments. Mr. Adler commented that traffic impact fees will capture some of the necessary traffic improvements later on.

Mr. Harriman acknowledged the decrease in density, from the proposed 208 units to 128 units.

Mayor Carney expressed that at this point in the application stage, it is a rather routine process in determining if the applicant is staying true to what they had initially presented.

Mayor Carney motioned to approve PUD-23-6: Preliminary Development Plan, Madison Meadows Subarea B, DR Horton, seconded by Mr. Adler. All in favor.

PZ-16: Preliminary Plat, Madison Meadows Subarea B, DR Horton

Mr. Adler motioned to approve PZ-16: Preliminary Plat, Madison Meadows Subarea B, DR Horton, seconded by Mr. Harriman. All in favor.

Discussion Items:

Mekter Proposed Development

The representatives of the Mekter Group began by giving an overview of their concept plan. They explained some of the potential attractions of the concept plan, including a beer garden, an event center, mixed-used commercial/residential units along the main public roadway, a boutique hotel, flex/warehouse space for businesses, townhomes and other multi-family housing products, and upscale patio or singlefamily homes towards the rear of the site.

The concept proposes public uses (commercial uses, a hotel, flex spaces) towards the front. As one moves farther back through the site, it becomes increasingly more private (townhomes, single family homes, variety of housing options).

The representatives brought attention to their proposed green corridor along SR-161 with retention ponds and a 200-foot setback to maintain a natural area between SR-161 and commercial properties. Walking and bike trails would also be present within the proposed development.

The Mekter Group representatives explained their Phasing Plan, which was broken into three separate phases. Phase 1 would include the development of the single-family homes and the main roadway that leads back to such uses. Further, it would include the creation of the green corridor along SR-161, development of the beer garden and event center, and the placement of biking and walking paths within the development.

Phase 2 would include the construction of commercial properties, which were said to have a small-town feel. Phase 3 would involve the construction of the multi-family residential units.

Mr. Jaskiewicz inquired about the connection points to other properties on the concept plan. The representatives explained that the connections exist towards Warner Road and roadways into Darby Station.

Mr. Jaskiewicz asked how this concept plan would promote the "small-town feel" of Plain City. The representatives answered that the hotel proposed would not take on a typical, large-corporate feel like a Hampton or Holiday Inn. Additionally, they plan to offer other commercial spaces to local, smaller businesses to create a walkable feel.

Mr. Jaskiewicz asked for the representatives to define 'boutique hotel' – to which they replied that it is more of a themed, mom-and-pop, or local hotel that has more character than a typical chain.

Mr. Jaskiewicz asked how the proposed concept would fit into the SR-161 Gateway idea of preserving a historic farmland character. Mr. Adler expressed he has yet to see a warehouse/hotel/etc. that has a hometown feel.

The representatives expressed that they would renovate and place nicer finishes on the existing farm structures along SR-161. Additionally, the development of commercial properties was proposed to be reminiscent of the Uptown area of Plain City. Mekter Group will also begin work on architectural elevations and designs so that the Commission members can get a feel for what potential townhomes, commercial uses, and other uses would look like.

Mr. Jaskiewicz voiced concerns with the main arterial road and the potential traffic bottleneck that could occur. The representatives took this comment into consideration and expressed the importance of enhancing the connectivity within the site.

Mr. Adler expressed concerns that a grocery store may not be able to sustain itself in this location, based on competition from nearby stores (Aldi, Costco). He also expressed that preservation of existing trees is important, especially along the stream.

Mayor Carney expressed the need for greenery and mounding around parking lots.

Mr. Harriman voiced his liking of the bike path location along SR-161, but expressed that it currently leads nowhere. The location and completion of the path will depend on future development projects along SR-161.

The commission and representatives discussed public and private roads within the development and surrounding developments, such as Darby Station. For instance, public roads would receive maintenance from the Village while private roads would not. The representatives expressed that they would consider looking at their public/private road distinctions.

Mr. Harriman reminded the representatives of the Village's zoning requirements regarding density (dwelling units per acre). Mr. Harriman and Mr. Jaskiewicz

acknowledged that some parts of the Mekter Group development will have higher densities than others, and Mr. Harriman confirmed that the final density calculation would be based on the entire acreage of the site. Mr. Adler expressed that the Village will be going through a code re-write, considering some parts of the code are a little outdated and do not entirely align with the direction Plain City is moving in.

Mr. VanTilburg asked if on-street parking would be present along the main public roadway (with the proposed roundabouts). The representatives expressed that on-street parking would likely not be present along this roadway.

The Commission and representatives discussed additional traffic considerations, including fire and rescue access, potential Warner Road improvements/changes, a suggestion to broaden the main public roadway into more of a boulevard-type design, and possible locations and routes for bike paths within the development.

Mr. Harriman inquired about the capacity of the event center. The representatives confirmed that the proposed event center would be roughly 22,000 sq. ft., large enough to act as both an event center for gatherings (weddings, etc.) and a clubhouse for residential properties. The public or private nature of the clubhouse is to be determined, but the event center would be public.

Mekter Group representatives thanked the Commission for their feedback. The Commission expressed their appreciation to the Mekter Group for their conversation.

Adjourn:

Mr. Harriman motioned to adjourn, seconded by Mayor Carney. Meeting adjourned at 7:48pm.

Plain City, Ohio ZONING ORDINANCE AMENDMENT

Application for:

The SPOT

Submitted on: June 12th, 2023

Submitted For:

PERRY PIKE

DELEVOPMENT LLC

Contact: William Pizzino PE 3655 US 42 West Jefferson, Ohio 43162 614.325.2462

Submitted By:

Engineering & Consulting LLC

PLANNED DISTRICT APPLICATON PRELIMINARY DEVELOPMENT PLAN

TYPE OF PLANNED DISTRICT										
Residential	凶 Commercial	Industrial	Mixed Use							
1. APPLICANT INFORMATION										
Name: Pizzino Eng	ineering & Consulting LL	С.								
Phone: (614)325-2462 Email: pizzinoeng1@gmail.com										
Address: 3655 US Highway 42 West Jefferson Ohio										
	2. OWNER INFORMATION	I (IF DIFFERENT THAN AI	PPLICANT)							
Name: Perry Pike	Development LLc.									
Phone: (614) 206-4	4890	Email:								
Address: 8500 R	ausch Rd Plain City									
	3. REGIS	TERED SURVEYOR								
Name: Cottrill Sur	veying LLc.									
Phone: (740)869-3	3811	Email: randy@c	ottrillsurveying.com							
Address: 8256 Sta	ate Route 207 Mt Sterling	Ohio								
	4. ENG	INEER/PLANNER								
Name: Pizzino En	gineering & Consulting Ll	_C.								
Phone: (614)325-	2462	Email: pizzinoeng	1@gmail.com							
Address: 3655 US Highway 42 West Jefferson Ohio										

IMPORTANT NOTES:

*INCOMPLETE APPLICATIONS WILL BE NOT PROCESSED. APPLICANT OR REPRESENTATIVE MUST BE PRESENT AT PLANNING & ZONING COMMISSION MEETING.

Expiration of Approval Period. The approval of a final development plan for a planned district development shall be for a period not to exceed five (5) years to allow for preparation and recording of the required subdivision plat and development of the project. Where a project is completed within five (f) years, the approved final development plan shall remain as the effective zoning control over the area included in the plan, in addition to the requirements of the Zoning Ordinance. If required plats are not properly recorded within nine months of final development plan approval and/or if no construction has begun on the site within two (2) years of such approval, the approved final development plan shall be void, and the Planning & Zoning Commission shall initiate a rezoning unless an application for a time extension is submitted and approved, which approval may be withheld for good cause.

An extension of time may be granted per the conditions set out in Chapter 1177 of the Zoning Ordinance.

Amendment or Alteration of Approved Planned District Development Plans. Once a final development plan for a planned district has been approved by Council, all subsequent substantial changes to that plan shall only be permitted by resubmission as a new substitute plan and repetition of the procedures established in these sections. "Substantial change" for the purposes of this section shall mean any modification of an approved planned district development plan, as determined by the Zoning Inspector, that results in:

(1) Any increase in the number, or change in the type and/or mix of residences, and/or non-residential building area or land use;

(2) Decrease in the approved minimum lot size, number of parking spaces to be provided, and/or trash storage areas;

(3) Change in the approved location of land uses, land use sub-areas or sub-elements, streets, public or private park lands and other public facilities, and/or natural environmental preserves or scenic easements by more than thirty (30) feet;

(4) Reduction in area of public and/or private park lands or other public facilities and/or natural environmental preserves or scenic easements;

(5) Alteration of the basic geometry and/or operational characteristics of any element of the approved street pattern, parking facilities, service access, trash storage facilities, and/or system of pedestrian and/or equestrian paths that result in a change in operating characteristics or character.

(6) Any circumstances below the minimum requirements established in this Zoning Ordinance or as required in the approval of a conditionally permitted use in a planned district.

All plats, construction drawings, restrictive covenants and other necessary documents shall be submitted to the Zoning Inspector, to the Planning and Zoning Commission, and to the Council or to their designated technical advisors upon request for administrative review to assure substantial compliance with the final approved development plan.

The undersigned certifies that this application and the attachments thereto contain all information required by the Zoning Ordinance and that all information contained herein is true and accurate and is submitted to induce the amendment of the zoning map. Applicant agrees to be bound by the provisions of the Zoning Ordinance of the Village of Plain City.

Vullian Jongno, P.E

Applicant Signature

6/12/23

CONTINUE ON NEXT PAGE

800 Village Boulevard | P.O. Box 167 | Plain City, OH 43064 | 614-873-3527 | plain-city.com Page 2 of 5

PRELIMINARY DEVELOPMENT PLAN CHECKLIST

- I. Application Requirement:
- □ Application Fee
- □ Application-1(one) digital copy and 6 (six) paper copies of entire Final Development Submission
- □ Re-Zoning Statement
 - A. Explain the relationship of the proposed development to existing and future land uses in the surrounding area, the street system, community facilities, open space system, services, and other public improvements
 - B. State how the proposed rezoning relates to existing land use character of the vicinity and to the Plain City Community Plan. If the proposal is inconsistent with the Community Plan, then justify the proposed deviation from the Community Plan.
 - C. Explain how the proposed rezoning meets the criteria for Planned Districts [Chapter 1177]
 - D. If a previous application to rezone the property has been denied by City Council within the last twelve months, list when and state the basis for reconsideration.

□ Legal Description and/or Property Survey for each parcel

□ Zoning Text

- □ Adjacent Property Owners
 - A. Within 250 Feet, a list including:
 - i. Parcel number
 - ii. Complete address
 - iii. **Owner** name

II. Plans and Maps: All plans and maps must be to scale and include a north arrow. Please submit paper and electronic plans. Additional paper copies of plans will be requested prior to the case being placed on a meeting agenda.

□ Cover Page

□ Vicinity Map

A. General location of the site and surrounding thoroughfares within the context of the Village

B. Existing Zoning District, all adjacent parcels, including building footprints, and jurisdictional boundaries

C. Shows existing property lines, easements, utilities, street rights-of-way, zoning district boundaries, land uses, and structures

□Existing Conditions

- A. Shows existing public rights-of-way, buildings, permanent facilities, access points, and easements on and adjacent to the site
- B. Identifies existing utility systems and providers
- C. Shows existing zoning district and jurisdictional boundaries
- D. Shows boundaries of the area proposed for development, including dimensions and total acreage

CONTINUE ON NEXT PAGE

- E. Identifies existing structures to be removed or demolished
- F. Shows locations of all wooded areas, tree lines, hedgerows, and a description of significant existing vegetation by type of species, health, and quality
- G. Identifies existing drainage patterns, wetlands (and potential wetlands), floodplains, floodway boundaries, 20-foot floodway buffer, flood elevation, water courses, and Stream Corridor Protection Zones

Preliminary Development Plan

- A. Shows proposed location, use, and size of areas of residential, retail, office, industrial or institutional uses, community facilities, parks, playgrounds, school sites, and other public areas and open spaces with the suggested ownership and maintenance provisions of such areas, and their related parking areas and access points (including proposed grading on a separate sheet)
- B. Shows the general layout of the proposed internal road system, indicating the proposed vehicular right-of-way of all proposed public streets, general indication of private streets, access drive locations, improvements to existing streets (including right-of-way changes), and traffic control requirements
- C. Includes proposed pedestrian and bicycle circulation plans
- D. Shows any proposed off-site improvements and/or utility lines/extensions needed to serve the site
- E. Includes conceptual landscape plan showing all natural areas to be altered or impacted by the development and areas where new landscaping will be installed, as well as other natural features to be conserved and any required buffer areas
- F. Includes a summary table showing total acres of the proposed development, the number of acres devoted to each type of use including streets and common areas, the number of dwelling units by type and density for each residential use area and the building height(s), and square footage as proposed for retail, office, industrial and institutional uses, by use area, and the number of parking spaces provided for each use area
- □ Traffic Study
 - A. Indicates future traffic impacts on existing and proposed roadways, as required by the Village Engineer.
 - B. Requires discussion with Village Engineer or designee to obtain memorandum of understanding that must be drafted and agreed to with the Plain City Engineer prior to conducting the traffic study

□ Phasing Plan

A. Identifies separate phases

🗆 Utility Plan

A. Includes proposed provision of water, sanitary sewer, and surface drainage facilities, including engineering feasibility studies or other evidence of reasonableness including verification of availability

□ Architectural Elevations

A. Depicts character and general elements of proposed development

Preliminary Plat (If Applicable)

A. Meets Subdivision Requirements set forth in Chapter 1121

FOR STAFF								
Date Received:	Application #:							
Fee(s) Paid:	Check No:							
Date of the P&Z:								
Status:								
If Denied, Reason:								

Planning Department Staff Signature

Date

Pizzino

Engineering & Consulting LLC

3655 US 42 West Jefferson, Ohio 43162

STATEMENTS FOR ZONING APPLICATION

- Currently Zoned COMMERCIAL , Proposed Zoning change to CPD (Commercial Planned Development)
- 2) Attached
- 3) The creation of the proposed SHOPPING CENTER will positively add to the general health, safety and welfare to the Citizens and Guests of Plain City because:

A) Need of major Shopping area in heart of Plain City

B) Development and activity will provide further health safety and welfare to the community by virtue of new activity and commercial gentrification of the area

C) Increasing influx of new housing is consistent with the need for new retail commercial activity to support the increased housing and families locating in Plain City

D) Proposed rezoning / new SHOPPING CENTER is appropriate to the current and future plans for this area

4) This proposed amendment is CONSISTENT with and in total AGREEMENT of the COMPREHENSIVE PLAN

5) Attached

Shanad In the Safe of Ohis County of Malian, Wiley of Piol Ohy and provide Margor Sarey Nutleas Counterformation (1537) are seened and the secondary of the Counterformation of the Safe and Safe	THE REPLAT OF
Image: Second and the second and th	THE VILLAGE CENTER O
STATE OF OHIO State prevention State prevention State prevention Before me a Violation cut for the forboard instruments to be their violation of the forboard instruments of the mean of the forboard instruments of the mean of the forboard instruments of the prevent of the second instruments of the prevent instruments of the prevent instrument is prevent instrument of the prevent of the prevent of the prevent	F PLAIN CITY

EXHIBIT A

Cottrill Surveying, LLC

8256 State Route 207 NE, Mt. Sterling, Ohio 43143, Ph. (740)869-3811

Lot #1

11.6613 Acre Tract

Replat of the Village Center of Plain City

The following describe Lot #1 of the "Replat of the Village Center of Plain City" (11.6613 acre tract) as recorded in Plat Book _____ Page _____, is situated in the State of Ohio, Madison County, Village of Plain City, VMS 7758-7830, and being part of the original "Village Center of Plain City" as recorded in Plat Book "B" page 319, 13.814 acres (parcel #04-00777.000) conveyed to Futura Banc Corp. by Official Record 206 page 1484, and being more particularly described as follows:

Commencing at a centerline monument box found at the centerline intersection of Perry Pike (County Road 40) (50 feet right-of-way) with Jefferson Avenue (US Route 42) (60 feet right-of-way);

Thence, with the centerline of said Perry Pike, North 83° 30' 05" West a distance of 280.32 feet to a point in said centerline;

Thence, North 04° 04' 05" East, passing a 5/8 inch diameter rebar and yellow plastic cap stamped "Clapsaddle 6140" at 24.35 feet, a total distance of 25.02 feet to a point in the North right-of-way line of Perry Pike, said point also being the southwest corner of a 1.327 acre tract conveyed to JKM Mart LLC by Official Record 287 page 2187, and the True Point of Beginning;

Thence, with the North right-of-way line of Perry Pike, North 83° 30' 05" West a distance of 559.98 feet to an iron pin and cap set in the line between VMS 7758-7830 and VMS 8636, said iron pin also being the east line of a 6.275 acre tract conveyed to Robert M Timmons by Official Record 258 page 1660, from said iron pin a 3/4 inch iron T-bar and cap was found South 04° 39' 16" West a distance of 4.75 feet;

Thence, with said VMS line and the East line of said 6.275 acre tract, North 04° 39' 16" East a distance of 710.48 feet to an iron pin and cap set;

Thence, with a new line across said 13.814 acre tract, South 85° 55' 26" East a distance of 517.17 feet to an iron pin and cap set in the West line of a 1.308 acre tract conveyed to Champaign National Bank by Official Record 222 page 357;

Thence, around said 1.308 acre tract with the following two courses:

- 1) South 04° 03' 52" West a distance of 30.00 feet to a 5/8 inch diameter rebar found;
- 2) South 85° 55' 26" East a distance of 272.05 feet to a point in the West line of a 0.142 acre tract conveyed to the Village of Plain City by Official Record 314 page 85, and in the West right-of-way line of Jefferson Avenue (US Route 42);

Thence, along the West right-of-way line of Jefferson Avenue (US Route 42) and the west line of said 0.142 acre tract with the following two courses:

- 1) South 04° 04' 05" West, passing an iron pin and cap set at 20.00 feet, a total distance of 371.93 feet to an iron pin and cap set;
- 2) South 08° 54' 43" West a distance of 83.12 feet to an iron pin and cap set in the North line of said 1.327 acre tract;

Thence, around said 1.327 acre tract with the following two courses:

- 1) North 85° 55' 58" West a distance of 230.00 feet to a 5/8 inch diameter rebar found in an 8 inch diameter Locust tree;
- 2) South 04° 04' 05" West a distance of 249.33 feet returning to the True Point of Beginning containing 11.6613 acres more or less.

Bearings are based on a GPS observation on 3/09/16, WGS 1984 Geodetic North.

With the benefit of an Ingress/Egress/Utility Easement as described in Official Record 222 page 357 and shown on Plat 105-06.

Subject to a 50 feet Ingress/Egress/Utility Easement described separately and is more particularly shown on "The Replat of the Village Center of Plain City as recorded in Plat Book _____ page _____.

This deed is subject to and with the benefit of all legal highways, restrictions, easements, limitations, and reservations, of record, if any and to zoning restrictions which have been imposed thereon, if any.

All iron pins set are 5/8 inch diameter rebar with yellow plastic caps stamped "Cottrill L.L.C. 6858."

This description is based on a field survey performed September 28,2 16 by James R. Cottrill registration #6858. (Job #S160304-LOT1)

James R. Cottrill, PS

. .

CONCEPT

Cvista Bank an Ohio Corporation 320 S. Jefferson Plain City, Ohio 40364

Harold Miller 10355 Rosedale Milford Center Rd Irwin, Ohio 43029

JKM Mart LLC 440 S. Jefferson Plain City, Ohio 43064

John Houchard 420 Gay Street Plain City, Ohio 43064

Perry Pike Holdings II LLC. 9650 Mitchell-Dewitt Road Plain City, Ohio 43064

Brian Garland 5335 Cooper Lane Plain City, Ohio 43064

Village Blvd. I LLC 480 S. Jefferson Ave. Plain City, Ohio 43064 David Humm 6655 Perry Pike Plain City, Ohio 43064

Chavvah Lynn Laudon 6635 Perry Pike Plain City, Ohio 43064

William Rockfield 6595 Perry Pike Plain City, Ohio 40364

Robert Timmons 6604 Perry Pike Plain City, Ohio 43064

PID THE SPOT AT PERRY PIKE

The Spot at Perry Pike is an +/- 11.661 ac parcel located at the northwest corner of Perry Pike and US 42. The parcel number is 04-00777.000 and is identified on Exhibit "A".

i. <u>Permitted Uses</u>

Commercial buildings and the permitted uses contained in the Codified Ordinances of the Village of Plain City Business Districts B-1, B-2 and B-3. Sections 1161, 1163, 1165.

Exceptions therefrom:

- a. Adult bookstore, adult motion picture theater, or adults' only entertainment establishment.
- b. Armory
- c. Automobile salesroom
- d. Billboards
- e. Commercial recreational facilities such as community and public swimming pools, skating rinks, bowling alleys, physical fitness centers
- f. Commercial radio transmitting or television station and appurtenances
- g. Funeral parlor
- h. Motor vehicle sales or leasing
- i. New or used car lot
- j. Stable
- k. Big-box users which shall be any user in excess of 50,000 square feet of retail

II. <u>Development Standards</u>

Unless otherwise specified in the submitted drawings or in this written text, the development standards of Title Five of the Codified Ordinances of the Village of Plain City apply to this subarea. Basic development standards are compiled regarding proposed density, site issues, traffic circulation, landscape and architectural standards. These component standards ensure consistency and quality throughout the parcel's development.

Density, Height, Lot and/or Setback Commitments

- 1. SETBACKS ARE PER EXHIBIT 'A'
- 2. The building and pavement setbacks from the centerline of Perry Pike and US 42 shall be fifty feet.
- 3. The front yard of a parcel shall be that portion of the parcel

fronting on a public or private roadway.

- 4. Side yard setbacks along the north property shall be forty for pavement and forty feet for buildings, as shown on Exhibit "A".
- 5. Setbacks along all other internal property boundaries between adjoining privately held parcels within this subarea shall be zero for all buildings and pavement areas.
- 6. The maximum building height shall not exceed thirty-five feet. Architectural elements such as parapets, monitors, chimneys, and cupolas may exceed this limitation.

Access, loading, parking and/or other Traffic Commitments

- 1. Adequate employee and visitor parking shall be provided per CHAPTER 1193 of the Codified Ordinances of the Village of Plain City. Additionally, the parking and loading requirements of Section 1193.12 & 1193.13 shall be required.
- 2. Access to the The Spot retail site shall be from existing public roadways (Perry Pike & Jefferson Ave/US 42).
- 3. Ingress and egress shall be permitted as illustrated on the attached Exhibit "A". The final location of the curb cuts as shown on Exhibit "A" may be modified with the approval of the Village Engineer.

Architectural Standards

- 1. Building materials shall be traditional and natural in appearance such as brick, pre-cast stone, wood and glass. Vinyl, and other manufactured synthetic materials are permitted as long as they are natural in appearance. Metal shall be allowed as an accent feature. Tinted glass shall be permitted, reflective or mirrored glass shall be prohibited.
- 2. Building Earth tones, muted hues, and natural tones are permitted as structures basic color. Brighter hues are permitted only as an accent feature on building elements such as awnings, doors, and trim. A mixed color palette on a single building should be carefully selected so all colors harmonize with each other.
- 3. Building Pitched, flat or mansard roofs shall be permitted. All flat roofs shall be required to have a parapet and/or a means of screening all rooftop mechanical equipment. All rooftop screens must be consistent and harmonious to the building's façade and

character.

4. Untreated masonry block structures are also prohibited.

Buffering, Landscaping, Open Space and/or Screening Commitments

Perimeter Area Landscaping. Landscaping within all setback areas abutting an existing or planned public right-of-way shall be in accordance with the following standards:

- 1. Landscape Standard Along Perry Pike and US Route 42
 - a. Deciduous street trees shall be placed within the right-ofway, or easement, and spaced at a maximum of forty feet on center. The minimum sizes for street trees shall be 2" caliper. Street trees shall not obstruct site distance or signage subject to staff approval.
 - b. Any surface parking areas adjacent to the Perry Pike & Jefferson Ave/US 42 shall be screened from the respective right-of-way with a minimum of a 30" continuous planting hedge, fence, wall or earth mound or any configuration thereof. The 30" height shall be measured from the adjacent parking area. Trees may be deciduous, ornamental, evergreens, or any combination thereof. The size of the trees and shrubs shall be consistent with chapter 1187. This requirement shall not apply in areas of ingress and egress, or to save existing trees.
 - c. Building Grass (seed or sod) shall be planted within the setback area. Other groundcover, such as wildflowers, may be planted on all portions of the setback areas not occupied by a landscaping material or required for drainage. The setback buffer treatment is in addition to the regular street tree requirement.
- 2. <u>General</u>

a. Minimum Tree Size

	Perimeter	Parking Lot
Tree	Minimum Tree Size	e Minimum Tree
Ornamental Trees	2" Caliper	2" Caliper
Deciduous Shade Trees	2.5" Caliper	2.5" Caliper
Evergreen Trees	6' — 8' tall	4' tall

- b. <u>Perimeter Shrubbery.</u> Deciduous and evergreen shrubs are permitted and shall be a minimum size of 24" (ht.) at installation.
- c. <u>Tree Protection Zones</u>: All existing trees located within tree protection zones shall be preserved and maintained in good healthy condition subject to common forestry practices.
- 3. All trees and landscaping shall be well maintained. Dead items, weather permitting, shall be replaced within six months.
- 4. Building <u>Tree Preservation:</u> Reasonable and good faith efforts will be made to preserve existing trees within this subarea. Consideration will be given to laying out service roads, lots, structures and parking areas to avoid the unnecessary destruction of existing trees. Additionally, standard tree preservation practices will be in place to preserve and protect trees during all phases of construction, including the installation of snow fencing at the drip line.

Dumpsters, Lighting, Outdoor Display Areas and/or other Environmental Commitments

- 1. <u>Mechanical Equipment</u>
 - a. Building Any external mechanical equipment shall be well screened from all adjacent public roads and/or adjacent properties at ground level with materials that are similar to or the same as used on the majority of the building, or with landscaping. This shall include any rooftop equipment, satellite dishes (excluding communication devices), as well as ground mounted mechanical equipment. The screening of the mechanical equipment should be coordinated with the rest of the architecture so as to avoid being seen as an "add-on".
- 2. <u>Service Areas and Dumpsters</u>

a. Building All service areas including loading docks, exterior storage of materials, supplies, equipment or products, and trash containers shall be well screened from all public roads and/or adjacent properties at ground level with walls or landscaping. Any walls shall be of the same materials used on the building walls and shall be complemented with landscaping.

3. <u>Lighting</u>

- a. Parking lot lighting shall be of a standard light source type and style and shall not exceed 20' in height. Building, pedestrian and landscape lighting may be incandescent or metal halide.
- b. All external lighting shall be decorative or cut-off type fixtures and down cast to reduce "spillage".
- c. Flood lighting of buildings or landscaping is prohibited, except in areas required for employee security.
- h. External building lighting shall be limited to wallmounted sconces. Building lighting shall be mounted on the first floor only. No uplighting or washing of the building shall be permitted.

Graphics and SignageCommitment

- 1. All signage shall conform to the standards set forth in per Section 1199 of the Codified Ordinances of the Village of Plain City, unless otherwise stated below.
- 2. Each building shall be allowed one wall-mounted sign and one ground-mounted sign along each public road right-of-way and building fronts.
- 4. No signs shall be painted directly on the surface of the building, wall or fence. No wall murals shall be allowed.
- 6 No roof signs or parapet signs shall be permitted nor shall asign extend higher than the building.
- 7. The following signs are not permitted as permanent signs: Banner or streamers, sidewalk or curb signs (sandwich of "A" type), portable displays or mobile signs, gas filled devices, roof-mounted signs, revolving or rotating signs and neon signs.
- 8. Entry features may be established within the subarea and may contain signage. Minimum setback for entry features shall be eight feet from right-of-way line. In no case, shall entry features interfere with maintaining safe clear sight distances at intersections.

<u>Miscellaneous</u>

1. <u>Utilities</u>: All utility lines including water supply, sanitary water service, electricity, telephone and gas, and their connections or feeder lines shall be placed underground. Meters, transformers, etc., may be placed above ground, but shall be clustered and screened from view. To the extent possible, utility line placement shall be sensitive to existing vegetation.

					1	
			2.0 2.4 2.6 2.8 3.4 2 9 34 39 45 42 43 50 52 47 38 31 27 24 2	4 27 32 40 45 44 43		
		1.1	1.7 2.7 3.9 4.8 4.8 4.7 5.5 5.6 5.6 4.3 3.8 3.7 3.4 3.0 2.6 2.4 2. 1.6 2.4 3.1 PL2	1 3.2 3.9 4.6 4.8 5.1 6.2 6.6 6.5 4.9 4.2 4.1		
	0° *0	.3 0.5 0.7 0.9 .5 0.7 1.0 1.2 1.4 1.4 1.4 1.2 1.0 0.9 0.7 0.8 0.8 0.8 0.8	1.3 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7	9 2.1 2.7 2.9 2.9 1 9 2.1 2.7 2.9 2.9 1 0 2.2 2.1 1.7 1.8 2.0 E		
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	0.4 °C 0.5 °C	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	7 1.7 1.7 1.7 1.5 7 1.7 1.7 1.5 1.3		
	<u>0.5</u>	Image: 27.5	$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$	6 <u>1.6</u> <u>1.6</u> <u>1.5</u> <u>1.4</u> <u>1.2</u> 5 <u>1.5</u> <u>1.5</u> <u>1.4</u> <u>1.3</u>		
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.9 3.3 2.8 2.6 2.4 2.4 2.6 2.6 2.1 1.2 1.5 1.6 1.7 1.6 4.5 3.9 3.6 3.4 3.2 3.2 3.3 3.4 2.5 1.6 1.2 1.2 1.4 1.6 1.7 1.6 1.7	7 1.7 1.7 1.7 1.6 1.6		
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.8 4.2 4.0 3.8 3.7 3.7 3.9 3.7 2.5 1.6 1.2 1.2 1.5 1.7 1.6 1.6 1. 3.8 3.4 2.9 2.8 3.8 3.7 3.6 2.5 1.6 1.2 1.2 1.5 1.6 1.	6 1.6 1.6 1.6 1.6 9 1.9 1.7 1.5 1.6		
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.9 <u>PL4 1.8 1.7 1.9 2.3 1.7 1.2 1.0</u> ME: 27.5 1.6 1.6 2. 1.4 1.6 1.6 1.5 1.	$1 \stackrel{\text{PL2.2}}{\xrightarrow{\text{PL5}}} 1.9 \stackrel{1.6}{1.6} \stackrel{1.6}{1.5} \stackrel{1.6}{1.6} \stackrel{1.6}{1.5} \stackrel{1.6}{1.5}$		
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u>1.3 1.</u> 5 1.6 1.6 1. <u>1.2 1.4</u> 1.6 1.6 1.	$\begin{array}{c} 6 & 1.6 \\ 6 & 1.6 \end{array} \begin{array}{c} 1.6 & 1.6 \\ 1.6 \end{array} \begin{array}{c} 1.6 \\ 1.6 \end{array} \begin{array}{c} 1.6 \\ 1.6 \end{array} \begin{array}{c} 1.6 \\ 1.5 \end{array} \begin{array}{c} 1.3 \\ 1.3 \end{array} \begin{array}{c} 1.0 \\ 1.6 \end{array}$		
		1.6 1.6 1.6 1.6 1.6 1.7 1.7 1.5 1.4 1.5 1.7 1.7 1.6 1	1.0 1.2 1.4 1.5 1. 0.9 1.1 1.2 1.3 1.	6 1.6 1.6 1.5 1.3 1.1 0.8 4 1.4 1.3 1.3 1.1 0.9		
		Image: Non-state state	0.9 1.1 1.2 1.3 1.4 1.5 1.6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
3.1 2.7 3.8 3.9	2.4 2.1 Pi4 3 MH: 27.5 D *3.6 *3.3 *3.4 *3.6 *3.8 3.0 1.8 1.2 1.0 1.3 2.2 *3.1 2.7 2.3 2.1 PL4 PL4	0.8 0.9 1.1 1.0 0.9 0.8 0.8 0.9 1.4 1.6 1	1.1 1.4 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.5 1.5 1.6 1.5 1.5 1.6 1.5 1.5 1.6 1.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
2.5 3.5 3.5 2.3 2.9 2.8	*3.4 *3.4 *3.5 *3.6 *3.9 *3.0 *1.2 *1.2 *1.6 *2.6 *3.8 *3.9 *3.6 *3.3 *3.4 *3.6 *3.8 *3.1 *1.9 *1.3 *2.7 *2.6 *2.7 *2.8 *3.0 *3.3 *2.8 *1.7 *1.1 *1.6 *2.6 *3.6 *3.5 *3.5 *3.6	1.2 1.6 2.5 3.0 2.5 2.2 1.1 1.0 1.1 1.0 1.0 1.4 2.0 3.1 4.0 3.8 3.6 3 3.2 5.5	$\begin{array}{c} \begin{array}{c} \begin{array}{c} 1 \\ -1 \\ -2 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ $	9 1.8 1.6 1.6 1.6 1.4 2 2.1 1.6 1.6 1.6 1.5 $\frac{15}{15}$		
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.3 1.9 3.1 3.8 3.6 3.6 3.6 3.7 1.3 1.9 2.8 3.1 2.9 2.9 3.1 3.3 3.4 2.4 1.4 0.9 1.3 1.9 2.8 3.1 2.9 2.9 3.1 3.3 3.4 2.4 1.4 0.9 1.2 1.6 2.1 2.2 2.1 2.3 2.6 2.7 2.1 3.3 0.6 0.5 0.5 0.6 1.2 1.6 2.1 2.2 2.1 2.3 2.6 2.7 2.1 3.3 0.6 0.5 0.7 1.0 1.1 1.2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \mathbf{H} = 227, 5 \\ 2, 5 \\ 2, 5 \\ 1, 6 \\ 1, 6 \\ 1, 6 \\ 1, 6 \\ 1, 6 \\ 1, 6 \\ 1, 6 \\ 1, 6 \\ 1, 7 \\ 1, 7 \\ 1, 7 \\ 1, 6 \\ 1, 7 \\ 1, 7 \\ 1, 8 \\ 1, 7 \end{array}$		
	0.8 0.9 0.8 0.9 0.8 0.9 0.8 0.9 0.8 0.9 1.0 1.0 1.0 1.1 1.1 1.0 0.9 0.8 0.9 0.8 0.9 0.8 0.9 0.8 0.9 1.0 1.0 1.1 1.1 1.0 0.9	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	D 1.4 1.5 1.6 16 PL2 MH: 27.5 1.0 1.2 1.4 1.6 1.8	1.8		
		• •	5.0 4.9 4.9 4.8 4.7 3.9 2.7 1.8 1.2 1.0 0.9 0.9 1.1 1.3 1.5 1.9 2. 2.8 2.2 1.5 1.1 0.9 0.8 0.8 0.9 1.1 1.3 1.7 2.	10 15 3.1 3.8 3.9 4.0 4.9 6.9 p12.2 5.2 3.3 <u>MH: 27.5</u> 1.3 3.3 4.5 5.3 5.3 5.1 5.5 5.3 5.2 4.6		
		2.9 4/3 5.4 3.8 5.0 4.7 3.4 4,3 5.4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 4.2 4.4 4.7 4.3 4.0 4.6 4.4 2.5 4 1.5 1.5 1.6 1.7 1.7 1.4 4.3 4.0 4.6 4.4 4.4 4.6 4.4 4.6 4.4 4.6 4.4 4.6 4.6		
		3.5 4.9 5.3 6.7 2.9 4.5 4.8 5/9 <u>PL2</u> <u>MH: 27.5</u>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7 1.7 1.8 1.9 1.8 1.4 0.9 $2 2.2 2.4 2.5 2.3 1.6 0.9$		
		2.4 2.6 4.1 4.9 4.0 4.7 3.7 2.8 3.0 4.8	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 9 & 2.9 \\ \hline 3.6 & 3.6 \\ \hline 3.6 & 3.6 \\ \hline 3.6 & 3.9 \\ \hline 3.0 \\ \hline 1 & 3.4 \\ \hline 3.6 \\ \hline 3.6 \\ \hline 3.9 \\ \hline 3.0 \\ \hline 1.7 \\ \hline 0.9 \\$		
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	PL4 ME: 2	<u>2.1</u> <u>2.6</u> <u>2</u> <u>2</u> <u>1.3</u> <u>0</u> .7 <u>27.5</u>		
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 .4			
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.5 \\ 1.4 \\ 1.1 \\ 0.8 \\ 0.9 \\ 1.4 \\ 2.3 \\ 2.9 \\ 3.2 \\ 2.7 \\ 1.2 \\ 0.6 \\ 0.9 \\ 1.4 \\ 1.2 \\ 0.6 \\ 0.9 \\ 1.4 \\ 1.2 \\$				
	1.5 1.6 2.0 2.0 1.9 2.0 2.5 2.8 2.6 2.2 1.9 1.7 1.7 1.6 1.7 2.2 2 2.9 2.1 2.5 2.8 2.6 2.2 1.9 2.2 2.0 <u>PL5</u> <u>MRI 27.5</u>	1.6 1.6 1.5 1.2 1.0 1.6 2.9 3.0 2.3 0.8 0.5 0.6 0.7 0				
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.6 1.6 1.5 1.4 1.6 1.5 1.4 1.6 1.5 1.4 1.6 1.5 1.4 1.6 1.6 1.5 1.4 1.6 1.5 1.4 1.6 1.5 1.4 1.6 1.5 1.4 1.2 1.8 1.6 1.2 1.8 1.6 1.2 1.2 1.8 1.6 1.2 1.6 1.6 1.5 1.4 1.2 1.8 1.8 1.9				
		1.4 1.3 9.9 0.9 2.6 3.7 3.8 5.0 PL2 MH: 27.5 2.6 3.7 3.8 4.5 5.1 2.6 3.8 4.0 3.8 4.0 3.8 5.1 2.6 3.8 4.0 3.7 3.8 4.0 3.8 4.0 3.8 4.0 3.8 4.0 3.8 4.0 3.8 4.0 3.8 4.0 3.8 5.1]			
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
		2.0 8.0 2.9				
	Luminaire Schedule					
	Symbol Qty 	LabelArrangementPL5SINGLE	LLF' Description 0.950 VP-2-320L-	on -185-4K7-5QW		
		PL4 SINGLE	0.950 VP-2-320L-	-185-4K7-4W		
		PL2 SINGLE	0.950 VP-2-320L-	-185-4K7-2		
	Calculation Summary			7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7	т. <i>п</i> . "	
	Label Parking Lot 1 Planar	CalcType Illuminance	Units Fc	Avg Max 1.67 2.8	Min 0.8	Avg/Min 2.09
	Parking Lot 2 Planar	Illuminance	FC	1.89 4.0	0.5	3.78
	Parking Lot 3_Planar Parking Lot 4 Planar	Illuminance Illuminance	FC FC	∠.⊥⊥ 4.0 2.11 3.9	0.5	4.22
	Parking Lot 5_Planar	Illuminance	FC	1.53 2.6	0.3	5.10
	Parking Lot 6_Planar Roadway Planar	Illuminance Illuminance	FC FC	1./1 4.8 3.32 7.2	0.2	8.30
						-

LIGHTING SUBMITTAL

PROJECT: PERRY PIKE

Prepared for: EAGLE ELECTRICAL SERVICES

 (\circ)

Submittal Date

04/20/2023

Submittal									
To: EAGLE 8500 RA PLAIN (Phone: Fax: 614	ELECTRICAL S AUSCH DR CITY, OH 43064 614-504-5322 4-873-3004	SERVICES I-8067	Project: PERRY Job #: 43884 Quoter: Project Qu Project Mgr: Printed By: Erin Van C	PIKE otes ormer					
Туре	Quantity	Description		Manufacturer	\leq				
PL5		SINGLE HEADED CONSISTING OF VP-2-320L-185-4 SSSB25-40A-1-B	0 25' SQUARE STEEL POLE : K7-5QW-UNV-A-DBT 3-DBT	HUBLIGHT HUBLIGHT HUBLIGHT					
PL4		SINGLE HEADED CONSISTING OF VP-2-320L-185-4 SSSB25-40A-1-B3	0 25' SQUARE STEEL POLE :: K7-4W-UNV-A-DBT 3-DBT	HUBLIGHT HUBLIGHT HUBLIGHT					
PL2		SINGLE HEADED CONSISTING OF VP-2-320L-185-44 SSSB25-40A-1-B3	0 25' SQUARE STEEL POLE :: K7-2-UNV-A-DBT 3-DBT	HUBLIGHT HUBLIGHT HUBLIGHT					

From:	
LOEB ELECTRIC	
MAIN PHONE	
614-294-6351	
1800 E FIFTH AVE	
COLUMBUS, OH 43219	

DATE: LOCATION: TYPE: PL5 PROJECT:

CATALOG #: VP-2-320L-185-4K7-5QW-UNV-A-DBT

FEATURES

- · Low profile LED area/site luminaire with a variety of IES distributions for lighting applications such as auto dealership, retail, commercial, and campus parking lots
- · Featuring two different optical technologies, Strike and Micro Strike Optics, which provide the best distribution patterns for retrofit or new construction
- · Rated for high vibration applications including bridges and overpasses. All sizes are rated for 1.5G
- Control options including photo control, occupancy sensing, NX Lighting Controls[™] wiSCAPE and 7-Pin with networked controls
- · New customizable lumen output feature allows for the wattage and lumen output to be customized in the factory to meet whatever specification requirements may entail
- · Field interchangeable mounting provides additional flexibility after the fixture has shipped

CONTROL TECHNOLOGY

LIGHTING CONTROLS wiSCAPE[®] **SPECIFICATIONS**

CONSTRUCTION

- Die-cast housing with hidden vertical heat fins are optimal for heat dissipation while keeping a clean smooth outer surface
- Corrosion resistant, die-cast aluminum housing with 1000 hour powder coat paint finish
- · External hardware is corrosion resistant

OPTICS

- Micro Strike Optics (160, 320, 480, or 720 LED counts) maximize uniformity in applications and come standard with mid-power LEDs which evenly illuminate the entire luminous surface area to provide a low glare appearance. Catalog logic found on page 2
- Strike Optics (36, 72, 108, or 162 LED counts) provide best in class distributions and maximum pole spacing in new applications with high powered LEDs. Strike optics are held in place with a polycarbonate bezel to mimic the appearance of the Micro Strike Optics so both solutions can be combined on the same application. Catalog logic found on page 3
- Both optics maximize target zone illumination with minimal losses at the house-side, reducing light trespass issues. Additional backlight control shields and house side shields can be added for further reduction of illumination behind the pole
- · One-piece silicone gasket ensures a weatherproof seal
- · Zero up-light at 0 degrees of tilt
- · Field rotatable optics

INSTALLATION

- · Mounting patterns for each arm can be found on page 11
- Optional universal mounting block for ease of installation during retrofit applications. Available as an option (ASQU) or accessory for square and round poles
- All mounting hardware included

Current 回

INSTALLATION (CONTINUED)

- Knuckle arm fitter option available for 2-3/8" OD tenon
- For products with EPA less than 1 mounted to a pole greater that 20ft, a vibration damper is recommended

ELECTRICAL

- Universal 120-277 VAC or 347-480 VAC input voltage, 50/60 Hz
- Ambient operating temperature -40°C to 40°C
- Drivers have greater than 90% power factor and less than 20% THD
- LED drivers have output power over-voltage, over-current protection and short circuit protection with auto recovery
- Field replaceable surge protection device Provides 20kA protection meeting ANSI/ IEEE C62.41.2 Category C High and Surge Location Category C3; Automatically takes fixture off-line for protection when device is compromised
- Dual Driver option provides 2 drivers within luminaire but only one set of leads exiting the luminaire, where Dual Power Feed provides two drivers which can be wired independently as two sets of leads are extended from the luminaire. Both options cannot be combined

CONTROLS

- Photo control, occupancy sensor programmable controls, and Zigbee wireless controls available for complete on/off and dimming control
- Please consult brand or sales representative when combining control and electrical options as some combinations may not operate as anticipated depending on your application
- 7-pin ANSI C136.41-2013 photocontrol receptacle option available for twist lock photocontrols or wireless control modules (control accessories sold separately)

10-DAY QUICK SHIP PROGRAM

CONTROLS (CONTINUED)

- 0-10V Dimming Drivers are standard and dimming leads are extended out of the luminaire unless control options require connection to the dimming leads. Must specify if wiring leads are to be greater than the 6" standard
- NX Lighting Controls[™] available with in fixture wireless control module, features dimming and occupancy sensor
- wiSCAPE® available with in fixture wireless control module, features dimming and occupancy sensor. Also available in 7-pin configuration

CERTIFICATIONS

- DLC® (DesignLights Consortium Qualified), with some Premium Qualified configurations. Not all product variations listed in this document are DLC® qualified. Refer to http://www.designlights.org for the mact up to date list. most up-to-date list.
- Listed to UL1598 and CSA C22.2#250.0-24 for wet locations and 40°C ambient temperatures
- 1.5 G rated for ANSI C136.31 high vibration applications
- Fixture is IP65 rated
- Meets IDA recommendations using 3K CCT configuration at 0 degrees of tilt
- This product qualifies as a "designated country construction material" per FAR 52.225-11 Buy American-Construction Materials under Trade Agreements effective 04/23/2020.

WARRANTY

5 year warranty

KEY DATA									
Lumen Range	5,000–80,000								
Wattage Range	36–600								
Efficacy Range (LPW)	92–155								
Weight lbs. (kg)	13.7-30.9 (6.2-13.9)								

currentlighting.com/beacon

© 2022 HLI Solutions, Inc. All rights reserved. Information and specifications subject to change without notice. All values are design or typical values when measured under laboratory conditions

VIPER Area/Site

VIPER LUMINAIRE

MICROSTRIKE OPTICS - ORDERING GUIDE

DATE: LOCATION:

TYPE: PL5 PROJECT:

CATALOG #: VP-2-320L-185-4K7-5QW-UNV-A-DBT

= Service Program QS

Example: VP-2-320L-145-3K7-2-R-UNV-A3-BLT

CATALOG # VP-2-320L-185-4K7-5QW-UNV-A-DBT

]
VP	_	_ 2 _	320L	-185		-	4K7		_ 5	QW	_		_	UNV	_
Series	Optic Platform	Size	Light E	ngine			CCT/0	CRI	Dis	stribution		Optic Rotation		Voltage	
VP Vi	ner Micro Strike	1 Size 1	1601-34	5 5500 lur	mens		ΔΡ	ΔP-Δmber	2	Type 2		BLANK		UNV 120-277V	1
			160L-50	0⁶ 7500 lur	mens		1	Phosphor	3	Type 3		No Rotation		120 120V	
			160L-7	5 10000 lu	umens			Converted	4F	Type 4		L Optic		208 208V	
			160L-10	12500 lu	imens		27K8	2700K,		Forward		rotation left		240 240V	
			160L-11	5 15000 lu	umens		21/7	80 CRI	4V	/ Type 4		R Optic		277 277V	
			160L-13	18000 lu	umens		3K7	3000K, 70 CRI	_	Wide		right		347 347V	
			160L-16	0 21000 lu	umens		3K8	3000K.	5G	W Type 5		5		480 480V	
		2 Size 2	320L-14	15 21000 lu	umens			80 CRI		Square Wide					
			320L-17	70 24000 lu	umens	_	35K8	3500K,							
			320L-18	35 27000 lu	umens			80 CRI							
			320L-2	10 30000 lu	umens		3K9	3000K,							
			320L-2	35 33000 lu	umens		4K7	4000K							
			320L-2	55 36000 li	umens			70 CRI							
		2 Sizo 2	320L-3		umens		4K8	4000K,							
		3 3128 3	4801-2		umens			80 CRI							
			4801-3	40 48000 li	umens		4K9	4000K,							
			480L-3	90 52000 li	umens		547	50 CKI							
			480L-4	25 55000 lu	umens		51(7	70 CRI							
			480L-4	70 60000 li	umens		5K8	5000K,							
		4 Size 4	720L-4	35 60000 li	umens			80 CRI							
			720L-4	75 65000 lu	umens										
			720L-5	15 70000 lu	umens										
			720L-5	65 ⁶ 75000 lu	umens										
			720L-6	00 ⁶ 80000 lu	umens										
			CLO	Custom	Lumen O	utput ¹									
Α			_ DBT	-]_[
Manual			Calar		04			Network C		0-+:					
	Arm mount for cause n	olo/flat ourfage	DIT	Riack Matta	Б	Fueir	a	NELWORK C		Options V Networked Wir					
A	(B3 Drill Pattern) (Does n	ot include	DLI	Textured	205	Fusii Dual	Power	INAWSIOF	IN. Se	ensor with Autom	eie: iatic	Dimming Photocell	and	Bluetooth Programn	ning ^{1,3,4}
	round pole adapter)		BLS	Black Gloss	261	Feed	l	NXWS40F	N	X Networked Wir	eles	s Enabled Integral N	1XSN	/IP2-HMO PIR Occu	pancy
A_	Arm mount for round po	le ²		Smooth	2DF	R Dual	Driver		Se	ensor with Autom	atic	Dimming Photocell	and	Bluetooth Programn	ning 1,3,4
ASQU	Universal arm mount for	square pole.	DBT	Dark Bronze	TE	Toole	ess	NXW	N	X Networked Wir	eles	ss Radio Module NX	RM2	and Bluetooth Prog	gramming,
	Can be used with B3 or	S2 Drill Pattern	D.D.C	Matte l'extured]	Entry	,	WID	W			Andula 34			
A_U	Universal arm mount for	rouna pole *	DBS	Dark Bronze Gloss Smooth	BC	Back	light	WIREC	W	ISCAPE" IN-FIXIU	1 e 1		cor3	.4	
AAU	(universal drill pattern)	nounung	GTT	Graphite Matte	тр	Cont	inal	Stand Alon	e See		c al	ia Occupancy Sell	JUI -		
AA_U	Adjustable arm mount fo	or round pole ²		Textured		Block	(BTS-14F	RI	uetooth® Program	nm:	able. BTSMP-I MO PI	RO	cupancy Sensor wi	th
ADU	Decorative upswept Arm	n (universal drill	LGS	Light Grey					A	utomatic Dimming	g Ph	otocell and 360° Lei	ns ⁹	scapency ochool Wi	
	pattern)		1.07	Gloss Smooth				BTS-40F	BI	uetooth® Program	nma	able, BTSMP-HMO P	IR O	ccupancy Sensor w	ith
AD_U	Decorative upswept arm	n mount for	LGI	Light Grey Gloss Textured					A	utomatic Dimming	g Ph	otocell and 360° Lei	ns ⁹		
MAT	Noct arm fitter for 2.2/0	OD harizantal	PSS	Platinum Silver				BTSO-12F	BI	uetooth® Program	nma n⊡⊧	able, BTSMP-OMNI-0	D PIF	Occupancy Senso	r with
WAF	arm	UD NONZONTAI		Smooth				7PR	AI 7	Pin Recentacia 4	y r'í	iotoceli al la 360 Lei	15 -		
к	Knuckle		WHT	White Matte				7PR-SC	7-	Pin Recentaclo w	vith	shorting cap 4			
т	Trunnion			Textured				3PR	2	Pin twist lock 4	VILII	anorang cap			
WB	Wall Bracket, horizontal	tenon with MAF	WHS	White Gloss				3PR-SC	с Э-	Pin recentacle w	ith 4	shorting can 4			
wм	Wall mount bracket with	decorative	VCT	Varda Groop				3PR-TI	<u>२</u>	Pin PCR with phy		ontrol ⁴			
	upswept arm		101	Textured				Programme	ed Co	ntrols					
WA	Wall mount bracket with	adjustable arm	Color	Option				SCPF	Se	ensor Control Proc	gran	nmable, 8F or 40F ¹⁰			
			CC	Custom Color				ADD	A	utoDim Timer Ba	sed	Dimming ⁴			
			I					ADT	A	utoDim Time of Da	ay D	imming ⁴			

1 - Items with a grey background can be done as a custom order. Contact brand representative for more and the set of beauty of the set of the se

3 - Networked Controls cannot be combined with other control options

4 – Not available with 2PF option

5 – Not available with Dual Driver option

currentlighting.com/beacon

© 2022 HLI Solutions, Inc. All rights reserved. Information and specifications subject to change without notice. All values are design or typical values when measured under laboratory conditions.

