

DEPARTMENT OF MUNICIPAL UTILITIES 2500 Navy Drive • Stockton, CA 95206-1191 • 209 / 937-8750 • Fax 209 / 937-8708 www.stocktongov.com

October 1, 2017

Elizabeth Lee, Unit Chief Municipal Storm Water Permitting Unit California Regional Water Quality Control Board – Central Valley Region 11020 Sun Center Drive, Suite 200 Rancho Cordova, CA 95670-6114

CITY OF STOCKTON AND COUNTY OF SAN JOAQUIN STORMWATER MANAGEMENT PROGRAMS 2016-2017 ANNUAL REPORT (ORDER NO. R5-2016-0040, NPDES PERMIT NO. CAS0085324)

For your review and consideration, the City of Stockton (City) and County of San Joaquin (County) are jointly submitting this FY 2016-17 Annual Report, in accordance with the National Pollutant Discharge Elimination System Permit (NPDES) and Waste Discharge Requirements (WDR) General Permit for Discharges from Municipal Separate Storm Sewer Systems (MS4) (General Permit), Part V.F.4. The report reflects all storm water activities conducted during FY 2016-17.

A copy was submitted to centralvalleysacramento@waterboards.ca.gov.

If you have any questions, please feel free to contact Jason Farnsworth, Stormwater Program Manager III, of City of Stockton at (209) 937-8155 or <u>Jason.Farnsworth@stocktonca.gov</u> or Brandon Nakagawa of San Joaquin County at (209) 468-3089 or <u>BNakagawa@sigov.org</u>.

CITY OF STOCKTON JOHN ABREW DIRECTOR OF MUNICIPAL UTILITIES

JA:JF:mll

Attachment: (1) FY 2016-17 Annual Report

cc: Karen Ashby, Larry Walker Associates Jason Farnsworth, City of Stockton Ba T. Than, City of Stockton

COUNTY OF SAN JOAQUIN BRANDON W. NAKAGAWA, P.E. WATER RESOURCES COORDINATOR

mudsite/Stormwater/Reports/Annual/2016-17/LetterFY2016-17AnnualReport20171001.docx

OCTOBER 2017

CITY OF STOCKTON & COUNTY OF SAN JOAQUIN

National Pollutant Discharge Elimination System Municipal Stormwater Program 2016-2017 Annual Report

prepared by LARRY WALKER ASSOCIATES

CERTIFICATION

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted.

Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of a fine and imprisonment for knowing violations. [40 CFR 122.22(d)]

Executed on the 23 day of September, 2017, at the City of Stockton.

JOHN ABREW

CITY OF STOCKTON DIRECTOR OF MUNICIPAL UTILITIES

CERTIFICATION

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted.

Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of a fine and imprisonment for knowing violations. [40 CFR 122.22(d)]

Executed on the 22 day of September, 2017, at the County of San Joaquin.

BRANDON W. NAKAGAWA, P.E. COUNTY OF SAN JOAQUIN WATER RESOURCES COORDINATOR

Table of Contents

1.	Introdu	uction1
2.	Implen	nentation Statement
3.	Annua	l Expenditures and Projected Budget4
4.	Stormy	water Quality Monitoring Program and Analysis of Monitoring Results
	4.1 V	Vaterbody and Drainageshed Monitoring
	4.1.1	Storm Tracking and Selection
	4.1.2	Outfall and Receiving Water Monitoring
	4.1.3	Rainwater/Atmospheric Deposition Monitoring
	4.1.4	Sediment Toxicity and Sediment Chemistry
	4.1.5	Water Column Toxicity Monitoring
	4.2 D	Data Quality Evaluation
	4.3 E	Delta Regional Monitoring Program 39
	4.4 T	Cotal Maximum Daily Loads
	4.4.1	Sacramento-San Joaquin Delta Diazinon and Chlorpyrifos TMDL (Resolution R5- 2006-0061)
	4.4.2	Stockton Urban Water Bodies Pathogen TMDL (Resolution No. R5-2009-0030) 39
	4.4.3	Delta Methylmercury TMDL (Resolution No. R5-2010-0043)
	4.4.4	Lower San Joaquin River, Stockton Deep Water Ship Channel Organic Enrichment and Low Dissolved Oxygen TMDL (Resolution No. R5-2005-0005)
5.	Progra	mmatic Activities and Data
	5.1 0	Overview of Inspections, Enforcement Actions, and Public Education Programs 49
	5.1.1	Inspections
	5.1.2	Enforcement Actions
	5.1.3	Public Education Programs
6.	Propos	ed Modifications