Photocontrols

Button Photocontrol 4,7

9-BTS and BTSO are only available on Size 3 and Size 4 10-At least one SCPREMOTE required to program SCP motion sensor. Must select 8ft or 40ft.

6 – Some voltage restrictions may apply when combined with controls 7 – Not available with 480V

8 - BC not available on 4F and type 5 distributions

PC

DATE:	LOCATION:
TYPE:	PROJECT:
CATALOG #:	

Example: VP-ST-1-36L-39-3K7-2-UNV-A-BLT

STRIKE OPTIC - ORDERING GUIDE

CATALOG	#																			
VP Series]_	Optic Platform	-[Size	-[Light Engine	9]_	сст	//CRI]_	D	Distribution	_	0	otic Rotation	_	Voltag	e]-
VP Viper		ST Strike	-	 Size 1 Size 2 Size 3 Size 4 		36L-39 ⁸ 36L-55 ⁸ 36L-85 36L-105 36L-120 72L-115 72L-145 72L-210 72L-240 108L-215 ⁸ 108L-250 108L-280 108L-365 162L-365 ¹⁰ 162L-365 ¹⁰ 162L-445 162L-445 162L-545 ⁸ CLO	5500 lumens 7500 lumens 10000 lumens 12500 lumens 15000 lumens 2000 lumens 2000 lumens 30000 lumens 30000 lumens 30000 lumens 40000 lumens 48000 lumens 52000 lumens 55000 lumens 55000 lumens 55000 lumens	-	AM 27K 3K7 3K8 35K 4K7 4K8 4K9 5K7 5K8	 monochromatic amber, 595nm 2700K, 80 CRI 3000K, 70 CRI 3000K, 90 CRI 3500K, 80 CRI 4000K, 70 CRI 4000K, 70 CRI 5000K, 90 CRI 5000K, 70 CRI 5000K, 80 CRI 		F 2 3 4 4 5 5 5 5 C T	R Auto Front Row 1 Type 2 3 Type 3 F Type 4 Forward FW Type 5 Square Narrow Type 5 Square GOM Type 5 Square Medium Type 5 Square GW Type 5 Square GW Type 5 Square GW Type 5 Square GUM Type 5 Square GUM Type 5 Square GUM Type 5 Square GUM Type 5 Square Medium Type 5 Square GUM T	de nd) ar	R	BLANK No Rotation left Optic rotation right		UNV 120 208 240 277 347 480	120- 277V 120V 208V 240V 277V 347V 480V	

]_[]_]_	_	
Mount	ing		Color			Optio	ons		Network Co	ontrol Options
Α	Arm mount for square pole/flat surface		BLT	Black Matte		F	Fusing		NXWS16F	NX Networked Wireless Enabled Integral NXSMP2-LMO PIR Occupancy Sensor with Automatic Dimming Photocall and Bluetooth Programming 134
A_ ASQU	Arm mount for round pole ³ Universal arm mount for square pole		BLS	Black Gloss		E	Battery Backup 1,2,7,8,9		NXWS40F	NX Networked Wireless Enabled Integral NXSMP2-HMO PIR Occupancy Sensor
A_U	Universal arm mount for round pole ³		DBT	Smooth Dark Bronze		2PF	Dual Power Feed		NXW	with Automatic Dimming Photocell and Bluetooth Programming *** NX Networked Wireless Radio Module NXRM2 and Bluetooth Programming,
AAU	(universal drill pattern)		DBS	Matte Textured Dark Bronze		2DR	Dual Driver		WIR	without Sensor ^{3,4} wiSCAPE® In-Fixture Module ^{3,4}
AA_U	Adjustable arm mount for round pole ³			Gloss Smooth		BC	Backlight		WIRSC	wiSCAPE® Module and Occupancy Sensor 3.4
ADU	drill pattern)		GTT	Graphite Matte			Control		Stand Alone	e Sensors
AD_U	Decorative upswept arm mount for round pole ³		LGS	Light Grey		ТВ	Terminal Block		BTS-14F	Bluetooth® Programmable, BTSMP-LMO PIR Occupancy Sensor with Automatic Dimming Photocell and 360° Lens ¹¹
MAF	, Mast arm fitter for 2-3/8" OD horizontal arm		LGT	Light Grey					BTS-40F	Bluetooth® Programmable, BTSMP-HMO PIR Occupancy Sensor with Automatic Dimming® Photocell and 360° Lens ¹¹
к	Knuckle		PSS	Platinum Silver					BTSO-12F	Bluetooth® Programmable, BTSMP-OMNI-O PIR Occupancy Sensor with Automatic Dimming Photocell and 360° Lens ¹¹
T	Irunnion Wall Breaket, beringental tangan with			Smooth					7PR	7-Pin Receptacle ⁴
WB	MAF		WHI	Textured					7PR-SC	7-Pin Receptacle with shorting cap ⁴
WM	Wall mount bracket with decorative		WHS	White Gloss					3PR	3-Pin twist lock ⁴
14/0	upswept arm		VOT	Smooth					3PR-SC	3-Pin receptacle with shorting cap *
WA	Wall mount bracket with adjustable arm		VGI	Verde Green Textured					Programme	d Controls
			Color	Option					SCPF	Sensor Control Programmable, 8F or 40F ¹²
			сс	Custom Color]				ADD	AutoDim Timer Based Dimming ⁴
1 baara								1	ADT	AutoDim Time of Day Dimming ⁴
1 – items	with a grey background can be done as a cus	tom	order. C	Lontact brand repre	ser	nauve fe	or more information		Photocontro	bls

3 - Replace "_" with "3" for 3.5"-4.13" OD pole, "4" for 4.18"-5.25" OD pole,

"5" for 5.5"-6.5" OD pole

4 – Networked Controls cannot be combined with other control options 5 – Not available with 2PF option

6 – Not available with 480V

7 – Not available with 347 or 480V

8 - Not available with Dual Driver option

currentlighting.com/beacon

© 2022 HLI Solutions, Inc. All rights reserved. Information and specifications subject to change without notice. All values are design or typical values when measured under laboratory conditions.

PC

Button Photocontrol 4,7

9 - Only available in Size 1 housing, up to 105 Watts
10 - Some voltage restrictions may apply when combined with controls
11 - BTS and BTSO are only available on Size 3 and Size 4
12 - At least one SCPREMOTE required to program SCP motion sensor. Must select 8ft or 40ft.

DATE:	LOCATION:
TYPE:	PROJECT:
CATALOG #	

ORDERING GUIDE (CONTINUED)

CATALO	CATALOG #											
		-]_]_[С	urrent Control Sol	utions — Accessories (Sold Separately)
Acces	sory Type	S	ize		Option			Color		Ν	IX Lighting Contro	ls
SHD	Shield	1 2 3 4	Size 1 Size 2 Size 3 Size 4		HSS-90-B HSS-90-F HSS-90-S HSS-270-BSS HSS-270-FSS	House Side Shield 90° Back House Side Shield 90° Front House Side Shield 90° Side House Side Shield 270° Back/Side/Side House Side Shield 270° Front/Side/Side		BLS BLT DBS	Black Gloss Smooth Black Matte Textured Dark Bronze Gloss Smooth	 	NXOFM- 1R1D-UNV /iSCAPE [®] Lighting] WIR-RME-L	On-fixture Module (7-pin), On / Off / Dim, Daylight Sensor with NX Radio and Bluetooth® Radio, 120–480VAC Control On-fixture Module (7-pin or 5-pin),
					HSS-270-FSB HSS-360	House Side Shield 270° Front/Side/Back House Side Shield 360°		DBT	Dark Bronze Matte Textured			On / Off / Dim, Daylight Sensor with wiSCAPE Radio, 110–480VAC
MTG	Mounting	-			BC A ASQU	Back Light Control Arm Mount for square pole/flat surface Universal Arm Mount for square pole		GTT LGS	Graphite Matte Textured Light Gray Gloss Smooth		SCP-REMOTE	Remote Control for SCP/_F option. Order at least one per project to program and control the occupancy sensor
						Adjustable Arm for pole mounting Decorative upswept Arm		PSS	Platinum Silver Smooth	Fi CI S(or additional informati urrentlighting.com/bea ensor, please view sp or details	on related to these accessories please visit acon. Options provided for use with integrated acification sheet ordering information table
					MAF	Mast Arm Fitter for 2-3/8" OD horizontal arm		WHS WHT	White Gloss Smooth White		details.	
					к	Knuckle			Matte Textured			
					T	Trunnion		VGT	Green Landscape Decorative			
					VV D	arm mounts)		LEG	Legacy Colors			
Acces	sory Type			-	Option			Color CC	Option Custom Color			
MSC	Miscellane	ous			BIRD SPK	Bird Spike]					

CONTROLS

Control Option	Sensor	Networkable	Scheduling	Occupancy	Daylight Harvesting	On/Off Control	Programming	Pair with Sensor	Sensor Mounting Height
NXW	-	~	~	-	-	~	~	-	-
NXWS_F	NXSMP2	~	~	~	~	~	~	-	16ft, 40ft
BTSO12F	BTSMP-OMNI-O	_	_	~	~	~	Bluetooth	-	12ft
BTS_F	BTSMP	_	-	~	~	v	Bluetooth	-	14ft, 40ft
SCP_F	-	-	-	~	-	~	~	-	-
ADD	-	_	v	-	-	v	_	v	-
ADT	-	_	v	-	-	v	_	v	-
7PR	-	Paired with external control	Paired with external control	-	Paired with external control	Paired with external control	_	v	-
7PR-SC	_	-	-	-	-	-	_	 	-
3PR	-	-	-	-	—	Paired with external control	-	~	-
3PR-SC	_	_	_	-	_	_	_	 	_
3PR-TL	-	-	-	-	~	~	_	~	-
WIR	-	 	~	-	~	~	Gateway	-	-
WIRSC	BTSMP	~	~	~	~	~	Gateway	_	14ft, 40ft

wiSCAPE

DATE:	LOCATION:							
TYPE: PL5	PROJECT:							
CATALOG #: VP-2	CATALOG #: VP-2-320L-185-4K7-5QW-UNV-A-DBT							

DELIVERED LUMENS

For delivered lumens, please see Lumens Data PDF on www.Currentlighting.com

PROJECTED LUMEN MAINTENANCE

Ambient Temp.	0	25,000	*TM-21-11 36,000	50,000	100,000	Calculated L ₇₀ (Hours)
25°C / 77°F	1.00	0.97	0.96	0.95	0.91	408,000
40°C / 104°F	0.99	0.96	0.95	0.94	0.89	356,000

LUMINAIRE AMBIENT TEMPERATURE FACTOR (LATF)

Ambient ⁻	Temperature	Lumen Multiplier
0°C	32°F	1.03
10°C	50°F	1.01
20°C	68°F	1.00
25°C	77°F	1.00
30°C	86°F	0.99
40°C	104°F	0.98

Micro Strike Lumen Multiplier										
ССТ	70 CRI	80 CRI	90 CRI							
2700K	-	0.841	_							
3000K	0.977	0.861	0.647							
3500K	_	0.900	_							
4000K	1	0.926	0.699							
5000K	1	0.937	0.791							
Mono	Monochromatic Amber Multiplier									
Amber	0.250									

Strike Lumen Multiplier										
CCT	70 CRI	80 CRI	90 CRI							
2700K	0.9	0.81	0.62							
3000K	0.933	0.853	0.659							
3500K	0.959	0.894	0.711							
4000K	1	0.9	0.732							
5000K	1	0.9	0.732							
Monochromatic Amber Multiplier										
Amber		0.255								

DATE:	LOCATION:
TYPE:	PROJECT:
CATALOG #:	

ELECTRICAL DATA: MICRO STRIKE

# OF LEDS	160										
NOMINAL WATTAGE	35	50	75	100	115	135	160				
SYSTEM POWER (W)	34.9	50.5	72.1	97.2	111.9	132.2	157.8				
INPUT VOLTAGE (V)				CURRENT (Amps)							
120	0.29	0.42	0.63	0.83	0.96	1.13	1.33				
208	0.17	0.24	0.36	0.48	0.55	0.65	0.77				
240	0.15	0.21	0.31	0.42	0.48	0.56	0.67				
277	0.13	0.18	0.27	0.36	0.42	0.49	0.58				
347	0.10	0.14	0.22	0.29	0.33	0.39	0.46				
480	0.07	0.10	0.16	0.21	0.24	0.28	0.33				

# OF LEDS	320										
NOMINAL WATTAGE	145	170	185	210	235	255	315				
SYSTEM POWER (W)	150	166.8	185.7	216.2	240.9	261.5	312				
INPUT VOLTAGE (V)				CURRENT (Amps)							
120	1.21	1.42	1.54	1.75	1.96	2.13	2.63				
208	0.70	0.82	0.89	1.01	1.13	1.23	1.51				
240	0.60	0.71	0.77	0.88	0.98	1.06	1.31				
277	0.52	0.61	0.67	0.76	0.85	0.92	1.14				
347	0.42	0.49	0.53	0.61	0.68	0.73	0.91				
480	0.30	0.35	0.39	0.44	0.49	0.53	0.66				

# OF LEDS	480									
NOMINAL WATTAGE	285	320	340	390	425	470				
SYSTEM POWER (W)	286.2	316.7	338.4	392.2	423.2	468				
INPUT VOLTAGE (V)			CURREN	T (Amps)						
120	2.38	2.67 2.83		3.25	3.54	3.92				
208	1.37	1.54	1.63	1.88	2.04	2.26				
240	1.19	1.33	1.42	1.63	1.77	1.96				
277	1.03	1.16	1.23	1.41	1.53	1.70				
347	0.82	0.92	0.98	1.12	1.22	1.35				
480	0.59	0.67	0.71	0.81	0.89	0.98				

# OF LEDS	720					
NOMINAL WATTAGE	435	475	515	565	600	
SYSTEM POWER (W)	429.3	475	519.1	565.2	599.9	
INPUT VOLTAGE (V)	CURRENT (Amps)					
120	3.63	3.96	4.29	4.71	5.00	
208	2.09	2.28	2.48	2.72	2.88	
240	1.81	1.98	2.15	2.35	2.50	
277	1.57	1.71	1.86	2.04	2.17	
347	1.25	1.37	1.48	1.63	1.73	
480	0.91	0.99	1.07	1.18	1.25	

DATE:	LOCATION:
TYPE:	PROJECT:

ELECTRICAL DATA: STRIKE

# OF LEDS	36					
NOMINAL WATTAGE	39	55	85	105	120	
SYSTEM POWER (W)	39.6	56.8	83.6	108.2	120.9	
INPUT VOLTAGE (V)	CURRENT (Amps)					
120	0.33	0.46	0.71	0.88	0.96	
208	0.19	0.26	0.41	0.50	0.55	
240	0.16	0.23	0.35	0.44	0.48	
277	0.14	0.20	0.31	0.38	0.42	
347	0.11	0.16	0.24	0.30	0.33	
480	0.08	0.11	0.18	0.22	0.24	

# OF LEDS	72					
NOMINAL WATTAGE	115	145	180	210	240	
SYSTEM POWER (W)	113.7	143.2	179.4	210.2	241.7	
INPUT VOLTAGE (V)	CURRENT (Amps)					
120	1.00	1.21	1.50	1.75	1.79	
208	0.58	0.70	0.87	1.01	1.03	
240	0.50	0.60	0.75	0.88	0.90	
277	0.43	0.52	0.65	0.76	0.78	
347	0.35	0.42	0.52	0.61	0.62	
480	0.25	0.30	0.38	0.44	0.45	

# OF LEDS							
NOMINAL WATTAGE	215	215 250 280 325					
SYSTEM POWER (W)	214.8	250.8	278.3	324.7	362.6		
INPUT VOLTAGE (V)		CURRENT (Amps)					
120	2.00	2.08	2.33	3.04	2.67		
208	1.15	1.20	1.35	1.75	1.54		
240	1.00	1.04	1.17	1.52	1.33		
277	0.87	0.90	1.01	1.32	1.16		
347	0.69	0.72	0.81	1.05	0.92		
480	0.50	0.52	0.58	0.76	0.67		

# OF LEDS		162					
NOMINAL WATTAGE	320	365	405	445	485	545	
SYSTEM POWER (W)	322.1	362.6	403.6	445.1	487.1	543.9	
INPUT VOLTAGE (V)		CURRENT (Amps)					
120	2.71	2.67	3.38	3.71	4.04	4.54	
208	1.56	1.54	1.95	2.14	2.33	2.62	
240	1.35	1.33	1.69	1.85	2.02	2.27	
277	1.17	1.16	1.46	1.61	1.75	1.97	
347	0.94	0.92	1.17	1.28	1.40	1.57	
480	0.68	0.67	0.84	0.93	1.01	1.14	

DATE:	LOCATION:
TYPE:	PROJECT:
CATALOG #:	

MICRO STRIKE PHOTOMETRY

The following diagrams represent the general distribution options offered for this product. For detailed information on specific product configurations, see website photometric test reports.

Type 2

Type 4 Wide

Туре	4F			
	\langle			
	2		5	

Гуре 5QW						
	\langle			\lambda		
(
	\rangle					
		~				

DATE:	LOCATION:
TYPE: PL5	PROJECT:
CATALOG #: VP-2	-320L-185-4K7-5QW-UNV-A-DBT

OPTIC STRIKE PHOTOMETRY

The following diagrams represent the general distribution options offered for this product. For detailed information on specific product configurations, see website photometric test reports.

Type FR – Front Row/Auto Optic

Type 5RW (rectangular)

Type Corner

Current

Type 5W (round wide)

Type 5QW

Type TC

Type 5QN

currentlighting.com/beacon

DIMENSIONS

SIZE 1

SIZE 3

			EPA		
	VP1 (Size 1)	VP2 (Size 2)	VP3 (Size 3)	VP4 (Size 4)	Config.
Single Fixture	0.454	0.555	0.655	0.698	Ļ
Two at 180	0.908	1.110	1.310	1.396	◍~Đ
Two at 90	0.583	0.711	0.857	0.948	P.
Three at 90	1.037	1.266	1.512	1.646	
Three at 120	0.943	1.155	1.392	1.680	CH RO
Four at 90	1.166	1.422	1.714	1.896	

DATE:	LOCATION:
TYPE: PL5	PROJECT:
CATALOG # VP-2	-320L-185-4K7-5QW-UNV-A-DBT

SIZE 2

SIZE 4

	Weight				
	lbs kgs				
VP1 (Size 1)	13.7	6.2			
VP2 (Size 2)	16.0	7.26			
VP3 (Size 3)	25.9	11.7			
VP4 (Size 4)	30.8	13.9			

Current 🗐

currentlighting.com/beacon

DATE:	LOCATION:
TYPE:	PROJECT:
CATALOG #:	

MOUNTING

A-STRAIGHT ARM MOUNT

Fixture ships with integral arm for ease of installation. Compatible with Current Outdoor B3 drill pattern for ease of installation on square poles. For round poles add applicable suffix (2/3/4/5)

Universal mounting block for ease of installation.

ASQU-UNIVERSAL ARM MOUNT

Compatible with drill patterns from 2.5" to 4.5" and Current drill pattern S2. For round poles add applicable suffix (2/3/4/5)

8.3"	-1

5.0"

AAU-ADJUSTABLE ARM FOR POLE MOUNTING

Rotatable arm mounts directly to pole. Compatible with drill patterns from 2.5" to 4.5" and Current drill pattern S2 and B3. For round poles add applicable suffix (2/3/4/5). Rotatable in 15° aiming angle increments. Micro Strike configurations have a 45° aiming limitation.

Strike configurations have a 30° aiming limitation.

ADU-DECORATIVE UPSWEPT ARM

Upswept Arm compatible with drill patterns from 2.5" to 4.5" and Current drill pattern S2. For round poles add applicable suffix (2/3/4/5).

MAF-MAST ARM FITTER

Fits 2-3/8" OD horizontal tenons.

K-KNUCKLE

Knuckle mount 15° aiming angle increments for precise aiming and control, fits 2-3/8" tenons or pipes. Micro Strike configurations have a 45° aiming limitation. Strike configurations have a 30° aiming limitation.

T-TRUNNION

WM-WALL MOUNT

arm with an adjustable arm.

Compatible with universal arm mount,

adjustable arm mount, and decorative arm mount. The WA option uses the same wall bracket but replaces the decorative

Trunnion for surface and crossarm mounting using (1) 3/4" or (2) 1/2" size through bolts. Micro Strike configurations have a 45° aiming limitation. Strike configurations have a 30° aiming limitation.

Current

currentlighting.com/beacon

© 2022 HLI Solutions, Inc. All rights reserved. Information and specifications subject to change without notice. All values are design or typical values when measured under laboratory conditions.

0

9.3"

DATE:	LOCATION:
TYPE: PL5	PROJECT:
CATALOG #. VP-2	-320L-185-4K7-5QW-UNV-A-DBT

ADDITIONAL INFORMATION (CONTINUED)

HOUSE SIDE SHIELD FIELD INSTALL ACCESSORIES

HSS has a depth of 5" for all Viper sizes

Not to be used with Occupancy Sensors as the shield may block the light to the sensor.

VPR2x HSS-90-B-xx

VPR2x HSS-360-xx

VPR2x HSS-90-F-xx

VPR2x HSS-270-FSS-xx

VPR2x HSS-90-S-xx

VPR2x HSS-270-FSB-xx

VPR2x HSS-90-S-xx

VPR2x HSS-270-FSB-xx

DATE:	LOCATION:
TYPE:	PROJECT:
CATALOG #:	·

ADDITIONAL INFORMATION (CONTINUED)

PROGRAMMED CONTROLS

ADD-AutoDim Timer Based Options

• Light delay options from 1-9 hours after the light is turned on to dim the light by 10-100%. To return the luminaire to its original light level there are dim return options from 1-9 hours after the light has been dimmed previously.

EX: ADD-6-5-R6

ADD Control Options	Configurations Choices	Example Choice Picked		
Auto-Dim Options	1-9 Hours	6 - Delay 6 hours		
Auto-Dim Brightness	10-100% Brightness	5 - Dim to 50% brightness		
Auto-Dim Return	Delay 0-9 Hours	R6 - Return to full output after 6 hours		

ADT-AutoDim Time of Day Based Option

• Light delay options from 1AM-9PM after the light is turned on to dim the light by 10-100%. To return the luminaire to its original light level there are dim return options from 1AM-9PM after the light has been dimmed previously.

EX: ADT-6-5-R6

ADD Control Options	Configurations Choices	Example Choice Picked
Auto-Dim Options	12-3 AM and 6-11 PM	6 - Dim at 6PM
Auto-Dim Brightness	10-100% Brightness	5 - Dim to 50%
Auto-Dim Return	12-6 AM and 9-11P	R6 - Return to full output at 6AM

SSS-B Series Poles

Overall Height 10' - 40'

SQUARE STRAIGHT STEEL

Handhole

DATE:	LOCATION:				
TYPE:	PROJECT:				
CATALOG #: SSSB25-40A-1-B3-DBT					

APPLICATIONS

• Lighting installations for side and top mounting of luminaires with effective projected area (EPA) not exceeding maximum allowable loading of the specified pole in its installed geographic location

CONSTRUCTION

- SHAFT: One-piece straight steel with square cross section, flat sides and minimum 0.23" radius on all corners; Minimum yield of 46,000 psi (ASTM-A500, Grade B); Longitudinal weld seam to appear flush with shaft side wall; Steel base plate with axial bolt circle slots welded flush to pole shaft having minimum yield of 36,000 psi (ASTM A36)
- BASE COVER: Two-piece square aluminum base cover included standard
- POLE CAP: Pole shaft supplied with removable cover when applicable; Tenon and post-top configurations also available
- HAND HOLE: Rectangular 3x5 steel hand hole frame (2.38" x 4.38" opening); Mounting provisions for grounding lug located behind gasketed cover
- ANCHOR BOLTS: Four galvanized anchor bolts provided per pole with minimum yield of 55,000 psi (ASTM F1554). Galvanized hardware with two washers and two nuts per bolt for leveling

FINISH

- Durable thermoset polyester powder coat paint finish with nominal 3.0 mil thickness
- Powder paint prime applied over "white metal" steel substrate cleaned via mechanical shot blast method
- · Decorative finish coat available in multiple standard colors; Custom colors available; RAL number preferable

WAREHOUSE 'STOCKED' POLES:

- SSSH20-40A-4-HV-DB-RDC, SSSH25-40A-4-HV-DB-RDC and SSSH30-50B-4-HV-DB-RDC
- The HV designation in the above catalog numbers is a combination drill pattern of the Current S2 pattern and the Beacon B3/B4 Viper pattern (rectangular arm mounting)

Current 🗐

currentlighting.com/beacon

DATE:	LOCATION:
TYPE:	PROJECT:
CATALOG #:	

ORDERING INFORMATION Cont.

Cotolo a Number	н	eight	Nominal Wall Thick-	Bolt Circle Bo	Bolt Circle	Bolt Square	Base Plate		Delt Duei estien	Dele weight	
Catalog Number	Feet	Meters	Shaft Dimensions	ness	(suggested)	(range)	(range)	Square	Anchor bolt size	Bolt Projection	Pole weight
SSS-B-10-40-A-XX-XX	10	3.0	4" square	0.125"	9"	8" - 10"	5.66" - 7.07"	9"	3/4" x 30" x 3"	3.5	77
SSS-B-12-40-A-XX-XX	12	3.7	4" square	0.125"	9"	8" - 10"	5.66" - 7.07"	9"	3/4" x 30" x 3"	3.5	90
SSS-B-14-40-A-XX-XX	14	4.3	4" square	0.125"	9"	8" - 10"	5.66" - 7.07"	9"	3/4" x 30" x 3"	3.5	103
SSS-B-16-40-A-XX-XX	16	4.9	4" square	0.125"	9"	8" - 10"	5.66" - 7.07"	9"	3/4" x 30" x 3"	3.5	116
SSS-B-18-40-A-XX-XX	18	5.5	4" square	0.125"	9"	8" - 10"	5.66" - 7.07"	9"	3/4" x 30" x 3"	3.5	129
SSS-B-20-40-A-XX-XX	20	6.1	4" square	0.125"	9"	8" - 10"	5.66" - 7.07"	9"	3/4" x 30" x 3"	3.5	142
SSS-B-25-40-A-XX-XX	25	7.6	4" square	0.125"	9"	8" - 10"	5.66" - 7.07"	9"	3/4" x 30" x 3"	3.5	175
SSS-B-14-40-B-XX-XX	14	4.3	4" square	.188"	11"	10" - 12"	7.07" - 8.48"	10.50"	3/4" x 30" x 3"	3.5	152
SSS-B-16-40-B-XX-XX	16	4.9	4" square	.188"	11"	10" - 12"	7.07" - 8.48"	10.50"	3/4" x 30" x 3"	3.5	171
SSS-B-18-40-B-XX-XX	18	5.5	4" square	.188"	11"	10" - 12"	7.07" - 8.48"	10.50"	3/4" x 30" x 3"	3.5	190
SSS-B-20-40-B-XX-XX	20	6.1	4" square	.188"	11"	10" - 12"	7.07" - 8.48"	10.50"	3/4" x 30" x 3"	3.5	209
SSS-B-25-40-B-XX-XX	25	7.6	4" square	.188"	11"	10" - 12"	7.07" - 8.48"	10.50"	3/4" x 30" x 3"	3.5	257
SSS-B-30-40-B-XX-XX	30	9.1	4" square	.188"	11"	10" - 12"	7.07" - 8.48"	10.50"	3/4" x 30" x 3"	3.5	304
SSS-B-16-50-B-XX-XX	16	4.9	5" square	.188"	11"	10.25" - 13.25"	7.25" - 9.37"	11.50"	1" x 36" x 4"	4.5	219
SSS-B-18-50-B-XX-XX	18	5.5	5" square	.188"	11"	10.25" - 13.25"	7.25" - 9.37"	11.50"	1" x 36" x 4"	4.5	243
SSS-B-20-50-B-XX-XX	20	6.1	5" square	.188"	11"	10.25" - 13.25"	7.25" - 9.37"	11.50"	1" x 36" x 4"	4.5	267
SSS-B-25-50-B-XX-XX	25	7.6	5" square	.188"	11"	10.25" - 13.25"	7.25" - 9.37"	11.50"	1" x 36" x 4"	4.5	327
SSS-B-30-50-B-XX-XX	30	9.1	5" square	.188"	11"	10.25" - 13.25"	7.25" - 9.37"	11.50"	1" x 36" x 4"	4.5	387
SSS-B-25-50-C-XX-XX	25	7.6	5" square	.25"	11"	10.25" - 13.25"	7.25" - 9.37"	11.50"	1" x 36" x 4"	4.5	427
SSS-B-30-50-C-XX-XX	30	9.1	5" square	.25"	11"	10.25" - 13.25"	7.25" - 9.37"	11.50"	1" x 36" x 4"	4.5	507
SSS-B-20-60-B-XX-XX	20	6.1	6" square	.188"	12"	11.00" - 13.25"	7.81" - 9.37"	12.25"	1" x 36" x 6"	4.5	329
SSS-B-25-60-B-XX-XX	25	7.6	6" square	.188"	12"	11.00" - 13.25"	7.81" - 9.37"	12.25"	1" x 36" x 6"	4.5	404
SSS-B-30-60-B-XX-XX	30	9.1	6" square	.188"	12"	11.00" - 13.25"	7.81" - 9.37"	12.25"	1" x 36" x 6"	4.5	479
SSS-B-35-60-B-XX-XX	35	10.7	6" square	.188"	12"	11.00" - 13.25"	7.81" - 9.37"	12.25"	1" x 36" x 6"	4.5	554
SSS-B-40-60-B-XX-XX	40	12.2	6" square	.188"	12"	11.00" - 13.25"	7.81" - 9.37"	12.25"	1" x 36" x 6"	4.5	629

NOTE Factory supplied template must be used when setting anchor bolts. Beacon Products will deny any claim for incorrect anchorage placement resulting from failure to use factory supplied template and anchor bolts.

For more information about pole vibration and vibration dampers, please consult our website.

Due to our continued efforts to improve our products, product specifications are subject to change without notice.

Current 🗐

currentlighting.com/beacon

DATE:	LOCATION:
TYPE:	PROJECT:
CATALOG #:	

	ASCE 7-05 wind map EPA Load Rating - 3 second gust wind speeds									
		(Use for al	l location	s except	Florida)				
Catalog Number	85	90	100	105	110	120	130	140	145	150
SSS-B-10-40-A	25.0	25.0	25.0	22.8	20.6	17.0	14.2	11.9	11.0	10.1
SSS-B-12-40-A	25.0	25.0	20.0	18.0	16.1	13.2	10.8	8.9	8.1	7.4
SSS-B-14-40-A	23.1	20.4	16.1	14.3	12.8	10.2	8.2	6.6	5.9	5.3
SSS-B-16-40-A	19.0	16.7	13.0	11.5	10.1	7.9	6.2	4.7	4.1	3.6
SSS-B-18-40-A	15.6	13.6	10.0	9.0	7.8	5.9	4.4	3.1	2.6	2.1
SSS-B-20-40-A	12.7	10.9	7.9	6.9	5.9	4.2	2.8	1.7	1.3	0.9
SSS-B-25-40-A	7.3	5.9	3.8	2.9	2.1	0.8	NR	NR	NR	NR
SSS-B-14-40-B	25.0	25.0	23.3	20.8	18.6	15.1	12.3	10.2	9.2	8.4
SSS-B-16-40-B	25.0	24.9	19.4	17.3	15.4	12.3	9.9	8.0	7.2	6.4
SSS-B-18-40-B	24.0	20.8	16.1	14.2	12.5	9.8	7.7	6.1	5.3	4.7
SSS-B-20-40-B	20.2	17.5	13.2	11.6	10.1	7.7	5.9	4.4	3.8	3.2
SSS-B-25-40-B	12.8	11.0	7.9	6.7	5.5	3.7	2.3	1.2	0.7	NR
SSS-B-30-40-B	8.0	6.6	4.1	3.1	2.2	0.8	NR	NR	NR	NR
SSS-B-16-50-B	25.0	25.0	25.0	25.0	24.8	20.1	16.5	13.6	12.3	11.2
SSS-B-18-50-B	25.0	25.0	25.0	22.9	20.4	16.4	13.2	10.7	9.6	8.6
SSS-B-20-50-B	25.0	25.0	21.3	18.9	16.7	13.2	10.4	8.1	7.2	6.3
SSS-B-25-50-B	20.7	17.8	13.3	11.5	9.8	7.2	5.0	3.3	2.6	1.9
SSS-B-30-50-B	13.5	11.3	7.7	6.2	4.9	2.8	1.1	NR	NR	NR
				-					-	
SSS-B-25-50-C	25.0	25.0	19.4	17.1	15.1	11.7	9.0	6.9	6.0	5.1
SSS-B-30-50-C	20.1	17.3	12.7	10.9	9.3	6.6	4.5	2.8	2.1	1.4
SSS-B-20-60-B	25.0	25.0	25.0	25.0	25.0	20.2	16.1	12.9	11.5	10.3
SSS-B-25-60-B	25.0	25.0	20.6	18.0	15.6	11.8	8.7	6.2	5.2	4.2
SSS-B-30-60-B	21.4	18.1	12.9	10.7	8.8	5.7	3.3	1.3	NR	NR
SSS-B-35-60-B	14.0	11.3	6.9	5.2	3.6	1.0	NR	NR	NR	NR
SSS-B-40-60-B	8.1	5.8	2.2	nr	NR	NR	NR	NR	NR	NR

Florida Bu	ilding Co	de 2017 E (ປະ	PA Load I se for Floi	Rating - 3 rida only)	second g	ust wind	speeds	
Catalog Number	115	120	130	140	150	160	170	180
SSS-B-10-40-A	25.0	25.0	25.0	25.0	21.4	18.4	15.9	13.9
SSS-B-12-40-A	25.0	25.0	23.6	19.8	16.7	14.2	12.1	10.4
SSS-B-14-40-A	25.0	23.1	19.0	15.7	13.1	10.9	9.1	7.6
SSS-B-16-40-A	20.8	18.7	15.2	12.3	10.1	8.2	6.7	5.4
SSS-B-18-40-A	16.8	15.0	11.9	9.4	7.5	5.9	4.5	3.4
SSS-B-20-40-A	13.6	11.9	9.2	7.1	5.3	3.9	2.7	1.7
SSS-B-25-40-A	7.4	6.2	4.1	2.5	1.1	NR	NR	NR
SSS-B-14-40-B	25.0	23.6	19.4	16.1	13.4	11.2	9.4	7.8
SSS-B-16-40-B	21.4	19.2	15.6	12.7	10.4	8.5	6.9	5.6
SSS-B-18-40-B	17.2	15.4	12.2	9.7	7.7	6.1	4.7	3.6
SSS-B-20-40-B	13.9	12.3	9.5	7.3	5.5	4.1	2.9	1.9
SSS-B-25-40-B	7.7	6.4	4.3	2.6	1.3	NR	NR	NR
SSS-B-30-40-B	3.2	2.1	NR	NR	NR	NR	NR	NR
SSS-B-16-50-B	25.0	25.0	25.0	25.0	25.0	21.4	18.2	15.5
SSS-B-18-50-B	25.0	25.0	25.0	24.4	20.4	17.0	14.2	11.9
SSS-B-20-50-B	25.0	25.0	24.4	19.9	16.3	13.4	11.0	8.9
SSS-B-25-50-B	21.8	19.3	15.0	11.5	8.8	6.5	4.7	3.1
SSS-B-30-50-B	13.7	11.7	8.2	5.5	3.3	1.5	NR	NR
SSS-B-25-50-C	21.8	19.3	15.0	11.5	8.8	6.5	4.7	3.1
SSS-B-30-50-C	13.7	11.7	8.2	5.5	3.3	1.5	NR	NR
SSS-B-20-60-B	25.0	25.0	25.0	21.9	17.8	14.5	11.7	9.4
SSS-B-25-60-B	23.8	20.9	16.1	12.3	9.2	6.6	4.5	2.8
SSS-B-30-60-B	14.6	12.3	8.4	5.3	2.8	0.8	NR	NR
SSS-B-35-60-B	7.5	5.6	2.4	NR	NR	NR	NR	NR
SSS-B-40-60-B	1.8	NR	NR	NR	NR	NR	NR	NR

Current 🗐

currentlighting.com/beacon

DATE:	LOCATION:
TYPE:	PROJECT:
CATALOG #:	

NOTES

Wind-speed Website disclaimer:

Current has no connection to the linked website and makes no representations as to its accuracy. While the information presented on this third-party website provides a useful starting point for analyzing wind conditions, Current has not verified any of the information on this third party website and assumes no responsibility or liability for its accuracy. The material presented in the windspeed website should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. Current does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the windspeed report provided by this website. Users of the information from this third party website assume all liability arising from such use. Use of the output of these referenced websites do not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the windspeed report. http://windspeed.atcouncil.org

NOTES

- · Allowable EPA, to determine max pole loading weight, multiply allowable EPA by 30 lbs.
- The tables for allowable pole EPA are based on the ASCE 7-05 Wind Map or the Florida Region Wind Map for the 2010 Florida Building Code. The Wind Maps are intended only as a general guide and cannot be used in conjunction with other maps. Always consult local authorities to determine maximum wind velocities, gusting and unique wind conditions for each specific application
- Allowable pole EPA for jobsite wind conditions must be equal to or greater than the total EPA for fixtures, arms, and accessories to be assembled to the pole. Responsibility lies with the specifier for
 correct pole selection. Installation of poles without luminaires or attachment of any unauthorized accessories to poles is discouraged and shall void the manufacturer's warranty
- Wind speeds and listed EPAs are for ground mounted installations. Poles mounted on structures (such as bridges and buildings) must consider vibration and coefficient of height factors beyond this
 general guide; Consult local and federal standards
- · Wind Induced Vibration brought on by steady, unidirectional winds and other unpredictable aerodynamic forces are not included in wind velocity ratings.
- Extreme Wind Events like, Hurricanes, Typhoons, Cyclones, or Tornadoes may expose poles to flying debris, wind shear or other detrimental effects not included in wind velocity ratings

Due to our continued efforts to improve our products, product specifications are subject to change without notice.

DATE: LOCATION: TYPE: PL4 PROJECT:

CATALOG #: VP-2-320L-185-4K7-4W-UNV-A-DBT

FEATURES

- · Low profile LED area/site luminaire with a variety of IES distributions for lighting applications such as auto dealership, retail, commercial, and campus parking lots
- · Featuring two different optical technologies, Strike and Micro Strike Optics, which provide the best distribution patterns for retrofit or new construction
- · Rated for high vibration applications including bridges and overpasses. All sizes are rated for 1.5G
- Control options including photo control, occupancy sensing, NX Lighting Controls[™] wiSCAPE and 7-Pin with networked controls
- · New customizable lumen output feature allows for the wattage and lumen output to be customized in the factory to meet whatever specification requirements may entail
- · Field interchangeable mounting provides additional flexibility after the fixture has shipped

CONTROL TECHNOLOGY

LIGHTING CONTROLS wiSCAPE[®] **SPECIFICATIONS**

CONSTRUCTION

- Die-cast housing with hidden vertical heat fins are optimal for heat dissipation while keeping a clean smooth outer surface
- Corrosion resistant, die-cast aluminum housing with 1000 hour powder coat paint finish
- · External hardware is corrosion resistant

OPTICS

- Micro Strike Optics (160, 320, 480, or 720 LED counts) maximize uniformity in applications and come standard with mid-power LEDs which evenly illuminate the entire luminous surface area to provide a low glare appearance. Catalog logic found on page 2
- Strike Optics (36, 72, 108, or 162 LED counts) provide best in class distributions and maximum pole spacing in new applications with high powered LEDs. Strike optics are held in place with a polycarbonate bezel to mimic the appearance of the Micro Strike Optics so both solutions can be combined on the same application. Catalog logic found on page 3
- Both optics maximize target zone illumination with minimal losses at the house-side, reducing light trespass issues. Additional backlight control shields and house side shields can be added for further reduction of illumination behind the pole
- · One-piece silicone gasket ensures a weatherproof seal
- · Zero up-light at 0 degrees of tilt
- · Field rotatable optics

INSTALLATION

- · Mounting patterns for each arm can be found on page 11
- Optional universal mounting block for ease of installation during retrofit applications. Available as an option (ASQU) or accessory for square and round poles
- All mounting hardware included

Current 回

INSTALLATION (CONTINUED)

- Knuckle arm fitter option available for 2-3/8" OD tenon
- For products with EPA less than 1 mounted to a pole greater that 20ft, a vibration damper is recommended

ELECTRICAL

- Universal 120-277 VAC or 347-480 VAC input voltage, 50/60 Hz
- Ambient operating temperature -40°C to 40°C
- Drivers have greater than 90% power factor and less than 20% THD
- LED drivers have output power over-voltage, over-current protection and short circuit protection with auto recovery
- Field replaceable surge protection device Provides 20kA protection meeting ANSI/ IEEE C62.41.2 Category C High and Surge Location Category C3; Automatically takes fixture off-line for protection when device is compromised
- Dual Driver option provides 2 drivers within luminaire but only one set of leads exiting the luminaire, where Dual Power Feed provides two drivers which can be wired independently as two sets of leads are extended from the luminaire. Both options cannot be combined

CONTROLS

- Photo control, occupancy sensor programmable controls, and Zigbee wireless controls available for complete on/off and dimming control
- Please consult brand or sales representative when combining control and electrical options as some combinations may not operate as anticipated depending on your application
- 7-pin ANSI C136.41-2013 photocontrol receptacle option available for twist lock photocontrols or wireless control modules (control accessories sold separately)

QSZ.

CONTROLS (CONTINUED) 0-10V Dimming Drivers are standard and dimming leads are extended out of the

- luminaire unless control options require connection to the dimming leads. Must specify if wiring leads are to be greater than the 6" standard
- NX Lighting Controls[™] available with in fixture wireless control module, features dimming and occupancy sensor
- wiSCAPE® available with in fixture wireless control module, features dimming and occupancy sensor. Also available in 7-pin configuration

CERTIFICATIONS

- DLC® (DesignLights Consortium Qualified), with some Premium Qualified configurations. Not all product variations listed in this document are DLC® qualified. Refer to http://www.designlights.org for the mact up to date list. most up-to-date list.
- Listed to UL1598 and CSA C22.2#250.0-24 for wet locations and 40°C ambient temperatures
- 1.5 G rated for ANSI C136.31 high vibration applications
- Fixture is IP65 rated
- Meets IDA recommendations using 3K CCT configuration at 0 degrees of tilt
- This product qualifies as a "designated country construction material" per FAR 52.225-11 Buy American-Construction Materials under Trade Agreements effective 04/23/2020.

WARRANTY

5 vear warranty

KEY DAT	Ā
Lumen Range	5,000–80,000
Wattage Range	36–600
Efficacy Range (LPW)	92–155
Weight lbs. (kg)	13.7-30.9 (6.2-13.9)

currentlighting.com/beacon

VIPER Area/Site

VIPER LUMINAIRE

MICROSTRIKE OPTICS - ORDERING GUIDE

DATE: LOCATION:

TYPE: PL4 PROJECT:

CATALOG #: VP-2-320L-185-4K7-4W-UNV-A-DBT

= Service Program QS

Example: VP-2-320L-145-3K7-2-R-UNV-A3-BLT

CATALOG # VP-2-320L-185-4K7-4W-UNV-A-DBT

VP	_		_ 2	_	. 320L	-185			-	_ 4K7		_	4W		_		_	UNV	_
Series	Optic F	Platform	Size		Light E	ngine				CCT/	CRI		Distrik	oution		Optic Rotation		Voltage	
VP Vi	per Micro S	trike	1 Size 1	1	160L-3	5 ⁶ 550() lume	ns		AP	AP-Amber		2	Type 2		BLANK		UNV 120-277\	·
					160L-50) ⁶ 7500) lume	ns			Phosphor		3	Type 3		No Rotation		120 120V	
					160L-75	5 1000)0 lume	ens			Converted		4F	Type 4		L Optic		208 208V	
					160L-10	1250	0 lume	ens		27K8	2700K,			Forward		rotation left		240 240V	
					160L-11	5 1500	0 lume	ens			80 CRI		4W	Type 4		R Optic		277 277\/	
					160L-13	1800	0 lume	ens		3K7	3000K, 70 CRI			Wide		right		347 347V	
				_	160L-16	2100	0 lume	ens		3К8	3000K,		5QW	Type 5 Square		Ŭ		480 480V	
			2 Size 2	2	320L-14	45 2100	0 lume	ens			80 CRI			Wide					
					320L-17	70 2400	00 lum	ens		35K8	3500K,								
					320L-18	35 2/00	JO lum	ens		369	3000K								
					3201-2	25 3300		one			90 CRI								
					320L-2	55 3600	00 lum	ens		4K7	4000K,								
					320L-3	15 ⁶ 4000	00 lum	iens		41/0	70 CRI								
			3 Size 3	3	480L-2	85 4000	00 lum	ens		468	4000K, 80 CRI								
					480L-3	20 4400	00 lum	ens		4K9	4000K,								
					480L-3	40 4800	00 lum	ens			90 CRI								
					480L-3	90 5200	00 lum	iens		5K7	5000K,								
					480L-4	25 5500	00 lum	iens		568	70 CRI 5000K								
			4 Size	4	7201-4	35 600	00 lum			5100	80 CRI								
					720L-4	75 6500	00 lum	iens											
					720L-5	15 7000	00 lum	ens											
					720L-5	65 ⁶ 7500	00 lum	ens											
					720L-6	00 ⁶ 800	00 lum	iens											
					CLO	Cust	om Lui	men Out	put ¹										
		I					_]									
A							-	-			-								
Mounti	ng				Color			Optio	ns		Network C	Cont	trol Op	tions					
А	Arm mount for	square po	le/flat surfac	e	BLT	Black Matte		F	Fusir	ng	NXWS16F		NX N	etworked Wire	eles	s Enabled Integral N	٧XS	MP2-LMO PIR Occ	upancy
	(B3 Drill Patterr	i) (Does no	t include			Textured		2PF	Dual	Power			Senso	or with Automa	atic	Dimming Photocell	and	d Bluetooth Program	nming 1,3,4
Δ	Arm mount for		_ 2		BLS	Black Gloss Smooth		200	Feed		NXWS40F		Senso	etworked wire or with Automa	eles atic	s Enabled Integral N Dimming Photocell	and	d Bluetooth Program	cupancy nmina ^{1,3,4}
ASQU	Universal arm	nount for	square nole		DBT	Dark Bronze			Dual	Driver	NXW		NX N	etworked Wire	eles	s Radio Module NX	RM:	2 and Bluetooth Pr	ogramming,
	Can be used w	rith B3 or S	2 Drill Patter	'n		Matte Textur	ed	IE	Entry	ess /			withou	ut Sensor ^{3,4}					
A_U	Universal arm r	mount for r	ound pole ²		DBS	Dark Bronze		BC	Back	klight	WIR		wiSC	APE® In-Fixtur	e N	lodule ^{3,4}			
AAU	Adjustable arm	for pole m	ounting		CTT	Gloss Smoot	n Ho		Cont	trol ⁸	WIRSC		wiSC	APE® Module	e ar	nd Occupancy Sen	sor	-3,4	
	Adjustable arm	allem) mount for	round pole	2	GII	Textured	ue	TB	Term	ninal	Stand Alor	ne S	Sensor	S					
	Decorative ups	went Δrm	(universal dr	rill	LGS	Light Grey			DIOC	n	BTS-14F		Blueto	ooth® Program natic Dimming	nma I Ph	able, BISMP-LMO PI otocell and 360° I e	IR C ns ⁹	Occupancy Sensor	with
	pattern)	mop: Ailli	launa cu sai ai			Gloss Smoot	:h				BTS-40F		Blueto	ooth® Program	nma	able, BTSMP-HMO P	PIR C	Occupancy Sensor	with
AD_U	Decorative ups	wept arm	mount for		LGT	Light Grey	od						Auton	natic Dimming	l Ph	otocell and 360° Le	ns 9	9	
	round pole ²	(PSS	Platinum Silv	er				BTSO-12F		Blueto	ooth® Program	nma	able, BTSMP-OMNI-(IR Occupancy Sen	sor with
MAF	Mast arm fitter arm	ror 2-3/8" (JU horizonta	al I		Smooth	<u> </u>				7PR		AUTON	Natic Dimming Recentacio 4	I PN	olocell and 360° Lei	115 "		
к	Knuckle				WHT	White Matte					7PR-SC		7-P111 7-Pin	Recentacia w	rith	shorting cap 4			
т	Trunnion					Textured					3PR		7-Fill 3_Pin	twist lock 4	null	suorang cap			
WB	Wall Bracket h	orizontal te	enon with MA	٩F	WHS	White Gloss					3PR-SC		3.Din	recentacio wi	th r	borting cap 4			
wм	Wall mount bra	cket with a	decorative		VGT	Verde Green					3PR-TL		3-Pin	PCR with nho	itor	ontrol ⁴			
	upswept arm				100	Textured	'				Programm	ned	Contro	ols					
WA	Wall mount bra	cket with a	adjustable ar	m	Color	Option					SCPF		Senso	or Control Prog	ran	mable, 8F or 40F 10			
					CC	Custom Cold	or				ADD		Autor	Dim Timer Bas	sed	Dimming ⁴			
											ADT		AutoD)im Time of Da	y D	immina ⁴			

1 - Items with a grey background can be done as a custom order. Contact brand representative for more and the set of beauty of the set of the se

3 - Networked Controls cannot be combined with other control options

4 – Not available with 2PF option

5 – Not available with Dual Driver option

Current 🗐

currentlighting.com/beacon

© 2022 HLI Solutions, Inc. All rights reserved. Information and specifications subject to change without notice. All values are design or typical values when measured under laboratory conditions.

Photocontrols

Button Photocontrol 4,7

9-BTS and BTSO are only available on Size 3 and Size 4 10-At least one SCPREMOTE required to program SCP motion sensor. Must select 8ft or 40ft.

6-Some voltage restrictions may apply when combined with controls $7-\mbox{Not}$ available with $480\mbox{V}$

8 - BC not available on 4F and type 5 distributions

PC

DATE:	LOCATION:
TYPE:	PROJECT:
CATALOG #:	

Example: VP-ST-1-36L-39-3K7-2-UNV-A-BLT

STRIKE OPTIC - ORDERING GUIDE

CATALOG	#																			
VP Series]_	Optic Platform	-[Size	-[Light Engine	3]-	ССТ	7/CRI]_	D	istribi	ution	- 0	ptic Rotation	-[Voltag	e]-
VP Viper		ST Strike	-	 Size 1 Size 2 Size 3 Size 4 		36L-39 ⁸ 36L-35 ⁸ 36L-85 36L-105 36L-105 72L-115 72L-145 72L-145 72L-210 72L-240 108L-215 ⁸ 108L-250 108L-250 108L-325 108L-365 162L-365 ¹⁰ 162L-405 162L-445 162L-485 162L-545 ⁸ CLO	5500 lumens 7500 lumens 10000 lumens 12500 lumens 14000 lumens 15000 lumens 21000 lumens 24000 lumens 27000 lumens 30000 lumens 30000 lumens 40000 lumens 44000 lumens 52000 lumens 55000 lumens 55000 lumens 55000 lumens		AM 27K 3K7 3K8 35K 4K7 4K8 4K9 5K7 5K8	 monochromatic amber, 595nm 2700K, 80 CRI 3000K, 70 CRI 3000K, 80 CRI 3000K, 90 CRI 3500K, 80 CRI 4000K, 70 CRI 4000K, 90 CRI 5000K, 70 CRI 5000K, 80 CRI 		FI 2 3 41 41 51 51 51 51 51 51 51 51 51 51 51 51 51	R F W QN QW QM W RW C	Auto Front Row Type 2 Type 3 Type 4 Forward Type 4 Wide Type 5 Square Narrow Type 5 Square Wide Type 5 Square Medium Type 5 Wide (Round) Type 5 Rectangular Corner Optic Tennis Court Optic	R	BLANK No Rotation Optic rotation left Optic rotation right		UNV 120 208 240 277 347 480	120- 277V 120V 208V 240V 277V 347V 480V	

]_[]_]_	-	
Mount	ing		Color			Optio	ons		Network Co	ontrol Options
Α	Arm mount for square pole/flat surface		BLT	Black Matte		F	Fusing		NXWS16F	NX Networked Wireless Enabled Integral NXSMP2-LMO PIR Occupancy Sensor with Automatic Dimming Photocall and Bluetooth Programming 134
A_ ASQU	Arm mount for round pole ³ Universal arm mount for square pole		BLS	Black Gloss		E	Battery Backup 1,2,7,8,9		NXWS40F	NX Networked Wireless Enabled Integral NXSMP2-HMO PIR Occupancy Sensor
A_U	Universal arm mount for round pole ³		DBT	Smooth Dark Bronze		2PF	Dual Power Feed		NXW	with Automatic Dimming Photocell and Bluetooth Programming *** NX Networked Wireless Radio Module NXRM2 and Bluetooth Programming,
AAU	(universal drill pattern)		DBS	Matte Textured Dark Bronze		2DR	Dual Driver		WIR	without Sensor ^{3,4} wiSCAPE® In-Fixture Module ^{3,4}
AA_U	Adjustable arm mount for round pole ³			Gloss Smooth		BC	Backlight		WIRSC	wiSCAPE® Module and Occupancy Sensor 3.4
ADU	drill pattern)		GTT	Graphite Matte			Control		Stand Alone	e Sensors
AD_U	Decorative upswept arm mount for round pole ³		LGS	Light Grey		ТВ	Terminal Block		BTS-14F	Bluetooth® Programmable, BTSMP-LMO PIR Occupancy Sensor with Automatic Dimming Photocell and 360° Lens ¹¹
MAF	, Mast arm fitter for 2-3/8" OD horizontal arm		LGT	Light Grey					BTS-40F	Bluetooth® Programmable, BTSMP-HMO PIR Occupancy Sensor with Automatic Dimming® Photocell and 360° Lens ¹¹
к	Knuckle		PSS	Platinum Silver					BTSO-12F	Bluetooth® Programmable, BTSMP-OMNI-O PIR Occupancy Sensor with Automatic Dimming Photocell and 360° Lens ¹¹
T	Irunnion Wall Breaket, beringental tangan with			Smooth					7PR	7-Pin Receptacle ⁴
WB	MAF		WHI	Textured					7PR-SC	7-Pin Receptacle with shorting cap ⁴
WM	Wall mount bracket with decorative		WHS	White Gloss					3PR	3-Pin twist lock ⁴
14/0	upswept arm		VOT	Smooth					3PR-SC	3-Pin receptacle with shorting cap *
WA	Wall mount bracket with adjustable arm		VGI	Verde Green Textured					Programme	d Controls
			Color	Option					SCPF	Sensor Control Programmable, 8F or 40F ¹²
			сс	Custom Color]				ADD	AutoDim Timer Based Dimming ⁴
1 baara								1	ADT	AutoDim Time of Day Dimming ⁴
1 – items	with a grey background can be done as a cus	tom	order. C	Lontact brand repre	ser	nauve fe	or more information		Photocontro	bls

3 - Replace "_" with "3" for 3.5"-4.13" OD pole, "4" for 4.18"-5.25" OD pole,

"5" for 5.5"-6.5" OD pole

4 – Networked Controls cannot be combined with other control options 5 – Not available with 2PF option

6 – Not available with 480V

7 – Not available with 347 or 480V

8 - Not available with Dual Driver option

currentlighting.com/beacon

© 2022 HLI Solutions, Inc. All rights reserved. Information and specifications subject to change without notice. All values are design or typical values when measured under laboratory conditions.

Page **3** of **13** Rev 03/13/23 BEA_VIPERSPEC_R04

PC Button Photocontrol 4,7

9 - Only available in Size 1 housing, up to 105 Watts
10 - Some voltage restrictions may apply when combined with controls
11 - BTS and BTSO are only available on Size 3 and Size 4
12 - At least one SCPREMOTE required to program SCP motion sensor. Must select 8ft or 40ft.

DATE:	LOCATION:
TYPE:	PROJECT:
CATALOG #	

ORDERING GUIDE (CONTINUED)

CATALO	OG #											
		-]_]_[С	urrent Control Sol	utions — Accessories (Sold Separately)
Acces	sory Type	S	ize		Option			Color		Ν	IX Lighting Contro	ls
SHD	Shield	1 2 3 4	Size 1 Size 2 Size 3 Size 4		HSS-90-B HSS-90-F HSS-90-S HSS-270-BSS HSS-270-FSS	House Side Shield 90° Back House Side Shield 90° Front House Side Shield 90° Side House Side Shield 270° Back/Side/Side House Side Shield 270° Front/Side/Side		BLS BLT DBS	Black Gloss Smooth Black Matte Textured Dark Bronze Gloss Smooth	 	NXOFM- 1R1D-UNV /iSCAPE [®] Lighting] WIR-RME-L	On-fixture Module (7-pin), On / Off / Dim, Daylight Sensor with NX Radio and Bluetooth® Radio, 120–480VAC Control On-fixture Module (7-pin or 5-pin),
					HSS-270-FSB HSS-360	House Side Shield 270° Front/Side/Back House Side Shield 360°		DBT	Dark Bronze Matte Textured			On / Off / Dim, Daylight Sensor with wiSCAPE Radio, 110–480VAC
MTG	Mounting	-			BC A ASQU	Back Light Control Arm Mount for square pole/flat surface Universal Arm Mount for square pole		GTT LGS	Graphite Matte Textured Light Gray Gloss Smooth		SCP-REMOTE	Remote Control for SCP/_F option. Order at least one per project to program and control the occupancy sensor
						Adjustable Arm for pole mounting Decorative upswept Arm		PSS	Platinum Silver Smooth	Fi CI S(or additional informati urrentlighting.com/bea ensor, please view sp or details	on related to these accessories please visit acon. Options provided for use with integrated acification sheet ordering information table
					MAF	Mast Arm Fitter for 2-3/8" OD horizontal arm		WHS WHT	White Gloss Smooth White		details.	
					к	Knuckle			Matte Textured			
					T	Trunnion		VGT	Green Landscape Decorative			
					VV D	arm mounts)		LEG	Legacy Colors			
Acces	sory Type			-	Option			Color CC	Option Custom Color			
MSC	Miscellane	ous			BIRD SPK	Bird Spike]					

CONTROLS

Control Option	Sensor	Networkable	Scheduling	Occupancy	Daylight Harvesting	On/Off Control	Programming	Pair with Sensor	Sensor Mounting Height
NXW	-	~	~	-	-	~	~	-	-
NXWS_F	NXSMP2	~	~	~	~	~	~	-	16ft, 40ft
BTSO12F	BTSMP-OMNI-O	_	_	~	~	~	Bluetooth	-	12ft
BTS_F	BTSMP	_	-	~	~	v	Bluetooth	-	14ft, 40ft
SCP_F	-	-	-	~	-	~	~	-	-
ADD	-	_	~	-	-	v	_	v	-
ADT	-	_	v	-	-	v	_	v	-
7PR	-	Paired with external control	Paired with external control	-	Paired with external control	Paired with external control	_	v	-
7PR-SC	_	-	-	-	-	-	_	 	-
3PR	-	-	-	-	—	Paired with external control	-	~	-
3PR-SC	_	_	_	-	_	_	_	v	_
3PR-TL	-	-	-	-	~	~	_	~	-
WIR	-	 	~	-	~	~	Gateway	-	-
WIRSC	BTSMP	~	~	~	~	~	Gateway	_	14ft, 40ft

wiSCAPE

DATE:	LOCATION:						
TYPE: PL4	PROJECT:						
CATALOG #: VP-2-320L-185-4K7-4W-UNV-A-DBT							

DELIVERED LUMENS

For delivered lumens, please see Lumens Data PDF on www.Currentlighting.com

PROJECTED LUMEN MAINTENANCE

Ambient Temp.	0	25,000	*TM-21-11 36,000	50,000	100,000	Calculated L ₇₀ (Hours)
25°C / 77°F	1.00	0.97	0.96	0.95	0.91	408,000
40°C / 104°F	0.99	0.96	0.95	0.94	0.89	356,000

LUMINAIRE AMBIENT TEMPERATURE FACTOR (LATF)

Ambient ⁻	Temperature	Lumen Multiplier
0°C	32°F	1.03
10°C	50°F	1.01
20°C	68°F	1.00
25°C	77°F	1.00
30°C	86°F	0.99
40°C	104°F	0.98

Micro Strike Lumen Multiplier							
ССТ	70 CRI	80 CRI	90 CRI				
2700K	-	0.841	_				
3000K	0.977	0.861	0.647				
3500K	_	0.900	_				
4000K	1	0.926	0.699				
5000K	1	0.937	0.791				
Monochromatic Amber Multiplier							
Amber	Amber 0.250						

Strike Lumen Multiplier							
ССТ	70 CRI	80 CRI	90 CRI				
2700K	0.9	0.81	0.62				
3000K	0.933	0.853	0.659				
3500K	0.959	0.894	0.711				
4000K	1	0.9	0.732				
5000K	1	0.9	0.732				
Monochromatic Amber Multiplier							
Amber	Amber 0.255						

DATE:	LOCATION:
TYPE:	PROJECT:
CATALOG #:	

ELECTRICAL DATA: MICRO STRIKE

# OF LEDS	160							
NOMINAL WATTAGE	35	50	75	100	115	135	160	
SYSTEM POWER (W)	34.9	50.5	72.1	97.2	111.9	132.2	157.8	
INPUT VOLTAGE (V)				CURRENT (Amps)				
120	0.29	0.42	0.63	0.83	0.96	1.13	1.33	
208	0.17	0.24	0.36	0.48	0.55	0.65	0.77	
240	0.15	0.21	0.31	0.42	0.48	0.56	0.67	
277	0.13	0.18	0.27	0.36	0.42	0.49	0.58	
347	0.10	0.14	0.22	0.29	0.33	0.39	0.46	
480	0.07	0.10	0.16	0.21	0.24	0.28	0.33	

# OF LEDS	320							
NOMINAL WATTAGE	145	170	185	210	235	255	315	
SYSTEM POWER (W)	150	166.8	185.7	216.2	240.9	261.5	312	
INPUT VOLTAGE (V)				CURRENT (Amps)				
120	1.21	1.42	1.54	1.75	1.96	2.13	2.63	
208	0.70	0.82	0.89	1.01	1.13	1.23	1.51	
240	0.60	0.71	0.77	0.88	0.98	1.06	1.31	
277	0.52	0.61	0.67	0.76	0.85	0.92	1.14	
347	0.42	0.49	0.53	0.61	0.68	0.73	0.91	
480	0.30	0.35	0.39	0.44	0.49	0.53	0.66	

# OF LEDS	480							
NOMINAL WATTAGE	285	320	340	390	425	470		
SYSTEM POWER (W)	286.2	316.7	338.4	392.2	423.2	468		
INPUT VOLTAGE (V)		CURRENT (Amps)						
120	2.38	2.67	2.83	3.25	3.54	3.92		
208	1.37	1.54	1.63	1.88	2.04	2.26		
240	1.19	1.33	1.42	1.63	1.77	1.96		
277	1.03	1.03 1.16 1.23 1.41 1.53 1.70						
347	0.82	0.92	0.98	1.12	1.22	1.35		
480	0.59	0.67	0.71	0.81	0.89	0.98		

# OF LEDS	720						
NOMINAL WATTAGE	435	475	515	565	600		
SYSTEM POWER (W)	429.3	475	519.1	565.2	599.9		
INPUT VOLTAGE (V)		CURRENT (Amps)					
120	3.63	3.96	4.29	4.71	5.00		
208	2.09	2.28	2.48	2.72	2.88		
240	1.81	1.98	2.15	2.35	2.50		
277	1.57	1.71	1.86	2.04	2.17		
347	1.25	1.37	1.48	1.63	1.73		
480	0.91	0.99	1.07	1.18	1.25		

DATE:	LOCATION:
TYPE:	PROJECT:

ELECTRICAL DATA: STRIKE

# OF LEDS	36						
NOMINAL WATTAGE	39	55	85	105	120		
SYSTEM POWER (W)	39.6	56.8	83.6	108.2	120.9		
INPUT VOLTAGE (V)			CURRENT (Amps)				
120	0.33	0.46	0.71	0.88	0.96		
208	0.19	0.26	0.41	0.50	0.55		
240	0.16	0.23	0.35	0.44	0.48		
277	0.14	0.20	0.31	0.38	0.42		
347	0.11	0.16	0.24	0.30	0.33		
480	0.08	0.11	0.18	0.22	0.24		

# OF LEDS	72						
NOMINAL WATTAGE	115	145	180	210	240		
SYSTEM POWER (W)	113.7	143.2	179.4	210.2	241.7		
INPUT VOLTAGE (V)		CURRENT (Amps)					
120	1.00	1.21	1.50	1.75	1.79		
208	0.58	0.70	0.87	1.01	1.03		
240	0.50	0.60	0.75	0.88	0.90		
277	0.43	0.52	0.65	0.76	0.78		
347	0.35	0.42	0.52	0.61	0.62		
480	0.25	0.30	0.38	0.44	0.45		

# OF LEDS	108				
NOMINAL WATTAGE	215	250	280	325	365
SYSTEM POWER (W)	214.8	250.8	278.3	324.7	362.6
INPUT VOLTAGE (V)			CURRENT (Amps)		
120	2.00	2.08	2.33	3.04	2.67
208	1.15	1.20	1.35	1.75	1.54
240	1.00	1.04	1.17	1.52	1.33
277	0.87	0.90	1.01	1.32	1.16
347	0.69	0.72	0.81	1.05	0.92
480	0.50	0.52	0.58	0.76	0.67

# OF LEDS			162			
NOMINAL WATTAGE	320	365	405	445	485	545
SYSTEM POWER (W)	322.1	362.6	403.6	445.1	487.1	543.9
INPUT VOLTAGE (V)				CURRENT (Amps)		
120	2.71	2.67	3.38	3.71	4.04	4.54
208	1.56	1.54	1.95	2.14	2.33	2.62
240	1.35	1.33	1.69	1.85	2.02	2.27
277	1.17	1.16	1.46	1.61	1.75	1.97
347	0.94	0.92	1.17	1.28	1.40	1.57
480	0.68	0.67	0.84	0.93	1.01	1.14

DATE:	LOCATION:
TYPE:	PROJECT:
CATALOG #:	

MICRO STRIKE PHOTOMETRY

The following diagrams represent the general distribution options offered for this product. For detailed information on specific product configurations, see website photometric test reports.

Type 2

Type 4 Wide

Туре	4F			
	\langle			
	2		5	

Гуре 5QW					
	\langle			\lambda	
(
	\rangle				
		~			
		_			

DATE:	LOCATION:		
TYPE: PL4	PROJECT:		
CATALOG #: VP-2-320L-185-4K7-4W-UNV-A-DBT			

OPTIC STRIKE PHOTOMETRY

The following diagrams represent the general distribution options offered for this product. For detailed information on specific product configurations, see website photometric test reports.

Type FR – Front Row/Auto Optic

Type 5RW (rectangular)

Type Corner

Current

Type 5W (round wide)

Type 5QW

Type TC

Type 5QN

currentlighting.com/beacon

DIMENSIONS

SIZE 1

SIZE 3

			EPA		
	VP1 (Size 1)	VP2 (Size 2)	VP3 (Size 3)	VP4 (Size 4)	Config.
Single Fixture	0.454	0.555	0.655	0.698	Ļ
Two at 180	0.908	1.110	1.310	1.396	◍~Đ
Two at 90	0.583	0.711	0.857	0.948	P.
Three at 90	1.037	1.266	1.512	1.646	
Three at 120	0.943	1.155	1.392	1.680	CH RO
Four at 90	1.166	1.422	1.714	1.896	

DATE:	LOCATION:
TYPE: PL4	PROJECT:
CATALOG #: VP-2-	-320L-185-4K7-4W-UNV-A-DBT

SIZE 2

SIZE 4

	Weight	
	lbs	kgs
VP1 (Size 1)	13.7	6.2
VP2 (Size 2)	16.0	7.26
VP3 (Size 3)	25.9	11.7
VP4 (Size 4)	30.8	13.9

Current ©

currentlighting.com/beacon

DATE:	LOCATION:
TYPE:	PROJECT:
CATALOG #:	

MOUNTING

A-STRAIGHT ARM MOUNT

Fixture ships with integral arm for ease of installation. Compatible with Current Outdoor B3 drill pattern for ease of installation on square poles. For round poles add applicable suffix (2/3/4/5)

Universal mounting block for ease of installation.

ASQU-UNIVERSAL ARM MOUNT

Compatible with drill patterns from 2.5" to 4.5" and Current drill pattern S2. For round poles add applicable suffix (2/3/4/5)

8.3"	-1

5.0"

AAU-ADJUSTABLE ARM FOR POLE MOUNTING

Rotatable arm mounts directly to pole. Compatible with drill patterns from 2.5" to 4.5" and Current drill pattern S2 and B3. For round poles add applicable suffix (2/3/4/5). Rotatable in 15° aiming angle increments. Micro Strike configurations have a 45° aiming limitation.

Strike configurations have a 30° aiming limitation.

ADU-DECORATIVE UPSWEPT ARM

Upswept Arm compatible with drill patterns from 2.5" to 4.5" and Current drill pattern S2. For round poles add applicable suffix (2/3/4/5).

MAF-MAST ARM FITTER

Fits 2-3/8" OD horizontal tenons.

K-KNUCKLE

Knuckle mount 15° aiming angle increments for precise aiming and control, fits 2-3/8" tenons or pipes. Micro Strike configurations have a 45° aiming limitation. Strike configurations have a 30° aiming limitation.

T-TRUNNION

WM-WALL MOUNT

arm with an adjustable arm.

Compatible with universal arm mount,

adjustable arm mount, and decorative arm mount. The WA option uses the same wall bracket but replaces the decorative

Trunnion for surface and crossarm mounting using (1) 3/4" or (2) 1/2" size through bolts. Micro Strike configurations have a 45° aiming limitation. Strike configurations have a 30° aiming limitation.

Current

currentlighting.com/beacon

© 2022 HLI Solutions, Inc. All rights reserved. Information and specifications subject to change without notice. All values are design or typical values when measured under laboratory conditions.

0

9.3"

DATE:	LOCATION:
TYPE: PL4	PROJECT:
CATALOG #. VP-2	

ADDITIONAL INFORMATION (CONTINUED)

HOUSE SIDE SHIELD FIELD INSTALL ACCESSORIES

HSS has a depth of 5" for all Viper sizes

Not to be used with Occupancy Sensors as the shield may block the light to the sensor.

VPR2x HSS-90-B-xx

VPR2x HSS-360-xx

VPR2x HSS-90-F-xx

VPR2x HSS-270-FSS-xx

VPR2x HSS-90-S-xx

VPR2x HSS-270-FSB-xx

VPR2x HSS-90-S-xx

VPR2x HSS-270-FSB-xx

DATE:	LOCATION:
TYPE:	PROJECT:
CATALOG #:	·

ADDITIONAL INFORMATION (CONTINUED)

PROGRAMMED CONTROLS

ADD-AutoDim Timer Based Options

• Light delay options from 1-9 hours after the light is turned on to dim the light by 10-100%. To return the luminaire to its original light level there are dim return options from 1-9 hours after the light has been dimmed previously.

EX: ADD-6-5-R6

ADD Control Options	Configurations Choices	Example Choice Picked
Auto-Dim Options	1-9 Hours	6 - Delay 6 hours
Auto-Dim Brightness	10-100% Brightness	5 - Dim to 50% brightness
Auto-Dim Return	Delay 0-9 Hours	R6 - Return to full output after 6 hours

ADT-AutoDim Time of Day Based Option

• Light delay options from 1AM-9PM after the light is turned on to dim the light by 10-100%. To return the luminaire to its original light level there are dim return options from 1AM-9PM after the light has been dimmed previously.

EX: ADT-6-5-R6

ADD Control Options	Configurations Choices	Example Choice Picked
Auto-Dim Options	12-3 AM and 6-11 PM	6 - Dim at 6PM
Auto-Dim Brightness	10-100% Brightness	5 - Dim to 50%
Auto-Dim Return	12-6 AM and 9-11P	R6 - Return to full output at 6AM

SSS-B Series Poles

Overall Height 10' - 40'

SQUARE STRAIGHT STEEL

Handhole

DATE:	LOCATION:
TYPE:	PROJECT:
CATALOG #: SSSB	25-40A-1-B3-DBT

APPLICATIONS

• Lighting installations for side and top mounting of luminaires with effective projected area (EPA) not exceeding maximum allowable loading of the specified pole in its installed geographic location

CONSTRUCTION

- SHAFT: One-piece straight steel with square cross section, flat sides and minimum 0.23" radius on all corners; Minimum yield of 46,000 psi (ASTM-A500, Grade B); Longitudinal weld seam to appear flush with shaft side wall; Steel base plate with axial bolt circle slots welded flush to pole shaft having minimum yield of 36,000 psi (ASTM A36)
- BASE COVER: Two-piece square aluminum base cover included standard
- POLE CAP: Pole shaft supplied with removable cover when applicable; Tenon and post-top configurations also available
- HAND HOLE: Rectangular 3x5 steel hand hole frame (2.38" x 4.38" opening); Mounting provisions for grounding lug located behind gasketed cover
- ANCHOR BOLTS: Four galvanized anchor bolts provided per pole with minimum yield of 55,000 psi (ASTM F1554). Galvanized hardware with two washers and two nuts per bolt for leveling

FINISH

- Durable thermoset polyester powder coat paint finish with nominal 3.0 mil thickness
- Powder paint prime applied over "white metal" steel substrate cleaned via mechanical shot blast method
- · Decorative finish coat available in multiple standard colors; Custom colors available; RAL number preferable

WAREHOUSE 'STOCKED' POLES:

- SSSH20-40A-4-HV-DB-RDC, SSSH25-40A-4-HV-DB-RDC and SSSH30-50B-4-HV-DB-RDC
- The HV designation in the above catalog numbers is a combination drill pattern of the Current S2 pattern and the Beacon B3/B4 Viper pattern (rectangular arm mounting)

Current 🗐

currentlighting.com/beacon

DATE:	LOCATION:
TYPE:	PROJECT:
CATALOG #:	

ORDERING INFORMATION Cont.

	Height		Nominal	Wall Thick-	Bolt Circle	Bolt Circle	Bolt Square	Base Plate		Delt Ducientien	Dele unicht
Catalog Number	Feet	Meters	Shaft Dimensions	ness	(suggested)	(range)	(range)	Square	Anchor bolt Size	Bolt Projection	Pole weight
SSS-B-10-40-A-XX-XX	10	3.0	4" square	0.125"	9"	8" - 10"	5.66" - 7.07"	9"	3/4" x 30" x 3"	3.5	77
SSS-B-12-40-A-XX-XX	12	3.7	4" square	0.125"	9"	8" - 10"	5.66" - 7.07"	9"	3/4" x 30" x 3"	3.5	90
SSS-B-14-40-A-XX-XX	14	4.3	4" square	0.125"	9"	8" - 10"	5.66" - 7.07"	9"	3/4" x 30" x 3"	3.5	103
SSS-B-16-40-A-XX-XX	16	4.9	4" square	0.125"	9"	8" - 10"	5.66" - 7.07"	9"	3/4" x 30" x 3"	3.5	116
SSS-B-18-40-A-XX-XX	18	5.5	4" square	0.125"	9"	8" - 10"	5.66" - 7.07"	9"	3/4" x 30" x 3"	3.5	129
SSS-B-20-40-A-XX-XX	20	6.1	4" square	0.125"	9"	8" - 10"	5.66" - 7.07"	9"	3/4" x 30" x 3"	3.5	142
SSS-B-25-40-A-XX-XX	25	7.6	4" square	0.125"	9"	8" - 10"	5.66" - 7.07"	9"	3/4" x 30" x 3"	3.5	175
SSS-B-14-40-B-XX-XX	14	4.3	4" square	.188"	11"	10" - 12"	7.07" - 8.48"	10.50"	3/4" x 30" x 3"	3.5	152
SSS-B-16-40-B-XX-XX	16	4.9	4" square	.188"	11"	10" - 12"	7.07" - 8.48"	10.50"	3/4" x 30" x 3"	3.5	171
SSS-B-18-40-B-XX-XX	18	5.5	4" square	.188"	11"	10" - 12"	7.07" - 8.48"	10.50"	3/4" x 30" x 3"	3.5	190
SSS-B-20-40-B-XX-XX	20	6.1	4" square	.188"	11"	10" - 12"	7.07" - 8.48"	10.50"	3/4" x 30" x 3"	3.5	209
SSS-B-25-40-B-XX-XX	25	7.6	4" square	.188"	11"	10" - 12"	7.07" - 8.48"	10.50"	3/4" x 30" x 3"	3.5	257
SSS-B-30-40-B-XX-XX	30	9.1	4" square	.188"	11"	10" - 12"	7.07" - 8.48"	10.50"	3/4" x 30" x 3"	3.5	304
SSS-B-16-50-B-XX-XX	16	4.9	5" square	.188"	11"	10.25" - 13.25"	7.25" - 9.37"	11.50"	1" x 36" x 4"	4.5	219
SSS-B-18-50-B-XX-XX	18	5.5	5" square	.188"	11"	10.25" - 13.25"	7.25" - 9.37"	11.50"	1" x 36" x 4"	4.5	243
SSS-B-20-50-B-XX-XX	20	6.1	5" square	.188"	11"	10.25" - 13.25"	7.25" - 9.37"	11.50"	1" x 36" x 4"	4.5	267
SSS-B-25-50-B-XX-XX	25	7.6	5" square	.188"	11"	10.25" - 13.25"	7.25" - 9.37"	11.50"	1" x 36" x 4"	4.5	327
SSS-B-30-50-B-XX-XX	30	9.1	5" square	.188"	11"	10.25" - 13.25"	7.25" - 9.37"	11.50"	1" x 36" x 4"	4.5	387
SSS-B-25-50-C-XX-XX	25	7.6	5" square	.25"	11"	10.25" - 13.25"	7.25" - 9.37"	11.50"	1" x 36" x 4"	4.5	427
SSS-B-30-50-C-XX-XX	30	9.1	5" square	.25"	11"	10.25" - 13.25"	7.25" - 9.37"	11.50"	1" x 36" x 4"	4.5	507
SSS-B-20-60-B-XX-XX	20	6.1	6" square	.188"	12"	11.00" - 13.25"	7.81" - 9.37"	12.25"	1" x 36" x 6"	4.5	329
SSS-B-25-60-B-XX-XX	25	7.6	6" square	.188"	12"	11.00" - 13.25"	7.81" - 9.37"	12.25"	1" x 36" x 6"	4.5	404
SSS-B-30-60-B-XX-XX	30	9.1	6" square	.188"	12"	11.00" - 13.25"	7.81" - 9.37"	12.25"	1" x 36" x 6"	4.5	479
SSS-B-35-60-B-XX-XX	35	10.7	6" square	.188"	12"	11.00" - 13.25"	7.81" - 9.37"	12.25"	1" x 36" x 6"	4.5	554
SSS-B-40-60-B-XX-XX	40	12.2	6" square	.188"	12"	11.00" - 13.25"	7.81" - 9.37"	12.25"	1" x 36" x 6"	4.5	629

NOTE Factory supplied template must be used when setting anchor bolts. Beacon Products will deny any claim for incorrect anchorage placement resulting from failure to use factory supplied template and anchor bolts.

For more information about pole vibration and vibration dampers, please consult our website.

Due to our continued efforts to improve our products, product specifications are subject to change without notice.

Current 🗐

currentlighting.com/beacon

DATE:	LOCATION:
TYPE:	PROJECT:
CATALOG #:	

ASCE 7-05 wind map EPA Load Rating - 3 second gust wind speeds												
		(Use for al	l location	s except	Florida)						
Catalog Number	85	90	100	105	110	120	130	140	145	150		
SSS-B-10-40-A	25.0	25.0	25.0	22.8	20.6	17.0	14.2	11.9	11.0	10.1		
SSS-B-12-40-A	25.0	25.0	20.0	18.0	16.1	13.2	10.8	8.9	8.1	7.4		
SSS-B-14-40-A	23.1	20.4	16.1	14.3	12.8	10.2	8.2	6.6	5.9	5.3		
SSS-B-16-40-A	19.0	16.7	13.0	11.5	10.1	7.9	6.2	4.7	4.1	3.6		
SSS-B-18-40-A	15.6	13.6	10.0	9.0	7.8	5.9	4.4	3.1	2.6	2.1		
SSS-B-20-40-A	12.7	10.9	7.9	6.9	5.9	4.2	2.8	1.7	1.3	0.9		
SSS-B-25-40-A	7.3	5.9	3.8	2.9	2.1	0.8	NR	NR	NR	NR		
SSS-B-14-40-B	25.0	25.0	23.3	20.8	18.6	15.1	12.3	10.2	9.2	8.4		
SSS-B-16-40-B	25.0	24.9	19.4	17.3	15.4	12.3	9.9	8.0	7.2	6.4		
SSS-B-18-40-B	24.0	20.8	16.1	14.2	12.5	9.8	7.7	6.1	5.3	4.7		
SSS-B-20-40-B	20.2	17.5	13.2	11.6	10.1	7.7	5.9	4.4	3.8	3.2		
SSS-B-25-40-B	12.8	11.0	7.9	6.7	5.5	3.7	2.3	1.2	0.7	NR		
SSS-B-30-40-B	8.0	6.6	4.1	3.1	2.2	0.8	NR	NR	NR	NR		
SSS-B-16-50-B	25.0	25.0	25.0	25.0	24.8	20.1	16.5	13.6	12.3	11.2		
SSS-B-18-50-B	25.0	25.0	25.0	22.9	20.4	16.4	13.2	10.7	9.6	8.6		
SSS-B-20-50-B	25.0	25.0	21.3	18.9	16.7	13.2	10.4	8.1	7.2	6.3		
SSS-B-25-50-B	20.7	17.8	13.3	11.5	9.8	7.2	5.0	3.3	2.6	1.9		
SSS-B-30-50-B	13.5	11.3	7.7	6.2	4.9	2.8	1.1	NR	NR	NR		
				-					-			
SSS-B-25-50-C	25.0	25.0	19.4	17.1	15.1	11.7	9.0	6.9	6.0	5.1		
SSS-B-30-50-C	20.1	17.3	12.7	10.9	9.3	6.6	4.5	2.8	2.1	1.4		
SSS-B-20-60-B	25.0	25.0	25.0	25.0	25.0	20.2	16.1	12.9	11.5	10.3		
SSS-B-25-60-B	25.0	25.0	20.6	18.0	15.6	11.8	8.7	6.2	5.2	4.2		
SSS-B-30-60-B	21.4	18.1	12.9	10.7	8.8	5.7	3.3	1.3	NR	NR		
SSS-B-35-60-B	14.0	11.3	6.9	5.2	3.6	1.0	NR	NR	NR	NR		
SSS-B-40-60-B	8.1	5.8	2.2	nr	NR	NR	NR	NR	NR	NR		

Florida Building Code 2017 EPA Load Rating - 3 second gust wind speeds (Use for Florida only)											
Catalog Number	115	120	130	140	150	160	170	180			
SSS-B-10-40-A	25.0	25.0	25.0	25.0	21.4	18.4	15.9	13.9			
SSS-B-12-40-A	25.0	25.0	23.6	19.8	16.7	14.2	12.1	10.4			
SSS-B-14-40-A	25.0	23.1	19.0	15.7	13.1	10.9	9.1	7.6			
SSS-B-16-40-A	20.8	18.7	15.2	12.3	10.1	8.2	6.7	5.4			
SSS-B-18-40-A	16.8	15.0	11.9	9.4	7.5	5.9	4.5	3.4			
SSS-B-20-40-A	13.6	11.9	9.2	7.1	5.3	3.9	2.7	1.7			
SSS-B-25-40-A	7.4	6.2	4.1	2.5	1.1	NR	NR	NR			
SSS-B-14-40-B	25.0	23.6	19.4	16.1	13.4	11.2	9.4	7.8			
SSS-B-16-40-B	21.4	19.2	15.6	12.7	10.4	8.5	6.9	5.6			
SSS-B-18-40-B	17.2	15.4	12.2	9.7	7.7	6.1	4.7	3.6			
SSS-B-20-40-B	S-B-20-40-B 13.9		9.5	7.3	7.3 5.5		2.9	1.9			
SSS-B-25-40-B	7.7	6.4	4.3	2.6	1.3	NR	NR	NR			
SSS-B-30-40-B	3.2	2.1	NR	NR	NR	NR	NR	NR			
SSS-B-16-50-B	25.0	25.0	25.0	25.0	25.0	21.4	18.2	15.5			
SSS-B-18-50-B	25.0	25.0	25.0	24.4	24.4 20.4		14.2	11.9			
SSS-B-20-50-B	25.0	25.0	24.4	19.9	16.3	13.4	11.0	8.9			
SSS-B-25-50-B	21.8	19.3	15.0	11.5	8.8	6.5	4.7	3.1			
SSS-B-30-50-B	13.7	11.7	8.2	5.5	3.3	1.5	NR	NR			
SSS-B-25-50-C	21.8	19.3	15.0	11.5	8.8	6.5	4.7	3.1			
SSS-B-30-50-C	13.7	11.7	8.2	5.5	3.3	1.5	NR	NR			
SSS-B-20-60-B	25.0	25.0	25.0	21.9	17.8	14.5	11.7	9.4			
SSS-B-25-60-B	23.8	20.9	16.1	12.3	9.2	6.6	4.5	2.8			
SSS-B-30-60-B	14.6	12.3	8.4	5.3	2.8	0.8	NR	NR			
SSS-B-35-60-B	7.5	5.6	2.4	NR	NR	NR	NR	NR			
SSS-B-40-60-B	NR	NR									

Current 🗐

currentlighting.com/beacon

DATE:	LOCATION:
TYPE:	PROJECT:
CATALOG #:	

NOTES

Wind-speed Website disclaimer:

Current has no connection to the linked website and makes no representations as to its accuracy. While the information presented on this third-party website provides a useful starting point for analyzing wind conditions, Current has not verified any of the information on this third party website and assumes no responsibility or liability for its accuracy. The material presented in the windspeed website should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. Current does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the windspeed report provided by this website. Users of the information from this third party website assume all liability arising from such use. Use of the output of these referenced websites do not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the windspeed report. http://windspeed.atcouncil.org

NOTES

- · Allowable EPA, to determine max pole loading weight, multiply allowable EPA by 30 lbs.
- The tables for allowable pole EPA are based on the ASCE 7-05 Wind Map or the Florida Region Wind Map for the 2010 Florida Building Code. The Wind Maps are intended only as a general guide and cannot be used in conjunction with other maps. Always consult local authorities to determine maximum wind velocities, gusting and unique wind conditions for each specific application
- Allowable pole EPA for jobsite wind conditions must be equal to or greater than the total EPA for fixtures, arms, and accessories to be assembled to the pole. Responsibility lies with the specifier for
 correct pole selection. Installation of poles without luminaires or attachment of any unauthorized accessories to poles is discouraged and shall void the manufacturer's warranty
- Wind speeds and listed EPAs are for ground mounted installations. Poles mounted on structures (such as bridges and buildings) must consider vibration and coefficient of height factors beyond this
 general guide; Consult local and federal standards
- · Wind Induced Vibration brought on by steady, unidirectional winds and other unpredictable aerodynamic forces are not included in wind velocity ratings.
- Extreme Wind Events like, Hurricanes, Typhoons, Cyclones, or Tornadoes may expose poles to flying debris, wind shear or other detrimental effects not included in wind velocity ratings

Due to our continued efforts to improve our products, product specifications are subject to change without notice.

DATE: LOCATION:

TYPE: PL2 PROJECT:

CATALOG #: VP-2-320L-185-4K7-2-UNV-A-DBT

FEATURES

- Low profile LED area/site luminaire with a variety of IES distributions for lighting applications such as auto dealership, retail, commercial, and campus parking lots
- Featuring two different optical technologies, Strike and Micro Strike Optics, which provide the best distribution patterns for retrofit or new construction
- Rated for high vibration applications including bridges and overpasses. All sizes are rated for $1.5\mbox{G}$
- Control options including photo control, occupancy sensing, NX Lighting Controls[™], wiSCAPE and 7-Pin with networked controls
- New customizable lumen output feature allows for the wattage and lumen output to
 be customized in the factory to meet whatever specification requirements may entail
- Field interchangeable mounting provides additional flexibility after the fixture has shipped

CONTROL TECHNOLOGY

SPECIFICATIONS

CONSTRUCTION

- Die-cast housing with hidden vertical heat fins are optimal for heat dissipation while keeping a clean smooth outer surface
- Corrosion resistant, die-cast aluminum housing with 1000 hour powder coat paint finish
- · External hardware is corrosion resistant

OPTICS

- Micro Strike Optics (160, 320, 480, or 720 LED counts) maximize uniformity in applications and come standard with mid-power LEDs which evenly illuminate the entire luminous surface area to provide a low glare appearance. Catalog logic found on page 2
- Strike Optics (36, 72, 108, or 162 LED counts) provide best in class distributions and maximum pole spacing in new applications with high powered LEDs. Strike optics are held in place with a polycarbonate bezel to mimic the appearance of the Micro Strike Optics so both solutions can be combined on the same application. Catalog logic found on page 3
- Both optics maximize target zone illumination with minimal losses at the house-side, reducing light trespass issues. Additional backlight control shields and house side shields can be added for further reduction of illumination behind the pole
- One-piece silicone gasket ensures a weatherproof seal
- · Zero up-light at 0 degrees of tilt
- Field rotatable optics

INSTALLATION

- Mounting patterns for each arm can be found on page 11
- Optional universal mounting block for ease of installation during retrofit applications. Available as an option (ASQU) or accessory for square and round poles
- All mounting hardware included

Current @

INSTALLATION (CONTINUED)

- Knuckle arm fitter option available for 2-3/8"
 OD tenon
- For products with EPA less than 1 mounted to a pole greater that 20ft, a vibration damper is recommended

ELECTRICAL

- Universal 120-277 VAC or 347-480 VAC input voltage, 50/60 Hz
- Ambient operating temperature -40°C to 40°C
- Drivers have greater than 90% power factor and less than 20% THD
- LED drivers have output power over-voltage, over-current protection and short circuit protection with auto recovery
- Field replaceable surge protection device provides 20kA protection meeting ANSI/ IEEE C62.41.2 Category C High and Surge Location Category C3; Automatically takes fixture off-line for protection when device is compromised
- Dual Driver option provides 2 drivers within luminaire but only one set of leads exiting the luminaire, where Dual Power Feed provides two drivers which can be wired independently as two sets of leads are extended from the luminaire. Both options cannot be combined

CONTROLS

- Photo control, occupancy sensor programmable controls, and Zigbee wireless controls available for complete on/off and dimming control
- Please consult brand or sales representative when combining control and electrical options as some combinations may not operate as anticipated depending on your application
- 7-pin ANSI C136.41-2013 photocontrol receptacle option available for twist lock photocontrols or wireless control modules (control accessories sold separately)

QS<mark>7</mark>

CONTROLS (CONTINUED)

- O- 10V Dimming Drivers are standard and dimming leads are extended out of the luminaire unless control options require connection to the dimming leads. Must specify if wiring leads are to be greater than the 6" standard
- NX Lighting Controls[™] available with in fixture wireless control module, features dimming and occupancy sensor
- wiSCAPE® available with in fixture wireless control module, features dimming and occupancy sensor. Also available in 7-pin configuration

CERTIFICATIONS

- CERTIFICATIONS DLC® (DesignLights Consortium Qualified), with some Premium Qualified configurations. Not all product variations listed in this document are DLC® qualified. Refer to http://www.designlights.org for the most up-to-date list.
- Listed to UL1598 and CSA C22.2#250.0-24 for wet locations and 40°C ambient temperatures
- 1.5 G rated for ANSI C136.31 high vibration applications
- Fixture is IP65 rated
- Meets IDA recommendations using 3K CCT configuration at 0 degrees of tilt
- This product qualifies as a "designated country construction material" per FAR 52.225-11 Buy American-Construction Materials under Trade Agreements effective 04/23/2020.

WARRANTY

5 year warranty

KEY DATA								
Lumen Range	5,000–80,000							
Wattage Range	36–600							
Efficacy Range (LPW)	92–155							
Weight lbs. (kg)	13.7-30.9 (6.2-13.9)							

currentlighting.com/beacon

VIPER Area/Site

VIPER LUMINAIRE

MICROSTRIKE OPTICS - ORDERING GUIDE

DATE: LOCATION:

TYPE: PL2 PROJECT:

CATALOG #: VP-2-320L-185-4K7-2-UNV-A-DBT

= Service Program QS

Example: VP-2-320L-145-3K7-2-R-UNV-A3-BLT

CATALOG # VP-2-3201-185-4K7-2-UNV-A-DBT

VP		2 _ 32	20L-185			_	4K7	-	2	-	_	_ UNV	_
Series	Optic Platform Si	ize Lia	iht Engine				CCT/C	RI	Distri	bution	Optic Rotation	Voltage	
VP Vi	per Micro Strike 1	Size 1 160	01-35 ⁶ 5	500 lumens	s		ΔΡ	AP-Amber	2	Type 2	BLANK	LINV 120-277V	1
••••		160	0L-50 ⁶ 7	500 lumens	s			Phosphor	3	Type 3	No Rotation	120 120V	
	— 1	160	DL-75 10	0000 lumer	าร			Converted	4F	Type 4	L Optic	208 208V	
		160	DL-100 12	2500 lumen	ns		27K8	2700K,		Forward	rotation left	240 240V	
		160	DL-115 1	5000 lumer	IS		747	2000K	4W	Type 4	R Optic rotation	277 277∨	
		160	DL-135 18	8000 lumer	าร		317	70 CRI		Wide	right	347 347V	
		160	DL-160 2	1000 lumer	าร		3K8	3000K,	5QW	Type 5		480 480V	
	2	Size 2 32	0L-145 2	1000 lumer	าร			80 CRI		Wide			
		32	0L-170 2	4000 lume	ns		35K8	3500K,					
		320	0L-185 2	7000 lumer	ns		310	3000K					
		32	0L-210 3	2000 lumei	ns		313	90 CRI					
		32	0L-255 3	6000 lumei	ns		4K7	4000K,					
		32	0L-315 ⁶ 4	0000 lume	ns			70 CRI					
	3	Size 3 48	0L-285 4	0000 lumei	ns	[4K8	4000K,					
		48	0L-320 4	4000 lumer	ns		469	4000K					
		48	0L-340 4	8000 lumei	ns		4105	90 CRI					
		48	0L-390 5	2000 lume	ns		5K7	5000K,					
		48	0L-425 5	5000 lume	ns			70 CRI					
			0L-470 6	0000 lume	ns		5K8	5000K, 80 CRI					
	4	Size 4 720	0L-435 6	0000 lume	ins			00 CIVI					
		720	0L-475 0	0000 lume	nc								
		720	01-565 6 7	5000 lumer	ns								
		720	0L-600 6 8	0000 lume	ns								
		CL	0 0	Custom Lum	en Outpu	ıt 1							
									1	I	I		
A			JRI					-					
Mounti	ng	С	olor		Options	5		Network Co	ntrol Op	otions			
А	Arm mount for square pole/flat	t surface B	LT Black Ma	tte	F	Fusing		NXWS16F	NX N	etworked Wire	less Enabled Integral N	IXSMP2-LMO PIR Occup	Dancy
	(B3 Drill Pattern) (Does not Incit round pole adapter)	ude	Iextured		2PF	Dual Po	ower	NYWS40E	Sens NY N	or with Automa lotworkod Wirol	lic Dimming Photocell a	IXSMP2 HMO PIP Occu	ning
A_	Arm mount for round pole ²	P	Smooth	155	2DP	Dual Dr	rivor	11/10/0401	Sens	or with Automa	tic Dimming Photocell a	and Bluetooth Program	ning ^{1,3,4}
ASQU	Universal arm mount for square	e pole. D	BT Dark Bror	nze	TE	Tooless	5	NXW	NX N	letworked Wire	less Radio Module NXI	RM2 and Bluetooth Prog	gramming,
	Can be used with B3 or S2 Dril	ll Pattern	Matte Tex	tured		Entry			witho	ut Sensor ^{3,4}			
A_U	Universal arm mount for round	l pole ² D	BS Dark Bror	nze	BC	Backlig	iht	WIR	wiSC	APE® In-Fixture	Module ^{3,4}	34	
DAA	Adjustable arm for pole mountir (universal drill pattern)	ng	iTT Granhite	Matte	тр	Control	a	Stand Alere	WISC	APE™ Module	and Occupancy Sen	501	
AA_U	Adjustable arm mount for roun	id pole 2	Textured		1 D	Block	ai	BTS-14F	Rlupt	ooth® Program	mable BTSMP-I MO PI	R Occupancy Sensor wi	th
ADU	Decorative upswept Arm (unive	ersal drill	GS Light Gre	у					Autor	natic Dimming	Photocell and 360° Ler	ns ⁹	
	pattern)		Gloss Sm	ooth				BTS-40F	Bluet	ooth® Program	mable, BTSMP-HMO P	IR Occupancy Sensor w	ith
AD_U	Decorative upswept arm moun	nt for	Gloss Tex	y dured					Autor	matic Dimming	Photocell and 360° Ler	15 ⁹	
MAE	Mast arm fitter for 2 2/8" OD be		SS Platinum	Silver				BTSO-12F	Bluet	ooth® Program matic Dimming	mable, BTSMP-OMNI-0 Photocell and 360° Ler) PIR Occupancy Senso as ⁹	r with
ITTAL	arm		Smooth					7PR	7-Pin	Receptacle ⁴	Letocer and 500 Let		
К	Knuckle	W	/HT White Ma	tte				7PR-SC	7-Pin	Receptacle wit	th shorting cap ⁴		
Т	Trunnion		Iextured					3PR	3-Pin	twist lock 4	0.000		
WB	Wall Bracket, horizontal tenon	with MAF	Smooth	155				3PR-SC	3-Pin	receptacle wit	h shorting cap ⁴		
WM	Wall mount bracket with decord	ative V	GT Verde Gr	een				3PR-TL	3-Pin	PCR with phot	ocontrol 4		
w/A	Wall mount bracket with adjust	ablo arm	Textured					Programme	d Contro	ols			
WA	wan mount pracket with adjust		olor Option					SCPF	Sense	or Control Progr	ammable, 8F or 40F ¹⁰		
		C	C Custom C	Color				ADD	Autol	Dim Timer Base	ed Dimming ⁴		
1		1 1		1 1			1	ADT	Auto[Dim Time of Day	Dimming ⁴		

1 - Items with a grey background can be done as a custom order. Contact brand representative for more and the set of beauty of the set of the se

3 - Networked Controls cannot be combined with other control options

4 – Not available with 2PF option

5 – Not available with Dual Driver option

currentlighting.com/beacon

© 2022 HLI Solutions, Inc. All rights reserved. Information and specifications subject to change without notice. All values are design or typical values when measured under laboratory conditions.

Photocontrols

Button Photocontrol 4,7

B – BC not available on 4F and type 5 distributions
 9 – BTS and BTSO are only available on Size 3 and Size 4
 10 – At least one SCPREMOTE required to program SCP motion sensor. Must select 8ft or 40ft.