i

List of Tables

Table 1. Annual Reporting Schedule (Due Oct 1)
Table 2. Annual Report Requirements
Table 3. 2016-2017 Fiscal Analysis, City of Stockton 4
Table 4. 2016-2017 Fiscal Analysis, County of San Joaquin5
Table 5. 2016-2017 Funding Sources, County of San Joaquin
Table 6. Staggered Waterbody Monitoring 7
Table 7. Calaveras River Monitoring Sites and Constituents Monitored 10
Table 8. 2016-2017 Monitoring Program Accomplishments 10
Table 9. Details of 2016-2017 Wet Weather Monitoring Events15
Table 10. 2016-2017 Outfall and Receiving Water Monitoring Sites on Calaveras River
Table 11. Sites Sampled and Type of Sample Collected in 2016-201717
Table 12. Constituent Analysis for Outfall and Receiving Water Monitoring at Historic Sites 18
Table 13. Sediment Chemistry Constituents to be Monitored at the Historic Site (CR-46R) 33
Table 14. 2016-2017 Sediment Toxicity Results at Calaveras River 35
Table 15. Follow-Up Sediment Chemistry Results for Events SE61 and SE62
Table 16. Definitions of Commonly Used QA/QC Qualifiers and Instances of Application 38
Table 17. Methylmercury Control Study Schedule
Table 18. Data and Information Tracked Annually for Each Program Element

ii

Table of Figures

Figure 1. Calaveras River Monitoring Sites and Discharge Site Drainagesheds	. 9
Figure 2. 2016-2017 Precipitation at Stockton Metro Airport and Captured Monitoring Events	13
Figure 3. Calaveras River 2016-2017 E. coli and Fecal Coliform Concentrations (MPN/100 mL	
Figure 4. Calaveras River 2016-2017 Chlorpyrifos Concentrations (ng/L)	22
Figure 5. Calaveras River 2016-2017 Pyrethroid Concentrations (ng/L)	23
Figure 6. Calaveras River 2016-2017 Total Mercury and Total Methylmercury Concentrations (ng/L)	
Figure 7. Calaveras River 2016-2017 Dissolved Oxygen Concentrations (mg/L)	25
Figure 8. Continuous Sonde Data for Dissolved Oxygen at (top) CR-42R (upstream) and (bottom) CR-39R (downstream)	27
Figure 9. Rainwater/Atmospheric Deposition Monitoring Locations	28
Figure 10. 2016-2017 Rainwater/Atmospheric Deposition Monitoring Results	31

iii

List of Appendices

Appendix A. Work Plan as submitted November 1, 2016

Appendix B. 2016-2017 Monitoring Results

Appendix C. 2016-2017 Data Summary Tables

Appendix D. 2016-2017 Sediment Toxicity Results

Appendix E. 2016-2017 Water Column Toxicity Results

1. Introduction

A Stormwater Management Plan (SWMP) was developed for and is being implemented within the jurisdictional limits of the City of Stockton (City) and the urbanized areas of San Joaquin County (County)¹ within the Phase I National Pollutant Discharge Elimination System (NPDES) permit area.2 The SWMP represents the strategy for controlling the discharge of pollutants from the municipal storm drain system to the Maximum Extent Practicable (MEP) and includes a wide range of Best Management Practices (BMPs).

Consistent with the third term municipal stormwater permit, the City and County submitted a Report of Waste Discharge (ROWD) and Proposed SWMP to the Central Valley Regional Water Quality Control Board (Regional Water Board) on June 6, 2012. In addition, in accordance with Provision II of the Monitoring and Reporting Program (MRP) (Order No. R5-2015-0024), the City and County submitted a request to the Regional Water Board for approval of an Alternative Monitoring Program³ (AMP). The City and County also requested to participate in the Delta Regional Monitoring Program (Delta RMP) in lieu of conducting some of the local water quality monitoring. In 2015, the Regional Water Board Executive Officer approved both requests. As a result, the revised monitoring program was initiated during the 2015-2016 reporting period.