6 – Some voltage restrictions may apply when combined with controls 7 – Not available with 480V

PC

DATE:	LOCATION:
TYPE:	PROJECT:
CATALOG #:	

Example: VP-ST-1-36L-39-3K7-2-UNV-A-BLT

STRIKE OPTIC - ORDERING GUIDE

CATALOG	#																			
VP Series]_	Optic Platform	-[Size	-[Light Engine	3]-	ССТ	7/CRI]_	D	istribi	ution	- 0	ptic Rotation	-[Voltag	e]-
VP Viper		ST Strike	-	 Size 1 Size 2 Size 3 Size 4 		36L-39 ⁸ 36L-35 ⁸ 36L-85 36L-105 36L-120 72L-115 72L-145 72L-145 72L-210 72L-240 108L-215 ⁸ 108L-250 108L-250 108L-325 108L-365 102L-365 ¹⁰ 162L-405 162L-445 162L-485 162L-545 ⁸ CLO	5500 lumens 7500 lumens 10000 lumens 12500 lumens 14000 lumens 15000 lumens 21000 lumens 24000 lumens 27000 lumens 30000 lumens 30000 lumens 40000 lumens 44000 lumens 52000 lumens 55000 lumens 55000 lumens 55000 lumens		AM 27K 3K7 3K8 35K 4K7 4K8 4K9 5K7 5K8	 monochromatic amber, 595nm 2700K, 80 CRI 3000K, 70 CRI 3000K, 80 CRI 3000K, 90 CRI 3500K, 80 CRI 4000K, 70 CRI 4000K, 90 CRI 5000K, 70 CRI 5000K, 80 CRI 		FI 2 3 41 41 51 51 51 51 51 51 51 51 51 51 51 51 51	₹ ₩ ΩN ΩW ΩM ₩ RW	Auto Front Row Type 2 Type 3 Type 4 Forward Type 4 Wide Type 5 Square Narrow Type 5 Square Wide Type 5 Square Medium Type 5 Wide (Round) Type 5 Rectangular Corner Optic Tennis Court Optic	R	BLANK No Rotation Optic rotation left Optic rotation right		UNV 120 208 240 277 347 480	120- 277V 120V 208V 240V 277V 347V 480V	

]_[]_]_	_	
Mount	ing		Color			Optio	ons		Network Co	ntrol Options
Α	Arm mount for square pole/flat surface		BLT	Black Matte		F	Fusing]	NXWS16F	NX Networked Wireless Enabled Integral NXSMP2-LMO PIR Occupancy Sensor with Automatic Diamagn Photocell and Bluetooth Programming 134
A_ ASQU	Arm mount for round pole ³ Universal arm mount for square pole		BLS	Black Gloss		E	Battery Backup 1,2,7,8,9		NXWS40F	NX Networked Wireless Enabled Integral NXSMP2-HMO PIR Occupancy Sensor
A_U	Universal arm mount for round pole ³		DBT	Smooth Dark Bronze		2PF	Dual Power Feed Dual Driver	NXW	with Automatic Dimming Photocell and Bluetooth Programming	
AAU	(universal drill pattern)		DBS	Matte Textured Dark Bronze		2DR TF		WIR	without Sensor ^{3,4} wiSCAPE® In-Fixture Module ^{3,4}	
AA_U	Adjustable arm mount for round pole ³			Gloss Smooth	BC	Backlight		WIRSC	wiSCAPE® Module and Occupancy Sensor 3.4	
ADU	drill pattern)		GTT	Graphite Matte			Control		Stand Alone	Sensors
AD_U	Decorative upswept arm mount for round pole ³		LGS	Light Grey	TE	ТВ	Terminal Block		BTS-14F	Bluetooth® Programmable, BTSMP-LMO PIR Occupancy Sensor with Automatic Dimming Photocell and 360° Lens ¹¹
MAF	, Mast arm fitter for 2-3/8" OD horizontal arm		LGT	Light Grey					BTS-40F	Bluetooth® Programmable, BTSMP-HMO PIR Occupancy Sensor with Automatic Dimming® Photocell and 360° Lens ¹¹
к	Knuckle		PSS	Platinum Silver					BTSO-12F	Bluetooth® Programmable, BTSMP-OMNI-O PIR Occupancy Sensor with Automatic Dimming Photocell and 360° Lens ¹¹
T	Irunnion Wall Breaket, beringental tangan with			Smooth					7PR	7-Pin Receptacle ⁴
WB	MAF		WHI	Textured					7PR-SC	7-Pin Receptacle with shorting cap ⁴
WM	Wall mount bracket with decorative		WHS	White Gloss					3PR	3-Pin twist lock ⁴
14/0	upswept arm		VOT	Smooth					3PR-SC	3-Pin receptacle with shorting cap *
WA	Wall mount bracket with adjustable arm		VGI	Verde Green Textured					Programme	d Controls
			Color	Option					SCPF	Sensor Control Programmable, 8F or 40F ¹²
		[сс	Custom Color]				ADD	AutoDim Timer Based Dimming ⁴
1 baara								1	ADT	AutoDim Time of Day Dimming ⁴
1 – items	 Items with a grey background can be done as a custom order. Contact brand representative for more information Battery temperature rating -20C to 55C 							Photocontro	bls	

3 - Replace "_" with "3" for 3.5"-4.13" OD pole, "4" for 4.18"-5.25" OD pole,

"5" for 5.5"-6.5" OD pole

4 – Networked Controls cannot be combined with other control options 5 – Not available with 2PF option

6 – Not available with 480V

7 – Not available with 347 or 480V

8 - Not available with Dual Driver option

currentlighting.com/beacon

© 2022 HLI Solutions, Inc. All rights reserved. Information and specifications subject to change without notice. All values are design or typical values when measured under laboratory conditions.

Page **3** of **13** Rev 03/13/23 BEA_VIPERSPEC_R04

PC Button Photocontrol 4,7

9 - Only available in Size 1 housing, up to 105 Watts
10 - Some voltage restrictions may apply when combined with controls
11 - BTS and BTSO are only available on Size 3 and Size 4
12 - At least one SCPREMOTE required to program SCP motion sensor. Must select 8ft or 40ft.

DATE:	LOCATION:
TYPE:	PROJECT:
CATALOG #	

ORDERING GUIDE (CONTINUED)

CATALO	DG #													
		-]_]_[С	urrent Control Sol	utions — Accessories (Sold Separately)		
Acces	sory Type	s	ize		Option			Color		Ν	IX Lighting Contro	ls		
SHD	Shield	1 2 3 4	Size 1 Size 2 Size 3 Size 4		HSS-90-B HSS-90-F HSS-90-S HSS-270-BSS HSS-270-FSS	House Side Shield 90° Back House Side Shield 90° Front House Side Shield 90° Side House Side Shield 270° Back/Side/Side House Side Shield 270° Front/Side/Side		BLS BLT DBS	Black Gloss Smooth Black Matte Textured Dark Bronze Gloss Smooth		NXOFM- 1R1D-UNV NISCAPE® Lighting	On-fixture Module (7-pin), On / Off / Dim, Daylight Sensor with NX Radio and Bluetooth® Radio, 120–480VAC Control On-fixture Module (7-pin or 5-pin),		
					HSS-270-FSB HSS-360	House Side Shield 270° Front/Side/Back House Side Shield 360°		DBT	Dark Bronze Matte Textured			On / Off / Dim, Daylight Sensor with wiSCAPE Radio, 110–480VAC		
MTG	Mounting	-			BC A ASQU	Back Light Control Arm Mount for square pole/flat surface Universal Arm Mount for square pole		GTT LGS	Graphite Matte Textured Light Gray Gloss Smooth		SCP-REMOTE	Remote Control for SCP/_F option. Order at least one per project to program and control the occupancy sensor		
						Adjustable Arm for pole mounting Decorative upswept Arm Deviad Data Adapter		PSS	Platinum Silver Smooth	Fi CI SI	or additional informati urrentlighting.com/bea ensor, please view sp v datails	on related to these accessories please visit acon. Options provided for use with integrated ecification sheet ordering information table		
					MAF	Mast Arm Fitter for 2-3/8" OD horizontal arm		WHS WHT	White Gloss Smooth White		details.			
					к	Knuckle			Matte Textured					
					T	Trunnion		VGT	Green Landscape Decorative					
					WR	arm mounts)		LEG	Legacy Colors					
Access	sory Type			-	Option			Color CC	Option Custom Color					
MSC	Miscellane	ous			BIRD SPK	Bird Spike]							

CONTROLS

Control Option	Sensor	Networkable	Scheduling	Occupancy	Daylight Harvesting	On/Off Control	Programming	Pair with Sensor	Sensor Mounting Height
NXW	-	~	~	-	-	~	~	-	-
NXWS_F	NXSMP2	~	~	~	~	~	~	-	16ft, 40ft
BTSO12F	BTSMP-OMNI-O	_	_	~	~	~	Bluetooth	-	12ft
BTS_F	BTSMP	_	-	~	~	v	Bluetooth	-	14ft, 40ft
SCP_F	-	-	-	~	-	~	~	-	-
ADD	_	_	~	-	_	~	_	v	_
ADT	-	_	v	-	-	v	_	v	-
7PR	-	Paired with external control	Paired with external control	-	Paired with external control	Paired with external control	_	v	_
7PR-SC	_	-	-	-	-	-	_	 	-
3PR	-	-	-	-	—	Paired with external control	-	~	-
3PR-SC	_	_	_	-	_	_	_	v	_
3PR-TL	-	-	-	-	~	~	_	~	-
WIR	-	 	~	-	~	~	Gateway	-	-
WIRSC	BTSMP	~	~	~	~	~	Gateway	_	14ft, 40ft

wiSCAPE

DATE:	LOCATION:							
TYPE: PL2	PROJECT:							
CATALOG #: VP-2-320L-185-4K7-2-UNV-A-DBT								

DELIVERED LUMENS

For delivered lumens, please see Lumens Data PDF on www.Currentlighting.com

PROJECTED LUMEN MAINTENANCE

Ambient Temp.	0	25,000	*TM-21-11 36,000	50,000	100,000	Calculated L ₇₀ (Hours)
25°C / 77°F	1.00	0.97	0.96	0.95	0.91	408,000
40°C / 104°F	0.99	0.96	0.95	0.94	0.89	356,000

LUMINAIRE AMBIENT TEMPERATURE FACTOR (LATF)

Ambient ⁻	Temperature	Lumen Multiplier				
0°C	32°F	1.03				
10°C	50°F	1.01				
20°C	68°F	1.00				
25°C	77°F	1.00				
30°C	86°F	0.99				
40°C	104°F	0.98				

Micro Strike Lumen Multiplier									
ССТ	70 CRI	80 CRI	90 CRI -						
2700K	-	0.841							
3000K	0.977	0.861	0.647						
3500K	-	0.900	-						
4000K	1	0.926	0.699						
5000K	1	0.937	0.791						
Monochromatic Amber Multiplier									
Amber	0.250								

S	Strike Lumen Multiplier										
ССТ	70 CRI	80 CRI	90 CRI 0.62								
2700K	0.9	0.81									
3000K	0.933	0.853	0.659 0.711								
3500K	0.959	0.894									
4000K	1	0.9	0.732								
5000K	1	0.9	0.732								
Monochromatic Amber Multiplier											
Amber		0.255									

DATE:	LOCATION:
TYPE:	PROJECT:
CATALOG #:	

ELECTRICAL DATA: MICRO STRIKE

# OF LEDS		160						
NOMINAL WATTAGE	35	50	75	100	115	135	160	
SYSTEM POWER (W)	34.9	50.5	72.1	97.2	111.9	132.2	157.8	
INPUT VOLTAGE (V)				CURRENT (Amps)				
120	0.29	0.42	0.63	0.83	0.96	1.13	1.33	
208	0.17	0.24	0.36	0.48	0.55	0.65	0.77	
240	0.15	0.21	0.31	0.42	0.48	0.56	0.67	
277	0.13	0.18	0.27	0.36	0.42	0.49	0.58	
347	0.10	0.14	0.22	0.29	0.33	0.39	0.46	
480	0.07	0.10	0.16	0.21	0.24	0.28	0.33	

# OF LEDS		320						
NOMINAL WATTAGE	145	170	185	210	235	255	315	
SYSTEM POWER (W)	150	166.8	185.7	216.2	240.9	261.5	312	
INPUT VOLTAGE (V)				CURRENT (Amps)				
120	1.21	1.42	1.54	1.75	1.96	2.13	2.63	
208	0.70	0.82	0.89	1.01	1.13	1.23	1.51	
240	0.60	0.71	0.77	0.88	0.98	1.06	1.31	
277	0.52	0.61	0.67	0.76	0.85	0.92	1.14	
347	0.42	0.49	0.53	0.61	0.68	0.73	0.91	
480	0.30	0.35	0.39	0.44	0.49	0.53	0.66	

# OF LEDS	480							
NOMINAL WATTAGE	285	320	340	390	425	470		
SYSTEM POWER (W)	286.2	316.7	338.4	392.2	423.2	468		
INPUT VOLTAGE (V)		CURRENT (Amps)						
120	2.38	2.67	2.83	3.25	3.54	3.92		
208	1.37	1.54	1.63	1.88	2.04	2.26		
240	1.19	1.33	1.42	1.63	1.77	1.96		
277	1.03	1.03 1.16 1.23 1.41 1.53 1.70						
347	0.82	0.92	0.98	1.12	1.22	1.35		
480	0.59	0.67	0.71	0.81	0.89	0.98		

# OF LEDS	720						
NOMINAL WATTAGE	435	475	515	565	600		
SYSTEM POWER (W)	429.3	475	519.1	565.2	599.9		
INPUT VOLTAGE (V)		CURRENT (Amps)					
120	3.63	3.96	4.29	4.71	5.00		
208	2.09	2.28	2.48	2.72	2.88		
240	1.81	1.98	2.15	2.35	2.50		
277	1.57	1.71	1.86	2.04	2.17		
347	1.25	1.37	1.48	1.63	1.73		
480	0.91	0.99	1.07	1.18	1.25		

DATE:	LOCATION:
TYPE:	PROJECT:

ELECTRICAL DATA: STRIKE

# OF LEDS		36				
NOMINAL WATTAGE	39	55	85	105	120	
SYSTEM POWER (W)	39.6	56.8	83.6	108.2	120.9	
INPUT VOLTAGE (V)		CURRENT (Amps)				
120	0.33	0.46	0.71	0.88	0.96	
208	0.19	0.26	0.41	0.50	0.55	
240	0.16	0.23	0.35	0.44	0.48	
277	0.14	0.20	0.31	0.38	0.42	
347	0.11	0.16	0.24	0.30	0.33	
480	0.08	0.11	0.18	0.22	0.24	

# OF LEDS		72					
NOMINAL WATTAGE	115	145	180	210	240		
SYSTEM POWER (W)	113.7	143.2	179.4	210.2	241.7		
INPUT VOLTAGE (V)	CURRENT (Amps)						
120	1.00	1.21	1.50	1.75	1.79		
208	0.58	0.70	0.87	1.01	1.03		
240	0.50	0.60	0.75	0.88	0.90		
277	0.43	0.52	0.65	0.76	0.78		
347	0.35	0.42	0.52	0.61	0.62		
480	0.25	0.30	0.38	0.44	0.45		

# OF LEDS		10)8				
NOMINAL WATTAGE	215	250	280	325	365		
SYSTEM POWER (W)	214.8	250.8	278.3	324.7	362.6		
INPUT VOLTAGE (V)		CURRENT (Amps)					
120	2.00	2.08	2.33	3.04	2.67		
208	1.15	1.20	1.35	1.75	1.54		
240	1.00	1.04	1.17	1.52	1.33		
277	0.87	0.90	1.01	1.32	1.16		
347	0.69	0.72	0.81	1.05	0.92		
480	0.50	0.52	0.58	0.76	0.67		

# OF LEDS			162					
NOMINAL WATTAGE	320	365	405	445	485	545		
SYSTEM POWER (W)	322.1	362.6	403.6	445.1	487.1	543.9		
INPUT VOLTAGE (V)		CURRENT (Amps)						
120	2.71	2.67	3.38	3.71	4.04	4.54		
208	1.56	1.54	1.95	2.14	2.33	2.62		
240	1.35	1.33	1.69	1.85	2.02	2.27		
277	1.17	1.16	1.46	1.61	1.75	1.97		
347	0.94	0.92	1.17	1.28	1.40	1.57		
480	0.68	0.67	0.84	0.93	1.01	1.14		

DATE:	LOCATION:
TYPE:	PROJECT:
CATALOG #:	

MICRO STRIKE PHOTOMETRY

The following diagrams represent the general distribution options offered for this product. For detailed information on specific product configurations, see website photometric test reports.

Type 2

Type 4 Wide

Туре	Type 4F							
	\langle							
	2			5				

Туре	5QW			
	\langle			
(
	\rangle			
		~		
		_		

DATE:	LOCATION:	
TYPE: PL2	PROJECT:	
CATALOG #: VP-2-320L-185-4K7-2-UNV-A-DBT		

OPTIC STRIKE PHOTOMETRY

The following diagrams represent the general distribution options offered for this product. For detailed information on specific product configurations, see website photometric test reports.

Type FR – Front Row/Auto Optic

Type 5RW (rectangular)

Type Corner

Current

Type 5W (round wide)

Type 5QW

Type TC

Type 5QN

currentlighting.com/beacon

© 2022 HLI Solutions, Inc. All rights reserved. Information and specifications subject to change without notice. All values are design or typical values when measured under laboratory conditions.

DIMENSIONS

SIZE 1

SIZE 3

			EPA		
	VP1 (Size 1)	VP2 (Size 2)	VP3 (Size 3)	VP4 (Size 4)	Config.
Single Fixture	0.454	0.555	0.655	0.698	Ļ
Two at 180	0.908	1.110	1.310	1.396	◍~Đ
Two at 90	0.583	0.711	0.857	0.948	P_
Three at 90	1.037	1.266	1.512	1.646	
Three at 120	0.943	1.155	1.392	1.680	CH RO
Four at 90	1.166	1.422	1.714	1.896	

DATE:	LOCATION:	
TYPE: PL2	PROJECT:	
CATALOG #: VP-2-320L-185-4K7-2-UNV-A-DBT		

SIZE 2

SIZE 4

	We	ight
	lbs	kgs
VP1 (Size 1)	13.7	6.2
VP2 (Size 2)	16.0	7.26
VP3 (Size 3)	25.9	11.7
VP4 (Size 4)	30.8	13.9

Current ©

currentlighting.com/beacon

© 2022 HLI Solutions, Inc. All rights reserved. Information and specifications subject to change without notice. All values are design or typical values when measured under laboratory conditions.

DATE:	LOCATION:
TYPE:	PROJECT:
CATALOG #:	

MOUNTING

A-STRAIGHT ARM MOUNT

Fixture ships with integral arm for ease of installation. Compatible with Current Outdoor B3 drill pattern for ease of installation on square poles. For round poles add applicable suffix (2/3/4/5)

Universal mounting block for ease of installation.

ASQU-UNIVERSAL ARM MOUNT

Compatible with drill patterns from 2.5" to 4.5" and Current drill pattern S2. For round poles add applicable suffix (2/3/4/5)

8.3"	-1

5.0"

AAU-ADJUSTABLE ARM FOR POLE MOUNTING

Rotatable arm mounts directly to pole. Compatible with drill patterns from 2.5" to 4.5" and Current drill pattern S2 and B3. For round poles add applicable suffix (2/3/4/5). Rotatable in 15° aiming angle increments. Micro Strike configurations have a 45° aiming limitation.

Strike configurations have a 30° aiming limitation.

ADU-DECORATIVE UPSWEPT ARM

Upswept Arm compatible with drill patterns from 2.5" to 4.5" and Current drill pattern S2. For round poles add applicable suffix (2/3/4/5).

MAF-MAST ARM FITTER

Fits 2-3/8" OD horizontal tenons.

K-KNUCKLE

Knuckle mount 15° aiming angle increments for precise aiming and control, fits 2-3/8" tenons or pipes. Micro Strike configurations have a 45° aiming limitation. Strike configurations have a 30° aiming limitation.

T-TRUNNION

WM-WALL MOUNT

arm with an adjustable arm.

Compatible with universal arm mount,

adjustable arm mount, and decorative arm mount. The WA option uses the same wall bracket but replaces the decorative

Trunnion for surface and crossarm mounting using (1) 3/4" or (2) 1/2" size through bolts. Micro Strike configurations have a 45° aiming limitation. Strike configurations have a 30° aiming limitation.

Current

currentlighting.com/beacon

© 2022 HLI Solutions, Inc. All rights reserved. Information and specifications subject to change without notice. All values are design or typical values when measured under laboratory conditions.

0

9.3"

DATE:	LOCATION:
TYPE: PL2	PROJECT:
CATALOG # VP-2	-320L-185-4K7-2-UNV-A-DBT

ADDITIONAL INFORMATION (CONTINUED)

HOUSE SIDE SHIELD FIELD INSTALL ACCESSORIES

HSS has a depth of 5" for all Viper sizes

Not to be used with Occupancy Sensors as the shield may block the light to the sensor.

VPR2x HSS-90-B-xx

VPR2x HSS-360-xx

VPR2x HSS-90-F-xx

VPR2x HSS-270-FSS-xx

VPR2x HSS-90-S-xx

VPR2x HSS-270-FSB-xx

VPR2x HSS-90-S-xx

VPR2x HSS-270-FSB-xx

DATE:	LOCATION:
TYPE:	PROJECT:
CATALOG #:	·

ADDITIONAL INFORMATION (CONTINUED)

PROGRAMMED CONTROLS

ADD-AutoDim Timer Based Options

• Light delay options from 1-9 hours after the light is turned on to dim the light by 10-100%. To return the luminaire to its original light level there are dim return options from 1-9 hours after the light has been dimmed previously.

EX: ADD-6-5-R6

ADD Control Options	Configurations Choices	Example Choice Picked	
Auto-Dim Options	1-9 Hours	6 - Delay 6 hours	
Auto-Dim Brightness	10-100% Brightness	5 - Dim to 50% brightness	
Auto-Dim Return	Delay 0-9 Hours	R6 - Return to full output after 6 hours	

ADT-AutoDim Time of Day Based Option

• Light delay options from 1AM-9PM after the light is turned on to dim the light by 10-100%. To return the luminaire to its original light level there are dim return options from 1AM-9PM after the light has been dimmed previously.

EX: ADT-6-5-R6

ADD Control Options	Configurations Choices	Example Choice Picked
Auto-Dim Options	12-3 AM and 6-11 PM	6 - Dim at 6PM
Auto-Dim Brightness	10-100% Brightness	5 - Dim to 50%
Auto-Dim Return	12-6 AM and 9-11P	R6 - Return to full output at 6AM

SSS-B Series Poles

Overall Height 10' - 40'

SQUARE STRAIGHT STEEL

Handhole

DATE:	LOCATION:
TYPE:	PROJECT:
CATALOG #: SSSB25-40A-1-B3-DBT	

APPLICATIONS

• Lighting installations for side and top mounting of luminaires with effective projected area (EPA) not exceeding maximum allowable loading of the specified pole in its installed geographic location

CONSTRUCTION

- SHAFT: One-piece straight steel with square cross section, flat sides and minimum 0.23" radius on all corners; Minimum yield of 46,000 psi (ASTM-A500, Grade B); Longitudinal weld seam to appear flush with shaft side wall; Steel base plate with axial bolt circle slots welded flush to pole shaft having minimum yield of 36,000 psi (ASTM A36)
- BASE COVER: Two-piece square aluminum base cover included standard
- POLE CAP: Pole shaft supplied with removable cover when applicable; Tenon and post-top configurations also available
- HAND HOLE: Rectangular 3x5 steel hand hole frame (2.38" x 4.38" opening); Mounting provisions for grounding lug located behind gasketed cover
- ANCHOR BOLTS: Four galvanized anchor bolts provided per pole with minimum yield of 55,000 psi (ASTM F1554). Galvanized hardware with two washers and two nuts per bolt for leveling

FINISH

- Durable thermoset polyester powder coat paint finish with nominal 3.0 mil thickness
- Powder paint prime applied over "white metal" steel substrate cleaned via mechanical shot blast method
- · Decorative finish coat available in multiple standard colors; Custom colors available; RAL number preferable

WAREHOUSE 'STOCKED' POLES:

- SSSH20-40A-4-HV-DB-RDC, SSSH25-40A-4-HV-DB-RDC and SSSH30-50B-4-HV-DB-RDC
- The HV designation in the above catalog numbers is a combination drill pattern of the Current S2 pattern and the Beacon B3/B4 Viper pattern (rectangular arm mounting)

Current 🗐

currentlighting.com/beacon

© 2022 HLI Solutions, Inc. All rights reserved. Information and specifications subject to change without notice. All values are design or typical values when measured under laboratory conditions

DATE:	LOCATION:
TYPE:	PROJECT:
CATALOG #:	

ORDERING INFORMATION Cont.

	Height		Height		Nominal	Wall Thick-	Bolt Circle	Bolt Circle	Bolt Square	Base Plate			.
Catalog Number	Feet	Meters	Shaft Dimensions	ness	(suggested)	(range)	(range)	Square	Anchor bolt size	Bolt Projection	Pole weight		
SSS-B-10-40-A-XX-XX	10	3.0	4" square	0.125"	9"	8" - 10"	5.66" - 7.07"	9"	3/4" x 30" x 3"	3.5	77		
SSS-B-12-40-A-XX-XX	12	3.7	4" square	0.125"	9"	8" - 10"	5.66" - 7.07"	9"	3/4" x 30" x 3"	3.5	90		
SSS-B-14-40-A-XX-XX	14	4.3	4" square	0.125"	9"	8" - 10"	5.66" - 7.07"	9"	3/4" x 30" x 3"	3.5	103		
SSS-B-16-40-A-XX-XX	16	4.9	4" square	0.125"	9"	8" - 10"	5.66" - 7.07"	9"	3/4" x 30" x 3"	3.5	116		
SSS-B-18-40-A-XX-XX	18	5.5	4" square	0.125"	9"	8" - 10"	5.66" - 7.07"	9"	3/4" x 30" x 3"	3.5	129		
SSS-B-20-40-A-XX-XX	20	6.1	4" square	0.125"	9"	8" - 10"	5.66" - 7.07"	9"	3/4" x 30" x 3"	3.5	142		
SSS-B-25-40-A-XX-XX	25	7.6	4" square	0.125"	9"	8" - 10"	5.66" - 7.07"	9"	3/4" x 30" x 3"	3.5	175		
SSS-B-14-40-B-XX-XX	14	4.3	4" square	.188"	11"	10" - 12"	7.07" - 8.48"	10.50"	3/4" x 30" x 3"	3.5	152		
SSS-B-16-40-B-XX-XX	16	4.9	4" square	.188"	11"	10" - 12"	7.07" - 8.48"	10.50"	3/4" x 30" x 3"	3.5	171		
SSS-B-18-40-B-XX-XX	18	5.5	4" square	.188"	11"	10" - 12"	7.07" - 8.48"	10.50"	3/4" x 30" x 3"	3.5	190		
SSS-B-20-40-B-XX-XX	20	6.1	4" square	.188"	11"	10" - 12"	7.07" - 8.48"	10.50"	3/4" x 30" x 3"	3.5	209		
SSS-B-25-40-B-XX-XX	25	7.6	4" square	.188"	11"	10" - 12"	7.07" - 8.48"	10.50"	3/4" x 30" x 3"	3.5	257		
SSS-B-30-40-B-XX-XX	30	9.1	4" square	.188"	11"	10" - 12"	7.07" - 8.48"	10.50"	3/4" x 30" x 3"	3.5	304		
SSS-B-16-50-B-XX-XX	16	4.9	5" square	.188"	11"	10.25" - 13.25"	7.25" - 9.37"	11.50"	1" x 36" x 4"	4.5	219		
SSS-B-18-50-B-XX-XX	18	5.5	5" square	.188"	11"	10.25" - 13.25"	7.25" - 9.37"	11.50"	1" x 36" x 4"	4.5	243		
SSS-B-20-50-B-XX-XX	20	6.1	5" square	.188"	11"	10.25" - 13.25"	7.25" - 9.37"	11.50"	1" x 36" x 4"	4.5	267		
SSS-B-25-50-B-XX-XX	25	7.6	5" square	.188"	11"	10.25" - 13.25"	7.25" - 9.37"	11.50"	1" x 36" x 4"	4.5	327		
SSS-B-30-50-B-XX-XX	30	9.1	5" square	.188"	11"	10.25" - 13.25"	7.25" - 9.37"	11.50"	1" x 36" x 4"	4.5	387		
SSS-B-25-50-C-XX-XX	25	7.6	5" square	.25"	11"	10.25" - 13.25"	7.25" - 9.37"	11.50"	1" x 36" x 4"	4.5	427		
SSS-B-30-50-C-XX-XX	30	9.1	5" square	.25"	11"	10.25" - 13.25"	7.25" - 9.37"	11.50"	1" x 36" x 4"	4.5	507		
SSS-B-20-60-B-XX-XX	20	6.1	6" square	.188"	12"	11.00" - 13.25"	7.81" - 9.37"	12.25"	1" x 36" x 6"	4.5	329		
SSS-B-25-60-B-XX-XX	25	7.6	6" square	.188"	12"	11.00" - 13.25"	7.81" - 9.37"	12.25"	1" x 36" x 6"	4.5	404		
SSS-B-30-60-B-XX-XX	30	9.1	6" square	.188"	12"	11.00" - 13.25"	7.81" - 9.37"	12.25"	1" x 36" x 6"	4.5	479		
SSS-B-35-60-B-XX-XX	35	10.7	6" square	.188"	12"	11.00" - 13.25"	7.81" - 9.37"	12.25"	1" x 36" x 6"	4.5	554		
SSS-B-40-60-B-XX-XX	40	12.2	6" square	.188"	12"	11.00" - 13.25"	7.81" - 9.37"	12.25"	1" x 36" x 6"	4.5	629		

NOTE Factory supplied template must be used when setting anchor bolts. Beacon Products will deny any claim for incorrect anchorage placement resulting from failure to use factory supplied template and anchor bolts.

For more information about pole vibration and vibration dampers, please consult our website.

Due to our continued efforts to improve our products, product specifications are subject to change without notice.

Current 🗐

currentlighting.com/beacon

© 2022 HLI Solutions, Inc. All rights reserved. Information and specifications subject to change without notice. All values are design or typical values when measured under laboratory conditions.

DATE:	LOCATION:
TYPE:	PROJECT:
CATALOG #:	

ASCE 7-05 wind map EPA Load Rating - 3 second gust wind speeds												
		(Use for al	l location	s except	Florida)						
Catalog Number	85	90	100	105	110	120	130	140	145	150		
SSS-B-10-40-A	25.0	25.0	25.0	22.8	20.6	17.0	14.2	11.9	11.0	10.1		
SSS-B-12-40-A	25.0	25.0	20.0	18.0	16.1	13.2	10.8	8.9	8.1	7.4		
SSS-B-14-40-A	23.1	20.4	16.1	14.3	12.8	10.2	8.2	6.6	5.9	5.3		
SSS-B-16-40-A	19.0	16.7	13.0	11.5	10.1	7.9	6.2	4.7	4.1	3.6		
SSS-B-18-40-A	15.6	13.6	10.0	9.0	7.8	5.9	4.4	3.1	2.6	2.1		
SSS-B-20-40-A	12.7	10.9	7.9	6.9	5.9	4.2	2.8	1.7	1.3	0.9		
SSS-B-25-40-A	7.3	5.9	3.8	2.9	2.1	0.8	NR	NR	NR	NR		
SSS-B-14-40-B	25.0	25.0	23.3	20.8	18.6	15.1	12.3	10.2	9.2	8.4		
SSS-B-16-40-B	25.0	24.9	19.4	17.3	15.4	12.3	9.9	8.0	7.2	6.4		
SSS-B-18-40-B	24.0	20.8	16.1	14.2	12.5	9.8	7.7	6.1	5.3	4.7		
SSS-B-20-40-B	20.2	17.5	13.2	11.6	10.1	7.7	5.9	4.4	3.8	3.2		
SSS-B-25-40-B	12.8	11.0	7.9	6.7	5.5	3.7	2.3	1.2	0.7	NR		
SSS-B-30-40-B	8.0	6.6	4.1	3.1	2.2	0.8	NR	NR	NR	NR		
SSS-B-16-50-B	25.0	25.0	25.0	25.0	24.8	20.1	16.5	13.6	12.3	11.2		
SSS-B-18-50-B	25.0	25.0	25.0	22.9	20.4	16.4	13.2	10.7	9.6	8.6		
SSS-B-20-50-B	25.0	25.0	21.3	18.9	16.7	13.2	10.4	8.1	7.2	6.3		
SSS-B-25-50-B	20.7	17.8	13.3	11.5	9.8	7.2	5.0	3.3	2.6	1.9		
SSS-B-30-50-B	13.5	11.3	7.7	6.2	4.9	2.8	1.1	NR	NR	NR		
				-					-			
SSS-B-25-50-C	25.0	25.0	19.4	17.1	15.1	11.7	9.0	6.9	6.0	5.1		
SSS-B-30-50-C	20.1	17.3	12.7	10.9	9.3	6.6	4.5	2.8	2.1	1.4		
SSS-B-20-60-B	25.0	25.0	25.0	25.0	25.0	20.2	16.1	12.9	11.5	10.3		
SSS-B-25-60-B	25.0	25.0	20.6	18.0	15.6	11.8	8.7	6.2	5.2	4.2		
SSS-B-30-60-B	21.4	18.1	12.9	10.7	8.8	5.7	3.3	1.3	NR	NR		
SSS-B-35-60-B	14.0	11.3	6.9	5.2	3.6	1.0	NR	NR	NR	NR		
SSS-B-40-60-B	8.1	5.8	2.2	nr	NR	NR	NR	NR	NR	NR		

(Use for Florida only)											
Catalog Number	115	120	130	140	150	160	170	180			
SSS-B-10-40-A	25.0	25.0	25.0	25.0	21.4	18.4	15.9	13.9			
SSS-B-12-40-A	25.0	25.0	23.6	19.8	16.7	14.2	12.1	10.4			
SSS-B-14-40-A	25.0	23.1	19.0	15.7	13.1	10.9	9.1	7.6			
SSS-B-16-40-A	20.8	18.7	15.2	12.3	10.1	8.2	6.7	5.4			
SSS-B-18-40-A	16.8	15.0	11.9	9.4	7.5	5.9	4.5	3.4			
SSS-B-20-40-A	13.6	11.9	9.2	7.1	5.3	3.9	2.7	1.7			
SSS-B-25-40-A	7.4	6.2	4.1	2.5	1.1	NR	NR	NR			
SSS-B-14-40-B	25.0	23.6	19.4	16.1	13.4	11.2	9.4	7.8			
SSS-B-16-40-B	21.4	19.2	15.6	12.7	10.4	8.5	6.9	5.6			
SSS-B-18-40-B	17.2	15.4	12.2	9.7	7.7	6.1	4.7	3.6			
SSS-B-20-40-B	13.9	12.3	9.5	7.3	5.5	4.1	2.9	1.9			
SSS-B-25-40-B	7.7	6.4	4.3	2.6	1.3	NR	NR	NR			
SSS-B-30-40-B	3.2	2.1	NR	NR	NR	NR	NR	NR			
SSS-B-16-50-B	25.0	25.0	25.0	25.0	25.0	21.4	18.2	15.5			
SSS-B-18-50-B	25.0	25.0	25.0	24.4	20.4	17.0	14.2	11.9			
SSS-B-20-50-B	25.0	25.0	24.4	19.9	16.3	13.4	11.0	8.9			
SSS-B-25-50-B	21.8	19.3	15.0	11.5	8.8	6.5	4.7	3.1			
SSS-B-30-50-B	13.7	11.7	8.2	5.5	3.3	1.5	NR	NR			
SSS-B-25-50-C	21.8	19.3	15.0	11.5	8.8	6.5	4.7	3.1			
SSS-B-30-50-C	13.7	11.7	8.2	5.5	3.3	1.5	NR	NR			
SSS-B-20-60-B	25.0	25.0	25.0	21.9	17.8	14.5	11.7	9.4			
SSS-B-25-60-B	23.8	20.9	16.1	12.3	9.2	6.6	4.5	2.8			
SSS-B-30-60-B	14.6	12.3	8.4	5.3	2.8	0.8	NR	NR			
SSS-B-35-60-B	7.5	5.6	2.4	NR	NR	NR	NR	NR			
SSS-B-40-60-B	1.8	NR									

Current 🗐

currentlighting.com/beacon

© 2022 HLI Solutions, Inc. All rights reserved. Information and specifications subject to change without notice. All values are design or typical values when measured under laboratory conditions.

DATE:	LOCATION:
TYPE:	PROJECT:
CATALOG #:	

NOTES

Wind-speed Website disclaimer:

Current has no connection to the linked website and makes no representations as to its accuracy. While the information presented on this third-party website provides a useful starting point for analyzing wind conditions, Current has not verified any of the information on this third party website and assumes no responsibility or liability for its accuracy. The material presented in the windspeed website should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. Current does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the windspeed report provided by this website. Users of the information from this third party website assume all liability arising from such use. Use of the output of these referenced websites do not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the windspeed report. http://windspeed.atcouncil.org

NOTES

- · Allowable EPA, to determine max pole loading weight, multiply allowable EPA by 30 lbs.
- The tables for allowable pole EPA are based on the ASCE 7-05 Wind Map or the Florida Region Wind Map for the 2010 Florida Building Code. The Wind Maps are intended only as a general guide and cannot be used in conjunction with other maps. Always consult local authorities to determine maximum wind velocities, gusting and unique wind conditions for each specific application
- Allowable pole EPA for jobsite wind conditions must be equal to or greater than the total EPA for fixtures, arms, and accessories to be assembled to the pole. Responsibility lies with the specifier for
 correct pole selection. Installation of poles without luminaires or attachment of any unauthorized accessories to poles is discouraged and shall void the manufacturer's warranty
- Wind speeds and listed EPAs are for ground mounted installations. Poles mounted on structures (such as bridges and buildings) must consider vibration and coefficient of height factors beyond this
 general guide; Consult local and federal standards
- · Wind Induced Vibration brought on by steady, unidirectional winds and other unpredictable aerodynamic forces are not included in wind velocity ratings.
- Extreme Wind Events like, Hurricanes, Typhoons, Cyclones, or Tornadoes may expose poles to flying debris, wind shear or other detrimental effects not included in wind velocity ratings

Due to our continued efforts to improve our products, product specifications are subject to change without notice.

JULY 7, 2023

PLANNING STAFF REPORT

Application:PUD-23-7: Preliminary Development PlanLocation:The Spot, Perry Pike/US 42Applicant:Pizzino Engineering & Consulting LLC

Proposed Project

Applicant is requesting approval for Preliminary Development Plans for Planned Commercial Development.

Project Site Description

The site consists of 11.661 acres that was previous rezoned as PCD, Planned Unit Development. The conceptual drawings layout potentially 9 commercial buildings with a road connecting Perry Pike and State Route 42. Proposed tenants for development include grocery store, child daycare, laundry facility, light commercial retail and restaurants.

Village Planner Comments

Suggested discussion items to discuss with Developer;

- Buffering between adjacent properties and uses.
- Architectural standards throughout development. Standalone buildings vs multi-tenant spec style buildings similar that are represented in the concept sketches. Planning Commission's expectations for future buildings.
- Connecting road through development private or public.
- Sidewalk specs within development and along Perry Pike and St Rt 42.
- Thoughts on stormwater management. If retention ponds are required, locations and landscaping ideas.

Staff recommendations

As Plain City grows, Village Staff have recognized the want and need for more commercial amenities for our community. We are excited to receive our first commercial development plan for Planning Commission's review. The goal for the Preliminary Development Plan review, is that both the Planning Commission and applicant leave the meeting with an understanding of what is to be expected so that the developer can properly begin to prepare for Final Development Plan and engineering. Following Planning Commissions discussions and review, if the Commission feels that there is a clear plan to move forward, Staff recommends approval of the Preliminary Development Plan.

Derek Hutchinson Plain City Planner <u>dhutchinson@plain-city.com</u> 614-873-3527 ext. 105

Village Center of Plain City Traffic Impact Study

Prepared For:

Perry Pike Development, LLC

Prepared By:

1900 Crown Park Court, Suite E Columbus, OH 43235 (614) 914-5543 www.SmartServices-Inc.com

March 2022

REV. 2 3/2022

SSI Project #: 799902

© Smart Services, Inc., 2022 All Rights Reserved

Village Center of Plain City Traffic Impact Study

Prepared For:

Perry Pike Development, LLC 8500 Rausch Drive Plain City, OH 43064

Telephone:

Prepared By:

Smart Services, Inc. 1900 Crown Park Court, Suite E Columbus, OH 43235

Telephone: (614) 914-5543 e-mail: tstanhope@smartservices-inc.com

Under the direction of:

Registered Engineer No. E-64507, Ohio

March 2022

REV. 2 3/2022

TABLE OF CONTENTS

Background	1
Existing Conditions	1
Projected Site Traffic	4
2022 & 2032 Traffic	9
Traffic Analysis	15
Conclusions	23

APPENDIX

Correspondence Traffic Counts Referenced Documents Turn Lane Warrant Graphs Turn Lane Length Reports Capacity Reports

BACKGROUND

Paradigm Development Group is proposing to develop an approximately 11.66acre site with retail and office land uses. The site is located on the north side of Perry Pike west of Jefferson Avenue (US 42). Figure 1 shows the location of the site. The site will have three proposed accesses; one on the proposed northsouth street that intersects Perry Pike opposite Village Boulevard, one on Jefferson Avenue (US 42) between Perry Pike and an existing private road at the north end of the site and one as an extension of the existing private road that also intersects Jefferson Avenue (US 42). Figure 2 shows the site layout. The permitting agency for the accesses is the Village of Plain City and they are requiring a traffic impact study. The proposed scope is adapted from a previous draft TIS performed by Smart Services and dated 3/2021 submitted for this site that was never approved. The Village's engineering consultant, Mannik Smith Group, provided comments in a letter dated 5/19/2021. This revision incorporates the relevant comments.

An MOU for REV. 2 dated 12/16/2021 was updated for the current preliminary site plan. The Village provided comments in an email dated 2/22/2022. The MOU comments were incorporated into the TIS. The study area is included within the *Madison Meadows TIS* dated 7/24/2019 also performed by Smart Services, Inc. The study area intersections are as follows:

- Jefferson Avenue (US 42) & Ex. Private Drive
- Jefferson Ave. (US 42) & Der Dutchman Access (S)/Prop. Site Access (SE)
- Jefferson Avenue (US 42) & Perry Pike/West Avenue
- •Perry Pike & Village Boulevard/Site Access (S)

EXISTING CONDITIONS

Perry Pike is a two-lane street with a speed limit of 35 MPH inside the Village corporation limits. Table 1 shows a summary of the traffic count basis with peak hours and traffic control. The referenced count reports are in the Appendix.

INTERSECTION	SOURCE	AM PEAK	PM PEAK		
(Ex. Traffic Control)	SUURCE	HOUR	HOUR		
Jefferson Avenue (US 42) & Perry Pike/West Avenue (Traffic Signal)	Smart Services, Inc.	3/7/2019 7:00-8:00 AM	3/7/2019 4:15-5:15 PM		
Perry Pike & Village Boulevard ("Stop" sign on Village Blvd.)	Smart Services, Inc.	3/7/2019 *7:00-8:00 AM	3/7/2019 4:15-5:15 PM		
Jefferson Avenue (US 42) & Ex. Der Dutchman	Smart Services, Inc.	3/10/2022 **7:00-8:00 AM	3/10/2022 **4:15-5:15 PM		

*=Since small vehicle different matched peak of adjacent intersection.

**=One-hour samples taken consistent with the adjacent intersection.

TABLE 1 – Summary of Existing Traffic Basis

Village Center of Plain City Traffic Impact Study - 2

FIGURE 2 SITE LAYOUT VILLAGE CENTER OF PLAIN CITY TRAFFIC IMPACT STUDY REV. 2 3/2022 PREPARED BY:

Ņ

PROJECTED SITE TRAFFIC

Trip Generation

In traffic engineering, the accepted method for computing trip generation is utilizing data from the *Trip Generation Manual*, 11th *Edition* published by the Institute of Transportation Engineers. The following is the land use assumptions provided by the developer:

- •9,977 SF Variety Store (ITE Code #814)
- •28,082 SF Shopping Center (ITE Code #822)
- •7,500 SF Day Care Center (ITE Code #565)
- •17,100 SF Medical-Dental Office Building (ITE Code #720)
- •1 tunnel Automated Car Wash (ITE Code #848)

Table 2 shows the trip generation calculations.

Pass-by trips were also considered in the analysis. Pass-by trips are trips to commercial developments that are already on the adjacent street. For example, someone may stop to get gas on the way home from work. This reduces the impact of traffic on the adjacent street. It also changes the distribution of traffic since traffic enters the site from one direction and continues in the same direction after leaving the site. The traffic volume entering the site is not changed. The percentage of Pass-by trips are found in the *Trip Generation Handbook-An ITE Recommended Practice, 3rd Edition* published by ITE. The pass-by percentage is applied after the reduction for internal capture. Table 2 also shows the pass-by percentages.

			DATA SET	RATE OR EQUATION FROM:	Pass-By %		τοται		ENT	ERING			EXITING		
LOT ACREAGE	LAND USE	TIME OF DAY	<i>Trip Generation Manual, 11th Edition</i> (Unless noted Otherwise)	Trip Generation Manual 11th Edition	From <i>Trip</i> Generation Handbook 3rd Edition unless noted	TOTAL TRIPS	PRIMARY TRIPS	%	TOTAL TRIPS	PASS- BY TRIPS	PRIMARY TRIPS	%	TOTAL TRIPS	PASS- BY TRIPS	PRIMARY TRIPS
		Daily	Weekday	Average Rate= 54.45	NA	1529	1529	50%	765	0	765	50%	764	0	764
0.63, 0.73, & 3.46	Strip Retail Plaza (< 40k) (ITE Code #822)	AM Peak	Peak Hour of Adj. Street Traffic, One Hour between 7 & 9 AM	Average Rate= 2.36	No Data	66	66	60%	40	0	40	40%	26	0	26
	Ind. Variable (X) = 28.08 1000 SF Gross Leasable Area	PM Peak	Peak Hour of Adj. Street Traffic, One Hour between 4 & 6 PM	ln(T)=0.71ln(X)+2.72	34.0% *Similar to 820	162	107	51%	83	28	55	49%	79	27	52
	Variaty Store (ITE Cade #914)	Daily	Weekday	Average Rate= 63.66	NA	635	635	50%	318	0	318	50%	317	0	317
1.41	Variety Store (TE Code #614)	AM Peak	Peak Hour of Adj. Street Traffic, One Hour between 7 & 9 AM	Average Rate= 3.04	No Data	30	30	55%	17	0	17	45%	13	0	13
	Ind. Variable (X) = 9.98 1000 SF Gross Floor Area	PM Peak	Peak Hour of Adj. Street Traffic, One Hour between 4 & 6 PM	Average Rate= 6.70	34.0%	67	44	50%	34	12	22	50%	33	11	22
	Medical-Dental Office Building - Stand Alone	Daily	Weekday	Average Rate= 36.00	NA	616	616	50%	308	0	308	50%	308	0	308
1.71	(ITE Code #720)	AM Peak	Peak Hour of Adj. Street Traffic, One Hour between 7 & 9 AM	ln(T)=0.90ln(X)+1.34	NA NA	49	49	79%	39	0	39	21%	10	0	10
	Ind. Variable (X) = 17.10 1000 SF Gross Floor Area	PM Peak	Peak Hour of Adj. Street Traffic, One Hour between 4 & 6 PM	T=4.07(X)-3.17	NA NA	66	66	30%	20	0	20	70%	46	0	46
	Dev Care Cantor (ITE Cada #565)	Daily	Weekday	Average Rate= 47.62	NA	357	357	50%	179	0	179	50%	178	0	178
1.91	Day Care Center (TE Code #565)	AM Peak	Peak Hour of Adj. Street Traffic, One Hour between 7 & 9 AM	Average Rate= 11.00	NA NA	83	83	53%	44	0	44	47%	39	0	39
	Ind. Variable (X) = 7.50 1000 SF Gross Floor Area	PM Peak	Peak Hour of Adj. Street Traffic, One Hour between 4 & 6 PM	Average Rate= 11.12	NA NA	83	83	47%	39	0	39	53%	44	0	44
	Automoted Con Week (ITE Code #040)	Daily	Weekday	Average Rate= 0.00	NA	0	0	50%	0	0	0	50%	0	0	0
0.8	Automated Car wash (ITE Code #948)	AM Peak	Peak Hour of Adj. Street Traffic, One Hour between 7 & 9 AM	Average Rate= 0.00	No Data	0	0	50%	0	0	0	50%	0	0	0
	Ind. Variable (X) = 1.0 1000 SF Gross Floor Area	PM Peak	Peak Hour of Adj. Street Traffic, One Hour between 4 & 6 PM	Average Rate= 77.50	No Data	78	78	50%	39	0	39	50%	39	0	39
			Daily			3137	3137		1570	0	1570		1567	0	1567
	TUTALS		AM Peak			228	228		140	0	140		88	0	88
			PWIPeak			400	310		215	40	1/5		241	30	203

TABLE 2 - SITE TRIP GENERATION SUMMARY

Village Center of Plain City Traffic Impact Study - REV. 2: 12/2021

Trip Distribution

Primary Distribution - The primary distribution was assumed based on where housing is located relative to the site. The following is the assumed distribution:

- •35% to/from the north on US 42
- •25% to/from the south on US 42
- •20% to/from the west on Perry Pike
- •20% to/from the east on West Avenue

The distribution was assigned to the driveways based on direction of movement and difficulty of turn. Figures 3 and 4 shows the application of the primary distribution to the street network.

Pass-By Distribution – Pass-by Trips to the commercial areas along US 42 were calculated based on the existing traffic. The following is the results with the volume basis in parenthesis:

AM Peak

•47% south to north (NB) on US 42 [371/(371+420)] •53% north to south (SB) on US 42 [420/(371+420)]

<u>PM Peak</u>

•48% south to north (NB) on US 42 [466/(466+503)]

•52% north to south (SB) on US 42 [503/(466+503)]

Village Center of Plain City Traffic Impact Study - 7

Village Center of Plain City Traffic Impact Study - 8

2022 & 2032 TRAFFIC

The Village of Plain City requires a 10-year design horizon for the analysis. Opening day is 2022, therefore the design year is 2032. There are two components to the background traffic. The first is the application of background growth rates and the second is the projected trips from area developments.

Background Growth Rates

As part of the *Madison Meadows TIS*, annual growth rates for the study area intersections were provided by Mid-Ohio Regional Planning Commission (MORPC). The original correspondence from MORPC is in the Appendix. Table 3 shows the growth factors applied to the 2019 base counts.

SEGMENT	LINEAR ANNUAL GROWTH RATE	2019 TO 2022 FACTOR	2019 TO 2032 FACTOR		
Perry Pike	1.0%	1.030	1.130		
Village Boulevard	0.5%	1.015	1.065		
Jefferson Avenue (US 42)	2.0%	1.060	1.260		

TABLE 3 – Growth Factor Summary for 2019 Counts

Area Development Background Traffic

Background traffic was developed for the existing bank that has access to Jefferson Avenue (US 42) via the existing private street. Table 4 shows the trip generation for the bank which was only assigned to the turns since the traffic should be in the other counts.

In addition, estimated site traffic from the *Madison Meadows TIS* and *Madison Meadows II TIS* was extended through the subject study area. Relevant exhibits from the *Madison Meadows TIS* and *Madison Meadows II TIS* are in the Appendix.

Exhibits

Figures 5 and 6 show the components of the 2022 'Build' traffic. Figures 7 and 8 show the components of the 2032 'Build' traffic. To assist with review, exhibits showing the 2022 'No Build' and 2032 'No Build' traffic are in the Appendix.

			DATA SET	RATE OR EQUATION FROM: Pass-By %			TOTAL	ENTERING		EXITING	
LOT ACREAGE	LAND USE	TIME OF DAY	<i>Trip Generation Manual, 11th Edition</i> (Unless noted Otherwise)	Trip Generation Manual 11th Edition	From <i>Trip</i> Generation Handbook 3rd Edition unless noted	TOTAL TRIPS	PRIMARY TRIPS	%	TOTAL TRIPS	%	TOTAL TRIPS
Drive-in Bank Ex	Drive in Benk (ITE Code #042)	Daily	Weekday	Average Rate= 100.35	NA	337	337	50%	169	50%	168
	Drive-in Bank (ITE Code #912)	AM Peak	Peak Hour of Adj. Street Traffic, One Hour between 7 & 9 AM	Average Rate= 9.95	NA NA	33	33	58%	19	42%	14
	Ind. Variable (X) = 3.36 1000 SF Gross Floor Area	PM Peak	Peak Hour of Adj. Street Traffic, One Hour between 4 & 6 PM	Average Rate= 21.01	NA NA	71	71	50%	36	50%	35
			Daily			337	337		169		168
TOTALS		AM Peak					33		19		14
			PM Peak			71	71		36		35

Village Center of Plain City Traffic Impact Study - REV. 2: 12/2021

TABLE 4 - SITE TRIP GENERATION SUMMARY

Village Center of Plain City Traffic Impact Study - 11

Village Center of Plain City Traffic Impact Study - 12

Village Center of Plain City Traffic Impact Study - 14

TRAFFIC ANALYSIS

Turn Lane Warrant Analysis

The procedure to determine whether turn lanes are warranted is according to the *ODOT L&D Manual* published by the Ohio Department of Transportation (ODOT). The speed limit of 35 MPH was used for the analysis. The results are shown in Table 5. The graphs from the *ODOT L&D Manual* are in the Appendix.