The fourth term, region-wide NPDES and Waste Discharge Requirements (WDR) General Permit for Discharges from Municipal Separate Storm Sewer Systems (MS4) (General Permit) was adopted June 23, 2016. The City and County submitted a Notice of Intent (NOI) application package in accordance with Part V.B.1 on November 1, 2016 and received the Notice of Applicability (NOA) from the Regional Water Board on November 30, 2016^{4.} The NOI package included the applicable forms, a preliminary prioritization approach, and a Work Plan that outlines how the current SWMP and modifications thereto will be implemented until such time as a new SWMP is approved by the Regional Water Board.

In addition, on May 30, 2017, the City and County submitted their Assessment and Prioritization of Water Quality Constituents in the Stockton Urbanized Area as well as the Preliminary Reasonable Assurance Analysis Outline. The City and County met with the Regional Water Board in late June and will respond to the collective comments from Regional Water Board Permitting and Total Maximum Daily Load (TMDL) staff within a reasonable time period after they have been received.

The General Permit requires Annual Reports (Provision V.F.4), Mid-Term Reports, and End-Term Reports (Provision V.F.5). The Mid-Term and End-Term Reports serve as the Annual Report for the years submitted. Effectiveness assessments (Provision V.E.5) will be conducted as part of the Mid-Term and End-Term Reports. A summary of the annual reporting schedule is provided in **Table 1**.

1

¹ Also referred to as the Stockton Urbanized Area (SUA).

² The SWMP was approved by the Central Valley Regional Water Quality Control Board on October 9, 2009 (Resolution R5-2009-0105).

³ The primary objective of the AMP is to focus on Pollutants of Concern (POCs) and implement an intensive monitoring approach to determine the source(s) of pollutants in urban discharges.

⁴ City of Stockton Order No. R5-2016-0040-002; County of San Joaquin Order No. R5-2016-0040-003

Table 1. Annual Reporting Schedule (Due Oct 1)

Dermit/Fiscal Veer	Report Type &		
Permit/Fiscal Year	Reporting Period		
Year 1 (2016-2017)	Annual Report (2016-2017)		
Year 2 (2017-2018)	Annual Report (2017-2018)		
Year 3 (2018-2019)	Mid-Term Report (2016-2019)		
Year 4 (2019-2020)	Annual Report (2019-2020)		
Year 5 (2020-2021)	End-Term Report (2016-2021)		

The 2016-2017 Annual Report is being submitted in accordance with General Permit Provision V.F.4 and includes the items listed in **Table 2**.

Report Requirement	Location in Annual Report
(a.i) A statement certifying that the Storm Water Management Program and Work Plan were implemented as approved.	Section 2
(a.ii) A summary of activities and tasks scheduled to be implemented in the upcoming year. If the Work Plan is still being implemented as described from the previous year, the Permittee may refer to the Work Plan.	Section 2
(a.iii) Any proposed minor modifications to the Storm Water Management Program; or any proposed Work Plan Modification.	Section 6
(a.iv) A completed certification statement, in accordance with the signatory requirements in Attachment H (Standard Permit Provisions and General Provisions).	Certification Statements
(c) Provision of water quality data collected.	Appendix C
(d) Additional requirements described in 40 CFR 122.42(c) (Attachment H, Standard Permit Provisions and General Provisions)	Certification Statements Section 3 Section 4 & Appendix B, D Section 5

2. Implementation Statement

The City and County have developed a comprehensive approach for managing the implementation of the stormwater program within the SUA and continue to implement the program consistent with the intent of the 2009 SWMP (and modifications thereto) and as described by the Work Plan submitted to (and as approved by) the Regional Water Board as a part of the NOI application package.

During 2016-2017, the City and County implemented the stormwater program within the SUA consistent with the intent of the 2009 SWMP and as outlined by the Work Plan submitted with the NOI package in November 2016 and included as **Appendix A**. In 2017-2018, the City and County will continue to implement the stormwater program with the SUA as outlined by this Work Plan.

3. Annual Expenditures and Projected Budget

The City and County assessed the current NPDES expenditures, as well as the projected expenditures for the next fiscal year. The City's fiscal analysis is provided in **Table 3**; the County's fiscal analysis is provided in **Table 4**.

Program Element	Expenditures During Fiscal Year 2016-2017	Estimated Budget for Fiscal Year 2017-2018 ^[a]	
Program Management: Staff salaries, utility billing, phone charges, computer software/rentals, memberships, permit fees, indirect cost allocations, training, consultant contracts	\$ 1,680,188	\$ 1,964,664	
Public Outreach : Staff salaries, industrial, commercial, and residential programs, including media and community events	\$ 69,315	\$ 89,294	
Municipal Operations: Staff salaries, CIPs, and Storm Drain System Cleaning and Maintenance (includes Illicit Discharges, illegal connections mitigation, and clean-up) ^[b]	\$ 3,010,371	\$ 4,477,412	
Industrial and Commercial: Staff salaries, inspections, and follow-up inspections ^[c]	\$ 61,170 ^[d]	\$ 76,227 ^[d]	
Construction: Staff salaries, outreach	\$ 61,170 ^[d,e]	\$ 76,227 ^[d,e]	
Planning and Land Development: Staff salaries	\$ 93,875	\$ 64,230	
Water Quality Monitoring Programs: Includes Baseline Monitoring Program, Bioassessment Analysis, Dry Weather Field Screening, Smith Canal Bathymetry Study, Detention Basin Monitoring, BMP Effectiveness Study, Sediment Toxicity, Smith Canal/Mosher Slough Low DO13267 Letter Monitoring	\$ 288,730	\$ 385,596	
Water Quality Based Programs: Includes Pesticide, Pathogen, Mercury, and DO Work Plans and Implementation	\$ 63,299	\$ 91,496	
TOTAL	\$ 5,328,118	\$ 7,225,146	

Table 3. 2016-2017 Fiscal Analysis, City of Stockton

[a] Annually, the City breaks the overall budget down into individual Program Element expenditures. However, the methodology used to create a per-Program Element budgetary breakdown from year to year has varied. Thus, year-to-year budget comparisons may not result in "an apples-to-apples" comparison. The City is working on implementing a consistent methodology.

[b] Facility Pollution Prevention Plans (FPPPs) are paid for out of Public Works budget and are not a Stormwater Expense.

[c] The Industrial and Commercial Inspection Program is conducted in-house by Stormwater and Environmental Control Staff.
 [d] The cost to develop a Websoft Inspection Tracking Database in 2016-2017 and the annual subscription costs for software

projected for 2017-2018 are divided evenly between the Industrial/Commercial and Construction program elements.

[e] Business and Construction outreach expenditures are included in the Public Outreach budget.

The City's stormwater program is funded primarily by a storm drain maintenance or user fee. The fee is <u>\$2.10/month per Equivalent Residential Unit</u>.

Program Element	Expenditures During Fiscal Year 2016-2017	Estimated Budget for Fiscal Year 2017-2018		
Program Management	\$ 121,995	\$ 279,996		
Illicit Discharges	\$ 14,528	\$ 33,343		
Public Outreach	\$ 26,210	\$ 60,156		
Municipal Operations	\$ 32,718	\$ 75,092		
Industrial and Commercial	\$ 28,344	\$ 65,054		
Construction	\$ 20,668	\$ 47,436		
Planning and Land Development	\$ 10,610	\$ 24,351		
Water Quality Monitoring Program	\$ 64,215	\$ 147,382		
Water Quality Based Programs	\$ 5,441	\$ 12,489		
Program Implementation, Assessment, and Reporting	\$ 137,375	\$ 315,296		
TOTAL	\$ 462,105	\$ 1,060,595		

The County's funding sources are summarized in **Table 5**.

Table 5. 2016-2017 Funding Sources	, County of San Joaquin
------------------------------------	-------------------------

Source	Funding for Fiscal Year 2016-2017, by Percentage	Estimated Funding for Fiscal Year 2017-2018, by Percentage
Assessment Fee/Special District Fund (Fee \$35/parcel)	78.63%	92.31%
Inspection/plan check fees	9.63%	3.99%
Miscellaneous Revenue – Interest Income	2.04%	0.45%
Operating Transfers	9.70%	3.24%

The County's stormwater program is funded primarily by a storm drain maintenance or user fees. <u>The fee is \$35/year per Equivalent Residential Unit</u>.

4. Stormwater Quality Monitoring Program and Analysis of Monitoring Results

The General Permit requires monitoring of urban runoff and receiving waters per Provision V.E. In accordance with Provision II of the MRP (Order No. R5-2015-0024), the City and County submitted a request to the Regional Water Board for consideration and approval of an Alternative Monitoring Program (AMP).⁵ The AMP is consistent with the proposed monitoring program from the Report of Waste Discharge,⁶ meets the objectives of the MRP, directs resources to the most critical water quality issues, and collects data to support management decisions to address those issues.