MOVEMENT	2022 'NO BUILD'	2022 'BUILD'	2032 'NO BUILD'	2032 'BUILD'
Perry Pike EB left turn at Prop. Site Access	NA	Warrant Not Met	NA	Warrant Not Met
Perry Pike WB right turn at Prop. Site Access (S)	NA	Warrant Not Met	NA	Warrant Not Met
Jefferson Ave (US 42) NB left turn at Prop. Site Access (SE)	NA	Warrant Met	NA	Warrant Met
Jefferson Ave (US 42) SB right turn at Prop. Site Access (SE)	NA	Warrant Not Met	NA	Warrant Not Met
Jefferson Ave (US 42) NB left turn at Ex. Private Road	Warrant Met	Warrant Met	Warrant Met	Warrant Met
Jefferson Ave (US 42) SB right turn at Ex. Private Road	Warrant Not Met	Warrant Met	Warrant Not Met	Warrant Met

TABLE 5 – Summary of Turn Lane Warrant Analysis

Signalized Capacity Analysis

Signalized capacity analyses were performed at the existing signalized intersection of Jefferson Avenue (US 42) & Perry Pike. The purpose of the analysis was to determine if any mitigation is necessary to accommodate the site traffic. In the analyses, delays are computed which correspond to a Level of Service (LOS) "A" through "F". Typically, LOS D and above is considered an acceptable LOS. Since driver expectations are different for various types of traffic control, there are different LOS criteria for unsignalized intersections versus signalized intersections. LOS criteria for signalized intersections are shown in Table 6.

LEVEL OF	DELAY				
SERVICE	(seconds/vehicle)				
Α	<10				
В	> 10 and <u><</u> 20				
С	> 20 and <u><</u> 35				
D	> 35 and <u><</u> 55				
E	> 55 and <u><</u> 80				
F	> 80				

Source: Highway Capacity Manual 2010

TABLE 6 - Level of Service Criteria for Signalized Intersections

The following comprises the background of the signalized capacity analysis:

•*HCS 7* was used to perform the analysis.

•The existing lane configurations and phasing were used as the base analysis.

•The existing truck percentage was used for all lane groups.

•The following default values and guidance were applied per the ODOT *L&D Manual:*

•Peak hour factor used was the HCS7 default of 0.92.

 $\circ The signal was assumed to be uncoordinated and the timing input was entered as field measured phase times.$

 \circ Right turn on red (RTOR) = 0

 \circ Cycle length = 60 to 120 seconds. [120 seconds was used which is a typical cycle length used in planning.]

• Timing was adjusted for each case such that critical approach delays were balanced within one second when possible.

A summary of the results is shown in Table 7. The *HCS7* reports are in the Appendix. The results are discussed in the Conclusions section.

TIME	YEAR	DELAY (LEVEL OF SERVICE)					
		Intersection	Eastbound	Westbound	Northbound	Southbound	
AM Peak	2022 'No Build' Traffic	24.8 (C)	26.5 (C)	20.3 (C)	22.7 (C)	26.1 (C)	
	2022 'Build' Traffic	26.1 (C)	28.1 (C)	20.0 (B)	24.5 (C)	27.6 (C)	
	2032 'No Build' Traffic	26.6 (C)	28.4 (C)	21.1 (C)	23.3 (C)	29.1 (C)	
	2032 'Build' Traffic	28.0 (C)	31.7 (C)	21.5 (C)	24.5 (C)	29.8 (C)	
	2032 'Build' Traffic W/ Nb Lt Phase	33.3 (C)	40.3 (D)	25.3 (C)	18.8 (B)	40.5 (D)	
PM Peak	2022 'No Build' Traffic	25.7 (C)	27.9 (C)	24.1 (C)	23.1 (C)	27.0 (C)	
	2022 'Build' Traffic	26.0 (C)	41.2 (D)	28.9 (C)	20.3 (C)	22.2 (C)	
	2032 'No Build' Traffic	27.6 (C)	31.6 (C)	26.5 (C)	23.5 (C)	29.3 (C)	
	2032 'Build' Traffic	28.6 (C)	54.2 (D)	32.0 (C)	20.3 (C)	23.0 (C)	
	2032 'Build' Traffic W/ Nb Lt Phase	39.5 (D)	53.5 (D)	31.8 (C)	18.4 (B)	50.8 (D)	
	TIME AM Peak PM Peak	TIMEYEAR2022 'No Build' TrafficAM Peak2022 'Build' Traffic2032 'No Build' Traffic2032 'Build' Traffic2032 'Build' Traffic W/ Nb Lt Phase2022 'No Build' Traffic2032 'No Build' TrafficPM Peak2032 'No Build' Traffic2032 'Build' Traffic2032 'Build' Traffic2032 'Build' Traffic	TIME YEAR Intersection 2022 'No Build' Traffic 24.8 (C) 2022 'Build' Traffic 26.1 (C) 2032 'Build' Traffic 26.6 (C) 2032 'Build' Traffic 28.0 (C) 2032 'Build' Traffic 33.3 (C) PM Peak 2022 'No Build' Traffic 2022 'Build' Traffic 25.7 (C) 2022 'Build' Traffic 26.0 (C) 2032 'Build' Traffic 26.6 (C) 2032 'Build' Traffic 26.0 (C) 2032 'Build' Traffic 39.5 (D)	TIME YEAR Intersection Eastbound 2022 'No Build' Traffic 24.8 (C) 26.5 (C) 2022 'Build' Traffic 26.1 (C) 28.1 (C) 2032 'Build' Traffic 26.6 (C) 28.4 (C) 2032 'Build' Traffic 28.0 (C) 31.7 (C) 2032 'Build' Traffic W/ Nb Lt Phase 33.3 (C) 40.3 (D) 2022 'No Build' Traffic 26.0 (C) 41.2 (D) 2032 'Build' Traffic 26.0 (C) 31.6 (C) 2032 'Build' Traffic 28.6 (C) 54.2 (D) 2032 'Build' Traffic W/ Nb Lt Phase 39.5 (D) 53.5 (D)	TIME YEAR Intersection Eastbound Westbound AM Peak 2022 'No Build' Traffic 24.8 (C) 26.5 (C) 20.3 (C) 2022 'Build' Traffic 26.1 (C) 28.1 (C) 20.0 (B) 2032 'No Build' Traffic 26.6 (C) 28.4 (C) 21.1 (C) 2032 'Build' Traffic 28.0 (C) 31.7 (C) 21.5 (C) 2032 'Build' Traffic W/ Nb Lt Phase 33.3 (C) 40.3 (D) 25.3 (C) 2022 'Build' Traffic 26.0 (C) 41.2 (D) 28.9 (C) 2032 'Build' Traffic 26.0 (C) 41.2 (D) 28.9 (C) 2032 'Build' Traffic 27.6 (C) 31.6 (C) 26.5 (C) 2032 'Build' Traffic 28.6 (C) 54.2 (D) 32.0 (C) 2032 'Build' Traffic W/ Nb Lt Phase 39.5 (D) 53.5 (D) 31.8 (C)	TIME YEAR Intersection Eastbound Westbound Northbound 2022 'No Build' Traffic 24.8 (C) 26.5 (C) 20.3 (C) 22.7 (C) 2022 'Build' Traffic 26.1 (C) 28.1 (C) 20.0 (B) 24.5 (C) AM Peak 2032 'No Build' Traffic 26.6 (C) 28.4 (C) 21.1 (C) 23.3 (C) 2032 'Build' Traffic 28.0 (C) 31.7 (C) 21.5 (C) 24.5 (C) 2032 'Build' Traffic W/ Nb Lt 33.3 (C) 40.3 (D) 25.3 (C) 18.8 (B) 2022 'No Build' Traffic 26.0 (C) 41.2 (D) 28.9 (C) 23.1 (C) 2032 'Build' Traffic 26.0 (C) 41.2 (D) 28.9 (C) 20.3 (C) PM Peak 2032 'No Build' Traffic 27.6 (C) 31.6 (C) 26.5 (C) 23.5 (C) 2032 'Build' Traffic 28.6 (C) 54.2 (D) 32.0 (C) 20.3 (C) 2032 'Build' Traffic W/ Nb Lt 39.5 (D) 53.5 (D) 31.8 (C) 18.4 (B)	

TABLE 7 - Signalized (HCS 7) Capacity Summary

Unsignalized Capacity Analyses

Unsignalized capacity analyses were performed at study area intersections. In the analyses, delays are computed which correspond to a Level of Service (LOS) "A" through "F". Typically, Level of Service (LOS) "D" or above is considered an acceptable LOS. For a Two-Way Stop condition, the unsignalized capacity analysis gives LOS results for vehicles that must wait for gaps to make their maneuver. In this case, it would be the left turns from the major street and the minor street movements. All other movements are free flowing, so they do not encounter delay. Since driver expectations are different for various types of traffic control, there are different LOS criteria for unsignalized intersections versus signalized intersections. The LOS criteria for two-way stop control are shown in Table 8.

LEVEL OF	DELAY					
SERVICE	(seconds/vehicle)					
Α	<10					
В	> 10 and <u><</u> 15					
С	> 15 and <u><</u> 25					
D	> 25 and <u><</u> 35					
E	> 35 and <u><</u> 50					
F	> 50					

Source: *Highway Capacity Manual 2010* TABLE 8 - Level of Service Criteria for Unsignalized Intersections

The following comprises the background of the analysis:

- •*HCS 7* was used to perform the analysis.
- •A Peak Hour Factor (PHF) of 0.92 was used.
- •A 3% heavy vehicle percentage was assumed.
- •The warranted turn lanes were considered in the analyses.

The results are shown in Tables 9 and 10. The results are discussed in the Conclusions section. The *HCS 7* reports are in the Appendix.

INTERSECTION	TIME	YEAR	DELAY (LEVEL OF SERVICE)					
			Main Street		Minor Street			
			Eastbound	Westbound	Northbound			Southbound
			Left	Left	All			All
Prop. Site Access (S)/Village Boulevard & Perry Pike	AM Peak	2022 'Build' Traffic	7.6 (A)	8.1 (A)	12.1 (B)			13.8 (B)
		2032 'Build' Traffic	7.6 (A)	8.1 (A)	12.3 (B)			14.1 (B)
	PM Peak	2022 'Build' Traffic	8.3 (A)	7.9 (A)	21.4 (C)			23.1 (C)
		2032 'Build' Traffic	8.3 (A)	7.9 (A)	22.7 (C)			24.5 (C)

Village Center of Plain City Traffic Impact Study - REV. 2: 3/2022

TABLE 9 - Unsignalized Capacity Summary - (2-Way-Stop, East-West Major Street)

INTERSECTION	TIME	YEAR	DELAY (LEVEL OF SERVICE)						
			Main Street		Minor Street				
			Northbound	Southbound	Eastbound	Eastbound	Eastbound	Westbound	
			Left	Left	All	Left	Right	All	
Jefferson Ave. (US 42) & Ex. Private Road	AM Peak	2022 'Build' Traffic	8.8 (A)		20.2 (C)				
		2032 'Build' Traffic	9.1 (A)		24.5 (C)				
	PM Peak	2022 'Build' Traffic	9.9 (A)		49.7 (E)				
		2032 'Build' Traffic	10.4 (B)		87.6 (F)				
		2032 'Build' Traffic W/ Nb Lt Phase	10.4 (B)		59.2 (F)	94.8 (F)	17.4 (C)		
Jefferson Ave. (US 42) & Prop. Site Access (SE)/Ex. Der Dutchman Access (S)	AM Peak	2022 'Build' Traffic	8.7 (A)	8.7 (A)	15.8 (C)			18.1 (C)	
		2032 'Build' Traffic	9.0 (A)	9.0 (A)	18.4 (C)			21.4 (C)	
	PM Peak	2022 'Build' Traffic	9.6 (A)	9.0 (A)	34.9 (D)			27.7 (D)	
		2032 'Build' Traffic	10.0 (A)	9.4 (A)	51.8 (F)			36.6 (E)	
		2032 'Build' Traffic	10.0 (A)	9.4 (A)	51.8 (F) Village	Center of Plain City	Traffic Impact Stu	36.6 (E	

TABLE 10 - Unsignalized Capacity Summary - (2-Way Stop, North-South Major Street)

Turn Lane Length

The turn lane length for the warranted and recommended turn lanes per the analyses were calculated. The calculation was performed per Section 400 of the *ODOT L&D Manual*. The design speed in the calculation was assumed to be 5 MPH above the posted speed limit which would be 40 MPH on Jefferson Avenue (US 42) and Perry Pike. The results are shown in Table 11. The calculations are in the Appendix.

MOVEMENT	2022 'NO BUILD'	2022 'BUILD'	2032 'NO BUILD'	2032 'BUILD'
	ODOT L&D Manual	ODOT L&D Manual	ODOT L&D Manual	ODOT L&D Manual
Jefferson Ave (US 42) NB LT at Ex. Private Road	125'	125'	125'	125'
Ex. Private Road EB LT at Jefferson Ave (US 42)	NA	NA	NA	100'
Jefferson Ave (US 42) SB RT at Ex. Private Road	NA	125'	NA	125'
Jefferson Ave (US 42) NB LT at Prop. Site Access (SE)	NA	125'	NA	125'

TABLE 11 – Turn Lane Length Results (Includes the 50' diverging taper)
Queing Analyses

Per MOU comment #6, queuing was evaluated for the west and north legs of the Jefferson Avenue (US 42) & Perry Pike/West Avenue. Since the request was due to the access locations, only 2032 was analyzed.

Jefferson Avenue (US 42) southbound at Perry Pike - There is approximately 270 feet of storage on Jefferson Avenue (US 42) between the proposed access and Perry Pike/West Avenue. Note that there is also an existing gas station full access between the two intersections. There are two methods. The first is the 95th percentile queues from the signalized capacity analyses and the second is the turn lane length calculation per Section 400 of the *ODOT L&D Manual*. The results of the comparison are shown in Table 12. The additional signalized turn lane calculations are in the Appendix. The results will be discussed in the conclusions section.

				2032 'B	UILD' w/
AVAILABLE				NB LT	PHASE
STORAGE	STREET	LANE	PEAK	HCS	ODOT L&D
(Approx)			HOUR	95 th	Manual
				Percentile	Lane Length/
				Queue	Storage
		SB	AM	30 4'	
		0D ا مft	Peak	00.4	265'/
	03 42 3D at	Turn	PM	642'	150'
	Perry		Peak		
	Pike/West	SB	AM	66.2'	
	Avenue	thru-	Peak	00.2	NA/
*270'		riaht	PM	924 6'	855'
(Fx. SB I T			Peak	02-110	
185')		NB	AM	**2 5	
/			Peak	2.0	125'/
	at	Turn	PM	**5 0	50'
	Pron Site		Peak	0.0	
		NB	AM	NA	
	(QE)	thru	Peak	(Free Flow)	NA
		right	PM	NA	(Free Flow)
		nynt	Peak	(Free Flow)	

*=Existing gas station full access also is between the two intersections.

=Output of unsignalized reported in vehicles. So result was assumed to be vehicle x 25 feet. TABLE 12 – Summary of southbound queuing **Perry Pike eastbound at Jefferson Avenue (US 42) - There is approximately 350 feet of storage on Perry Pike between the proposed site access opposite Village Boulevard and Jefferson Avenue (US 42). Note that there is also an existing gas station full access between the two intersections. There are two methods. The first is the 95th percentile queues from the signalized capacity analyses and the second is the turn lane length calculation per Section 400 of the *ODOT L&D Manual*. The results of the comparison are shown in Table 13. The additional signalized turn lane calculations are in the Appendix. The results will be discussed in the conclusions section.

AVAILABLE				2032 'BUILD' w/ NB LT PHASE			
STORAGE (Approx.)	STREET	LANE	PEAK HOUR	HCS 95 th Percentile Queue	ODOT L&D Manual Lane Length/ Storage		
	US 42 SB at	EB	AM Peak	486'	NA/		
*250	Pike/West Avenue	right	PM Peak	473'	525'		
*350′	US 42 NB at	WB	AM Peak	NA (Free Flow)	NA		
	Access (SE)	right	PM Peak	NA (Free Flow)	(Free Flow)		

*=Existing gas station full access also is between the two intersections. TABLE 13 – Summary of southbound queuing

CONCLUSIONS

2022 'Build' and 2032 'Build' volumes were developed for use in turn lane warrant, capacity, and turn lane length analyses. Below is a summary of the conclusions for each condition:

2022 'No Build'

• Jefferson Ave. (US 42) & Ex. Private Drive

 $\circ A$ northbound left turn lane is warranted. The length of the lane is 125 feet which includes the 50-foot diverging taper.

•A southbound right turn lane is not warranted.

• Jefferson Ave. (US 42) & Perry Pike/West Avenue

•The intersection and all approaches operate at an acceptable LOS.

2022 'Build'

• Jefferson Avenue (US 42) & Ex. Private Drive

•Same as 'No Build': A northbound left turn lane is warranted. The length of the lane is 125 feet which includes the 50-foot diverging taper.

•A southbound right turn lane is warranted. The length of the lane is 125 feet which includes the 50-foot diverging taper.

•The impeded movements operate at an acceptable Level of Service (LOS) with the exception of the eastbound approach which operates at LOS E. This is an expected result and driveway intersection with a major street.

•Jefferson Ave. (US 42) & Der Dutchman Access (S)/Prop. Site Access (SE) •A northbound left turn lane is warranted. The length of the lane is 125 feet which includes the 50-foot diverging taper.

•A southbound right turn lane is not warranted.

 $\circ The impeded movements operate at an acceptable Level of Service (LOS).$

•The 2032 southbound queue analysis from Jefferson Avenue (US 42) & Perry Pike/West Avenue extends beyond the access.

• Jefferson Avenue (US 42) & Perry Pike/West Avenue

•Same as 'No Build': The intersection and all approaches operate at an acceptable LOS.

•Perry Pike & Village Boulevard/Site Access (S)

•An eastbound left turn lane is not warranted.

•A westbound left turn lane is not warranted.

 $\circ The impeded movements operate at an acceptable Level of Service (LOS)$

•The 2032 eastbound queue analysis from Jefferson Avenue (US 42) & Perry Pike/West Avenue extends beyond the access. In the future, potential capacity improvements by others at Jefferson Avenue (US 42) & Perry Pike/West Avenue likely will be needed. The addition of an eastbound left turn lane or right turn lane on Perry Pike would provide more storage between the two intersections.

2032 'No Build'

• Jefferson Avenue (US 42) & Perry Pike/West Avenue

•The intersection and all approaches operate at an acceptable LOS.

• Jefferson Avenue (US 42) & Ex. Private Drive

•A northbound left turn lane is warranted. The length of the lane is 125 feet which includes the 50-foot diverging taper.

•A southbound right turn lane is not warranted.

2032 'Build'

• Jefferson Avenue (US 42) & Perry Pike/West Avenue

•Same as 'No Build': The intersection and all approaches operate at an acceptable LOS.

• Jefferson Avenue (US 42) & Ex. Private Drive

•Same as 'No Build': A northbound left turn lane is warranted. The length of the lane is 125 feet which includes the 50-foot diverging taper.

•A southbound right turn lane is warranted. The length of the lane is 125 feet which includes the 50-foot diverging taper.

•The impeded movements operate at an acceptable Level of Service (LOS) with the exception of the eastbound and westbound approaches which operate below the LOS D-E threshold. This is an expected result and driveway intersection with a major street. The developer can provide an eastbound left turn lane which will allow the right turns not to be delayed by the left turns. The minimum length of the eastbound left turn lane is 100 feet which includes the 50-foot diverging taper.

•Jefferson Ave. (US 42) & Der Dutchman Access (S)/Prop. Site Access (SE)

•A northbound left turn lane is warranted. The length of the lane is 125 feet which includes the 50-foot diverging taper.

•A southbound right turn lane is not warranted.

•The impeded movements operate at an acceptable Level of Service (LOS) with the exception of the eastbound approach which operates at LOS E. This is an expected result and driveway intersection with a major street.

•The southbound queue from Jefferson Avenue (US 42) & Perry Pike/West Avenue extends beyond the access.

• Perry Pike & Village Boulevard/Site Access

•An eastbound left turn lane is not warranted.

•A westbound left turn lane is not warranted.

 $\circ The impeded movements operate at an acceptable Level of Service (LOS)$

•The eastbound queue analysis from Jefferson Avenue (US 42) & Perry Pike/West Avenue extends beyond the access. In the future, potential capacity improvements by others at Jefferson Avenue (US 42) & Perry Pike/West Avenue likely will be needed. The addition of an eastbound left turn lane or right turn lane on Perry Pike would provide more storage between the two intersections.

Figure 9 shows a concept widening that creates the storage areas needed on Jefferson Avenue (US 42) for the site as well as accommodating existing driveways on the east side.

APPENDIX

From:	Haley Lupton
To:	Todd Stanhope
Cc:	Taylor Brill
Subject:	FW: Village Center of Plain City TIS REV 2 - Memo of Understanding/Preliminary Analysis
Date:	Friday, February 11, 2022 1:29:22 PM
Attachments:	image005.png image006.png

Good afternoon,

Please see below for the traffic study comments from the engineer.

Thank you, Haley

Haley Lupton

Acting Village Administrator The Village of Plain City Office: 614.873.3527 x 119 800 Village Blvd., Plain City, Ohio 43064 Mailing Address: P.O. Box 167, Plain City, OH 43064

f

From: Randy L. VanTilburg <RVanTilburg@manniksmithgroup.com>
Sent: Thursday, February 10, 2022 5:17 PM
To: Haley Lupton <hlupton@plain-city.com>
Cc: Taylor Brill <tbrill@plain-city.com>
Subject: RE: Village Center of Plain City TIS REV 2 - Memo of Understanding/Preliminary Analysis

Haley,

Here are our comments from our traffic team regarding the Traffic MOU.

- 1. The site plan has changed and has some higher intensity uses. This will likely present higher traffic impacts in terms of lane warrants and lane storage lengths.
- 2. On page 1, the MOU indicates that the site will have two new access points, however in the first paragraph should be more specific to the intent of the additional access to the existing drive to the north.
- 3. On page 2, the listing of intersections is confusing. Please bullet these in the MOU or final version of the full report for clarity.
- 4. Growth rates are consistent with the previous study.
- 5. AM and PM study periods are consistent with the last study.
- 6. On Page 2, clarify that operational analyses will be performed on all four intersections. Also clarify that queueing/storage lengths will be evaluated for the west leg of Perry Pike form US 42 to and including Village Boulevard and the site drive and for US 42 from Perry Pike to the existing drive to the north. All vehicular queueing conditions in these areas should be

addressed/presented due to the close drive/intersection spacing.

- 7. Trip Generation appears correct with ITE Trip Generation Manual 11th Edition (most current) used.
- 8. Trip distribution looks correct except we noted that the figure is off by 2.
- 9. Figure shows 243 existing trips and trip table shows 241 trips. This is minor but should be corrected. Also the Der Dutchman left and right turn movements into and out of the site should be estimates (even if by using trip generation as opposed to field counts). These movements should be included in the operational analyses as a 4-way intersection.
- 10. Turn lane warrants should be provided for all turn movements at all three site access locations.
- 11. Since the land uses are not confirmed, any changes in land uses may require revisiting the trip generation to verify any increase or decrease in site traffic predictions. For instance a restaurant, especially a fast food with a drive thru, would result in a significant increase in the predicted site traffic. If the changes in site traffic prediction is minor based on a revisit of trip generation, the traffic study would not likely be required to be revised. A significant change (more than a 10% increase) may require a revisit of the traffic study.

Randy VanTilburg, PE

Senior Associate & Senior Project Manager **The Mannik & Smith Group, Inc.** 1160 Dublin Road, Suite 100 Columbus, OH 43215 (office) 614-441-4222 ext. 1204 (cell) 614-546-9269

www.MannikSmithGroup.com

From: Haley Lupton <<u>hlupton@plain-city.com</u>>
Sent: Friday, December 17, 2021 10:48 AM
To: Randy L. VanTilburg <<u>RVanTilburg@manniksmithgroup.com</u>>
Subject: FW: Village Center of Plain City TIS REV 2 - Memo of Understanding/Preliminary Analysis

EXTERNAL EMAIL: Open with EXTREME caution! Good morning Randy,

The traffic study is resuming. Todd Stanhope said that M&S was working on comments.... Can you fill me in/do you have comments that they need to address before I sign an MOU?

December 16, 2021

Ms. Haley Lupton, MPA Village Administrator The Village of Plain City P.O. Box 167 Plain City, OH 43064

Re: Village Center of Plain City TIS REV. 2 – Memo of Understanding Village of Plain City, Madison County, Ohio

Dear Ms. Lupton:

Please consider this letter a Memo of Understanding (MOU) and preliminary analysis for the revised traffic impact study (TIS) for the subject development.

MEMO OF UNDERSTANDING

Paradigm Development Group is proposing to develop an approximately 11.66acre site with retail and office land uses. The site is located on the north side of Perry Pike west of Jefferson Avenue (US 42). The site will have two proposed full accesses; one on the proposed north-south street that intersects Perry Pike opposite Village Boulevard and the other on Jefferson Avenue (US 42) between Perry Pike and an existing private road at the north end of the site. The existing private road also intersects Jefferson Avenue (US 42). The permitting agency for the accesses is the Village of Plain City and they are requiring a traffic impact study. The proposed scope is adapted from a previous DRAFT TIS performed by Smart Services and dated 3/2021 submitted for this site that was never approved. The MOU was updated for the current preliminary site plan. The study area is included within the *Madison Meadows TIS* dated 7/24/2019 also performed by Smart Services, Inc.

Specific end users for the site are unknown at this time. The TIS will be based on the preliminary site plan attached for reference. The following are the land use assumptions being used in the TIS (It is noted that these could be refined in the TIS process if there are revisions to the site plan or specific end users become known.):

- •9,977 SF Variety Store (ITE Code #814)
- •28,082 SF Shopping Center (ITE Code #822)
- •7,500 SF Day Care Center (ITE Code #565)
- •17,100 SF Medical-Dental Office Building (ITE Code #720)
- •1 tunnel Automated Car Wash (ITE Code #848)

The following is our understanding of the scope of the study based on a previous TIS of the site:

- The study area will be the intersections of Perry Pike & Village Boulevard/Proposed public street and Jefferson Avenue (US 42) & Perry Pike as well as the private street intersections with Jefferson Avenue (US 42) and Perry Pike. In addition, the proposed full access on Jefferson Avenue (US 42) will be analyzed.
- The time of analysis will be the weekday AM Peak hour (one hour between 7 and 9 AM) and the PM Peak hour (one hour between 4 and 6 PM).
- Data Collection Study area data from the *Madison Meadows TIS* will be utilized so no data collection is needed for the TIS.
- Trip Generation Projected trips will be calculated using *Trip Generation Manual, 11th Edition*, published by the Institute of Transportation Engineers (ITE).
- Horizon Year Traffic Development The Village of Plain City requires a 10year design horizon. Opening day is assumed to be 2022, therefore the design year is 2032. Annual growth rates obtained from MORPC as part of the *Madison Meadows TIS* will be utilized and are shown in Table A.

SEGMENT	LINEAR ANNUAL GROWTH RATE
Perry Pike	1.0%
Village Boulevard	0.5%
Jefferson Avenue (US 42)	2.0%

 TABLE A – Growth Factor Summary for 2019 Counts

- Site Traffic from the *Madison Meadows TIS* will be added to the background.
- Analyses
 - A turn lane warrant analysis will be performed at the intersection of Perry Pike & Village Boulevard/Site Access.
 - The length of any warranted turn lanes will be calculated.
 - A signalized capacity analysis will be performed at the intersection of Jefferson Avenue (US 42) & Perry Pike for the purpose of determining if any signal timing adjustments will be needed to accommodate the site traffic.
 - Since there is a proposed full access point on US 42 between Perry Pike & the existing private road, analysis of back-to-back left turn lanes will be performed. Since it is critical to the site plan, a preliminary analysis has been provided.

A report will be produced that includes the data and provides the conclusions as well as the methods and analyses used.

If this MOU is acceptable to you, please indicate your approval in the space provided below. If not, please let us know what items need to be changed.

PRELIMINARY ANALYSIS

To assist the reviewer with evaluating the access, back-to-back left turn lanes were evaluated on US 42 between Perry Pike & the existing private road.

Traffic Development

Input to these calculations were developed based on the new site plan and parameters in the current MOU. See revised Tables 2 and 4 as well as revised Figures 6 and 7.

Left Turn Lane Length Analysis

There is approximately 270 feet of storage on Jefferson Avenue (US 42) between the proposed access and Perry Pike/West Avenue. Note that there is also an existing gas station full access between the two intersections. The method for turn lane length calculation is per Section 400 of the *ODOT L &D Manual*. The results of the calculations per the *ODOT L&D Manual* are shown in Table B for both the total turn length and just the storage. The calculations are attached. **The results show that considering only storage, the distance will accommodate the proposed access.**

				2032 'Build'				
STREET	STORAGE (Approx.)	LANE	PEAK HOUR	*ODOT L&D Manual Lane Length	*ODOT L&D Manual Storage Only			
*US 42		NB	AM Peak	125'	50'			
btw Prop. Site	270' (Ex. SB LT	Turn	PM Peak	125'	50'			
Access and Perry Pike/West Avenue	185')	SB	AM Peak	215'	100'			
		Turn	PM Peak	265'	150'			

*=Existing gas station full access also is between the two intersections. TABLE B – Summary of Back-to-Back Left Turn If you have any questions, please contact me. Thank you!

Sincerely, **SMART SERVICES, INC.**

ense

Todd J. Stanhope, PE, PTOE Director of Traffic Engineering

Submitted: One electronic copy (PDF format) via e-mail

Cc: D. Hatcher

<u>Village of Plain City</u>

Approved:_____ Date:____

May 19, 2021

Nathan Cahall, Village Administrator Village of Plain City 213 S. Chillicothe Street Plain City, OH 43064

Subject: Perry Pike Development

Dear Nathan:

Our team has reviewed the plans for the above referenced project. Below is a comprehensive list of comments.

Sheet C1

1. Please adjust viewport window so that text isn't cut off on the periphery and enlarge existing contour text for readability.

Sheet O1

- 2. Please add a 10' asphalt multi-use path along the frontage Perry Pike as discussed in the 5/11 meeting.
- 3. Please add a 5' concrete sidewalk along the frontage of Jefferson Ave. as discussed in the 5/11 meeting.
- 4. Please add a 20' landscaping buffer along Jefferson Ave. as discussed in the 5/11 meeting.
- Please provide a lighting plan that matches the lighting on the existing Village Boulevard as discussed in the 5/11 meeting.
- 6. Please label Curve 3.
- 7. Please display proposed contours for the improvements beyond the basin on the grading sheet.
- 8. Please note that per Village code, proposed streets that are a continuation of an existing street across an intersection shall maintain the same name.
- 9. Add applicable Village standard notes from Appendix D of the Zoning Code.
- 10. The Village Code dictates that all arterial roadways require a 100' minimum right of way. An additional 20' will be required to be dedicated to Jefferson Ave. as discussed in the 5/11 meeting.
- 11. The Village Code dictates that all minor collector roadways require a 66' minimum right of way. An additional 8' will be required to be dedicated to Perry Pike as discussed in the 5/11 meeting.

Sheet S1

- 12. Consider showing only the street and storm profiles within the roadway sheets.
- 13. Please adjust the leader to point to the drainage detail at the top of the page.
- 14. Please ensure all structures have a legible label on each sheet that they are shown, for example STM 1.
- 15. Please label storm structure names within the profile view (all sheets).
- 16. Curb is misspelled in the underdrain connection note.
- 17. Clarify the profile label "existing san grade"

P2040035.1st.Review.Plans.051921.Doc

Sheet S2

- 18. Correct the curve label at the bend of the roadway to be C3.
- 19. Please note that per the Village Code, all street centerline radii are to have a minimum dimension of 200' or a variance request will need to be submitted and reviewed for acceptance.
- 20. Label the existing and proposed ground within the profile (all sheets).
- Please note that per Village Code, grade breaks with a delta greater than 2% shall have a vertical curve of 100'. The VC at station 4+50 should be modified from 75' to 100'

Sheet S3

- 22. The word "To" is misspelled in the note about the curb underdrains.
- Please note that per Village Code, grade breaks with a delta greater than 2% shall have a vertical curve of 100'. The VC at station 5+75 should be modified from 75' to 100'.
- 24. See comment 19 above.

Sheet S4

- 25. Please adjust either the grading or alignment and location of HW 1 so that the face of the headwall aligns with the contour.
- 26. Per the meeting on 5/11, the basin will have a vertical wall, please provide wall details and revised grading.

Sheet S5

- 27. Please note that per the Village Code, the ROW/Easement for a local street should be 54' and a pavement width of 30', there is no differentiation between private and public roadways in the Code. Is the Village accepting the 50' easement for private streets? If so, a variance should be requested.
- 28. Please adjust your pavement section to be the following (per Village Code for Local Streets):
 - 1 ½ " Asphalt Concrete Surface Course Item 441
 - 1 1/2" Asphalt Concrete Intermediate Course Item 441
 - 3" Item 301, Bituminous Aggregate Base
 - 6" Aggregate Base Item 304
- 29. Please label the slopes along the curb line and cross slopes of the crosswalk within the intersection details. It looks like there are some locations that are too flat, too steep, or areas where the drainage is getting trapped where there is not a drainage structure. Ideally, the slope of the curb line will be a minimum of 0.4% and a maximum of 1.56% at a curb ramp.

Sheet S6

30. See comment 27 above.

Sheet E2

- 31. Add dandy bags in the roadway and remove the "if tracking" notes.
- 32. Change "impeded" to "impede" for the dandy bag note on the basin detail.
- 33. Correct the misspelling of "upon" in the note about the outlet structure installation.

Sheets SS1

- 34. Consider showing only the Sanitary Sewer in the profile for clarity (all Sanitary sheets)
- 35. Add applicable Village standard notes from Appendix D Zoning Code.

Sheets SS2 & SS3

- 36. Add inverts to the profile for the sanitary structures.
- 37. Provide 0.1' drops all sanitary structures.
- 38. Provide service lateral design schedules for the station, depth, size, length, etc.

Sheet W1

- 39. Correct the misspelling of "Sleeve" in the detail for the 10x10 tee.
- 40. Add applicable Village standard notes from Appendix D Zoning Code.
- 41. Consider showing only the Watermain in the profile for clarity (all watermain sheets).
- 42. Confirm that all future buildings will be within 300' of a hydrant or 500' of a second. Consider providing an exhibit to illustrate the hydrant coverage for each lot and potential building.
- 43. Village Code states that all water mains shall be a minimum of 8".
- 44. Please consider turning off pavement marking and other extra layers to help clean up the view for the water main plans.
- 45. Label and show the existing hydrants, modify viewport as necessary to show the hydrant measured 338' from the proposed hydrant at 1+98.54.
- 46. Confirm that the watermain has 4 feet of cover, it looks more like 1' in the profile.

Sheet W2

- 47. Please label the existing fire hydrant on Jefferson Ave.
- 48. Please label Jefferson Ave. within the plan view.
- 49. Add a note that the existing 10" along Jefferson Ave is Transite pipe and special care will need to be taken for the tap.
- 50. See No. 46 above.
- 51. Label the Utility Easements (all sheets).
- 52. See No. 43 above.

Sheet W3

- 53. See No. 43 above.
- 54. See No. 46 above.
- 55. Please correct the proposed hydrant at the bottom of the plan view to be legible.

Sheet W4

- 56. Reference the hydrant with City of Columbus Type A Setting detail instead the detail as shown.
- 57. Show the detail L9901 instead of the service detail as shown.

Drainage Report

- 58. Correct the typo "of-site" about midway down the page.
- 59. Reference the ONDR/OEPA Rainwater and Land Development Appendix 9 for post-construction HSG rating per soil type. Given their recommendations, we would expect all proposed pervious areas on the site to be classified as D. Please review and adjust the model accordingly.
- 60. Please provide the outlet flows from the proposed basin so that we can confirm that they are less than the allowable.
- 61. Please identify the time of concentration calculation points along the flow path on the drainage exhibits so that we can better verify the calcs.
- 62. There may be a calculation method discrepancy, we entered in the TOC data for the pre-conditions as shown in your table and found a TOC of over 17 minutes. It appears the biggest discrepancies are for the shallow concentrated flow we used cultivated rows for the velocity factor to match your CN values.
- 63. Please consider utilizing the Ohio EPA WQV calculator spreadsheets.
- 64. On the Pre-Developed Exhibit, please enlarge the contour elevation text, label the existing outlet, and mark the TOC points on the map for each delineation.
- 65. On the Post-Developed Exhibit, rename it from Pre to Post, please enlarge the contour elevation text, label the outlet, and mark the TOC points on the map for each delineation.
- 66. Within the Storm Sewer Calcs please verify that all of the slopes match those shown in the plans.
- 67. Within the Storm Sewer Calcs please verify that all of the inverts match those shown in the plans.
- 68. Within the Storm Sewer Calcs please verify that all of the pipe diameters match those shown in the plans.

- 69. Within the Storm Sewer Calcs please label all the drainage structures to match the labels on the plans. For example CB1A to CB1A should be shown as CB1A4 to CB1A3 in the first two columns.
- 70. Please note that per Village Code, all storm sewer velocities should be between 3 and 7 fps. Please revise the design to meet these requirements accordingly.
- 71. Where are the storm sewer calculations for the following: CB3A to 3B, 3B to ExCB, MHx to 3A, 3A to 3, 3C to 3, 3 to EX CB. Please ensure all proposed structures and pipes have calculations.
- 72. It appears that there are 3 pipes that have flows greater than capacity, please adjust the design accordingly.
- 73. Please update the CB tributary area exhibit for general readability and ensure that the displayed areas match those shown in the calcs.
- 74. Please provide the calculation package for the basin rating curve.
- 75. Please clarify why the vertical orifice is lower than the water quality orifice.
- 76. Please clarify why the Q100 is less than the Q5 and Q100 is less than the WQV.
- 77. Please clarify the intent of the basin as the owner has stated that it is intended to have a permanent pool and a retaining wall instead of the armored 1:1 slope.

Traffic Impact Study

- 78. <u>Trip Generation</u>: The study was conducted to ITE standards for the development of site traffic (Trip Generation). It should be noted that the two restaurants account for 82% and 65% (AM and PM) of the total site traffic as these are the high traffic generators for the site. It is our understanding that these restaurants will be located off the shared site drive on Jefferson Avenue (US 42). This issue will be discussed in further detail under trip distribution.
- 79. <u>Background Growth Rate</u>: MORCP was engaged to provide background traffic growth to expand current traffic data collected for the study to Opening Day (2022) and Horizon year (2032). The growth rates provided (Perry Pike 1%, Village Road 0.5% and Jefferson Avenue 2%) are on the higher side and are appropriate for a growing city such as Plain City.
- 80. <u>Trip Distribution</u>: Referencing Figure 3, the site entering traffic is 53% from the Jefferson Avenue site drive and 47% Perry Pike site drive. The site exiting traffic does not follow the same distribution with 32% exiting the Jefferson Avenue site drive and 68% exiting the Perry Pike site drive. Also in consideration that the highest site generators (the 2 restaurants) generate 82% and 65% (AM and PM) of the site traffic and are expected to be situated near Jefferson Avenue, hence suggesting that more than half of the site traffic distribution. Site entering and exiting trips should be rechecked to the trip generation table for the primary trips and passby trips as our sums were not equating between the traffic figure and the trip generation table. Any changes in site traffic volumes may affect lane warrants and operational analyses.
- 81. <u>Turn Lanes</u>: Turn lanes per ODOT criteria are based on Horizon Year or 2032 in this case. 2022 traffic lane warrants are not required. Turn warrant results indicate:
 - a. Jefferson Avenue and the site drive warranted for a NB left lane (215 feet in length) and a SB right lane (125 feet in length). For the left turn lane, the 215 feet will result in pavement transition sections overlapping the pavement widening transitions for the SB left turn lane on Jefferson Avenue at Perry Pike. This could create some difficulties in the geometry.
 - b. A left turn lane warrant was not evaluated for the existing site drive on Jefferson Avenue and should be addressed. Operational performance (LOS), should be considered as part of this evaluation in addition to the ODOT graphical warrants.
 - c. Perry Pike and the site drive was not shown to warrant for turn lanes (WB right or EB left).
 - d. A left turn lane warrant was not evaluated for the proposed site drive on Perry Pike and should be addressed. Operational performance (LOS), should be considered as part of this evaluation in addition to the ODOT graphical warrants.
 - e. The site plan does not reflect the left turn and right turn lane additions at Jefferson Avenue and the site drive.

82. Operational Analyses (Level of Service): The operational evaluation of the Jefferson Avenue and Perry Pike/West Avenue intersection noted negligible impacts to the intersection with an intersection level of service (LOS) C maintained. However, the NB left turn does degrade (per the HCM reports provided in the appendix) to a LOS D in 2032 for both No Build and Build. This is not a project precipitated impact as the NB Left turn LOS D occurs with the site or without the site. The City may need to add a NB protected left turn phase (green left arrow) to this intersection within the next 10 years. Operational analyses were not performed on the two site drives and should be included in the study. Of particular concern is the operational performance of both site drive left turn exit movements.

We recommend the above comments be addressed and revised drawings be resubmitted for review.

Sincerely. Charle OUTA

Randy VanTilburg, PE Associate / Senior Project Manager

Smart Services, Inc.

88 W. Church Street Newark, OH 43055 (740) 345-4700

> File Name : Jefferson_Ave_(US_42)_&_Perry_Pike_628779_03-07-2019 Site Code : Start Date : 3/7/2019 Page No : 1

								Group	s Printed- C	ars - Truc	ks							
		J	efferson / South	Ave (US bound	42)		Wes Westl	t Ave bound			lefferson / North	Ave (US bound	42)		Perry Easth	/ Pike bound		
Sta	art Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
07	7:00 AM	6	119	2	127	31	4	11	46	1	47	0	48	24	6	8	38	259
0	7:15 AM	6	112	9	127	38	5	8	51	6	74	5	85	24	2	7	33	296
07	7:30 AM	6	67	8	81	3	1	9	13	2	62	11	75	22	7	8	37	206
07	7:45 AM	3	71	11	85	8	5	9	22	3	62	4	69	19	5	9	33	209
	Total	21	369	30	420	80	15	37	132	12	245	20	277	89	20	32	141	970
08	3:00 AM	11	91	11	113	5	6	13	24	4	49	7	60	22	5	8	35	232
08	3:15 AM	3	62	6	71	5	4	6	15	6	60	5	71	20	10	6	36	193
08	3:30 AM	5	66	4	75	6	7	10	23	2	64	3	69	20	6	2	28	195
0	3:45 AM	7	69	11	87	3	4	3	10	2	54	7	63	16	3	3	22	182
	Total	26	288	32	346	19	21	32	72	14	227	22	263	78	24	19	121	802
04	1·00 PM │	10	86	30	126	4	3	12	19	8	101	11	120	11	11	8	30	295
0-	1.00 P M	9	87	16	112	13	8	12	34	4	03	7	104	21	8	4	33	200
0-	1.30 PM	14	86	27	127	10	2	6	18	7	81	6	94	20	11	- 8	30	203
04	1.00 PM	9	96	26	131	13	5	7	25	3	79	9	91	14	5	6	25	272
	Total	42	355	99	496	40	18	38	96	22	354	33	409	66	35	26	127	1128
0	5:00 PM	14	101	18	133	7	3	5	15	8	107	11	126	20	9	2	31	305
0	5:15 PM	15	82	23	120	7	10	6	23	4	76	5	85	16	3	5	24	252
0	5:30 PM	11	80	19	110	7	4	18	29	6	94	10	110	17	6	7	30	279
0	5:45 PM	13	62	27	102	6	6	13	25	8	58	7	73	14	9	7	30	230
	Total	53	325	87	465	27	23	42	92	26	335	33	394	67	27	21	115	1066
Gra	nd Total	142	1337	248	1727	166	77	149	392	74	1161	108	1343	300	106	98	504	3966
A	oprch %	8.2	77.4	14.4		42.3	19.6	38		5.5	86.4	8		59.5	21	19.4		
	Total %	3.6	33.7	6.3	43.5	4.2	1.9	3.8	9.9	1.9	29.3	2.7	33.9	7.6	2.7	2.5	12.7	
	Cars	141	1168	244	1553	165	77	147	389	72	994	104	1170	292	105	95	492	3604
	% Cars	99.3	87.4	98.4	89.9	99.4	100	98.7	99.2	97.3	85.6	96.3	87.1	97.3	99.1	96.9	97.6	90.9
	Trucks	1	169	4	174	1	0	2	3	2	167	4	173	8	1	3	12	362
%	5 Trucks	0.7	12.6	1.6	10.1	0.6	0	1.3	0.8	2.7	14.4	3.7	12.9	2.7	0.9	3.1	2.4	9.1

Smart Services, Inc. 88 W. Church Street

88 W. Church Street Newark, OH 43055 (740) 345-4700

> File Name : Jefferson_Ave_(US_42)_&_Perry_Pike_628779_03-07-2019 Site Code : Start Date : 3/7/2019 Page No : 2

	J	efferson /	Ave (US 4	12)		West	t Ave		J	efferson /	Ave (US 4	2)	Perry Pike				
		South	bound	-		West	bound			North	bound	-		Eastb	ound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Analysis	From 07:0	0 AM to 1	1:45 AM -	Peak 1 of 1													
Peak Hour for Entire	e Intersectio	on Begins	at 07:00 /	AM													
07:00 AM	6	119	2	127	31	4	11	46	1	47	0	48	24	6	8	38	259
07:15 AM	6	112	9	127	38	5	8	51	6	74	5	85	24	2	7	33	296
07:30 AM	6	67	8	81	3	1	9	13	2	62	11	75	22	7	8	37	206
07:45 AM	3	71	11	85	8	5	9	22	3	62	4	69	19	5	9	33	209
Total Volume	21	369	30	420	80	15	37	132	12	245	20	277	89	20	32	141	970
% App. Total	5	87.9	7.1		60.6	11.4	28		4.3	88.4	7.2		63.1	14.2	22.7		
PHF	.875	.775	.682	.827	.526	.750	.841	.647	.500	.828	.455	.815	.927	.714	.889	.928	.819
Cars	21	324	30	375	79	15	37	131	12	205	20	237	83	20	32	135	878
% Cars	100	87.8	100	89.3	98.8	100	100	99.2	100	83.7	100	85.6	93.3	100	100	95.7	90.5
Trucks	0	45	0	45	1	0	0	1	0	40	0	40	6	0	0	6	92
% Trucks	0	12.2	0	10.7	1.3	0	0	0.8	0	16.3	0	14.4	6.7	0	0	4.3	9.5
Peak Hour Analysis	From 12:0	0 PM to 0	5:45 PM -	Peak 1 of 1													
Peak Hour for Entire	e Intersectio	on Beains	at 04:15 I	PM													
04:15 PM	9	87	16	112	13	8	13	34	4	93	7	104	21	8	4	33	283
04:30 PM	14	86	27	127	10	2	6	18	7	81	6	94	20	11	8	39	278
04:45 PM	9	96	26	131	13	5	7	25	3	79	9	91	14	5	6	25	272
05:00 PM	14	101	18	133	7	3	5	15	8	107	11	126	20	9	2	31	305
Total Volume	46	370	87	503	43	18	31	92	22	360	33	415	75	33	20	128	1138
% App. Total	9.1	73.6	17.3		46.7	19.6	33.7		5.3	86.7	8		58.6	25.8	15.6		
PHF	.821	.916	.806	.945	.827	.563	.596	.676	.688	.841	.750	.823	.893	.750	.625	.821	.933
Cars	46	341	87	474	43	18	30	91	21	325	32	378	74	33	20	127	1070
% Cars	100	92.2	100	94.2	100	100	96.8	98.9	95.5	90.3	97.0	91.1	98.7	100	100	99.2	94.0
Trucks	0	29	0	29	0	0	1	1	1	35	1	37	1	0	0	1	68
% Trucks	0	7.8	0	5.8	0	0	3.2	1.1	4.5	9.7	3.0	8.9	1.3	0	0	0.8	6.0

Smart Services, Inc. 88 W. Church Street

Newark, OH 43055 (740) 345-4700

File Name : Perry_Pike_&_Village_Blvd_628783_03-07-2019 Site Code : Start Date : 3/7/2019 Page No : 1

				Groups Prir	ted- Cars - Tr	ucks				
		Perry Pike Westbound			Village Blvc Northbound	1		Perry Pike Eastbound		
Start Time	Left	Thru	App. Total	Left	Right	App. Total	Thru	Right	App. Total	Int. Total
07:00 AM	2	2	4	0	11	11	25	4	29	44
07:15 AM	3	12	15	2	9	11	21	0	21	47
07:30 AM	1	7	8	1	11	12	26	1	27	47
07:45 AM	3	14	17	0	7	7	19	1	20	44
Total	9	35	44	3	38	41	91	6	97	182
08:00 AM	0	16	16	1	12	13	21	0	21	50
08:15 AM	3	13	16	3	7	10	24	4	28	54
08:30 AM	4	6	10	0	12	12	19	1	20	42
08:45 AM	4	11	15	0	6	6	15	0	15	36
Total	11	46	57	4	37	41	79	5	84	182
04:00 PM	7	28	35	5	6	11	16	3	19	65
04:15 PM	8	26	34	7	6	13	26	2	28	75
04:30 PM	10	28	38	8	9	17	18	0	18	73
04:45 PM	9	22	31	5	6	11	13	2	15	57
Total	34	104	138	25	27	52	73	7	80	270
05:00 PM	7	24	31	4	7	11	24	1	25	67
05:15 PM	13	15	28	4	5	9	11	4	15	52
05:30 PM	9	25	34	3	1	4	21	1	22	60
05:45 PM	14	17	31	0	2	2	20	0	20	53
Total	43	81	124	11	15	26	76	6	82	232
Grand Total	97	266	363	43	117	160	319	24	343	866
Apprch %	26.7	73.3		26.9	73.1		93	7		
Total %	11.2	30.7	41.9	5	13.5	18.5	36.8	2.8	39.6	
Cars	96	263	359	42	117	159	310	22	332	850
<u> </u>	99	98.9	98.9	97.7	100	99.4	97.2	91.7	96.8	98.2
Trucks	1	3	4	1	0	1	9	2	11	16
% Trucks	1	1.1	1.1	2.3	0	0.6	2.8	8.3	3.2	1.8

Smart Services, Inc. 88 W. Church Street

Newark, OH 43055 (740) 345-4700

File Name : Perry_Pike_&_Village_Blvd_628783_03-07-2019 Site Code :

Start Date : 3/7/2019 Page No : 2

		Perry Pike			Village Blvd			Perry Pike		
		Westbound			Northbound			Eastbound		
Start Time	Left	Thru	App. Total	Left	Right	App. Total	Thru	Right	App. Total	Int. Total
Peak Hour Analysis From 07:00 /	AM to 11:45 AM	- Peak 1 of 1								
Peak Hour for Entire Intersection	Begins at 07:30	AM								
07:30 AM	1	7	8	1	11	12	26	1	27	47
07:45 AM	3	14	17	0	7	7	19	1	20	44
08:00 AM	0	16	16	1	12	13	21	0	21	50
08:15 AM	3	13	16	3	7	10	24	4	28	54
Total Volume	7	50	57	5	37	42	90	6	96	195
% App. Total	12.3	87.7		11.9	88.1		93.8	6.2		
PHF	.583	.781	.838	.417	.771	.808	.865	.375	.857	.903
Cars	7	50	57	5	37	42	85	5	90	189
% Cars	100	100	100	100	100	100	94.4	83.3	93.8	96.9
Trucks	0	0	0	0	0	0	5	1	6	6
% Trucks	0	0	0	0	0	0	5.6	16.7	6.3	3.1
Peak Hour Analysis From 12:00	PM to 05:45 PM	- Peak 1 of 1								
Peak Hour for Entire Intersection	Begins at 04:15	PM								
04:15 PM	8	26	34	7	6	13	26	2	28	75
04:30 PM	10	28	38	8	9	17	18	0	18	73
04:45 PM	9	22	31	5	6	11	13	2	15	57
05:00 PM	7	24	31	4	7	11	24	1	25	67
Total Volume	34	100	134	24	28	52	81	5	86	272
% App. Total	25.4	74.6		46.2	53.8		94.2	5.8		
PHF	.850	.893	.882	.750	.778	.765	.779	.625	.768	.907
Cars	34	100	134	23	28	51	80	5	85	270
% Cars	100	100	100	95.8	100	98.1	98.8	100	98.8	99.3
Trucks	0	0	0	1	0	1	1	0	1	2
% Trucks	0	0	0	4.2	0	1.9	1.2	0	1.2	0.7

Smart Services Inc.