The primary objective of the AMP is to focus on Pollutants of Concern (POCs) and implement an intensive monitoring approach to determine the source(s) of pollutants in urban discharges. In addition to the AMP, the City and County requested to participate in the Delta Regional Monitoring Program (Delta RMP) in lieu of conducting some of the local water quality monitoring.

In 2015, the Regional Water Board Executive Officer approved the City and County' AMP⁷ (hereafter referred to as the stormwater quality monitoring program, or monitoring program) and participation in the Delta RMP.⁸ As a result, the revised monitoring program was initiated during the 2015-2016 reporting period. In addition, the AMP will continue to be implemented and will form the basis of the monitoring program that will be submitted as a part of the SWMP that is required by Order numbers R5-2016-0040-002 and R5-2016-0040-003.

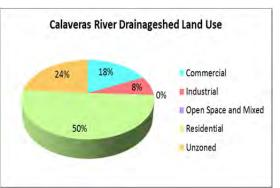
The monitoring program is a focused effort conducted within six key water bodies on a rotating basis. The schedule for the staggered waterbody monitoring is shown in **Table 6**. Monitoring during 2015-2016 occurred on Mosher Slough and was reported on in the *2015-2016 Stormwater Management Program Annual Report*. During 2016-2017, monitoring occurred on the Calaveras River.

⁵ City of Stockton and County of San Joaquin. Submittal of Alternative Stormwater Monitoring Program (Order No. R5-2015-0024). June 10, 2015.

⁶ National Pollutant Discharge Elimination System Municipal Stormwater Program – *Report of Waste Discharge & Proposed Stormwater Management Plan*, June 2012 (Section 2.7; Tables 2-42, 2-43, 2-44, 2-45, 2-46, and 2-47).

⁷ Central Valley Regional Water Quality Control Board. Approval of City of Stockton and County of San Joaquin's 27 October Alternative Monitoring Program. 4 November 2015.

⁸ Central Valley Regional Water Quality Control Board. Approval to Allow the City of Stockton and County of San to Reduce Local Water Quality Monitoring and Participate in the Delta Regional Monitoring Program. 4 November 2015.


Table 6. Staggered Waterbody Monitoring

Waterbody	2015- 2016	2016- 2017	2017- 2018	2018- 2019	2019- 2020	2020- 2021
Mosher Slough ^[a]						
Calaveras River ^[a]						
Duck Creek ^[a]						
Smith Canal ^[a]						
Mormon Slough						
Five-Mile Slough						

[a] Historic monitoring location.

4.1 WATERBODY AND DRAINAGESHED MONITORING

The Calaveras River drainageshed⁹ is a tributary to the San Joaquin River (SJR) Delta System flowing southwest from the Sierra Nevada foothills through Calaveras, Stanislaus, and San Joaquin Counties and drains approximately 470 square miles. Within the SUA, land use along the Calaveras River is predominantly residential and commercial, but also includes some industrial uses. In addition to urban

runoff, the Calaveras River receives upstream agricultural flows from the Stockton Diversion Canal and "old" Calaveras channel.

Monitoring sites are shown in **Figure 1**. The constituents monitored at each site are identified in **Table 7**.

- The full list of constituents (**Table 12**) is monitored at the historic locations, CR-46 and CR-46R.
- Monitoring at the other locations is focused on the POCs within the Calaveras River drainageshed, which include:
 - Indicator bacteria (*E. coli* and fecal coliform);
 - Pesticides (chlorpyrifos and pyrethroids);
 - o Mercury; and
 - o Dissolved oxygen (DO).

8

⁹ Department of Water Resources, Calaveras River Fish Migration Barriers Assessment Report, September 2007.