88 W. Church Street Newark, OH 43055 (740) 345-4700

File Name: Jefferson Avenue (US 42) & Der Dutchman (S) - AM PeakSite Code: 00000000Start Date: 3/10/2022Page No: 1

				Groups F	rinted- Clas	ss 1				
	Jeffers	son Avenue	(US 42)	Der D	outchman D	rive (S)	Jeffers			
		Southboun	d		Westboun	d				
Start Time	Left	Thru	App. Total	Left	Right	App. Total	Thru	Right	App. Total	Int. Total
07:00 AM	1	141	142	0	1	1	46	1	47	190
07:15 AM	0	128	128	0	0	0	81	2	83	211
07:30 AM	1	57	58	1	0	1	85	1	86	145
07:45 AM	0	95	95	0	1	1	80	2	82	178
Total	2	421	423	1	2	3	292	6	298	724
Grand Total Apprch %	2 0.5	421 99.5	423	1 33.3	2 66.7	3	292 98	6 2	298	724
Total %	0.3	58.1	58.4	0.1	0.3	0.4	40.3	0.8	41.2	

Smart Services Inc.

88 W. Church Street Newark, OH 43055 (740) 345-4700

File Name: Jefferson Avenue (US 42) & Der Dutchman (S) - PM PeakSite Code: 0000000Start Date: 3/10/2022Page No: 1

				Groups F	Printed- Clas	s 1				
	Jeffers	son Avenue	(US 42)	Der [Dutchman D	rive (S)	Jeffer			
		Southbound	d í		Westbound	ć				
Start Time	Left	Thru	App. Total	Left	Right	App. Total	Thru	Right	App. Total	Int. Total
04:00 PM	5	99	104	0	2	2	108	6	114	220
04:15 PM	5	122	127	0	2	2	132	4	136	265
04:30 PM	9	162	171	0	3	3	117	7	124	298
04:45 PM	4	142	146	1	3	4	127	14	141	291
Total	23	525	548	1	10	11	484	31	515	1074
05:00 PM	2	152	154	3	0	3	117	10	127	284
Grand Total	25	677	702	4	10	14	601	41	642	1358
Apprch %	3.6	96.4		28.6	71.4		93.6	6.4		
Total %	1.8	49.9	51.7	0.3	0.7	1	44.3	3	47.3	

	Jeffers	son Avenue Southbound	(US 42)	Der D	Outchman Di Westbound	rive (S) d	Jeffers	son Avenue Northbound		
Start Time	Left	Thru	App. Total	Left	Right	App. Total	Thru	Right	App. Total	Int. Total
Peak Hour Analysis Fro	m 04:00 PM	I to 05:00 PM	/I - Peak 1 of 1							
Peak Hour for Entire Int	tersection Be	egins at 04:1	5 PM							
04:15 PM	5	122	127	0	2	2	132	4	136	265
04:30 PM	9	162	171	0	3	3	117	7	124	298
04:45 PM	4	142	146	1	3	4	127	14	141	291
05:00 PM	2	152	154	3	0	3	117	10	127	284
Total Volume	20	578	598	4	8	12	493	35	528	1138
% App. Total	3.3	96.7		33.3	66.7		93.4	6.6		
PHF	.556	.892	.874	.333	.667	.750	.934	.625	.936	.955

From:	Hwashik Jang
To:	Todd Stanhope; Zhuojun Jiang
Cc:	Nick Gill; ncahall@plain-city.com; bryan@co.madison.oh.us; "Thom Ries"
Subject:	RE: Growth Rate Request - US 42, Perry Pike, Village Parkway, and Lafayette-Plain City Road
Date:	Tuesday, April 16, 2019 8:09:00 AM
Attachments:	image003.png

Todd,

We have completed processing growth rates for your traffic study.

Please use a linear annual growth rate as summarized in the following table below.

Location	Linear Annual Growth Rate
Perry Pike e/o Lafayette-Plain City Road	1.00%
Lafayette-Plain City Road n/o Perry Pike	1.00%
Lafayette-Plain City Road s/o Perry Pike	1.00%
Perry Pike e/o Village Blvd	1.00%
Perry Pike w/o Village Blvd	1.00%
Village Blvd s/o Perry Pike	0.50%
Perry Pike e/o Jefferson Ave	1.00%
Jefferson Ave n/o Perry Pike	2.00%
Perry Pike w/o Jefferson Ave	1.00%
Jefferson Ave s/o Perry Pike	2.00%
Jefferson Ave n/o Village Blvd	2.00%
TAZ 1523 TOTAL Village Blvd w/o Jefferson Ave	0.50%
Jefferson Ave s/o Village Blvd	2.00%

Note: The above rates were derived based on planning level analysis by using MORPC's regional travel demand model.

If you have any questions, please let me know.

Thanks,

HWASHIK JANG

Senior Planner | Mid-Ohio Regional Planning Commission T: 614.233.4145 | hjang@morpc.org 111 Liberty Street, Suite 100 | Columbus, OH 43215

From: Todd Stanhope [mailto:tstanhope@smartservices-inc.com] **Sent:** Friday, March 29, 2019 10:14 AM To: Zhuojun Jiang <zjiang@morpc.org>

Cc: Nick Gill <NGILL@morpc.org>; Hwashik Jang <hjang@morpc.org>; ncahall@plain-city.com; bryan@co.madison.oh.us; 'Thom Ries' <tries@terrainevolution.com> **Subject:** Growth Rate Request - US 42, Perry Pike, Village Parkway, and Lafayette-Plain City Road

Zhuojun

We are performing a traffic impact study for a site that will have access Lafayette-Plain City Road and Perry Pike as well as access to existing and future developments to the east. Please provide annual growth rates for all legs of the following study area intersections:

-Lafayette-Plain City Road & Perry Pike
-Perry Pike & Village Boulevard
-Jefferson Avenue (US 42) & Perry Pike
-Jefferson Avenue (US 42) & Village Boulevard

Below is MORPC's requested information about the study:

1. <u>Traffic Data</u> upon which you would be applying these growth rates (preferably 24 hour counts). As part of the project, AM and PM peak hour (7-9 AM, 4-6 PM) turning movement counts were taken at the following intersections (The count reports are attached):

-Lafayette-Plain City Road & Perry Pike
-Perry Pike & Village Boulevard
-Jefferson Avenue (US 42) & Perry Pike
-Jefferson Avenue (US 42) & Village Boulevard

- 2. Open Year & Design Year, for this study: 2019 and 2029
- 3. <u>Roadway network assumptions</u>: Any roadway assumptions/changes in the vicinity, such as change in number of lanes or roadway alignments, etc: None anticipated.
- Land use assumptions: General info on proposed site location & development, such as: site map, Trip Generation (excel file, preferably). Trip generation for the 150 single family units, 91 patio homes (condos), and 264 multifamily units will be calculated as part of the study and is not available at this time.
- 5. <u>Project Review Contact Person</u>: Nathan Cahall will be coordinating the review of the study for the Village of Plain City. Bryan Dhume will be coordinating the review for the Madison County Engineer's Office. Their e-mail addresses are in the cc: line.

Thank you!

Todd J. Stanhope, PE, PTOE Director of Traffic Engineering

Smart Services, Inc. (Columbus Office) A DBE / EDGE Certified Business

Madison Meadows Traffic Impact Study - 6

Madison Meadows Traffic Impact Study - 7

Madison Meadows Traffic Impact Study - 8

Madison Meadows Traffic Impact Study - 9

Village Center of Plain City Traffic Impact Study -

Village Center of Plain City Traffic Impact Study -

Madison Meadows II Traffic Impact Study - 10

Madison Meadows II Traffic Impact Study - 11

Village Center of Plain City Traffic Impact Study -

Village Center of Plain City Traffic Impact Study -

Appendix

Appendix

General Inform	nation								Intersect	tion Info	ormatio	on	_	474+9	4 L <u>.</u>
Agency		Smart Services, Inc		0					Duration,	h	0.250			**	R_
Analyst		TJS		Analys	is Date	Mar 1	1, 2022		Area Typ	е	Other		A		* *
Jurisdiction		Village of Plain City		Time F	Period	AM Pe	eak		PHF		0.92		*	W 🛔 E	- - -
Urban Street		Jefferson Avenue (l	JS 42)	Analys	is Year	2022			Analysis	Period	1> 7:(00	7		*
Intersection		Jefferson Avenue (l	JS 4	File Na	ame	Jeffers	son Ave	(US 4	42) & Perr	y Pike -	2022	lo Bui…		ግዮ	
Project Descrip	tion	2022 No Build - AM	Peak										1	* *****	* (*
D			_		==					1			1		
Demand Inform	nation				EB		<u> </u>	VV	B	<u> </u>	NB		<u> </u>	SB	
Approach Move	ement			L	1	R	L		R 1 00	L	1	R	L		R
Demand (V), V	en/n			237	46	93	82	24	4 38	33	260	21	22	391	81
Signal Informa	tion					3									
Cycle, s	120.0	Reference Phase	2		1243 D.43	jua é							N		
Offset, s	0	Reference Point	End			ľ Š					_	1	2	3	4
Uncoordinated	Yes	Simult, Gap F/W	On	Green	56.0	54.0	0.0	0.0	0.0	0.0	_				\rightarrow
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	1.0	0.0	0.0	0.0	0.0	_	5	6	7	8
					1.1.2		1		1000	10.0					
Traffic Informa	tion				EB			WE	3		NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), ve	h/h			237	46	93	82	24	38	33	260	21	22	391	81
Initial Queue (C	₽b), veh/	h		0	0	0	0	0	0	0	0	0	0	0	0
Base Saturation	n Flow F	Rate (<i>s₀</i>), veh/h		1900	1900	1900	1900	1900	0 1900	1900	1900	1900	1900	1900	1900
Parking (Nm), m	rking (<i>N</i> //), man/h avy Vehicles (<i>P</i> //v), %				None			Non	e		None			None	
Heavy Vehicles	avy Vehicles (<i>P</i> _H v), %				4			1		0	15		0	11	
Ped / Bike / RT	avy Vehicles (<i>Рн</i> v), % d / Bike / RTOR, /h				0	0	0	0	0	0	0	0	0	0	0
Buses (Nb), bus	ses/h			0	0	0	0	0	0	0	0	0	0	0	0
Arrival Type (A	Г)			3	3	3	3	3	3	3	3	3	3	3	3
Upstream Filter	ing (<i>I</i>)			1.00	1.00	1.00	1.00	1.00) 1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lane Width (W), ft				12.0			12.0)	12.0	12.0		12.0	12.0	
Turn Bay Lengt	h, ft				0			0		150	0		150	0	
Grade (<i>Pg</i>), %					0			0			0			0	
Speed Limit, mi	i/h			35	35	35	35	35	35	50	50	50	50	50	50
Phase Informa	tion			EBL		EBI	WBI		WBT	NBL		NBI	SBL		SBI
Maximum Gree	n (<i>G</i> max)) or Phase Split, s				54.0		\rightarrow	54.0			56.0			56.0
Yellow Change	Interval	(Y), s				4.0			4.0			4.0		_	4.0
Red Clearance	Interval	(<i>Rc</i>), S				1.0		\rightarrow	1.0			1.0			1.0
Start Up Lest T	n (Gmin) ima (H)	, S		2.0		10	2.0		10	2.0		10	2.0	_	10
Start-Op Lost 1	ime (<i>It</i>),	, S Draam (a) a		2.0		2.0	2.0	\rightarrow	2.0	2.0	_	2.0	2.0	_	2.0
		Sieen (<i>e)</i> , s		2.0		2.0	2.0		2.0	2.0		2.0	2.0		2.0
Passaye (PT),	5					2.0 Off		-	2.0 Off			Z.0	<u> </u>	<u> </u>	2.0 Min
						Voo	<u> </u>	-	Vaa			Voo			Voo
Dual Entry								-					<u> </u>	<u> </u>	
Walk (<i>Walk</i>), s Pedestrian Clearance Time (<i>PC</i>), s				_		0.0			0.0	_		0.0			0.0
Pedestrian Clearance Time (<i>PC</i>), s						0.0			0.0			0.0			0.0
Multimodal Information					EB			WB			NB			SB	
85th % Speed / Rest in Walk / Corner Radius			JS	0	No	25	0	No	25	0	No	25	0	No	25
Walkway / Cros	Valkway / Crosswalk Width / Length, ft			9.0	12	0	9.0	12	0	9.0	12	0	9.0	12	0
Street Width / Is	Street Width / Island / Curb				0	No	0	0	No	0	0	No	0	0	No
Width Outside /	/idth Outside / Bike Lane / Shoulder, ft				5.0	2.0	12	5.0	2.0	12	5.0	2.0	12	5.0	2.0
Pedestrian Sigr	Vidth Outside / Bike Lane / Shoulder, ft edestrian Signal / Occupied Parking					0.50	No		0.50	No		0.50	No	(0.50

								r					-		
General Inform	nation								Intersec	tion Inf	ormatio	on	_	444+	ba l⊾
Agency		Smart Services, Inc).	2					Duration	, h	0.250				K.
Analyst		TJS		Analys	is Dat	e Mar 1	1, 2022		Area Typ	е	Other				*
Jurisdiction		Village of Plain City	,	Time F	Period	AM Pe	eak		PHF		0.92		*	W	
Urban Street		Jefferson Avenue (l	JS 42)	Analys	is Yea	r 2022			Analysis	Period	1> 7:(00	2 4		*
Intersection		Jefferson Avenue (l	JS 4	File Na	ame	Jeffers	son Ave	(US 4	42) & Per	ry Pike -	2022	lo Bui		11	
Project Descrip	tion	2022 No Build - AM	l Peak											4 1 4 7	r (*
				1						1					
Demand Inform	nation				EB			W	B		NB		<u> </u>	SB	1
Approach Move	ement			L	Т	R	L	Т	- R	L	Т	R	L	Т	R
Demand (v), v	eh/h			237	46	93	82	24	4 38	33	260	21	22	391	81
Signal Informa	tion					E	1	-	1	_					
	120.0	Poforonao Dhaga	2		242								sta		~
Cycle, s	120.0	Reference Priase	Z End		L 51	۳R "						1	2	3	4
Oliset, s	0		End	Green	56.0	54.0	0.0	0.0	0.0	0.0					<u> </u>
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow	4.0	4.0	0.0	0.0	0.0	0.0	-	Ľ,			V
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	1.0	0.0	0.0	0.0	0.0		5	6	7	8
Timor Posults				ERI		ERT	\//R			NIDI			SBI		CRT
Assigned Phase	<u> </u>			EDL				-	8		-	2	301	-	6
Case Number	6				+	+ 8.0			8.0			2			6.0
Phase Duration						50.0			59.0			61.0			61.0
Change Duration						50	<u> </u>	-	5.0			5.0			5.0
	$\frac{1}{1}$	c), S				0.0	<u> </u>		2.0	<u> </u>	_	3.0	<u> </u>		2.0
	eue Clearance Time (g_s), s					১.∠ २० र	<u> </u>		3.2	<u> </u>	_	3.0	<u> </u>	_	3.0
Queue Clearan	eue Clearance Time (g_s), s en Extension Time (g_e), s					20.7	<u> </u>		9.0	<u> </u>		33.0	<u> </u>	_	30.0
Bhase Cell Bro	en Extension Time (g_e), s					1.2	<u> </u>		1.2	<u> </u>	_	1.0	<u> </u>	_	1.0
Max Out Broke						0.00	<u> </u>		0.00	<u> </u>		0.00		_	0.00
Max Out Proba	Dility					0.00			0.00			0.00			0.00
Movement Gro	oup Res	ults			EB			WB	3		NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move	ment			7	4	14	3	8	18	5	2	12	1	6	16
Adjusted Flow I	Rate (v), veh/h			409			157	·	36	305		24	513	
Adjusted Satura	ation Flo	w Rate (s), veh/h/l	n		1418			142	1	901	1655		1091	1685	
Queue Service	Time (g	g s), S			19.0			0.0		3.8	14.5		1.8	28.0	
Cycle Queue C	learance	e Time (<i>g</i> _c), s			26.7			7.8		31.8	14.5		16.2	28.0	
Green Ratio (g	ı/C)				0.45			0.45	5	0.47	0.47		0.47	0.47	
Capacity (c), v	/eh/h				687			687	·	270	773		437	786	
Volume-to-Cap	acity Ra	tio(X)			0.595			0.22	8	0.133	0.395		0.055	0.652	
Back of Queue	(Q), ft/	In (95 th percentile))		354.9			121		36.9	252.6		19.9	435.4	
Back of Queue	(Q), ve	eh/In (95 th percenti	ile)		13.8			4.8		1.5	9.0		0.8	16.0	
Queue Storage	Ratio (RQ) (95 th percent	tile)		0.00			0.00)	0.25	0.00		0.13	0.00	
Uniform Delay	(d1), s/	/veh			25.5			20.2	2	36.7	20.9		26.2	24.5	
Incremental De	lay (d 2), s/veh			1.0			0.1		0.1	0.1		0.0	1.5	
Initial Queue De	ncremental Delay (<i>d</i> ₂), s/veh nitial Queue Delay (<i>d</i> ₃), s/veh				0.0			0.0		0.0	0.0		0.0	0.0	
Control Delay (<i>d</i> 3), s/veh					26.5			20.2	2	36.8	21.1		26.3	26.1	
Level of Service (LOS)					С			С		D	С		С	С	
Approach Delay, s/veh / LOS				26.5		С	20.2	2	С	22.7	7	С	26.1		С
Intersection De	Intersection Delay, s/veh / LOS					24	1.8						С		
Multimodal Results					EB			WB	3		NB			SB	
Pedestrian LOS	destrian LOS Score / LOS					В	1.91		В	1.69)	В	1.69		В
Bicycle LOS So	icycle LOS Score / LOS					А	0.75	5	A	1.05	5	А	1.37		А

Copyright © 2022 University of Florida, All Rights Reserved.

-															
General Inform	nation								Intersec	tion Inf	ormatio	n		*7****	≤ L <u>s</u>
Agency		Smart Services, Inc							Duration,	h	0.250			44	R.
Analyst		TJS		Analys	sis Date	Mar 1	1, 2022		Area Typ	е	Other				
Jurisdiction		Village of Plain City		Time F	Period	PM Pe	eak		PHF		0.92		*	₩ĴE	
Urban Street		Jefferson Avenue (l	JS 42)	Analys	sis Year	2022			Analysis	Period	1> 16	:15	7 4		¥ ~
Intersection		Jefferson Avenue (l	JS 4	File Na	ame	Jeffers	son Ave	(US 4	12) & Peri	y Pike -	2022	lo Bui…		7 1	
Project Descrip	tion	2022 No Build - PM	Peak										ľ	* * * * *	* (*
			_				1		_	_			1		
Demand Inform	nation				EB		<u> </u>	W	B	<u> </u>	NB		<u> </u>	SB	
Approach Move	ement			L		R			R			R	L		R
Demand (v), v	eh/h			169	50	59	44	46	5 32	87	382	35	49	392	247
Signal Informa	tion					8			_						
Cycle s	120.0	Reference Phase	2		1642 1	<u>. 1-3</u> 8							N		
Offset, s	0	Reference Point	- End			° –š					_	1	2	3	Y 4
Uncoordinated	Yes	Simult Gap E/W	On	Green	63.0	47.0	0.0	0.0	0.0	0.0	_				Ð-
Force Mode	Fixed	Simult, Gap N/S	On	Red	4.0	1.0	0.0	0.0	0.0	0.0	_	5	6	7	8
T GIGG MIGUE	Tinted	onnan: oap 170	on	Ittou	1.0	1.0	0.0	0.0		0.0					
Traffic Informa	tion				EB			WB			NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (<i>v</i>), ve	h/h			169	50	59	44	46	32	87	382	35	49	392	247
Initial Queue (C	₽b), veh/	h		0	0	0	0	0	0	0	0	0	0	0	0
Base Saturation	ו Flow F	Rate (<i>s</i> ₀), veh/h		1900	1900	1900	1900	1900) 1900	1900	1900	1900	1900	1900	1900
Parking (Nm), m	king (<i>N</i> _m), man/h avy Vehicles (<i>Рн</i> v), %				None			None	e		None			None	
Heavy Vehicles	eavy Vehicles (<i>P</i> _{Hv}), %				1			1		5	9		0	6	
Ped / Bike / RT	avy Vehicles (<i>Pн</i> v), % d / Bike / RTOR, /h				0	0	0	0	0	0	0	0	0	0	0
Buses (Nb), bus	ses/h			0	0	0	0	0	0	0	0	0	0	0	0
Arrival Type (A7	Г)			3	3	3	3	3	3	3	3	3	3	3	3
Upstream Filter	ing (<i>I</i>)			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lane Width (W)), ft				12.0			12.0		12.0	12.0		12.0	12.0	
Turn Bay Lengt	h, ft				0			0		150	0		150	0	
Grade (<i>Pg</i>), %					0			0			0			0	
Speed Limit, mi	i/h			35	35	35	35	35	35	50	50	50	50	50	50
	4!		_	EDI		CDT				NDI			ODI		
Phase Informa	tion) an Dhasa Calit a		EBL	-		VVBI	-	47.0	INBL	-		SBL		561
Waximum Gree) or Phase Spill, s				47.0		+	47.0			03.0			33.0
Ped Clearance	Interval	$(\mathbf{r}), \mathbf{s}$				4.0			4.0			4.0		_	4.0
Minimum Groor						10		+	1.0		+	1.0		_	1.0
Start-Un Lost Ti	ime (<i>It</i>)	, s s		2.0	-	2.0	2.0	-	2.0	2.0		2.0	2.0		2.0
Extension of Eff	fective (Green (e) s		2.0		2.0	2.0	+	2.0	2.0		2.0	2.0		2.0
Passage (PT), s	s			2.0		2.0	2.0	-	2.0	2.0		2.0	2.0		2.0
Recall Mode	-					Off		+	Off		+	Min			Min
Dual Entry	Recall Mode					Yes			Yes			Yes			Yes
Dual Entry Walk (<i>Walk</i>). s						0.0		-	0.0			0.0			0.0
Pedestrian Clearance Time (<i>PC</i>), s						0.0			0.0			0.0			0.0
Pedestrian Clearance Time (PC), s									5.0						
Multimodal Inf	Iultimodal Information				EB			WB			NB			SB	
85th % Speed /	35th % Speed / Rest in Walk / Corner Radius				No	25	0	No	25	0	No	25	0	No	25
Walkway / Cros	/alkway / Crosswalk Width / Length, ft				12	0	9.0	12	0	9.0	12	0	9.0	12	0
Street Width / Island / Curb				0	0	No	0	0	No	0	0	No	0	0	No
Width Outside /	Vidth Outside / Bike Lane / Shoulder, ft				5.0	2.0	12	5.0	2.0	12	5.0	2.0	12	5.0	2.0
Pedestrian Signal / Occupied Parking				No		0.50	No		0.50	No		0.50	No	(0.50

-								1							
General Information								Inter	rsect	ion Infe	ormatio	on	_	444	te l <u>u</u>
Agency	Smart Services, Inc.							Dura	ation,	h	0.250			44	L
Analyst	TJS		Analys	is Dat	e Mar 1	1, 2022		Area	а Туре	е	Other				<u>م</u> ح
Jurisdiction	Village of Plain City		Time F	Period	PM P	eak		PHF	-		0.92		*	₩ĴE	
Urban Street	Jefferson Avenue (U	S 42)	Analys	is Yea	ır 2022			Anal	lysis l	Period	1> 16	:15	الم ا		*
Intersection	Jefferson Avenue (U	S 4	File Na	ame	Jeffer	son Ave	e (US	42) &	Perr	y Pike -	2022	lo Bui		71	
Project Description	2022 No Build - PM	Peak												* 1 4 4	ħ /
						_				1			11		
Demand Information				EB		\vdash	W	/B			NB			SB	
Approach Movement			L	Т	R			г	R	L	Т	R	L	Т	R
Demand (v), veh/h			169	50	59	44	4	6	32	87	382	35	49	392	247
Signal Information					5			-		_	_				
	Reference Phase	2	-	242		<u></u>							572		<u> </u>
Offset s	Reference Point	End			<u>75</u>							1	2	3	
Unset, 3 0	Simult Can E/W	On	Green	63.0	47.0	0.0	0.0	0	0.0	0.0	_				Ð-
Eorce Mode Eixed	Simult Cap N/S	On	Ped	4.0	4.0	0.0	0.0		0.0	0.0	_	5	6	7	¥ 8
	Simult. Gap 14/5	On	Itteu	1.0	1.0	0.0	0.0	0	0.0	0.0		9	0	2	0
Timer Results			EBL	_	EBT	WE	BL	WB	3T	NBL	_	NBT	SBL	_	SBT
Assigned Phase					4			8	-			2			6
Case Number					8.0			8.0	5			6.0			6.0
Phase Duration, s					52.0			52.	0			68.0			68.0
Change Period, (Y+R	e), S				5.0			5.0)			5.0			5.0
Max Allow Headway (A	/AH), s				3.2			3.2	2			3.2			3.2
Queue Clearance Time	eue Clearance Time (g_s), s				20.6			8.2	2			56.0			41.6
Green Extension Time (eue Clearance Time (g_s), s een Extension Time (g_e), s				0.9			0.9	9			2.1			3.0
Phase Call Probability	een Extension Time (g e), s ase Call Probability				1.00			1.0	0			1.00			1.00
Max Out Probability					0.00			0.0	0			0.40			0.01
Movement Group Res	ults			EB			WE	3			NB			SB	
Approach Movement			L	Т	R	L	Т		R	L	Т	R	L	Т	R
Assigned Movement			7	4	14	3	8		18	5	2	12	1	6	16
Adjusted Flow Rate (v), veh/h			302	_		133	3		95	453		53	695	
Adjusted Saturation Flo	w Rate (s), veh/h/lr	1		1468			156	7		732	1740		952	1693	
Queue Service Time (g	ys), s			12.4			0.0)		14.3	20.1		4.6	39.6	
Cycle Queue Clearance	e Time(<i>g</i> _c), s			18.6			6.2	2		54.0	20.1		24.6	39.6	
Green Ratio(g/C)				0.39			0.3	9		0.52	0.52		0.52	0.52	
Capacity (<i>c</i>), veh/h				623			655	5		203	914		401	889	
Volume-to-Capacity Rat	tio (X)			0.485	5		0.20)3	_	0.467	0.496		0.133	0.781	
Back of Queue (Q), ft/	In (95 th percentile)			270			112.	.2		118.8	318.1		44.9	565.9	
Back of Queue (Q), ve	eh/In (95 th percentil	e)		10.7			4.5	5		4.6	11.9		1.8	21.6	
Queue Storage Ratio (RQ) (95 th percenti	le)		0.00			0.0	0		0.79	0.00		0.30	0.00	
Uniform Delay (<i>d</i> 1), s/	veh			27.7	_		24.	0		44.7	18.3		26.2	23.0	
Incremental Delay (d 2	ncremental Delay (d_2), s/veh			0.2			0.1			0.6	0.2		0.1	4.1	
nitial Queue Delay (d ₃), s/veh				0.0	_		0.0)		0.0	0.0		0.0	0.0	
Control Delay (d), s/veh				27.9			24.	1		45.3	18.5		26.3	27.1	
Level of Service (LOS)			07.0	C		04					В		C		
Approach Delay, s/veh / LOS			27.9		0	24.		<u> </u>		23.1		U	27.0		U
Intersection Delay, s/ve	ntersection Delay, siven / LOS				2	0.1									
Multimodal Results	Iultimodal Results						WF	3			NB			SB	
Pedestrian LOS Score	edestrian LOS Score / LOS				В	1.9	2	В		1.68		В	1.68	3	В
Bicycle LOS Score / LO	destrian LOS Score / LOS vole LOS Score / LOS				А	0.7	1	A		1.39)	А	1.72	2	В

Intersection information Intersection information Operation Operation Operation Operation Operation Operation Operation Analysis Mar	ſ								1					1		
Agency Smart Services, Inc. Duration, h 0.250 Duration, h 0.250 Diration, h	General Inform	nation	¥							Intersect	tion Inf	ormatio	on	_	4 7 4 † † 1	<u> </u>
Analysit TJS Analysis Date Mar 11, 2022 Analysis Period OII->	Agency		Smart Services, Inc		0					Duration,	h	0.250			**	R_
Jurisdicion Village of Plain City Time Period AM Pesk V PIF I 0.32 Analysis Variation Image of Plain City Analysis Variation Analysis Variation </td <td>Analyst</td> <td></td> <td>TJS</td> <td></td> <td>Analys</td> <td>sis Date</td> <td>Mar 11</td> <td>, 2022</td> <td></td> <td>Area Typ</td> <td>е</td> <td>Other</td> <td></td> <td></td> <td></td> <td></td>	Analyst		TJS		Analys	sis Date	Mar 11	, 2022		Area Typ	е	Other				
Uthensite Uthersection Jefferson Avenue (US 42) File Name Jefferson Ver (US 42) Project Description 2022 Build - AM Peak Project Description 2022 Build - AM Peak L T R L <t< td=""><td>Jurisdiction</td><td></td><td>Village of Plain City</td><td></td><td>Time F</td><td>Period</td><td>AM Pe</td><td>eak</td><td></td><td>PHF</td><td></td><td>0.92</td><td></td><td>*+ *</td><td>W</td><td></td></t<>	Jurisdiction		Village of Plain City		Time F	Period	AM Pe	eak		PHF		0.92		*+ *	W	
Intersection Jefferson Avenue (US 4.). File Name Jefferson Aven (US 4.2) & Perry Pike - 2022 Built Image: Constraint of Constra	Urban Street		Jefferson Avenue (l	JS 42)	Analys	sis Year	2022			Analysis	Period	1> 7:(00	7		*
Project Description VOLUME VIEW VOLUM	Intersection		Jefferson Avenue (l	JS 4	File Na	ame	Jeffers	son Ave	(US 4	2) & Perr	y Pike -	· 2022 E	Build		11	
Demand Information L T R	Project Descrip	tion	2022 Build - AM Pe	ak											4 1 4 1 1	
Demand (information LB T R L T R	P					50			> ^ / ſ	<u>`</u>					0.0	
Approach Movement L I R L T R L T R L T R L T R L T R L T R L T R L T R L T R	Demand Inform	nation				EB		<u> </u>		3	<u> </u>	NB		<u> </u>	SB	
Demand (V), vehvin Z51 55 104 82 37 53 49 Z/9 Z1 31 402 81 Signal Information Cycle, s 120.0 Reference Phase 2 2 31 402 81 Green Control End Green Control Control 0.0 <t< td=""><td>Approach Move</td><td>ement</td><td></td><td></td><td>L</td><td> </td><td>R</td><td>L</td><td> </td><td>R</td><td>L</td><td>1</td><td>R</td><td>L</td><td>1</td><td>R</td></t<>	Approach Move	ement			L		R	L		R	L	1	R	L	1	R
Signal Information Cycle, s 120.0 Reference Phase 2 Offset, s 0 Reference Phase 2 Offset, s 120.0 Reference Phase 2 Offset, s 0 Reference Phase 2 Offset, s Simult Gap E/W On Green 55.0 55.0 0.0 0.0 0.0 0.0 Force Mode Fixed Simult Gap N/S On Red 1.0 1.0 0.0<	Demand (v), v	eh/h			251	55	104	82	3/	53	49	279	21	31	402	81
Cycle.s 12.00 Reference Phase 2 Offset, s 0 Reference Point End Uncoordinated Yes Simult. Gap E/W On Reference Point End Force Mode Fixed Simult. Gap E/W On Reference Point End Image: Comparison of the Point P	Signal Informa	tion					8	1								
Object Televin None		120.0	Reference Phase	2		243	. La È							512		~
Outcoordinated Yes Simult Gap E/W On Green [55.0] 55.0 0.0 0.0 0.0 0.0 Force Mode Fixed Simult Gap E/W On Red 1.0 0.0	Offset s	0	Reference Point	End		<u> ``11'</u>	" <u>–</u> š						1	2	3	
Direct of lande: Direct of lande: Original Corp EVN	Uncoordinated	Ves	Simult Gap E/W	On	Green	55.0	55.0	0.0	0.0	0.0	0.0	_				ð-
Tradic Information EB I/B I/B </td <td>Force Mode</td> <td>Fixed</td> <td>Simult, Gap N/S</td> <td>On</td> <td>Red</td> <td>4.0</td> <td>4.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>-</td> <td>5</td> <td>6</td> <td>7</td> <td>▲ 8</td>	Force Mode	Fixed	Simult, Gap N/S	On	Red	4.0	4.0	0.0	0.0	0.0	0.0	-	5	6	7	▲ 8
Traffic Information L T R	T OFCE MODE	TIXCU	Olifidit. Cap N/C	Oll	Rea	1.0	1.0	0.0	10.0	10.0	0.0			Ű		
Approach Movement L T R L D D	Traffic Informa	tion				FB			WB			NB			SB	
Demand (i), veh/h 251 55 104 82 37 53 49 279 21 31 402 81 Initial Queue (0 ₀), veh/h 0	Approach Move	ement		_	L	T	R	L	T	R	L	T	R	L	T	R
Initial Queue (Qs), veh/h O <tho< th=""> O O <tho< <="" td=""><td>Demand (v), ve</td><td>h/h</td><td></td><td></td><td>251</td><td>55</td><td>104</td><td>82</td><td>37</td><td>53</td><td>49</td><td>279</td><td>21</td><td>31</td><td>402</td><td>81</td></tho<></tho<>	Demand (v), ve	h/h			251	55	104	82	37	53	49	279	21	31	402	81
Base Saturation Flow Rate (so), veh/h 1900 100 100 100	Initial Queue (C), veh/	'n		0	0	0	0	0	0	0	0	0	0	0	0
Parking (Mm), man/h Indication Ind	Base Saturation	רא, Flow F	Rate (s ₀), veh/h		1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Heavy Vehicles (Priv), % Image: Margin of the system	Parking (<i>Nm</i>), m	king (N_m), man/h				None			None			None			None	
Ped / Bike / RTOR, /h 0 <td>Heavy Vehicles</td> <td colspan="4">avy Vehicles (<i>P</i>_Hv), %</td> <td>4</td> <td></td> <td></td> <td>1</td> <td></td> <td>0</td> <td>15</td> <td></td> <td>0</td> <td>11</td> <td></td>	Heavy Vehicles	avy Vehicles (<i>P</i> _H v), %				4			1		0	15		0	11	
Buses (Mb), buses/h000	Ped / Bike / RT	vy Vehicles (<i>P</i> _{HV}), % I / Bike / RTOR, /h				0	0	0	0	0	0	0	0	0	0	0
Arrival Type (AT) 3	Buses (Nb), bus	ses/h			0	0	0	0	0	0	0	0	0	0	0	0
Upstream Filtering (1) 1.00	Arrival Type (A7	7)		_	3	3	3	3	3	3	3	3	3	3	3	3
Instruction 12.0 <td>Upstream Filter</td> <td>, ing (1)</td> <td></td> <td></td> <td>1.00</td>	Upstream Filter	, ing (1)			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turn Bay Length, ftImage of the second	Lane Width (<i>W</i>)), ft				12.0			12.0		12.0	12.0		12.0	12.0	
Grade (Pg), %OOO<	Turn Bay Lengt	h, ft				0			0		150	0		150	0	
Speed Limit, mi/h353535353535505050505050Phase InformationEBLEBTWBLWBTNBLNBTSBLSBTMaximum Green ($Gmax$) or Phase Split, s 55.0 5	Grade (<i>Pg</i>), %					0			0			0			0	
Phase InformationEBLEBTWBLWBTNBLNBTSBLSBTMaximum Green (G_{max}) or Phase Split, s55.055.055.055.055.055.0Yellow Change Interval (Y), s4.04.04.04.04.04.0Red Clearance Interval (R_0 , s1.01.01.01.01.0Minimum Green (G_{min}), s2.02.02.02.02.02.02.0Start-Up Lost Time (It), s2.02.02.02.02.02.02.02.02.0Passage (PT), s2.02.02.02.02.02.02.02.02.02.0Recall Mode00ff0ffMinMinMinMinDual EntryYesYesYesYesYesYesWalk ($Walk$), s0.00.00.00.00.00.0Pedestrian Clearance Time (PC), sEBWBNBSB	Speed Limit, mi	i/h			35	35	35	35	35	35	50	50	50	50	50	50
Phase InformationEBLEBTWBLWBTNBLNBTSBLSBTMaximum Green (Gmax) or Phase Split, s55.055.055.055.055.055.0Yellow Change Interval (Y), s4.04.04.04.04.04.04.0Red Clearance Interval (Rc), s1.01.01.01.01.01.01.0Minimum Green (Gmin), s2.0 </td <td></td>																
Maximum Green (G_{max}) or Phase Split, s 55.0	Phase Informa	tion			EBL		EBT	WBI	-	WBT	NBL	-	NBT	SBL		SBT
Yellow Change Interval (Y), s4.04.04.04.04.04.0Red Clearance Interval (R_c), s1.01.01.01.01.01.0Minimum Green (G_{min}), s2.0101010101010Start-Up Lost Time (It), s2.02.02.02.02.02.02.02.02.02.0Extension of Effective Green (e), s2.02	Maximum Gree	n (<i>G</i> max) or Phase Split, s				55.0			55.0			55.0			55.0
Red Clearance Interval (R_c), s 1.0 1.0 1.0 1.0 1.0 Minimum Green (G_{min}), s 10 10 10 10 10 10 10 Start-Up Lost Time (It), s 2.0	Yellow Change	Interval	(Y), s				4.0			4.0			4.0			4.0
Minimum Green (Gmin), s Image: Minimum Green (Gmin), s <	Red Clearance	Interval	(<i>Rc</i>), s				1.0			1.0			1.0			1.0
Start-Up Lost Time (<i>lt</i>), s 2.0	Minimum Greer	ו (<i>Gmin</i>)	, S				10			10			10			10
Extension of Effective Green (e), s 2.0 0.0 0.0 0.0 0.0 0.0 0.0 <td>Start-Up Lost T</td> <td>ime (<i>lt</i>)</td> <td>, S</td> <td></td> <td>2.0</td> <td></td> <td>2.0</td> <td>2.0</td> <td></td> <td>2.0</td> <td>2.0</td> <td></td> <td>2.0</td> <td>2.0</td> <td></td> <td>2.0</td>	Start-Up Lost T	ime (<i>lt</i>)	, S		2.0		2.0	2.0		2.0	2.0		2.0	2.0		2.0
Passage (PT), s 2.0 2.0 2.0 2.0 2.0 Recall Mode Off Off Off Min Min Dual Entry Yes Yes Yes Yes Yes Walk (Walk), s 0.0 0.0 0.0 0.0 0.0 0.0 Pedestrian Clearance Time (PC), s 0.0 0.0 0.0 0.0 0.0 0.0	Extension of Ef	fective (Green (<i>e</i>), s		2.0		2.0	2.0		2.0	2.0		2.0	2.0		2.0
Recall Mode Off Off Off Min Min Dual Entry Yes	Passage (<i>PT</i>), s	s					2.0			2.0			2.0			2.0
Dual Entry Yes Yes Yes Yes Yes Yes Walk (Walk), s 0.0	Recall Mode						Off			Off			Min			Min
Walk (Walk), s 0.0 0.0 0.0 0.0 0.0 Pedestrian Clearance Time (PC), s 0.0	Dual Entry						Yes			Yes			Yes			Yes
Pedestrian Clearance Time (PC), s 0.0 0.0 0.0 0.0 0.0 Multimodal Information EB WB NB SB	Walk (<i>Walk</i>), s						0.0			0.0			0.0			0.0
Multimodal Information EB WB NB SB	Pedestrian Clearance Time (<i>PC</i>), s						0.0			0.0			0.0			0.0
	Multimodal Inf	timodal Information				EP						NP			QD	
85th % Speed / Rest in Walk / Corner Radius 0 No 25 0 No 25 0 No 25 0 No 25	85th % Space /	Iultimodal Information 5th % Speed / Rest in Walk / Corner Radius				No	25	0	No	25	0	No	25	0	No	25
Walkway Crosswalk Width Length ft Q.0 12 O Q.0 Q.0 <thq.0< th=""> Q.0 Q.0 <thq< td=""><td>Walkway / Cros</td><td colspan="4">Ilway / Crosswalk Width / Length, ft</td><td>12</td><td>25</td><td>0</td><td>12</td><td>23</td><td>0</td><td>12</td><td>25</td><td>0</td><td>12</td><td>25</td></thq<></thq.0<>	Walkway / Cros	Ilway / Crosswalk Width / Length, ft				12	25	0	12	23	0	12	25	0	12	25
Street Width / Island / Curb 0 0 No 0 0 No	Street Width / 1	treet Width / Island / Curb				0	No	9.0	0	No	9.0	0	No	9.0	0	No
Width Outside / Bike Lane / Shoulder ft 12 50 20 10 10 10 10 10 10 <td>Width Outside /</td> <td colspan="4">treet Width / Island / Curb /idth Outside / Bike Lane / Shoulder. ft</td> <td>5.0</td> <td>2.0</td> <td>12</td> <td>5.0</td> <td>2.0</td> <td>12</td> <td>50</td> <td>2.0</td> <td>12</td> <td>5.0</td> <td>2.0</td>	Width Outside /	treet Width / Island / Curb /idth Outside / Bike Lane / Shoulder. ft				5.0	2.0	12	5.0	2.0	12	50	2.0	12	5.0	2.0
Pedestrian Signal / Occupied Parking No 0.50	Pedestrian Sign	dth Outside / Bike Lane / Shoulder, ft				0.0	0.50	No	0.0	0.50	No	0.0	0.50	No	0.0	2.50

													1		
General Inforn	nation								Intersec	tion Inf	ormatio	on		4 7 4 t	
Agency		Smart Services, Inc).						Duration	, h	0.250			4 9	L
Analyst		TJS		Analys	is Dat	e Mar 1	1, 2022		Area Typ	е	Other		<u></u> 4 →		<u>م</u> ح
Jurisdiction		Village of Plain City	,	Time F	Period	AM P	eak		PHF		0.92		*	₩ E B	
Urban Street		Jefferson Avenue (l	JS 42)	Analys	is Yea	r 2022			Analysis	Period	1> 7:0	00	r 4		*
Intersection		Jefferson Avenue (l	JS 4	File Na	ame	Jeffer	son Ave	(US 4	l2) & Peri	ry Pike ·	- 2022 E	Build		14	
Project Descrip	tion	2022 Build - AM Pe	ak											* 1 * *	1
													1		
Demand Inform	nation				EB			W	B		NB			SB	
Approach Move	ement				Т	R		Т	R		Т	R		Т	R
Demand (v), v	eh/h			251	55	104	82	37	7 53	49	279	21	31	402	81
Signal Informa	tion				1 11:	δ		-	1						
	120.0	Reference Phase	2	-	243		Ħ						512		~
Offset s	0	Reference Point	End			<u>r</u> fi i						1	2	3	
Uncoordinated	Ves	Simult Cap E/W	On	Green	55.0	55.0	0.0	0.0	0.0	0.0	_				Ð-
Eorce Mode	Fixed	Simult. Gap N/S	On	Red	4.0	4.0	0.0	0.0	0.0	0.0	-	5	6	7	¥ 8
T OICE MODE	TIXEU	Sindit. Gap N/S		Itteu	1.0	1.0	0.0	0.0	0.0	0.0		9	0	1	0
Timer Results				FBI		FBT	WB		WBT	NB		NBT	SBI		SBT
Assigned Phase	e					4		_	8			2			6
Case Number	-					8.0			8.0			6.0			6.0
Phase Duration	I, S					60.0			60.0			60.0			60.0
Change Period	. (Y+R)	c). S				5.0			5.0			5.0			5.0
Max Allow Hea	dwav (/	//////////////////////////////////////				3.3			3.3			3.0			3.0
Queue Clearan	ue Clearance Time (g_s) , s					33.4			11.0			37.4			31.4
Green Extensio	ue Clearance Time ($g s$), s en Extension Time ($g e$), s					1.4			1.4			1.7			1.8
Phase Call Pro	en Extension Time (g ℯ), s se Call Probability					1.00			1.00			1.00			1.00
Max Out Proba	bility					0.00			0.00			0.00			0.00
	,														
Movement Gro	oup Res	ults			EB			WB			NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move	ment			7	4	14	3	8	18	5	2	12	1	6	16
Adjusted Flow I	Rate(<i>v</i>), veh/h			446			187		53	326		34	525	
Adjusted Satura	ation Flo	ow Rate (s), veh/h/l	n		1382			1456	3	892	1657		1070	1686	
Queue Service	Time (g	g s), s			22.3			0.0		6.0	15.9		2.6	29.4	
Cycle Queue C	learance	e Time (<i>g c</i>), s			31.4			9.0		35.4	15.9		18.6	29.4	
Green Ratio (g	ı∕C)				0.46			0.46	;	0.46	0.46		0.46	0.46	
Capacity (<i>c</i>), v	/eh/h				682			712		250	759		409	773	
Volume-to-Cap	acity Ra	tio(X)			0.654	·		0.263	3	0.213	0.429		0.082	0.679	
Back of Queue	(Q), ft/	In (95 th percentile))		397.3	;		144.6	5	57.6	273.7		29.4	457.6	
Back of Queue	(Q), ve	eh/In (95 th percent	ile)		15.4	<u> </u>		5.7		2.3	9.8		1.2	16.8	
Queue Storage	Ratio (RQ) (95 th percent	tile)		0.00			0.00		0.38	0.00		0.20	0.00	
Uniform Delay	(d 1), si	/veh			26.3	<u> </u>		19.9		39.5	21.9		28.2	25.6	
Incremental De	cremental Delay (d ₂), s/veh				1.8	<u> </u>		0.1		0.2	0.1		0.0	2.0	
Initial Queue De	nitial Queue Delay (<i>d</i> ₃), s/veh				0.0	<u> </u>		0.0		0.0	0.0		0.0	0.0	
Control Delay (d), s/veh					28.1			20.0		39.6	22.1		28.2	27.6	
Level of Service (LOS)					С			C		D	C		C	C	
Approach Delay, s/veh / LOS				28.1		С	20.0)	С	24.5		С	27.6	j	С
Intersection De	ntersection Delay, s/veh / LOS					26	j.1						C		
Multimodal Ba	ultimodal Results				ED						NID			QP	
Pedestrian LOS	destrian LOS Score / LOS				ED	B	1 01		B	1 60		B	1 60		B
Ricycle I OS Sc			1.91	,	Δ	0.80		Δ	1.08		Δ	1.08	,	Δ	
				1.22	·	~	0.00	,	7	1.1		~	1.4		A

Copyright © 2022 University of Florida, All Rights Reserved.

ſ															
General Inforn	nation	N.							Intersec	tion Inf	ormatio	on		474++	× L.
Agency		Smart Services, Inc		9					Duration,	h	0.250		-	**	×.
Analyst		TJS		Analys	sis Date	Mar 1	1, 2022		Area Typ	e	Other				
Jurisdiction		Village of Plain City		Time F	Period	PM Pe	eak		PHF		0.92		***	W E U	
Urban Street		Jefferson Avenue (l	JS 42)	Analys	sis Year	2022			Analysis	Period	1> 16	:15	1×1		¥ ~
Intersection		Jefferson Avenue (l	JS 4	File Na	ame	Jeffers	son Ave	(US 4	12) & Peri	y Pike -	2022 E	Build		ግዮ	
Project Descrip	tion	2022 Build - PM Pe	ak										1	* **** *	* 1
P					50				<u> </u>	1	ND			0.0	
Demand Inform	nation				EB		+ .	VV	B	<u> </u>	NB		<u> </u>	SB	
Approach Move	ement			L		R			R	L	1	R	L		R
Demand (v), v	/eh/h			198	/1	85	44	64	49	109	404	35	68	416	261
Signal Informa	ation					8									
Cycle s	120.0	Reference Phase	2	-	124S	. La 8							512		
Offset s	0	Reference Point	- End			° Tá						1	2	3	Y 4
Uncoordinated	Yes	Simult Gap E/W	On	Green	69.0	41.0	0.0	0.0	0.0	0.0	_				Ð-
Force Mode	Fixed	Simult. Gap N/S	On	Red	4.0	4.0	0.0	0.0		0.0	-	5	6	7	₩ 8
T GIGG MIGUE	Tixed	onnan: oap n/o	on	1100	1.0	1.0	0.0	0.0		0.0					
Traffic Informa	ation				EB			WB			NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (<i>v</i>), ve	h/h			198	71	85	44	64	49	109	404	35	68	416	261
Initial Queue (Qb), veh/	'n		0	0	0	0	0	0	0	0	0	0	0	0
Base Saturation	n Flow F	Rate (<i>s₀</i>), veh/h		1900	1900	1900	1900	1900) 1900	1900	1900	1900	1900	1900	1900
Parking (Nm), m	xing (<i>N</i> _m), man/h vy Vehicles (<i>P</i> _{HV}), %				None			None	e		None			None	
Heavy Vehicles	avy Vehicles (<i>PHV</i>), %				1			1		5	9		0	6	
Ped / Bike / RT	vy Vehicles (<i>P</i> _{HV}), % / Bike / RTOR, /h				0	0	0	0	0	0	0	0	0	0	0
Buses (Nb), bus	d / Bike / RTOR, /h ses (<i>N</i> _b), buses/h				0	0	0	0	0	0	0	0	0	0	0
Arrival Type (A	<i>T</i>)		_	3	3	3	3	3	3	3	3	3	3	3	3
Upstream Filter	ring (I)			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lane Width (<i>W</i>), ft				12.0			12.0		12.0	12.0		12.0	12.0	
Turn Bay Lengt	h, ft				0			0		150	0		150	0	
Grade (<i>Pg</i>), %					0			0			0			0	
Speed Limit, m	i/h			35	35	35	35	35	35	50	50	50	50	50	50
Phase Informa	tion			EBL	-	EBT	WBI	-	WBT	NBL		NBT	SBL		SBT
Maximum Gree	n (<i>G</i> max) or Phase Split, s			·	41.0			41.0		_	69.0		6	69.0
Yellow Change	Interval	l (Y), s				4.0			4.0			4.0			4.0
Red Clearance	Interval	l (<i>R</i> c), s				1.0			1.0			1.0			1.0
Minimum Greer	n (<i>Gmin</i>)	, S				10			10			10			10
Start-Up Lost T	ime (<i>It</i>)	, S		2.0		2.0	2.0		2.0	2.0		2.0	2.0		2.0
Extension of Ef	fective (Green (<i>e</i>), s		2.0		2.0	2.0		2.0	2.0		2.0	2.0		2.0
Passage (<i>PT</i>),	s					2.0			2.0			2.0		\rightarrow	2.0
Recall Mode						Off			Off			Min			Min
Dual Entry						Yes			Yes			Yes			Yes
Walk (<i>Walk</i>), s						0.0			0.0			0.0			0.0
Pedestrian Clearance Time (<i>PC</i>), s						0.0			0.0			0.0			0.0
Multimodel Inf	ultimodal Information				EP						ND			CD	
	Iultimodal Information 5th % Speed / Rest in Walk / Corner Radius					05	0	VVB	05	0	NE	05	0	SB Nc	DE
Walkway / Cros	alkway / Crosswalk Width / Length, ft				12	25	0	10	20	0	12	25	0	12	25
Stroot Width / H	Valkway / Crosswalk Width / Length, ft itreet Width / Island / Curb				12	No	9.0	12	No	9.0	12	No	9.0	12	No
Width Outside	itreet Width / Island / Curb Vidth Outside / Bike I ane / Shoulder. ft				5.0	20	12	5.0	2.0	12	5.0	2.0	12	5.0	2.0
Pedestrian Sign	idth Outside / Bike Lane / Shoulder, ft				3.0	2.0	No	5.0	0.50	No	3.0	2.0	No	3.0	2.0
- caconan oigi	edestrian Signal / Occupied Parking					0.00	110		0.00	110		0.00	110		0.00

General Inforn	nation								Intersec	tion Inf	ormatio	on	_	47411	4 L <u>4</u>
Agency		Smart Services, Inc).						Duration	, h	0.250			4 4	
Analyst		TJS		Analys	is Date	Mar 11	, 2022		Area Typ	e	Other				
Jurisdiction		Village of Plain City	,	Time F	eriod	PM Pe	eak		PHF		0.92		*	w	- -
Urban Street		Jefferson Avenue (l	JS 42)	Analys	is Year	2022			Analysis	Period	1> 16	5:15	2 R		*
Intersection		Jefferson Avenue (l	JS 4	File Na	me	Jeffers	son Ave	(US 4	l2) & Per	ry Pike -	- 2022	Build		11	
Project Descrip	tion	2022 Build - PM Pe	ak										1	4 1 4 17 1	1
				1			_								
Demand Inform	nation				EB			W	B		NB			SB	
Approach Move	ement			L	Т	R	L	Т	R		Т	R	L	Т	R
Demand (<i>v</i>), v	eh/h			198	71	85	44	64	49	109	404	35	68	416	261
Signal Informa	tion					5	1	_	_	_					
	120.0	Reference Phase	2		242	12 B							stz -		<u> </u>
Offset s	0	Reference Point	End									1	2	3	
Uncoordinated	Ves	Simult Gap E/W	On	Green	69.0	41.0	0.0	0.0	0.0	0.0	-				Ð-
Force Mode	Fixed	Simult. Gap N/S	On	Red	4.0	4.0	0.0	0.0	0.0	0.0	-11	5	6	7	▲ 8
T OFCE MODE	TIXEU	olindit. Cap N/C	Oll	Itteu	1.0	1.0	0.0	10.0	0.0	0.0					
Timer Results				EBL		EBT	WB	L	WBT	NBI	_	NBT	SBL		SBT
Assigned Phase	e					4			8			2			6
Case Number						8.0			8.0			6.0			6.0
Phase Duration	. s					46.0			46.0			74.0		-	74.0
Change Period	. (Y+R (c). S				5.0		-	5.0			5.0			5.0
Max Allow Hea	dwav (A	//////////////////////////////////////				3.3			3.3			3.2			3.2
Queue Clearan	ieue Clearance Time (g_s), s					32.6			10.9			59.4			41.2
Green Extensio	ieue Clearance Time (g s), s een Extension Time (g e), s					0.9			1.2			2.7			3.5
Phase Call Pro	een Extension Time (g e), s ase Call Probability				-	1.00		-	1.00			1.00			1.00
Max Out Proba	bility					0.07			0.00			0.27			0.01
	,														
Movement Gro	oup Res	ults			EB			WB			NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move	ment			7	4	14	3	8	18	5	2	12	1	6	16
Adjusted Flow I	Rate (v), veh/h			385			171		118	477		74	736	
Adjusted Satura	ation Flo	w Rate (s), veh/h/l	n		1394			1580)	704	1742		932	1694	
Queue Service	Time (g	g s), s			21.7			0.0		18.2	19.2		6.1	39.2	
Cycle Queue C	learance	e Time (<i>g c</i>), s			30.6			8.9		57.4	19.2		25.3	39.2	
Green Ratio (g	ı∕C)				0.34			0.34	·	0.57	0.57		0.57	0.57	
Capacity (c), v	/eh/h				523			578		235	1001		446	974	
Volume-to-Cap	acity Ra	tio(X)			0.736			0.29	5	0.504	0.476		0.166	0.756	
Back of Queue	(Q), ft/	In (95 th percentile))		406.2			162.	7	143.8	299.1		57.2	537.8	
Back of Queue	(Q), ve	eh/In (95 th percenti	ile)		16.1			6.5		5.5	11.2		2.3	20.5	
Queue Storage	Ratio (RQ) (95 th percent	tile)		0.00			0.00		0.96	0.00		0.38	0.00	
Uniform Delay	(d 1), s/	/veh			36.5			28.8		40.7	14.9		22.3	19.2	
Incremental De	lay (<i>d</i> 2), s/veh			4.7			0.1		0.7	0.1		0.1	3.1	
nitial Queue Delay (<i>d</i> ₃), s/veh					0.0			0.0		0.0	0.0		0.0	0.0	
Control Delay (d), s/veh					41.2			28.9		41.4	15.1		22.4	22.2	
Level of Service (LOS)					D			C		D	В		С	С	
Approach Delay, s/veh / LOS				41.2		D	28.9)	С	20.3	3	С	22.2		С
Intersection Delay, s/veh / LOS						26	5.0						С		
Multimodal Results					EP						NID			CD	
Pedestrian LOS	Pedestrian LOS Score / LOS					B	1.02		B	1.67		B	1.67	30	B
Ricycle I OS Sc	edestrian LOS Score / LOS			1 10		Δ	0.77	, , , , , , , , , , , , , , , , , , , ,	Δ	1.07	7	Δ	1.07		B
	,5187 LC	,5		1.12		Λ	0.11		~	1.47		Λ	1.02		U

r.								11							
General Inform	nation	N.							Intersect	tion Inf	ormatio	on	_	474++	<u> </u>
Agency		Smart Services, Inc		9					Duration,	h	0.250		-	**	R.
Analyst		TJS		Analys	sis Date	Mar 1	1, 2022		Area Typ	e	Other				
Jurisdiction		Village of Plain City		Time F	Period	AM Pe	eak		PHF		0.92		*-*	₩ĴE	÷ ⇒
Urban Street		Jefferson Avenue (l	JS 42)	Analys	sis Year	2032			Analysis	Period	1> 7:(00	r 1		* *
Intersection		Jefferson Avenue (l	JS 4	File Na	ame	Jeffers	son Ave	(US 4	12) & Perr	y Pike -	2032	lo Bui…		ግዮ	
Project Descrip	tion	2032 No Build - AM	Peak										1	* * * * *	* (*
Daman d la fam									D					0.0	
Demand Inform	nation				EB		+ -		В				<u> </u>		D
Approach Move	ement			L	1	R	L		R A		1	R	L	1	R 07
Demand (V), V	en/n	_		246	48	96	90	20	9 42	35	309	25	20	465	87
Signal Informa	tion				DE	3									
Cycle, s	120.0	Reference Phase	2		1243 5.40	, La é							N		
Offset, s	0	Reference Point	End									1	2	3	4
Uncoordinated	Yes	Simult, Gap F/W	On	Green	57.0	53.0	0.0	0.0		0.0	_				\rightarrow
Force Mode	Fixed	Simult, Gap N/S	On	Red	1.0	1.0	0.0	0.0	0.0	0.0	-	5	6	7	8
					1		1.1.1	1							
Traffic Informa	tion				EB			WB			NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (<i>v</i>), ve	h/h			246	48	96	90	26	42	35	309	25	26	465	87
Initial Queue (C	¢₀), veh/	'n		0	0	0	0	0	0	0	0	0	0	0	0
Base Saturation	ר Flow F	Rate (<i>s</i> ₀), veh/h		1900	1900	1900	1900	1900) 1900	1900	1900	1900	1900	1900	1900
Parking (Nm), m	king (<i>Nm</i>), man/h avy Vehicles (<i>PHV</i>), %				None			None	e e		None			None	
Heavy Vehicles	avy Vehicles (<i>PHV</i>), %				4			1		0	15		0	11	
Ped / Bike / RT	avy Vehicles (<i>P</i> _H v), % I / Bike / RTOR, /h				0	0	0	0	0	0	0	0	0	0	0
Buses (Nb), bus	ses/h			0	0	0	0	0	0	0	0	0	0	0	0
Arrival Type (A	Γ)			3	3	3	3	3	3	3	3	3	3	3	3
Upstream Filter	ing (I)			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lane Width (W), ft				12.0			12.0		12.0	12.0		12.0	12.0	
Turn Bay Lengt	h, ft				0			0		150	0		150	0	
Grade (<i>Pg</i>), %					0			0			0			0	
Speed Limit, mi	i/h			35	35	35	35	35	35	50	50	50	50	50	50
			_												
Phase Informa	tion	<u> </u>		EBL	-	EBT	WBI		WBT	NBL	· ·	NBT	SBL		SBT
Maximum Gree	n (<i>Gmax</i>) or Phase Split, s				53.0		_	53.0			57.0			57.0
Yellow Change	Interval	l (Y), s				4.0			4.0			4.0		\rightarrow	4.0
Red Clearance	Interval	I (<i>R</i> c), s				1.0		_	1.0		_	1.0		\rightarrow	1.0
Minimum Greer	ר (<i>Gmin</i>)	, S		0.0		10	0.0		10	0.0		10	0.0	_	10
Start-Up Lost 1	ime (<i>It</i>)	, S Dec e e (c) - c		2.0		2.0	2.0	+	2.0	2.0	_	2.0	2.0	_	2.0
Extension of El		Green (e), s		2.0		2.0	2.0		2.0	2.0	_	2.0	2.0	_	2.0
Passage (PT),	5					2.0			2.0		_	Z.U Min		\rightarrow	2.0 Min
	Recall Mode					Vaa			Vac			Vac		\rightarrow	IVIIII Voo
Dual Entry						res			res		_	res		\rightarrow	res
Walk (<i>Walk</i>), s Pedestrian Clearance Time (<i>PC</i>), s						0.0			0.0			0.0		_	0.0
Pedestrian Clearance Time (<i>PC</i>), s						0.0			0.0			0.0			0.0
Multimodal Inf	ultimodal Information				EB			WB			NB			SB	
85th % Speed /	35th % Speed / Rest in Walk / Corner Radius				No	25	0	No	25	0	No	25	0	No	25
Walkway / Cros	Ikway / Crosswalk Width / Length, ft				12	0	9.0	12	0	9.0	12	0	9.0	12	0
Street Width / Is	treet Width / Island / Curb				0	No	0	0	No	0	0	No	0	0	No
Width Outside /	reet Width / Island / Curb idth Outside / Bike Lane / Shoulder, ft				5.0	2.0	12	5.0	2.0	12	5.0	2.0	12	5.0	2.0
Pedestrian Sigr	Vidth Outside / Bike Lane / Shoulder, ft Pedestrian Signal / Occupied Parking					0.50	No		0.50	No		0.50	No	(0.50

General Inforn	nation								Intersed	tion Inf	ormati	on	_	4441.	4 L <u>4</u>
Agency		Smart Services, Inc).						Duratior	ı, h	0.250)		4.7	
Analyst		TJS		Analys	is Date	Mar 1	, 2022		Area Ty	be	Othe	-			
Jurisdiction		Village of Plain City	,	Time F	eriod	AM Pe	eak		PHF		0.92		*	₩ <mark>‡</mark> E	- -
Urban Street		Jefferson Avenue (l	JS 42)	Analys	is Year	2032			Analysis	Period	1> 7:	00	r 4		*
Intersection		Jefferson Avenue (l	JS 4	File Na	me	Jeffers	son Ave	(US 4	42) & Pe	ry Pike	- 2032 I	No Bui		11	
Project Descrip	tion	2032 No Build - AM	l Peak											*****	1
				[_	1			1		
Demand Inform	nation				EB			W	B		NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (<i>v</i>), v	/eh/h			246	48	96	90	20	6 42	35	309	25	26	465	87
Signal Informa	ation					5	1			_	_				
	120.0	Reference Phase	2		642	12 ž							572		<u> </u>
Offset s	0	Reference Point	End									1	2	3	
Uncoordinated	Ves	Simult Gap E/W	On	Green	57.0	53.0	0.0	0.0	0.0	0.0	_				Ð-
Eorce Mode	Fixed	Simult. Gap N/S	On	Red	4.0	4.0	0.0	0.0		0.0	_	5	6	7	▲ 8
T OFCE MODE	TIXCU	olindit. Cap N/C	Oll	Itteu	1.0	1.0	0.0	0.0	0.0	0.0					
Timer Results				EBL		EBT	WB	L	WBT	NB	L	NBT	SBL	_	SBT
Assigned Phase	е					4			8	<u> </u>		2			6
Case Number						8.0		+	8.0			6.0			6.0
Phase Duration	n. s					58.0		-	58.0			62.0			62.0
Change Period	, . (Y+R (c), S			-	5.0		+	5.0			5.0			5.0
Max Allow Hea	dwav (A	MAH), s				3.3		-	3.3			3.0			3.0
Queue Clearan	ueue Clearance Time (g_s), s					31.0		+	10.8			41.4			36.7
Green Extensio	ueue Clearance Time (g s), s reen Extension Time (g e), s					1.3		-	1.3	-		1.9			1.9
Phase Call Pro	een Extension Time (<i>g</i> e), s					1.00		+	1.00	<u> </u>		1.00			1.00
Max Out Proba	bility					0.00		-	0.00	-		0.01			0.00
	,														
Movement Gro	oup Res	ults			EB			WE	}		NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move	ment			7	4	14	3	8	18	5	2	12	1	6	16
Adjusted Flow I	Rate(<i>v</i>), veh/h			424			172		38	363		28	600	
Adjusted Satura	ation Flo	ow Rate (<i>s</i>), veh/h/l	n		1407			1420	2	832	1655		1035	1689	
Queue Service	Time (g	g s), s			20.2			0.0		4.7	17.7		2.3	34.7	
Cycle Queue C	learance	e Time (<i>g c</i>), s			29.0			8.8		39.4	17.7		20.0	34.7	
Green Ratio (g	ŋ∕C)				0.44			0.44	<u>۱</u>	0.48	0.48		0.48	0.48	
Capacity (c), v	/eh/h				670			674	·	215	786		399	802	
Volume-to-Cap	acity Ra	tio (<i>X</i>)			0.633			0.25	5	0.177	0.462		0.071	0.748	
Back of Queue	(Q), ft/	In (95 th percentile))		380			136.	9	42.3	295.7		24.4	532.4	
Back of Queue	(Q), ve	eh/In (95 th percenti	ile)		14.7			5.4		1.7	10.6		1.0	19.6	
Queue Storage	Ratio (RQ) (95 th percent	tile)		0.00			0.00)	0.28	0.00		0.16	0.00	
Uniform Delay	(d 1), s/	/veh			26.9			21.1		41.7	21.2		27.9	25.6	
Incremental De	lay (<i>d</i> 2), s/veh			1.5			0.1		0.1	0.2		0.0	3.5	
Initial Queue Delay (<i>d</i> 3), s/veh					0.0			0.0		0.0	0.0		0.0	0.0	
Control Delay (<i>d</i>), s/veh					28.4			21.1		41.8	21.3		27.9	29.1	
Level of Service (LOS)					С			С		D	C		С	С	
Approach Delay, s/veh / LOS				28.4		С	21.1		С	23.3	3	С	29.1		С
Intersection Delay, s/veh / LOS						26	6.6						С		
Multimodal Posults								14/5			ND			05	
Multimodal Results Pedestrian LOS Score / LOS				1.01	EB	_	1.01	WE	5	1.0	NB	D	4.00	SB	
Pedestrian LOS	edestrian LOS Score / LOS			1.91		В	1.91		В	1.68	5	В	1.68	5	в
BICYCIE LOS SC	Bicycle LOS Score / LOS					A	0.77		A	1.1		А	1.52	-	В

General Inforn	nation	v							Intersec	tion Inf	ormatio	on	_	4 A 4 1 1	× L.
Agency		Smart Services, Inc	-	12					Duration,	h	0.250			44	R.
Analyst		TJS		Analys	sis Date	Mar 1	1, 2022		Area Typ	e	Other				
Jurisdiction		Village of Plain City		Time F	Period	PM Pe	eak		PHF		0.92		* *	W = E	
Urban Street		Jefferson Avenue (l	JS 42)	Analys	sis Year	2032			Analysis	Period	1> 16	:15	7		¥ ~
Intersection		Jefferson Avenue (l	JS 4	File Na	ame	Jeffers	son Ave	(US 4	12) & Peri	y Pike -	2032	lo Bui		ጎዮ	
Project Descrip	tion	2032 No Build - PM	Peak											* * * * *	* 1
P					50			10/	<u> </u>				1	0.0	
Demand Inform	nation				EB		+ .	VV	B	<u>.</u>	NB		<u> </u>	SB	
Approach Move	ement				1	R	L		R	L	1	R			R
Demand (v), v	eh/h			1//	53	61	49	4	/ 35	92	454	42	58	466	265
Signal Informa	tion					8									
Cycle s	120.0	Reference Phase	2	-	243	L2 8							512		
Offset s	0	Reference Point	End			° Tš						1	2	3	Y 4
Uncoordinated	Yes	Simult Gap E/W	On	Green	66.3	43.7	0.0	0.0	0.0	0.0	_				Ð-
Force Mode	Fixed	Simult Gap N/S	On	Red	4.0	4.0	0.0	0.0	0.0	0.0	-	5	6	7	₩ 8
T OF CE THOUSE	TIXCU	ointait. Oup N/O	OII	Incu	1.0	1.0	0.0	0.0	0.0	0.0			-		
Traffic Informa	tion				FB			WE	3		NB			SB	
Approach Move	ement			L	T	R	L	Т	R	L	T	R	L	Т	R
Demand (v), ve	h/h			177	53	61	49	47	35	92	454	42	58	466	265
Initial Queue (G), veh/	h		0	0	0	0	0	0	0	0	0	0	0	0
Base Saturation	n Flow F	Rate (s _o), veh/h		1900	1900	1900	1900	1900	0 1900	1900	1900	1900	1900	1900	1900
Parking (<i>Nm</i>), m	ing (<i>N</i> _m), man/h				None			Non	e		None			None	
Heavy Vehicles	avy Vehicles (<i>PHV</i>), %				1			1		5	9		0	6	
Ped / Bike / RT	vy Vehicles (<i>P</i> _{HV}), % / Bike / RTOR, /h				0	0	0	0	0	0	0	0	0	0	0
Buses (<i>N_b</i>), bus	d / Bike / RTOR, /h				0	0	0	0	0	0	0	0	0	0	0
Arrival Type (A	7)		_	3	3	3	3	3	3	3	3	3	3	3	3
Upstream Filter	, ina (/)			1.00	1.00	1.00	1.00	1.00) 1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lane Width (<i>W</i>), ft				12.0			12.0)	12.0	12.0		12.0	12.0	
Turn Bay Lengt	h, ft				0			0		150	0		150	0	
Grade (<i>Pg</i>), %					0			0			0			0	
Speed Limit, m	i/h			35	35	35	35	35	35	50	50	50	50	50	50
Phase Informa	tion			EBL		EBT	WBI	_	WBT	NBL	_	NBT	SBL		SBT
Maximum Gree	n (G _{max})) or Phase Split, s				43.7			43.7			66.3			66.3
Yellow Change	Interval	(Y), s				4.0			4.0			4.0			4.0
Red Clearance	Interval	(<i>Rc</i>), s				1.0			1.0			1.0			1.0
Minimum Gree	ר (<i>Gmin</i>)	, S				10			10			10			10
Start-Up Lost T	ime (<i>It</i>),	, S		2.0		2.0	2.0		2.0	2.0		2.0	2.0		2.0
Extension of Ef	fective (Green (<i>e</i>), s		2.0		2.0	2.0		2.0	2.0		2.0	2.0		2.0
Passage (PT),	s					2.0			2.0			2.0			2.0
Recall Mode						Off			Off			Min			Min
Dual Entry						Yes			Yes			Yes			Yes
Nalk (<i>Walk</i>), s						0.0			0.0			0.0			0.0
Pedestrian Clearance Time (<i>PC</i>), s						0.0			0.0			0.0			0.0
Multimodel Inf	Iltimodal Information				EP						ND			CD	
	Iultimodal Information 5th % Speed / Rest in Walk / Corner Radius					05	0	VVB	25	0	NB	05	0	SB No	DE
Walkway / Cras	alkway / Crosswalk Width / Length, ft				10	25	0	10	25	0	10	25	0	10	25
Stroot Width / H	Valkway / Crosswalk Width / Length, tt treet Width / Island / Curb				12	No	9.0	12	No	9.0	12	No	9.0	12	No
Width Outside	itreet Width / Island / Curb Vidth Outside / Bike I ane / Shoulder, ft				5.0	2.0	12	5.0		12	5.0	2.0	12	5.0	2.0
Pedestrian Sign	dth Outside / Bike Lane / Shoulder, ft				0.0	2.0	No	0.0	0.50	No	0.0	0.50	No	0.0	0.50
. Sassinan olyi	edestrian Signal / Occupied Parking					0.00	110		0.00	110		0.00	110		0.00

General Inforn	nation	v							Inters	ecti	ion Info	ormatio	on	2	▲丛ゆ↓. 】	pi la
Agency		Smart Services, Inc							Durati	ion,	h	0.250			4 2	L
Analyst		TJS		Analys	is Dat	e Mar 1	1, 2022		Area ⁻	Туре	9	Other		4		<u>م</u> ح
Jurisdiction		Village of Plain City		Time F	Period	PM P	eak		PHF			0.92		*	₩ . E	
Urban Street		Jefferson Avenue (l	JS 42)	Analys	is Yea	r 2032			Analy	sis F	Period	1> 16	:15	4		*
Intersection		Jefferson Avenue (l	JS 4	File Na	ame	Jeffer	son Ave	(US	42) & F	Perry	y Pike -	2032 N	lo Bui…		14	
Project Descrip	tion	2032 No Build - PM	Peak											1	* * * *	
			_													
Demand Inform	nation				EB			W	′B			NB		<u> </u>	SB	
Approach Move	ement			L	Т	R				R	L	Т	R	L	Т	R
Demand (v), v	/eh/h			177	53	61	49	4	7 3	35	92	454	42	58	466	265
Signal Informa	ation					5										
	120.0	Poforonco Phaso	C	-	242		H I							512		X
Offect c	120.0	Reference Pridse	Z End			rr i							1	2	3	
Uncoordinated	Voc	Simult Con E/M	On	Green	66.3	43.7	0.0	0.0	0 0	.0	0.0	_				A-
Eorce Mode	Fixed	Simult Gap N/S	On	Pellow	4.0	4.0	0.0	0.0) 0	.0	0.0	_	5		7	¥ 8
Porce Mode	Fixed	Simult. Gap N/S	On	Reu	1.0	1.0	0.0	0.0	5 10	.0	0.0		5	0	1	0
Timer Results			_	FBI		FBT	WB		WRT	.	NRI		NBT	SBI		SBT
Assigned Phase	<u>م</u>		_		-	4			8	+			2			6
Case Number	<u> </u>			<u> </u>		8.0		-+	8.0	+			6.0			6.0
Phase Duration				<u> </u>		48 7	<u> </u>	-	48.7	-			71.3			71.3
Change Period	(Y±R	c) s		<u> </u>		5.0		-+	5.0	+			5.0			5.0
Max Allow Hear	dway ()	MAH) s				3.2	<u> </u>	-	3.2	-			3.2			3.2
Queue Clearan	eue Clearance Time (g_s), s			<u> </u>		23.1		-+	9.2	+			66 9			49.1
Green Extensio	eue Clearance Time (g s), s een Extension Time (g e), s			<u> </u>		0.0	<u> </u>	-	0.2	+			0.0			3.6
Phase Call Pro	een Extension Time (g_e), s			<u> </u>		1.00		+	1.00	+			1.00			1.00
Max Out Proba	bility					0.00		-	0.00	-			1.00			0.07
	Dinty					0.00			0.00				1.00			0.07
Movement Gro	oup Res	ults			EB			WE	3			NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	2	L	Т	R	L	Т	R
Assigned Move	ment			7	4	14	3	8	18	3	5	2	12	1	6	16
Adjusted Flow I	Rate(<i>v</i>), veh/h			316			142	2		100	539		63	795	
Adjusted Satura	ation Flo	w Rate (<i>s</i>), veh/h/l	n		1454			155	3		667	1740		880	1700	
Queue Service	Time (g	g s), s			13.9			0.0			17.8	24.1		6.0	47.1	
Cycle Queue C	learanc	e Time (<i>g c</i>), s			21.1			7.2	2		64.9	24.1		30.1	47.1	
Green Ratio (g	ŋ∕C)				0.36			0.3	6		0.55	0.55		0.55	0.55	
Capacity (c), v	/eh/h				578			607	7		167	961		369	939	
Volume-to-Cap	acity Ra	tio(X)			0.547			0.23	5		0.600	0.561		0.171	0.846	
Back of Queue	(Q), ft/	'In (95 th percentile)			298.7			128.	.1		142.5	366.5		54.8	666	
Back of Queue	(Q), ve	eh/In (95 th percenti	le)		11.9			5.1			5.5	13.7		2.2	25.4	
Queue Storage	Ratio (RQ) (95 th percent	ile)		0.00			0.0	0		0.95	0.00		0.37	0.00	
Uniform Delay	(d 1), s	/veh			30.9			26.4	4		49.8	17.4		27.2	22.6	
Incremental De	lay (<i>d</i> 2), s/veh			0.6			0.1			4.2	0.5		0.1	6.9	
Initial Queue D	nitial Queue Delay (d 3), s/veh				0.0			0.0			0.0	0.0		0.0	0.0	
Control Delay (Control Delay (<i>d</i>), s/veh				31.6			26.	5		54.0	17.9		27.3	29.4	
Level of Service (LOS)					С			С			D	В		С	С	
Approach Delay, s/veh / LOS				31.6	;	С	26.5	5	С		23.5	5	С	29.3		С
ntersection Delay, s/veh / LOS						2	7.6							С		
Multimodal Re	Aultimodal Results				EB			WE	3			NB			SB	
Pedestrian LOS	destrian LOS Score / LOS			1.93	;	В	1.93	3	В		1.67		В	1.67		В
Bicycle LOS Sc	edestrian LOS Score / LOS icycle LOS Score / LOS					А	0.72	2	А		1.54		В	1.90		В

Copyright © 2022 University of Florida, All Rights Reserved.

						1							
General Information							Intersect	ion Infe	ormatio	on		4 2 4 1 1	× L.
Agency	Smart Services, Inc.	12					Duration,	h	0.250				K.
Analyst	TJS	Analys	sis Date	Mar 11	, 2022		Area Typ	e	Other				*
Jurisdiction	Village of Plain City	Time F	Period	AM Pe	eak		PHF		0.92		*	₩ĴE	- -
Urban Street	Jefferson Avenue (US 42)	Analys	sis Year	2032			Analysis	Period	1> 7:(00	7 4		¥ ~
Intersection	Jefferson Avenue (US 4	File Na	ame	Jeffers	son Ave	(US 4	42) & Perr	y Pike -	2032 E	Build		74	
Project Description	2032 Build - AM Peak										٦	41471	
		1			1		_	_			_		
Demand Information			EB			W	B		NB		<u> </u>	SB	
Approach Movement			T	R		Т	R		T	R	L	T	R
Demand (v), veh/h		260	57	107	90	39	9 57	51	328	25	35	476	87
Signal Information			1 11:	5	1	_			_				
	Reference Phase 2	-	242	28							512		~
Offect s	Reference Point End		1 517	יאי						1	2	3	
Unseed Voo	Simult Con E/M On	Green	57.0	53.0	0.0	0.0	0.0	0.0					A
Earco Modo Eixed	Simult Cap N/S On	Pod	4.0	4.0	0.0	0.0		0.0	_	_ K		7	¥ .
		Itteu	1.0	1.0	0.0	0.0	0.0	0.0		5	0		0
Traffic Information			FB			WP	3		NB	_		SB	
Approach Movement			Т	R	1	Т	R	1	Т	R		Т	R
Demand (v) veh/h		260	. 57	107	90	39	57	51	328	25	35	476	87
Initial Queue (Q _b), veh	/h	0	0	0	0	0	0	0	0	0	0	0	0
Base Saturation Flow	Rate (s₀), veh/h	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Parking (N_m) , man/h	(00), (01),1		None			None	e		None			None	
Heavy Vehicles (<i>PHV</i>).	%		4			1		0	15		0	11	
Ped / Bike / RTOR, /h		0	0	0	0	0	0	0	0	0	0	0	0
Buses (<i>N</i> _b), buses/h		0	0	0	0	0	0	0	0	0	0	0	0
Arrival Type (AT)	/ RTOR, /h , buses/h e (<i>AT</i>)			3	3	3	3	3	3	3	3	3	3
Upstream Filtering (/)		1.00	1.00	1.00	1.00	1.00) 1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lane Width (<i>W</i>). ft			12.0			12.0)	12.0	12.0		12.0	12.0	
Turn Bay Length, ft			0			0		150	0		150	0	
Grade (Pq), %			0			0			0			0	
Speed Limit, mi/h		35	35	35	35	35	35	50	50	50	50	50	50
Phase Information		EBL	. E	EBT	WBL	-	WBT	NBL	-	NBT	SBL		SBT
Maximum Green (Gmax	or Phase Split, s		Ę	53.0			53.0			57.0			57.0
Yellow Change Interva	l (Y), s			4.0			4.0			4.0			4.0
Red Clearance Interva	ll (<i>Rc</i>), s			1.0			1.0			1.0			1.0
Minimum Green (Gmin), s			10			10			10			10
Start-Up Lost Time (It)), S	2.0		2.0	2.0		2.0	2.0		2.0	2.0		2.0
Extension of Effective	Green (<i>e</i>), s	2.0		2.0	2.0		2.0	2.0		2.0	2.0		2.0
Passage (<i>PT</i>), s				2.0			2.0			2.0			2.0
Recall Mode				Off			Off			Min			Min
Dual Entry				Yes			Yes			Yes			Yes
Walk (<i>Walk</i>), s				0.0			0.0			0.0			0.0
Pedestrian Clearance	strian Clearance Time (<i>PC</i>), s			0.0			0.0			0.0			0.0
Multimedal listerio	on		EP									<u>e</u> p	
85th % Speed / Dect	Wolk / Corpor Podius	0		25	0	VVB	DE	0	ND	25	0	SD No	25
Walkway / Crosswelk	Nidth / Length ft	0	12	25	0	10	20	0	12	25	0	12	25
Street Width / Jaland /		9.0	0	No	9.0	12	No	9.0	0	No	9.0	0	No
Width Outside / Rike L	ane / Shoulder ft	12	5.0	2.0	12	5.0	2.0	12	5.0	2.0	12	5.0	2.0
Pedestrian Signal / Oc	cupied Parking	No	0.0	2.0	No	0.0	0.50	No	0.0	0.50	No	0.0	2.0
	Suprou i anning				110		0.00			0.00		1	0.00

Copyright © 2022 University of Florida, All Rights Reserved.

								- II					-		
General Inforn	nation								Intersec	tion Inf	ormatio	on	_	4 2 4 1 1	× [<u>L_</u>
Agency		Smart Services, Inc).	2					Duration	, h	0.250				K.
Analyst		TJS		Analys	is Dat	e Mar 1	1, 2022		Area Typ	e	Other		<u></u> 4 →		<u>≵</u>
Jurisdiction		Village of Plain City	,	Time F	Period	AM Pe	eak		PHF		0.92		*	₩ĴE	
Urban Street		Jefferson Avenue (l	JS 42)	Analys	is Yea	r 2032			Analysis	Period	1> 7:0	00	2 4		*
Intersection		Jefferson Avenue (l	JS 4	File Na	ame	Jeffers	son Ave	(US 4	12) & Per	ry Pike ·	- 2032 E	Build		11	
Project Descrip	tion	2032 Build - AM Pe	ak										5	4 1 4 1 1	* (*
				1						W					
Demand Inform	nation				EB		<u> </u>	W	B		NB		<u> </u>	SB	
Approach Move	ement			L	Т	R	L	Т	R		Т	R	L.	Т	R
Demand (<i>v</i>), v	eh/h			260	57	107	90	39	9 57	51	328	25	35	476	87
Signal Informa	tion					5	1	_]
	120.0	Reference Phase	2		642		=						512		$\mathbf{\Sigma}$
Offset s	0	Reference Point	End									1	2	3	4
Uncoordinated	Voc	Simult Con E/W	On	Green	57.0	53.0	0.0	0.0	0.0	0.0	_				Ð-
Earoo Mada	Fixed	Simult. Cap N/S	On	Yellow	4.0	4.0	0.0	0.0		0.0	_	Į K.		7	¥ .
Force wode	Fixed	Simult. Gap N/S	OII	Reu	1.0	1.0	0.0	0.0	0.0	0.0		5	0	1	0
Timer Results			_	FBI		FBT	WB		WBT	NB		NBT	SBI		SBT
Assigned Phase	e				-	4			8			2			6
Case Number	-				+	8.0		+	8.0			6.0			6.0
Phase Duration	. S				-	58.0			58.0			62.0			62.0
Change Period	. (Y+R (c). S				5.0		-	5.0			5.0	<u> </u>		5.0
Max Allow Hear	dwav (A	MAH), s	s s			3.3			3.3			3.0			3.0
Queue Clearan	ce Time	(a_s) , s	, s			36.6			12.3			44.9			37.8
Green Extensio	on Time	(q_e) s	ys), s e), s			14			1.5			1.9			21
Phase Call Pro	bability	(90),0	y s), S ' e), S			1.00		-	1.00			1.00			1 00
Max Out Proba	bility				0.00		-	0.00	<u> </u>		0.06			0.01	
max out rioba	onity					0.00			0.00			0.00			0.01
Movement Gro	oup Res	ults			EB			WB	}		NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	T	R	L	Т	R
Assigned Move	ment			7	4	14	3	8	18	5	2	12	1	6	16
Adjusted Flow I	Rate(<i>v</i>), veh/h			461			202		55	384		38	612	
Adjusted Satura	ation Flo	ow Rate (<i>s</i>), veh/h/l	n		1367			1452	2	823	1657		1015	1690	
Queue Service	Time (g	g s), s			24.3			0.0		7.1	19.0		3.2	35.8	
Cycle Queue C	learance	e Time (<i>g c</i>), s			34.6			10.3	3	42.9	19.0		22.2	35.8	
Green Ratio (g	/C)				0.44			0.44		0.48	0.48		0.48	0.48	
Capacity (c), v	/eh/h				652			686		206	787		382	803	
Volume-to-Cap	acity Ra	tio(X)			0.707			0.29	5	0.270	0.488		0.100	0.762	
Back of Queue	(Q), ft/	In (95 th percentile))		434.9			164.3	3	63.9	312.7		34	548.6	
Back of Queue	(Q), ve	eh/In (95 th percenti	ile)		16.9			6.5		2.6	11.2		1.4	20.2	
Queue Storage	Ratio (RQ) (95 th percent	tile)		0.00			0.00)	0.43	0.00		0.23	0.00	
Uniform Delay	(d 1), s/	/veh			28.7			21.5	5	43.6	21.5		29.1	25.9	
Incremental De	lay (<i>d</i> 2), s/veh			3.0			0.1		0.3	0.2		0.0	3.9	
Initial Queue D	I Queue Delay (<i>d</i> ₃), s/veh				0.0			0.0		0.0	0.0		0.0	0.0	
Control Delay (lay (<i>d</i>), s/veh				31.7			21.5	5	43.8	21.7		29.1	29.8	
Level of Service	Service (LOS)				С			С		D	С		С	С	
Approach Dela	y, s/veh	/LOS	.0S			С	21.5	5	С	24.5	5	С	29.8		С
Intersection De	lay, s/ve	h / LOS				28	3.0						С		
														0.5	
Multimodal Re	sults	11.00		1.01	EB	_	1.01	WB		4.04	NB	D	4.00	SB	_
Pedestrian LOS	Score	/ LUS		1.91		В	1.91		B	1.68	5	В	1.68		В
BICYCLE LOS SC	ore / LC	5		1.25		A	0.82	<u> </u>	A	1.21		A	1.56		В

Copyright © 2022 University of Florida, All Rights Reserved.

	I Information Smart Services, Inc. TJS													
General Information								Intersect	tion Info	ormatio	on	_	4 7 4 † † 1	<u> </u>
Agency S	Smart Services, Inc.		12					Duration,	h	0.250			**	K.
Analyst T	rjs		Analys	sis Date	Mar 1	, 2022		Area Typ	e	Other				
Jurisdiction V	/illage of Plain City		Time F	Period	PM Pe	eak		PHF		0.92		*	W	
Urban Street J	lefferson Avenue (U	S 42)	Analys	sis Year	2032			Analysis	Period	1> 16	:15	7		*
Intersection J	lefferson Avenue (U	S 4	File Na	ame	Jeffers	son Ave	(US 4	2) & Perr	y Pike -	2032 E	Build		11	
Project Description 2	2032 Build - PM Pea	k										1	4 1 4 1 1	* /*
Description of the				50				_	1	ND		1	0.0	
Demand Information				EB		<u> </u>		3	<u> </u>	NB		<u> </u>	SB	
Approach Movement			L		R	L		R		1	R		1	R
Demand (v), veh/h			206	/4	87	49	65	52	114	476	42	//	490	279
Signal Information					8	1								
Cycle s 120.0	Reference Phase	2	-	243	. La 2							512		
Offset s 0	Reference Point	End			' Š						1	2	3	Y 4
Uncoordinated Yes	Simult Gap F/W	On	Green	72.7	37.3	0.0	0.0	0.0	0.0	_				\rightarrow
Force Mode Fixed	Simult. Gap N/S	On	Red	4.0	4.0	0.0	0.0	0.0	0.0	-	5	6	7	8
		011	1100	1.0	1.0	0.0	0.0	0.0	0.0					
Traffic Information				EB			WB			NB			SB	
Approach Movement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (<i>v</i>), veh/h			206	74	87	49	65	52	114	476	42	77	490	279
Initial Queue (Qb), veh/h			0	0	0	0	0	0	0	0	0	0	0	0
Base Saturation Flow Ra	ate (s ₀), veh/h		1900	1900	1900	1900	1900) 1900	1900	1900	1900	1900	1900	1900
Parking (<i>N</i> _m), man/h			None			None	2		None			None		
Heavy Vehicles (PHV), %	%			1			1		5	9		0	6	
Ped / Bike / RTOR, /h	v), % /h			0	0	0	0	0	0	0	0	0	0	0
Buses (Nb), buses/h	OR, /h es/h			0	0	0	0	0	0	0	0	0	0	0
Arrival Type (<i>AT</i>)	R, /h /h			3	3	3	3	3	3	3	3	3	3	3
Upstream Filtering (<i>I</i>)			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lane Width (<i>W</i>), ft				12.0			12.0		12.0	12.0		12.0	12.0	
Turn Bay Length, ft				0			0		150	0		150	0	
Grade (<i>Pg</i>), %				0			0			0			0	
Speed Limit, mi/h			35	35	35	35	35	35	50	50	50	50	50	50
Phase Information			EBL		EBT	WBI	-	WBT	NBL	.	NBT	SBL	. ;	SBT
Maximum Green (Gmax) o	or Phase Split, s			;	37.3			37.3			72.7			72.7
Yellow Change Interval ((Y), s				4.0			4.0			4.0			4.0
Red Clearance Interval ((<i>Rc</i>), s				1.0			1.0			1.0			1.0
Minimum Green (<i>Gmin</i>), s	s				10			10			10			10
Start-Up Lost Time (It), s	S		2.0		2.0	2.0		2.0	2.0		2.0	2.0		2.0
Extension of Effective Gr	reen (<i>e</i>), s		2.0		2.0	2.0		2.0	2.0		2.0	2.0		2.0
Passage (PT), s					2.0		_	2.0			2.0			2.0
Recall Mode					Off			Off			Min			Min
Dual Entry	il Entry				Yes		_	Yes			Yes			Yes
Walk (<i>Walk</i>), s					0.0			0.0			0.0			0.0
Pedestrian Clearance Tir	ince Time (<i>PC</i>), s				0.0			0.0			0.0			0.0
Multimodal Information	1		FR			W/R			NR			SB		
85th % Speed / Rest in V	ition			No	25	0	No	25	0	No	25	0	No	25
Walkway / Crosswalk Wi	idth / Length ft	5	9.0	12	0	9.0	12	0	90	12	0	9.0	12	0
Street Width / Island / Cu	urb		0.0	0	No	0.0	0	No	0.0	0	No	0.0	0	No
Width Outside / Rike Lan	ne / Shoulder ft		12	5.0	2.0	12	5.0	2.0	12	5.0	2.0	12	5.0	2.0
Pedestrian Signal / Occu	upied Parking		No		0.50	No		0.50	No	5.5	0.50	No		0.50

ſ															
General Inforn	nation								Intersec	tion Inf	ormatio	on	_	A LAA + .	
Agency		Smart Services, Inc).						Duration	, h	0.250				R.
Analyst		TJS		Analys	is Dat	e Mar 1	1, 2022		Area Typ	be	Other		_ →		4
Jurisdiction		Village of Plain City	'	Time F	Period	PM Pe	eak		PHF		0.92			W = E	
Urban Street		Jefferson Avenue (l	JS 42)	Analys	is Yea	r 2032			Analysis	Period	1> 16	:15	1		₩ √
Intersection		Jefferson Avenue (l	JS 4	File Na	ame	Jeffer	son Ave	(US -	42) & Per	ry Pike -	- 2032 E	Build		11	
Project Descrip	tion	2032 Build - PM Pe	ak											* 1 * * * * 1	
P			_		50				/D					0.0	
Demand Inform	nation				ER		+	VV	B	<u> </u>	NB		<u> </u>	SB	
Approach Move	ement			L		R	L		R R		1	R		1	R
Demand (V), V	/en/n			206	74	87	49	6	5 52	114	476	42	11	490	279
Signal Informa	ation				UE	8									
Cycle, s	120.0	Reference Phase	2	÷	243	<u></u>							N		
Offset, s	0	Reference Point	End									1	2	3	Y 4
Uncoordinated	Yes	Simult Gap F/W	On	Green	72.7	37.3	0.0	0.0	0.0	0.0	-				Ð-
Force Mode	Fixed	Simult Gap N/S	On	Red	4.0	4.0	0.0	0.0	$\frac{0.0}{0.0}$	0.0	_	5	6	7	8
	Tixou	onnuit. Oup 14/0	011	Ttou	1.0	1.0	0.0	10.0	0.0	0.0					
Timer Results				EBL		EBT	WB	L	WBT	NBI	_	NBT	SBI	_	SBT
Assigned Phase	е					4			8			2			6
Case Number						8.0			8.0			6.0			6.0
Phase Duration	1, S					42.3			42.3			77.7		-	77.7
Change Period	, (Y+R	c), S				5.0			5.0			5.0			5.0
Max Allow Hea	dwav (/	// MAH). s	S			3.3			3.3			3.2			3.2
Queue Clearan	ce Time	(a s). s), s			36.5			12.1			70.0			47.8
Green Extensio	n Time	(ge), s), S , S			0.1			1.3			1.4			4.3
Phase Call Pro	bability	(3-),-	s), S			1.00			1.00			1.00			1.00
Max Out Proba	bility		g s), S (e), S			1.00			0.00			1.00			0.03
	j		1 e), S												
Movement Gro	oup Res	ults		EB	1		WE	3		NB			SB		
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move	ment			7	4	14	3	8	18	5	2	12	1	6	16
Adjusted Flow I	Rate(<i>v</i>), veh/h			399			180)	124	563		84	836	
Adjusted Satura	ation Flo	ow Rate (<i>s</i>), veh/h/l	n		1360			156	6	642	1741		861	1700	
Queue Service	Time (g s), s			24.4			0.0		22.3	22.6		7.5	45.8	
Cycle Queue C	learanc	e Time (<i>g c</i>), s			34.5			10.1	1	68.0	22.6		30.1	45.8	
Green Ratio (g	ŋ∕C)				0.31			0.31	1	0.61	0.61		0.61	0.61	
Capacity (c), v	/eh/h				470			526	5	204	1055		419	1030	
Volume-to-Cap	acity Ra	tio(X)			0.849			0.34	3	0.607	0.534		0.200	0.812	
Back of Queue	(Q), ft/	In (95 th percentile))		476			183.	3	168.3	334.8		65.7	614.7	
Back of Queue	(Q), ve	eh/In (95 th percenti	ile)		18.9			7.3		6.5	12.5		2.6	23.5	
Queue Storage	Ratio (RQ) (95 th percent	tile)		0.00			0.00	כ	1.12	0.00		0.44	0.00	
Uniform Delay	(d 1), s	/veh			41.1			31.8	3	44.7	13.8		22.6	18.3	
Incremental De	lay (<i>d</i> 2), s/veh			13.1			0.1		3.7	0.3		0.1	4.7	
Initial Queue D	elay (<i>d</i> ₂), s/veh				0.0			0.0		0.0	0.0		0.0	0.0	
Control Delay (rol Delay (<i>d</i>), s/veh				54.2			32.0	0	48.4	14.1		22.6	23.0	
Level of Service	rvice (LOS)				D			С		D	В		С	С	
Approach Delay	y, s/veh	/LOS	54.2		D	32.0)	С	20.3	3	С	23.0)	С	
Intersection De	lay, s/ve	h / LOS				28	8.6						С		
	••													-	
Multimodal Re	sults	// 00			EB	_		WE	-		NB	_		SB	_
Pedestrian LOS	Score	/ LOS		1.93		В	1.93	5	В	1.66)	В	1.66		В
Bicycle LOS So	core / LC	DS		1.15		A	0.79)	A	1.62	2	В	2.00)	В

Copyright © 2022 University of Florida, All Rights Reserved.

r.															
General Inform	nation	¥							Intersect	tion Info	ormatio	on	_	4 7 4 † † 1	<u> </u>
Agency		Smart Services, Inc		9					Duration,	h	0.250		-	**	R.
Analyst		TJS		Analys	sis Date	Mar 1	1, 2022		Area Typ	e	Other				
Jurisdiction		Village of Plain City		Time F	Period	AM Pe	eak		PHF		0.92		*-*	W	÷ ⇒
Urban Street		Jefferson Avenue (l	JS 42)	Analys	sis Year	2032			Analysis	Period	1> 7:(00	r 1		* *
Intersection		Jefferson Avenue (l	JS 4	File Na	ame	Jeffers	son Ave	(US 4	12) & Perr	y Pike -	2032 E	Build		ጎዮ	
Project Descrip	tion	2032 Build w NB LT	Phase	- AM Pe	eak								1	* 1 * * * 1	* [*
Demand Inform	notion				ГР			\\\/	D		ND			<u> </u>	_
Approach Move	mont						<u> </u>					D		Т	D
Domand (v) v	oh/h			260	57	107	00	30) 57	51	328	25	25	176	97
Demand (V), V				200	51	107	90	38	5 31	JI	520	23	- 55	470	07
Signal Informa	tion		_				5	<u> </u>							
Cycle, s	120.0	Reference Phase	2		542	543	, 🖃 ê	27 C					$\mathbf{\nabla}$	_	\mathbf{A}
Offset, s	0	Reference Point	End	Croon		50.5	47.5	0.0		0.0		1	2	3	Y 4
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow	4.0	4.0	47.5	0.0	0.0	0.0					\rightarrow
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	1.0	1.0	0.0	0.0	0.0		5	6	7	8
Traffic Informa	tion				EB			WB			NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (<i>v</i>), ve	h/h			260	57	107	90	39	57	51	328	25	35	476	87
Initial Queue (C	₯), veh/	h		0	0	0	0	0	0	0	0	0	0	0	0
Base Saturation	n Flow F	Rate (<i>s</i> ₀), veh/h		1900	1900	1900	1900	1900) 1900	1900	1900	1900	1900	1900	1900
Parking (Nm), m	nan/h							None	e		None			None	
Heavy Vehicles	(Рнv), С	%		4			1		0	15		0	11		
Ped / Bike / RT	OR, /h	/), % /h			0	0	0	0	0	0	0	0	0	0	0
Buses (<i>N</i> _b), bus	TOR, /h ses/h			0	0	0	0	0	0	0	0	0	0	0	0
Arrival Type (A	Γ)			3	3	3	3	3	3	3	3	3	3	3	3
Upstream Filter	ing (<i>I</i>)			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lane Width (W)), ft				12.0			12.0		12.0	12.0		12.0	12.0	
Turn Bay Lengt	h, ft				0			0		150	0		150	0	
Grade (<i>Pg</i>), %					0			0			0			0	
Speed Limit, mi	i/h			35	35	35	35	35	35	50	50	50	50	50	50
Phase Informa	tion			FBI		FBT	WBI		WBT	NBI		NBT	SBI		SBT
Maximum Gree	n (Gmay) or Phase Split is			-	47.5	1101	-	47.0	7.0		60.5			50.5
Yellow Change						4.0			4.0	4.0		4.0			4.0
Red Clearance	Interval	(R_c) s				1.0			1.0	1.0		1.0			1.0
Minimum Green	וונפו ופו ר (<i>Gmin</i>)	s				10		+	10	6		10			10
Start-Up Lost T	ime (<i>It</i>)	, <u>-</u> . S		2.0		2.0	2.0		2.0	2.0		2.0	2.0		2.0
Extension of Ef	fective (Green (<i>e</i>), s		2.0		2.0	2.0		2.0	2.0		2.0	2.0		2.0
Passage (<i>PT</i>),	s	- (-);				2.0			2.0	2.0		2.0			2.0
Recall Mode						Off			Off	Off		Min			Min
Dual Entry						Yes			Yes	No		Yes			Yes
Walk (<i>Walk</i>), s	htry Valk), s					0.0			0.0			0.0			0.0
Pedestrian Clea	n Clearance Time (<i>PC</i>), s					0.0			0.0			0.0			0.0
			e (<i>PC</i>), s												
Multimodal Inf	ormatio	nation			EB			WB			NB			SB	
85th % Speed /	Rest in	Walk / Corner Radi	0	No	25	0	No	25	0	No	25	0	No	25	
Walkway / Cros	swalk V	Vidth / Length, ft		9.0	12	0	9.0	12	0	9.0	12	0	9.0	12	0
Street Width / Is	sland / C	Curb		0	0	No	0	0	No	0	0	No	0	0	No
Width Outside /	Bike La	ane / Shoulder, ft		12	5.0	2.0	12	5.0	2.0	12	5.0	2.0	12	5.0	2.0
Pedestrian Sigr	nal / Oco	cupied Parking		No		0.50	No		0.50	No		0.50	No		0.50

General Inform	nation	v							Inte	rsect	ion Info	ormatio	on	_	444+	
Agency		Smart Services, Inc							Dura	ation,	h	0.250			4 4	L
Analyst		TJS		Analys	is Dat	e Mar 1	1, 2022		Area	а Туре	Э	Other				<u>لم</u> ح
Jurisdiction		Village of Plain City		Time F	Period	AM P	eak		PHF	=		0.92		*	W = E	🔶 🔶
Urban Street		Jefferson Avenue (l	JS 42)	Analys	is Yea	r 2032			Ana	Iysis I	Period	1> 7:(00			*
Intersection		Jefferson Avenue (l	JS 4	File Na	ame	Jeffer	son Ave	(US	42) &	R Perr	y Pike -	2032 E	Build		7 1	
Project Descrip	tion	2032 Build w NB LT	⁻ Phase	- AM Pe	eak									1	4147	7
				1							T			1		
Demand Inform	nation				EB	l		N	/B			NB	1		SB	
Approach Move	ement			L	Т	R	L		г	R	L	Т	R	L	Т	R
Demand (v), v	/eh/h			260	57	107	90	3	9	57	51	328	25	35	476	87
Signal Informa	ation				1		5				-					
	120.0	Poforonco Phasa	2	-		243								sta		7
Offect s	120.0	Reference Pridse	Z End		1 51	71 51	7R -						1	2	3	4
Uncoordinated	Voc	Simult Con E/W	On	Green	7.0	50.5	47.5	0.	0	0.0	0.0	_				Ð-
Earco Modo	Fixed	Simult. Gap E/W	On	Yellow	4.0	4.0	4.0	0.	0	0.0	0.0	_) ဵ⊾₁		7	¥ .
Porce Mode	Fixed	Sinuit. Gap N/S	OII	Reu	1.0	1.0	1.0	10.	0	0.0	0.0		5	0	1	0
Timer Results			_	FBI		FBT	WB		WF	RT	NBI		NBT	SBI		SBT
Assigned Phase	e				-	4		-	8		5		2		-	6
Case Number						8.0		-	8 (0	1.0		4.0			6.3
Phase Duration	1. S					52.5		-	52	.5	12.0		67.5			55.5
Change Period	(Y+R)	c).s				5.0		-	5.0	0	5.0		5.0			5.0
Max Allow Heat	dwav (/	MAH), s	/), S s), S			3.3		-	3.3	3	3.0		3.0	-		3.0
Queue Clearan	ce Time	(a_s) , s			39.8		-	13.	2	3.9		19.3			41.5	
Green Extensio	on Time	(q_e) s	y s), S e), S			1 1			1 !	5	0.0		19			16
Phase Call Pro	bability	(90),0			1.00			1.0	00	1.00		1.00			1.00	
Max Out Proba	bility	ïme (<i>g e</i>), s ility				0.14			0.0	0	0.82	-	0.00			0.12
	2								0.0		0.01					••••=
Movement Gro	oup Res	sults			EB			W	3			NB			SB	
Approach Move	ement			L	Т	R	L	Т		R	L	Т	R	L	Т	R
Assigned Move	ement			7	4	14	3	8		18	5	2	12	1	6	16
Adjusted Flow I	Rate(<i>v</i>), veh/h			461			202	2		55	384		38	612	
Adjusted Satura	ation Flo	ow Rate (<i>s</i>), veh/h/l	n		1355			145	6		1810	1657		1015	1690	
Queue Service	Time (g	g s), s			26.6			0.0)		1.9	17.3		2.9	39.5	
Cycle Queue C	learance	e Time (<i>g c</i>), s			37.8			11.	2		1.9	17.3		8.2	39.5	
Green Ratio (g	r∕C)				0.40			0.4	0		0.50	0.52		0.42	0.42	
Capacity (<i>c</i>), v	/eh/h				585			62	1		241	863		442	711	
Volume-to-Cap	acity Ra	tio(X)			0.788	3		0.32	26		0.230	0.445		0.086	0.860	
Back of Queue	(Q), ft/	In (95 th percentile))		486.1			181	.2		33.9	285.3		30.4	642	
Back of Queue	(Q), ve	eh/In (95 th percenti	le)		18.8			7.2	2		1.4	10.2		1.2	23.6	
Queue Storage	Ratio (RQ) (95 th percent	tile)		0.00			0.0	0		0.23	0.00		0.20	0.00	
Uniform Delay	(d 1), s	/veh			33.7			25.	2		23.4	17.9		24.2	31.6	
Incremental De	lay (<i>d</i> 2), s/veh			6.5			0.1			0.2	0.1		0.0	10.0	
Initial Queue De	ueue Delay (d_3), s/ven				0.0			0.0)		0.0	0.0		0.0	0.0	
Control Delay (Delay (<i>d</i>), s/veh				40.3			25.	3		23.6	18.1		24.3	41.6	
Level of Service	el of Service (LOS)				D			С			С	В		С	D	
Approach Delay	Delay, s/veh / LOS			40.3		D	25.3	3	С	;	18.8		В	40.5	j	D
Intersection De	lay, s/ve	h / LOS				33	3.3							С		
	•															
Multimodal Re	sults	// 00			EB			W	3 -			NB	_		SB	_
Pedestrian LOS	Score	/ LOS		1.92		В	1.92	<u> </u>	B		1.68		В	1.69		В
Bicycle LOS Sc	core / LC	05		1.25		A	0.82	2	A	۱	1.21		A	1.56		В

Copyright © 2022 University of Florida, All Rights Reserved.

General Inform	nation								Intersect	tion Infe	ormatio	on	2	1 1 1 1	× (L.)
Agency		Smart Services, Inc	•						Duration,	h	0.250			44	×
Analyst		TJS		Analys	sis Date	Mar 1	1, 2022		Area Typ	е	Other		소 →		4
Jurisdiction		Village of Plain City		Time F	Period	PM Pe	eak		PHF		0.92		*	W	
Urban Street		Jefferson Avenue (L	JS 42)	Analys	sis Year	2032			Analysis	Period	1> 16	:15	4		¥
Intersection		Jefferson Avenue (L	JS 4	File Na	ame	Jeffers	son Ave	(US 4	12) & Perr	y Pike -	2032 E	Build		7 1	
Project Descrip	tion	2032 Build w NB LT	Phase	- PM P	eak								1	4 1 4 1 1	* 1
Demand Inform	nation				EB			W	B		NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), v	eh/h			206	74	87	49	65	5 52	114	476	42	77	490	279
	tion			1	1	1 11:	1 5		-		_				
		Deference Dhees	<u></u>	c		245		1					51 2		~
	120.0	Reference Priase	Z End		1 517	'l "îfî	"FJ"					1	2	3	
Unseerdingtod	U Vee	Simult Cap E/M		Green	7.0	60.5	37.5	0.0	0.0	0.0					<u>A</u>
Chicoordinated	Tixed	Simult Cap N/S	On	Yellow	4.0	4.0	4.0	0.0	0.0	0.0	_ ^	∕`I _{K1}		-	×.
Force wode	Fixed	Simult. Gap N/S	Un	Rea	1.0	1.0	1.0	0.0	0.0	0.0		5	6	/	8
Traffic Informa	tion				ER			\//B			NR	_		SB	
Approach Move	ment		_		Т	R		Т	R		Т	R		т	R
Demand (v) ve	h/h			206	74	87	49	65	52	114	476	42	77	490	279
Initial Queue (C) _b) veh/	'n		0	0	0		0	0	0	0	-72	0	0	0
Base Saturation	n Flow F	Rate (s _o) veh/h		1900	1900	1900	1900	1900) 1900	1900	1900	1900	1900	1900	1900
Parking (N_m) m	nan/h					1000	1000	None	-	1000	None	1000	1000	None	1000
Heavy Vehicles), %			1			1	-	5	9		0	6	
Ped / Bike / RT	OR /h	/v), % /h			0	0	0	0	0	0	0	0	0	0	0
Buses (N _b), bus	ses/h	R, /hs/h			0	0	0	0	0	0	0	0	0	0	0
Arrival Type (A)	/ RTOR, /h , buses/h			3	3	3	3	3	3	3	3	3	3	3	3
Upstream Filter	ina (1)			1.00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1.00	1 00	1 00
Lane Width (W), ft			1.00	12.0	1.00	1.00	12.0)	12.0	12.0	1.00	12.0	12.0	1.00
Turn Bay Lengt	h. ft				0			0		150	0		150	0	
Grade (Pa). %	,		_		0			0	-		0			0	
Speed Limit. mi	i/h			35	35	35	35	35	35	50	50	50	50	50	50
,															
Phase Informa	tion			EBL	-	EBT	WBI	-	WBT	NBL	-	NBT	SBL		SBT
Maximum Gree	n (<i>G</i> max) or Phase Split, s				37.5			36.5	7.0		67.5			60.5
Yellow Change	Interval	(Y), s				4.0			4.0	4.0		4.0			4.0
Red Clearance	Interval	(<i>Rc</i>), s				1.0			1.0	1.0		1.0			1.0
Minimum Greer	ר (<i>Gmin</i>)	, S				10			10	7		10			10
Start-Up Lost T	ime (<i>lt</i>)	, S		2.0		2.0	2.0		2.0	2.0		2.0	2.0		2.0
Extension of Ef	fective (Green (<i>e</i>), s		2.0		2.0	2.0		2.0	2.0		2.0	2.0		2.0
Passage (PT), s	s					2.0			2.0	2.0		2.0			2.0
Recall Mode						Off			Off	Off		Min			Min
Dual Entry	Dual Entry					Yes			Yes	No		Yes			Yes
Walk (<i>Walk</i>), s	S					0.0			0.0			0.0			0.0
Pedestrian Clea	rian Clearance Time (<i>PC</i>), s					0.0			0.0			0.0			0.0
Re-14		tion						14/5			NIE			05	
	formation			-	EB	05		VVB	05	-	NB	05		SB	05
85tn % Speed /	Rest in	vvaik / Corner Radii	JS	0	INO 40	25	0	NO 40	25	0	INO	25	0	INO	25
Street Wetter /	swaik V	viain / Lengin, II		9.0	12	U Niz	9.0	12	U	9.0	12	U Niz	9.0	12	U
	sianu / (Diko La	Julu Dana / Shauldar ft		10	5.0		10		1NO	12	5.0	00	10	5.0	
Podostrian Sigr		ane / Shoulder, It		IZ No	5.0	2.0	IZ No	5.0	2.0	1Z No	5.0	2.0	1Z No	5.0	2.0
Li edestriari sigi		supieu i ai kiliy				0.00			0.00			0.00			0.00

Copyright © 2022 University of Florida, All Rights Reserved.

													v		
General Inform	nation	v							Interse	ction Inf	ormatio	on	-	4441.	
Agency		Smart Services, Inc.							Duratior	ı, h	0.250			44	R.
Analyst		TJS		Analys	is Date	e Mar 1	1, 2022		Area Ty	be	Other		4 →		4 5-
Jurisdiction		Village of Plain City		Time F	eriod	PM P	eak		PHF		0.92		*	W	
Urban Street		Jefferson Avenue (US	5 42)	Analys	is Yea	r 2032			Analysis	Period	1> 16	:15	14		*
Intersection		Jefferson Avenue (US	S 4	File Na	me	Jeffer	son Ave	(US	42) & Pe	rry Pike ·	2032 E	Build		ግዮ	
Project Descrip	tion	2032 Build w NB LT I	Phase	- PM Pe	eak								1	***	
										11			ľ		
Demand Inforr	nation				EB		<u> </u>	W	′B		NB		<u> </u>	SB	
Approach Move	ement			L	Т	R	L		r R	L	Т	R	L	Т	R
Demand (v), v	eh/h			206	74	87	49	6	5 52	114	476	42	77	490	279
Signal Informa	tion				1		5		_						
	120.0	Reference Phase	2	-		243	1.2 8	1					stz		~
Offset s	120.0	Reference Point	Z End		L Sti	2 _≦≙	~FJ					1	2	3	
Uncoordinated	Voc	Simult Con E/M	On	Green	7.0	60.5	37.5	0.0	0.0	0.0	_				Ă−
Earco Modo	Fixed	Simult. Gap E/W	On	Pod	4.0	4.0	4.0	0.0		0.0	_) 『⊀	L N	7	¥ .
Porce Mode	Fixeu	Simult. Gap 14/5	OII	Reu	1.0	1.0	1.0	0.0	5 0.0	0.0		J	0	1	0
Timer Results			_	FBI		FBT	WB		WBT	NB		NRT	SBI		SBT
Assigned Phase	e		_			4		-	8	5	-	2		-	6
Case Number	<u> </u>		_	<u> </u>		8.0		-	8.0	1.0		4.0			6.3
Phase Duration	I S		_			42.5			42.5	12 ()	77.5			65 5
Change Period	(Y+R)					5.0		-	5.0	5.0	,	5.0			5.0
Max Allow Hear	d, (Y+ <i>R</i> c), s adway (<i>MAH</i>), s nce Time (<i>g</i> s), s					3.3			3.3	3.0		3.0			3.0
Queue Clearan	y Headway (<i>MAH</i>), s earance Time (<i>g</i> s), s			<u> </u>		36.4		-	12.1	5.0		24 7			59.6
Green Extensio	Clearance Time (g_s), s Extension Time (g_e), s			<u> </u>		0.2		-	13	0.0		34	<u> </u>		0.5
Phase Call Pro	Extension Time (g_s), s Call Probability					1.00		-	1.0	1.00		1.00			1.00
Max Out Proba	en Extension Time ($g \in$), s se Call Probability Out Probability					1.00	-		0.00	1.00	,	0.00		_	1.00
	onity					1.00			0.00	1.00	,	0.00			1.00
Movement Gro	oup Res	ults			EB			WE	3		NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move	ment			7	4	14	3	8	18	5	2	12	1	6	16
Adjusted Flow I	Rate(<i>v</i>), veh/h			399			180)	124	563		84	836	
Adjusted Satura	ation Flo	ow Rate (<i>s</i>), veh/h/ln			1361			156	6	1739	1741		861	1700	
Queue Service	Time (g	g s), s			24.3			0.0		3.9	22.7		7.6	57.6	
Cycle Queue C	learance	e Time (<i>g c</i>), s			34.4			10.1	1	3.9	22.7		18.3	57.6	
Green Ratio (g	ı∕C)				0.31			0.3	1	0.58	0.60		0.50	0.50	
Capacity (<i>c</i>), v	/eh/h				472			528	3	177	1052		417	857	
Volume-to-Cap	acity Ra	tio(X)			0.845			0.34	2	0.699	0.535		0.201	0.975	
Back of Queue	(Q), ft/	In (95 th percentile)			472.7			182.	.8	101.3	336.5		66.2	924.6	
Back of Queue	(Q), ve	eh/In (95 th percentile)		18.8			7.3	;	3.9	12.6		2.6	35.3	
Queue Storage	Ratio (RQ) (95 th percentil	e)		0.00			0.0	D	0.68	0.00		0.44	0.00	
Uniform Delay	(d 1), si	/veh			40.9			31.	7	27.5	13.9		22.7	29.0	
Incremental De	lay (<i>d</i> 2), s/veh			12.6			0.1		9.8	0.3		0.1	24.6	
Initial Queue De	elay(<i>d</i>	з), s/veh			0.0			0.0		0.0	0.0		0.0	0.0	
Control Delay (itial Queue Delay (<i>d</i> ₃), s/veh ontrol Delay (<i>d</i>), s/veh				53.5			31.8	8	37.4	14.2		22.8	53.6	
Level of Service	ontrol Delay (<i>d</i>), s/veh evel of Service (LOS)				D			С		D	В		С	D	
Approach Dela	y, s/veh	/ LOS		53.5		D	31.8	3	С	18.4		В	50.8	3	D
Intersection De	lay, s/ve	h / LOS				39	9.5						D		
Multimodal Re	sults				EB			WE	3		NB			SB	
Pedestrian LOS	S Score	/LOS		1.93		В	1.93	3	В	1.66	3	В	1.68	3	В
Bicycle LOS Sc	ore / LC	DS		1.15		А	0.79)	Α	1.62	2	В	2.00)	В

Copyright © 2022 University of Florida, All Rights Reserved.

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	TJS	Intersection	Perry Pike & Village Blvd
Agency/Co.	Smart Services, Inc.	Jurisdiction	Village of Plain City
Date Performed	3/14/2022	East/West Street	Perry Pike
Analysis Year	2022	North/South Street	Village Boulevard
Time Analyzed	2022 Build - AM Peak	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Village Center of Plain City TIS		

Vehicle Volumes and Adjustments

· · · · · · · · · · · · · · · · · · ·																
Approach		Eastb	ound			West	ound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR				LTR				LTR				LTR	
Volume (veh/h)		28	325	40		9	114	28		15	0	39		33	0	18
Percent Heavy Vehicles (%)		0				0				0	3	0		3	3	3
Proportion Time Blocked																
Percent Grade (%)										()			()	
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up He	adways															
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		4.10				4.10				7.10	6.53	6.20		7.13	6.53	6.23
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.20				2.20				3.50	4.03	3.30		3.53	4.03	3.33
Delay, Queue Length, and	l Leve	l of Se	ervice													
Flow Rate, v (veh/h)		30				10					59				55	
Capacity, c (veh/h)		1438				1173					563				463	
v/c Ratio		0.02				0.01					0.10				0.12	
95% Queue Length, Q ₉₅ (veh)		0.1				0.0					0.3				0.4	
Control Delay (s/veh)		7.6				8.1					12.1				13.8	
Level of Service (LOS)		А				А					В				В	
Approach Delay (s/veh)		0	.7			0	.6			12	2.1			13	3.8	
Approach LOS										E	3			E	3	

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	TJS	Intersection	Perry Pike & Village Blvd
Agency/Co.	Smart Services, Inc.	Jurisdiction	Village of Plain City
Date Performed	3/14/2022	East/West Street	Perry Pike
Analysis Year	2022	North/South Street	Village Boulevard
Time Analyzed	2022 Build - PM Peak	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Village Center of Plain City TIS		

Vehicle Volumes and Adjustments

Approach		Eastb	ound			Westb	ound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR				LTR				LTR				LTR	
Volume (veh/h)		35	229	26		35	349	53		60	0	28		77	0	41
Percent Heavy Vehicles (%)		0				0				4	3	0		3	3	3
Proportion Time Blocked																
Percent Grade (%)										()			()	
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up He	adwa	idways														
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		4.10				4.10				7.14	6.53	6.20		7.13	6.53	6.23
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.20				2.20				3.54	4.03	3.30		3.53	4.03	3.33
Delay, Queue Length, and	Leve	l of Se	ervice													
Flow Rate, v (veh/h)		38				38					96				128	
Capacity, c (veh/h)		1134				1297					314				325	
v/c Ratio		0.03				0.03					0.30				0.40	
95% Queue Length, Q ₉₅ (veh)		0.1				0.1					1.3				1.8	
Control Delay (s/veh)		8.3				7.9					21.4				23.1	
Level of Service (LOS)		А				А					С				С	
Approach Delay (s/veh)		1	.3			0.	.9			21	4			23	3.1	
Approach LOS										(2			(2	

HCS7 Two-Way Stop-Control Report												
General Information		Site Information										
Analyst	τJS	Intersection	Perry Pike & Village Blvd									
Agency/Co.	Smart Services, Inc.	Jurisdiction	Village of Plain City									
Date Performed	3/14/2022	East/West Street	Perry Pike									
Analysis Year	2032	North/South Street	Village Boulevard									
Time Analyzed	2032 Build - AM Peak	Peak Hour Factor	0.92									
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25									
Project Description	Village Center of Plain City TIS											

Vehicle Volumes and Adjustments

· · · · · · · · · · · · · · · · · · ·																	
Approach		Eastb	ound			West	bound			North	bound		Southbound				
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0	
Configuration			LTR				LTR				LTR				LTR		
Volume (veh/h)		28	334	41		10	118	28		15	0	40		33	0	18	
Percent Heavy Vehicles (%)		0				0				0	3	0		3	3	3	
Proportion Time Blocked																	
Percent Grade (%)									()		0					
Right Turn Channelized																	
Median Type Storage		Undivided															
Critical and Follow-up He	adwa	dways															
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2	
Critical Headway (sec)		4.10				4.10				7.10	6.53	6.20		7.13	6.53	6.23	
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3	
Follow-Up Headway (sec)		2.20				2.20				3.50	4.03	3.30		3.53	4.03	3.33	
Delay, Queue Length, and	l Leve	l of Se	ervice														
Flow Rate, v (veh/h)		30				11					60				55		
Capacity, c (veh/h)		1433				1162					554				452		
v/c Ratio		0.02				0.01					0.11				0.12		
95% Queue Length, Q ₉₅ (veh)		0.1				0.0					0.4				0.4		
Control Delay (s/veh)		7.6				8.1					12.3				14.1		
Level of Service (LOS)		А				А					В				В		
Approach Delay (s/veh)		0	.7			0	.6			12	2.3		14.1				
Approach LOS										E	3		В				

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	τJS	Intersection	Perry Pike & Village Blvd
Agency/Co.	Smart Services, Inc.	Jurisdiction	Village of Plain City
Date Performed	3/14/2022	East/West Street	Perry Pike
Analysis Year	2032	North/South Street	Village Boulevard
Time Analyzed	2032 Build - PM Peak	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Village Center of Plain City TIS		

Vehicle Volumes and Adjustments

	····																
Approach		Eastb	ound			West	ound			North	bound			South	ibound		
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0	
Configuration			LTR				LTR				LTR				LTR		
Volume (veh/h)		35	238	27		38	359	53		62	0	30		77	0	41	
Percent Heavy Vehicles (%)		0				0				4	3	0		3	3	3	
Proportion Time Blocked																	
Percent Grade (%)								()			()				
Right Turn Channelized																	
Median Type Storage		Undivided															
Critical and Follow-up He	adwa	ys															
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2	
Critical Headway (sec)		4.10				4.10				7.14	6.53	6.20		7.13	6.53	6.23	
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3	
Follow-Up Headway (sec)		2.20				2.20				3.54	4.03	3.30		3.53	4.03	3.33	
Delay, Queue Length, and	l Leve	l of Se	ervice														
Flow Rate, v (veh/h)		38				41					100				128		
Capacity, c (veh/h)		1123				1286					302				310		
v/c Ratio		0.03				0.03					0.33				0.41		
95% Queue Length, Q ₉₅ (veh)		0.1				0.1					1.4				1.9		
Control Delay (s/veh)		8.3				7.9					22.7				24.5		
Level of Service (LOS)		А				А					С				С		
Approach Delay (s/veh)		1	.3			1	.0			22	2.7		24.5				
Approach LOS										(2			(2		

_

		e control hepoir	
General Information		Site Information	
Analyst	TJS	Intersection	US 42 & Pr SE Access
Agency/Co.	Smart Services, Inc.	Jurisdiction	Village of Plain City
Date Performed	3/14/2022	East/West Street	Pr SE Access Der Dutchman
Analysis Year	2022	North/South Street	US 42
Time Analyzed	2022 Build - AM Peak	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Village Center of Plain City TIS		

Lanes

Vehicle Volumes and Adjustments

Approach		Eastb	ound			West	ound			North	oound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	1	1	0	0	1	1	0
Configuration			LTR				LTR			L		TR		L		TR
Volume (veh/h)		4	0	16		1	0	2		29	552	6		2	497	19
Percent Heavy Vehicles (%)		3	3	3		0	3	3		3				3		
Proportion Time Blocked																
Percent Grade (%)		()			()									
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)		7.1	6.5	6.2		7.1	6.5	6.2		4.1				4.1		
Critical Headway (sec)		7.13	6.53	6.23		7.10	6.53	6.23		4.13				4.13		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		3.53	4.03	3.33		3.50	4.03	3.33		2.23				2.23		
Delay, Queue Length, and	Leve	l of Se	ervice													
Flow Rate, v (veh/h)			22				3			32				2		
Capacity, c (veh/h)			354				277			1005				967		
v/c Ratio			0.06				0.01			0.03				0.00		
95% Queue Length, Q ₉₅ (veh)			0.2				0.0			0.1				0.0		
Control Delay (s/veh)			15.8				18.1			8.7				8.7		
Level of Service (LOS)			С				С			А				А		
Approach Delay (s/veh)		15	5.8			18	3.1			0	4			0	.0	
Approach LOS		(2			(2									

Generated: 3/14/2022 10:29:12 AM

General Information		Site Information	
Analyst	TJS	Intersection	US 42 & Pr SE Access
Agency/Co.	Smart Services, Inc.	Jurisdiction	Village of Plain City
Date Performed	3/14/2022	East/West Street	Pr SE Access Der Dutchman
Analysis Year	2022	North/South Street	US 42
Time Analyzed	2022 Build - PM Peak	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Village Center of Plain City TIS		

Lanes

Vehicle Volumes and Adjustments

-	-				-				_							
Approach		Eastb	ound			West	ound			North	oound			South	oound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	1	1	0	0	1	1	0
Configuration			LTR				LTR			L		TR		L		TR
Volume (veh/h)		19	0	42		4	0	8		41	576	35		20	700	18
Percent Heavy Vehicles (%)		3	3	3		0	3	3		3				3		
Proportion Time Blocked																
Percent Grade (%)		()			()									
Right Turn Channelized																
Median Type Storage				Undiv	vided											
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)		7.1	6.5	6.2		7.1	6.5	6.2		4.1				4.1		
Critical Headway (sec)		7.13	6.53	6.23		7.10	6.53	6.23		4.13				4.13		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		3.53	4.03	3.33		3.50	4.03	3.33		2.23				2.23		
Delay, Queue Length, and	Leve	l of Se	ervice													
Flow Rate, v (veh/h)			66				13			45				22		
Capacity, c (veh/h)			185				171			832				920		
v/c Ratio			0.36				0.08			0.05				0.02		
95% Queue Length, Q ₉₅ (veh)			1.5				0.2			0.2				0.1		
Control Delay (s/veh)			34.9				27.7			9.6				9.0		
Level of Service (LOS)			D				D			А				А		
Approach Delay (s/veh)		34	l.9			27	7.7			0	.6			0	2	
Approach LOS		[)			[)									

General Information		Site Information	
Analyst	TJS	Intersection	US 42 & Pr SE Access
Agency/Co.	Smart Services, Inc.	Jurisdiction	Village of Plain City
Date Performed	3/14/2022	East/West Street	Pr SE Access Der Dutchman
Analysis Year	2032	North/South Street	US 42
Time Analyzed	2032 Build - AM Peak	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Village Center of Plain City TIS		

Lanes

Vehicle Volumes and Adjustments

y																
Approach		Eastb	ound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	1	1	0	0	1	1	0
Configuration			LTR				LTR			L		TR		L		TR
Volume (veh/h)		4	0	16		1	0	2		29	625	6		2	581	19
Percent Heavy Vehicles (%)		3	3	3		0	3	3		3				3		
Proportion Time Blocked																
Percent Grade (%)		(C			()									
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)		7.1	6.5	6.2		7.1	6.5	6.2		4.1				4.1		
Critical Headway (sec)		7.13	6.53	6.23		7.10	6.53	6.23		4.13				4.13		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		3.53	4.03	3.33		3.50	4.03	3.33		2.23				2.23		
Delay, Queue Length, and	Leve	l of S	ervice													
Flow Rate, v (veh/h)			22				3			32				2		
Capacity, c (veh/h)			291				223			930				903		
v/c Ratio			0.07				0.01			0.03				0.00		
95% Queue Length, Q ₉₅ (veh)			0.2				0.0			0.1				0.0		
Control Delay (s/veh)			18.4				21.4			9.0				9.0		
Level of Service (LOS)			С				С			А				А		
Approach Delay (s/veh)		18	3.4			21	4			0	.4			0.	.0	
Approach LOS		(2			(2									

Generated: 3/14/2022 10:30:34 AM

US 42 & Prop Site-Ex Der Dutchman - 2032 Build - AM Peak.xtw

General Information		Site Information	
Analyst	TJS	Intersection	US 42 & Pr SE Access
Agency/Co.	Smart Services, Inc.	Jurisdiction	Village of Plain City
Date Performed	3/14/2022	East/West Street	Pr SE Access Der Dutchman
Analysis Year	2032	North/South Street	US 42
Time Analyzed	2032 Build - PM Peak	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Village Center of Plain City TIS		

Lanes

Vehicle Volumes and Adjustments

Approach		Eastb	ound			West	bound			North	bound			South	bound		
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6	
Number of Lanes		0	1	0		0	1	0	0	1	1	0	0	1	1	0	
Configuration			LTR				LTR			L		TR		L		TR	
Volume (veh/h)		19	0	42		4	0	8		41	662	35		20	800	18	
Percent Heavy Vehicles (%)		3	3	3		0	3	3		3				3			
Proportion Time Blocked																	
Percent Grade (%)		()			()										
Right Turn Channelized																	
Median Type Storage				Undi	vided												
Critical and Follow-up He	adwa	ys															
Base Critical Headway (sec)		7.1	6.5	6.2		7.1	6.5	6.2		4.1				4.1			
Critical Headway (sec)		7.13	6.53	6.23		7.10	6.53	6.23		4.13				4.13			
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2			
Follow-Up Headway (sec)		3.53	4.03	3.33		3.50	4.03	3.33		2.23				2.23			
Delay, Queue Length, and	Leve	l of Se	ervice														
Flow Rate, v (veh/h)			66				13			45				22			
Capacity, c (veh/h)			140				127			758				849			
v/c Ratio			0.47				0.10			0.06				0.03			
95% Queue Length, Q ₉₅ (veh)			2.2				0.3			0.2				0.1			
Control Delay (s/veh)			51.8				36.6			10.0				9.4			
Level of Service (LOS)			F				E			В				А			
Approach Delay (s/veh)		51	8			36	5.6			0	.6			0.	2		
Approach LOS		F	=			I	=										

Generated: 3/14/2022 10:27:11 AM

US 42 & Prop Site-Ex Der Dutchman - 2032 Build - PM Peak.xtw

General Information		Site Information								
Analyst	TJS	Intersection	US 42 & Ex. Priv Drive							
Agency/Co.	Smart Services, Inc.	Jurisdiction	Village of Plain City							
Date Performed	3/14/2022	East/West Street	Ex Private Drive							
Analysis Year	2022	North/South Street	US 42							
Time Analyzed	2022 Build - AM Peak	Peak Hour Factor	0.92							
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25							
Project Description	Village Center of Plain City TIS									

Lanes

Vehicle Volumes and Adjustments

Approach		Eastb	ound			West	ound			North	oound			bound	_			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R		
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6		
Number of Lanes		0	1	0		0	0	0	0	1	1	0	0	0	1	1		
Configuration			LR							L	Т				Т	R		
Volume (veh/h)		18		13						18	552				514	37		
Percent Heavy Vehicles (%)		3		3						3								
Proportion Time Blocked																		
Percent Grade (%)		()															
Right Turn Channelized														Ν	о			
Median Type Storage				Undi	vided													
Critical and Follow-up Headways																		
Base Critical Headway (sec)		7.1		6.2						4.1								
Critical Headway (sec)		6.43		6.23						4.13								
Base Follow-Up Headway (sec)		3.5		3.3						2.2								
Follow-Up Headway (sec)		3.53		3.33						2.23								
Delay, Queue Length, and	Leve	l of Se	ervice															
Flow Rate, v (veh/h)			34							20								
Capacity, c (veh/h)			270							973								
v/c Ratio			0.12							0.02								
95% Queue Length, Q ₉₅ (veh)			0.4							0.1								
Control Delay (s/veh)			20.2							8.8								
Level of Service (LOS)			С							А								
Approach Delay (s/veh)		20).2							0	.3							
Approach LOS		(2															

General Information		Site Information								
Analyst	TJS	Intersection	US 42 & Ex. Priv Drive							
Agency/Co.	Smart Services, Inc.	Jurisdiction	Village of Plain City							
Date Performed	3/14/2022	East/West Street	Ex Private Drive							
Analysis Year	2022	North/South Street	US 42							
Time Analyzed	2022 Build - PM Peak	Peak Hour Factor	0.92							
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25							
Project Description	Village Center of Plain City TIS									

Lanes

Vehicle Volumes and Adjustments

·,																		
Approach		Eastb	ound			West	ound			North	bound			South	bound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R		
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6		
Number of Lanes		0	1	0		0	0	0	0	1	1	0	0	0	1	1		
Configuration			LR							L	Т				Т	R		
Volume (veh/h)		53		45						40	594				716	64		
Percent Heavy Vehicles (%)		3		3						3								
Proportion Time Blocked																		
Percent Grade (%)		(0															
Right Turn Channelized														Ν	lo			
Median Type Storage				Undi	vided													
Critical and Follow-up Headways																		
Base Critical Headway (sec)		7.1		6.2						4.1								
Critical Headway (sec)		6.43		6.23						4.13								
Base Follow-Up Headway (sec)		3.5		3.3						2.2								
Follow-Up Headway (sec)		3.53		3.33						2.23								
Delay, Queue Length, and	Leve	l of S	ervice															
Flow Rate, v (veh/h)			107							43								
Capacity, c (veh/h)			181							785								
v/c Ratio			0.59							0.06								
95% Queue Length, Q ₉₅ (veh)			3.2							0.2								
Control Delay (s/veh)			49.7							9.9								
Level of Service (LOS)			E							А								
Approach Delay (s/veh)		49	9.7							0	.6							
Approach LOS		I	E															

US 42 & Ex Private Driveway - 2022 Build - PM Peak.xtw

General Information		Site Information	
Analyst	TJS	Intersection	US 42 & Ex. Priv Drive
Agency/Co.	Smart Services, Inc.	Jurisdiction	Village of Plain City
Date Performed	3/14/2022	East/West Street	Ex Private Drive
Analysis Year	2032	North/South Street	US 42
Time Analyzed	2032 Build - AM Peak	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Village Center of Plain City TIS		

Lanes

Vehicle Volumes and Adjustments

· · · · · · · · · · · · · · · · · · ·																		
Approach		Eastb	ound			West	ound			North	bound			South	bound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R		
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6		
Number of Lanes		0	1	0		0	0	0	0	1	1	0	0	0	1	1		
Configuration			LR							L	Т				Т	R		
Volume (veh/h)		18		13						18	625				598	37		
Percent Heavy Vehicles (%)		3		3						3								
Proportion Time Blocked																		
Percent Grade (%)		()															
Right Turn Channelized														Ν	lo			
Median Type Storage				Undi	vided													
Critical and Follow-up Headways																		
Base Critical Headway (sec)		7.1		6.2						4.1								
Critical Headway (sec)		6.43		6.23						4.13								
Base Follow-Up Headway (sec)		3.5		3.3						2.2								
Follow-Up Headway (sec)		3.53		3.33						2.23								
Delay, Queue Length, and	l Leve	l of Se	ervice															
Flow Rate, v (veh/h)			34							20								
Capacity, c (veh/h)			218							900								
v/c Ratio			0.15							0.02								
95% Queue Length, Q ₉₅ (veh)			0.5							0.1								
Control Delay (s/veh)			24.5							9.1								
Level of Service (LOS)			С							А								
Approach Delay (s/veh)		24	1.5							0	.3							
Approach LOS		(2															

US 42 & Ex Private Driveway - 2032 Build - AM Peak.xtw

General Information		Site Information	
Analyst	TJS	Intersection	US 42 & Ex. Priv Drive
Agency/Co.	Smart Services, Inc.	Jurisdiction	Village of Plain City
Date Performed	3/14/2022	East/West Street	Ex Private Drive
Analysis Year	2032	North/South Street	US 42
Time Analyzed	2032 Build - PM Peak	Peak Hour Factor	0.92
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Village Center of Plain City TIS		

Lanes

Vehicle Volumes and Adjustments

· · · · · · · · · · · · · · · · · · ·																		
Approach		Eastb	ound			West	ound			North	bound			South	bound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R		
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6		
Number of Lanes		0	1	0		0	0	0	0	1	1	0	0	0	1	1		
Configuration			LR							L	Т				Т	R		
Volume (veh/h)		53		45						40	682				820	64		
Percent Heavy Vehicles (%)		3		3						3								
Proportion Time Blocked																		
Percent Grade (%)		()															
Right Turn Channelized														Ν	lo			
Median Type Storage				Undi	vided													
Critical and Follow-up Headways																		
Base Critical Headway (sec)		7.1		6.2						4.1								
Critical Headway (sec)		6.43		6.23						4.13								
Base Follow-Up Headway (sec)		3.5		3.3						2.2								
Follow-Up Headway (sec)		3.53		3.33						2.23								
Delay, Queue Length, and	l Leve	l of Se	ervice															
Flow Rate, v (veh/h)			107							43								
Capacity, c (veh/h)			138							712								
v/c Ratio			0.77							0.06								
95% Queue Length, Q ₉₅ (veh)			4.6							0.2								
Control Delay (s/veh)			87.6							10.4								
Level of Service (LOS)			F							В								
Approach Delay (s/veh)		87	7.6							0	.6							
Approach LOS		F	F															

US 42 & Ex Private Driveway - 2032 Build - PM Peak.xtw

	HCS7 Two-Way Stop-Control Report													
General Information		Site Information												
Analyst	TJS	Intersection	US 42 & Ex. Priv Drive											
Agency/Co.	Smart Services, Inc.	Jurisdiction	Village of Plain City											
Date Performed	3/14/2022	East/West Street	Ex Private Drive											
Analysis Year	2032	North/South Street	US 42											
Time Analyzed	2032 Build w EBLT-PM Peak	Peak Hour Factor	0.92											
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25											
Project Description	Village Center of Plain City TIS													

Vehicle Volumes and Adjustments

Approach		Eastb	ound			Westk	ound			North	bound			South	bound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R		
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6		
Number of Lanes		1	0	1		0	0	0	0	1	1	0	0	0	1	1		
Configuration		L		R						L	Т				Т	R		
Volume (veh/h)		53		45						40	682				820	64		
Percent Heavy Vehicles (%)		3		3						3								
Proportion Time Blocked																		
Percent Grade (%)		()															
Right Turn Channelized		N	0											N	о			
Median Type Storage				Undi	ivided													
Critical and Follow-up Headways																		
Base Critical Headway (sec)		7.1		6.2						4.1								
Critical Headway (sec)		6.43		6.23						4.13								
Base Follow-Up Headway (sec)		3.5		3.3						2.2								
Follow-Up Headway (sec)		3.53		3.33						2.23								
Delay, Queue Length, and	Leve	l of Se	ervice															
Flow Rate, v (veh/h)		58		49						43								
Capacity, c (veh/h)		92		340						712								
v/c Ratio		0.63		0.14						0.06								
95% Queue Length, Q ₉₅ (veh)		3.0		0.5						0.2								
Control Delay (s/veh)		94.8		17.4						10.4								
Level of Service (LOS)		F		С						В								
Approach Delay (s/veh)		59	.2							0	.6							
Approach LOS		F	-															

(7) JEFFERSON AVE. (US 42) & PROP. SITE ACCESS (SE)/EX. DER DUTCHMAN ACCESS (S) - NB LT - 2022 'BUILD' Critical Analysis Period: PM PEAK

PREPARED BY: SERVICES REV. 2 3/2022 Appendix LEFT TURN LANE CALCULATIONS

(9) JEFFERSON AVE. (US 42) & PROP. SITE ACCESS (SE)/EX. DER DUTCHMAN ACCESS (S) - EB LT - 2032 'BUILD' **Critical Analysis Period: PM PEAK** 100 Unsignalized Stopped Crossroad Type = Speed = 25 MPH Storage Length (Adj) = 50 feet Cycle Length = Deceleration/Div. Taper = 50 feet 50 60 seconds 19 VPH 100 feet Turning Volume = Turn Lane Length = # of Turning Lanes = 1 Advancing Volume = 61 VPH Turning % (>10% HIGH) 31.1% HIGH Design Condition = А Calculations based on 401-7E in ODOT 0.3 Vehicles per Cycle = L&D Manual. All dimensions are in feet. Storage Length (Calc) = 50 feet VILLAGE CENTER OF PLAIN CITY **APPENDIX TRAFFIC IMPACT STUDY** REV. 2 3/2022 LEFT TURN LANE CALCULATIONS

Appendix

(4) JEFFERSON AVE. (US 42) & EX. PRIVATE ROAD - SB RT - 2022 'BUILD' Critical Analysis Period: PM Peak

Type = Unsignalized Th Speed = Cycle Length = Turning Volume = # of Turning Lanes = Advancing Volume = Turning % (>10% HIGH) Design Condition = Vehicles per Cycle = Storage Length (Calc) =	rrough 40 60 64 1 780 8.2% B 1.07 50	Road MPH seconds VPH VPH LOW	Storage Length (Adj) = Deceleration/Div. Taper = Turn Lane Length =	NA 125 feet 125 feet	Calculations based on 401-7E in ODOT L&D Manual. All dimensions are in feet.		
<u>(6)</u>	(6) JEFFERSON AVE. (US 42) & EX. PRIVATE ROAD - SB RT - 2032 'BUILD' Critical Analysis Period: PM Peak						
Type = Unsignalized Th Speed = Cycle Length = Turning Volume = # of Turning Lanes = Advancing Volume = Turning % (>10% HIGH) Design Condition = Vehicles per Cycle = Storage Length (Calc) =	nrough 40 60 64 1 884 7.2% B 1.07 50	Road MPH seconds VPH VPH LOW	Storage Length (Adj) = Deceleration/Div. Taper = Turn Lane Length =	NA 125 feet 125 feet	Calculations based on 401-7E in ODOT L&D Manual. All dimensions are in feet.		
VILLAGE CENTER OF PLAIN CITY TRAFFIC IMPACT STUDY PREPARED BY: SERVICES REV. 2 3/2022			F PLAIN CITY T STUDY	RIG	APPENDIX HT TURN LANE CALCULATIONS		

Appendix

(24) JEFFERSON AVE. (US 42) & PERRY PIKE/WEST AVENUE - EB - 2032 'BUILD' Calculations based on 401-7E in ODOT L&D Manual.

AM PEAK CALCULA	<u>TIONS</u>	Type = Speed = # of Through Lanes =	Signalized 40 MPH 1	PM PEAK CALCULA	TIONS
Cycle Length = Approach Volume = Approach vehicles per cycle = Storage Length =	120 seconds 424 14 525 feet	^s 525 f	eet	Cycle Length = Approach Volume = Approach vehicles per cycle = Storage Length =	120 seconds 367 12 475 feet
VILLAGE CE TRAFFIC PREPARE	NTER OF IMPACT D BY: SE	PLAIN CITY STUDY ART REV. 2 3/2022	SINGLE	APPENDIX APPROACH LANE CALCUL	ATIONS

Appendix

June 27, 2023

To Whom It May Concern,

This letter is being written to you because your property is within 250 feet of the property located at 225 Guy Street and/or 265 Jefferson Street. Parcel #04-00230.000 and 04-00503.001. This official notice is required by Section 1136.03 of the Village's Codified Ordinances.

The Village of Plain City's Planning and Zoning Commission will hold a public hearing for the following:

- PZ-23-4: 225 Guy Street (Parcel #04-00230.000); Rezoning of 3.82 +/- acres from Restricted Industrial District ("I1") to Community Business District ("B2"); Applicant: Steven D. Bell. (Public Hearing)
- PZ-23-5: 265 Jefferson Street (Parcel #04-00503.001); Rezoning of 6.94 +/acres from Restricted Industrial District ("I1") to Community Business District ("B2"); Applicant: Steven D. Bell. (Public Hearing)

The meeting will be Wednesday, July 19, 2023 at 6:30 PM in Council Chambers 800 Village Blvd., Plain City, OH 43064

The application documents and details for this meeting can be found on <u>www.plain-</u> <u>city.com</u> under the *Public Meetings* tab on the home page. If you have any questions, feel free to contact me.

Respectfully,

Derek Hutchinson Village Planner 04-00809.000 04-00466.000 04-00571.000 04-00434.000 04-00376.000 04-00253.000 04-00515.000 04-00727.000 04-00554.000 04-00502.000 04-00728.001 04-00503.003 04-00532.000 04-00591.000 04-00594.000 04-00826.000 04-00808.000 04-00810.000 04-00503.000 04-00503.002 04-00689.000 04-00061.000 04-00827.000 1800030900000 1800030880000 1800010050000

JUNE 29, 2023

TO:MARYSVILLE JOURNAL-TRIBUNEFROM:DEREK HUTCHINSON, VILLAGE PLANNERVILLAGE OF PLAIN CITYSUBJECT:LEGAL NOTICE BELOW, FOR ONE-TIME PUBLICATION

PUBLIC NOTICE

PUBLIC HEARING TO BE HELD BEFORE THE VILLAGE OF PLAIN CITY PLANNING AND ZONING COMMISSION, ON WEDNESDAY, JULY 19, 2023 AT 6:30 P.M., IN COUNCIL CHAMBERS, MUNICIPAL BUILDING, 800 VILLAGE BLVD., PLAIN CITY, OHIO; REZONING A TOTAL OF 10.76 +/- ACRES AT 225 GUY STREET AND 265 JEFFERSON STREET (PARCELS 04-00230.000 and 04-00503.001 AS IDENTIFIED BY THE MADISON COUNTY AUDITOR'S OFFICE) FROM RESTRICTED INDUSTRIAL DISTRICT ("11") TO COMMUNITY BUSINESS DISTRICT ("B2"); APPLICANT: STEVEN D. BELL (APPLICATIONS PZ-23-4 AND PZ-23-5)

> DEREK HUTCHINSON VILLAGE PLANNER VILLAGE OF PLAIN CITY

Village of Plain City Planning and Zoning Department PLANNING COMMISSION

July 7, 2023

PLANNING STAFF REPORT

Application:PZ-23-4, PZ-23-4: RezoningLocation:Parcel# 04-00230.000 / 04-00503.001Zoning District:I1 Restricted Industrial / Proposed B2 Community Business DistrictApplicant:Steve Bell, Architect for Property Owners

Proposed Project

Applicant is requesting Rezoning from I1, Restricted Industrial to B2, Community Business District.

Project Site Description

225 Guy total 3.82 acres and 265 Jefferson total of 6.94 acres.

Village Planner Comments

The property located at 225 Guy has 3 existing commercial buildings. The property at 265 Jefferson is the current location for Outdoor FX. The Jefferson parcel is currently split B2 and I1. The property owners are proposing utilizing the properties at 225 Guy for businesses that would are permitted within a B2 District. At the suggestion of the Village Planner, to aid in the Village's effort to "clean up" existing Zoning Districts, by rezoning the entire 265 Jefferson parcel to B2 would allow a contiguous rezoning of B2 for 225 Guy parcels.

Staff recommends approval of request to rezone 225 Guy and 265 Jefferson to B2, Community Business District.

Derek Hutchinson Village Planner <u>dhutchinson@plain-city.com</u> 614-873-3527 ext. 105

APPLICATION FOR ZONING AMENDMENT REZONING / MAP AMENDMENT

PLANNING AND ZONING COMMISSION

Proposed changes or amendments may be initiated by one or more owners or lessees of land within the area that is proposed to be changed by amendment of the Zoning District Map or by one or more owners or lessees of land to be affected by change or amendment of other provisions of the Zoning Ordinance.

1. APPLICANT INFORMATION						
Applicant Name: Steven D. Bell, Pres. Concept Buildings, Inc.						
Applicant Address: 20209 Barker Road Marysville, Ohio 43040						
Phone: 937-537-0324	Email: sbell324@hotmail.com					
□ Owner	□ Lessee		⊠ Other	Owner's Agent		
2. OWNER INFORMATION (IF DIFFERENT THAN APPLICANT)						

Owner Name: Critzer & Greiner Investments, LLC

Owner Address: 265 Jefferson Street Plain City, Ohio 43064

Phone: 614-332-8846 (Lucas Greiner)

Email: Lucas@outdoor-fx.net

3.	PROPERTY	INFORMATION	

Street Address: 2235 Guy Avenue Plain City, Ohio 43064						
County: Madison	Parcel Number: 04-00230.000	(225 Guy Avenue)				
Current Zoning District and Use: 11	04-00503.001	(265 Jefferson Street)				
Proposed Zoning District and Use: B2						

1136.02 INITATION OF ACTION BY OWNER OR LESSEE OF LAND.

Two copies of a provided application form shall be filed with the Plain City not less than twenty (20) days prior to the public hearing of the Planning and Zoning Commission at which the proposal is to be considered.

- (a) <u>Application</u>. The application for any proposed change or amendment shall contain:
 - A description or statement of the present and proposed provisions of the Zoning Ordinance or the proposed change of the district boundaries of the Zoning District Map.
 - (2) A description, by map and text, of the property to be affected by the proposed change or amendment.
 - (3) A statement of the relation of the proposed change or amendment to the general health, safety, and welfare of the public in terms of need or appropriateness within the area by reason of changed or changing conditions and the relation to appropriate plans for the area.
 - (4) A statement of the relation of the proposed change or amendment to the comprehensive plan.

- (5) Notice to Property Owners. If the proposed amendment intends to rezone or redistrict
- (6) ten (10) or less parcels of land, as listed on the tax duplicate, written notice of the hearing shall be mailed by the Zoning Inspector, by first class mail, at least twenty (20) calendar days before the day of the public hearing to all owners of property within and contiguous to, directly across the street from and within 250 feet of the area to be rezoned or redistricted to the addresses of such owners appearing on the County Auditor's tax list. Failure of delivery of the notifications as provided in the Section shall not invalidate any such amendment. The notice shall contain the same information as required of notices published in newspapers.

Such list shall be in accordance with the Madison/Union County Auditor's current tax list and provided by the applicant.

- (7) Such information as may be otherwise required by the provisions of the Zoning Ordinance.
- (b) <u>Fees.</u> When making application for an amendment, the investigation and compliance fees, in such amount as may be established by Council from time to time, shall be paid to the Municipality for each application.

Incomplete applications will not be processed. Applicant or representative must be present at the Planning and Zoning Hearing.

I certify that the information contained in this application and its supplements is true and correct.

D. Fall PRES.

Applicant Signature

5-22-23

Date

Auditor Map

6/6/2023, 1:10:09 PM

Parcels	Blue: Blue				
17270E726528N.ecw	17270E681648N.ecw	17270E647328N.ecw	17270E618288N.ecw	17165E618288N.ecw	16848E620928N.ecw
Red: Red					
Green: Green					

####