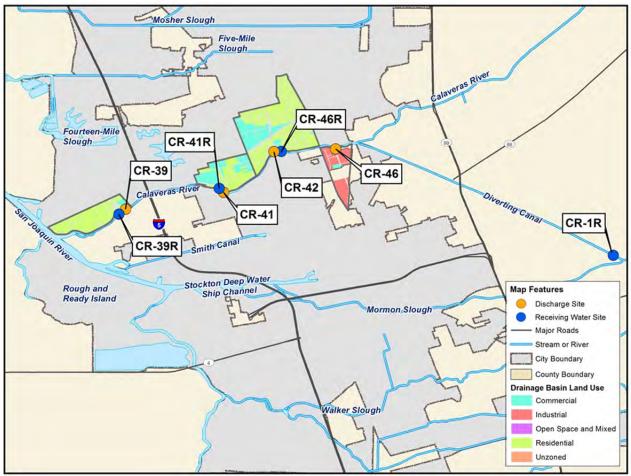


Figure 1. Calaveras River Monitoring Sites and Discharge Site Drainagesheds

		Sites Monitored							
Constituents Monitored	Type of Monitoring	CR- 1R	CR- 46 ^[a]	CR- 46R ^[a]	CR- 42	CR- 41	CR- 41R	CR- 39	CR- 39R
Full suite of constituents (Table 12)	Water quality		С	G					
E. coli & fecal coliform	Water quality	G			G	G	G	G	G
Chlorpyrifos and pyrethroids	Water quality	G			G	G	G	G	G
Mercury (and methylmercury)	Water quality	G			G	G	G	G	G
DO & biological oxygen demand (BOD)	Water quality	G			G	G	G, S	G	G, S
Sediment toxicity and sediment chemistry ^[b]	Sediment			Sed ^[c]					
Water column toxicity	Water column			G					

Table 7. Calaveras River Monitoring Sites and Constituents Monitored

Notes:

G = Grab

C = Composite

Sed = Sediment

S = Sonde

[a] Historic Monitoring Site

[b] Follow-up testing of sediment chemistry will be performed if toxicity is determined to be statistically significant and a greater than or equal to 50% increase in Hyalella azteca mortality is observed.

[c] For sediment toxicity and chemistry sampling, this station is located 250' downstream of CR-46.

Monitoring activities completed during 2016-2017 are summarized in **Table 8**. Monitoring efforts and results for these POCs are presented in the following sections.

Table 8. 2016-2017 Monitoring Program Accomplishments

Monitoring Program Activity	Status					
Waterbody/Drainageshed Monitoring (Section 4.1)						
	• 4 wet weather events monitored at 4 urban discharge and 3 receiving water sites					
Outfall and Receiving Water Monitoring (Section 4.1.2)	• 4 dry weather events monitored at 4 urban discharge and 3 receiving water sites					
	3 wet weather events and 2 dry weather events monitored at 1 upstream site					
Rainwater/Atmospheric Deposition Monitoring (Section 4.1.3)	Rainwater monitored at 3 locations during 4 wet weather events					
Sediment Toxicity and Sediment Chemistry (Section 4.1.4)	1 wet weather event and 2 dry weather events monitored for sediment toxicity at the historic monitoring location					
Water Column Toxicity (Section 4.1.5)	1 wet weather event and 1 dry weather event monitored at the historic monitoring location					

4.1.1 Storm Tracking and Selection

Monitoring¹⁰ of stormwater runoff is a key component of the monitoring program and requires a high level of coordination of equipment and field crews. Incoming storms are tracked and assessed against storm selection criteria (e.g., amount of precipitation, days since last rain event, duration of event) and the forecasted reliability that the storm will occur in the SUA. Wet weather monitoring is particularly challenging in the SUA, as rainfall forecasts are often unreliable due to the convective nature of incoming storms. In addition, because storms normally intersect Stockton traveling from the west to the east, it is not unusual for northern Stockton to receive substantial rainfall, while southern Stockton remains dry, or vice versa.

Wet weather events are timed to capture urban runoff impacts with the highest possible representation of the targeted storm event (i.e., high percent capture), using flow-based composite samplers at urban discharge stations when possible. Grab sampling techniques, which are, when feasible, conducted near the peak of storm event hydrographs, are used at all receiving water stations. Due to standard method requirements, grab sampling is used for the following constituents when monitored:

- Oil and grease;
- Indicator bacteria;
- Pesticides; and
- Mercury/methylmercury.

The daily total rainfall at the Stockton Metro Airport¹¹ during the 2016-2017 monitoring year is shown in **Figure 2**. The total cumulative seasonal rainfall is also shown (compared to the historic average¹²), as well as the timing of monitoring events. Historic average annual rainfall at the Stockton Metro Airport is 14 inches. The 2016-2017 monitoring year had above average precipitation with 21.62 inches of rain, which is 155% of historic annual rainfall. Although the 2016-2017 wet season was wetter than average, the California Department of Water Resources classified the 2016 water year (ending September 30, 2016) as "dry" for the San Joaquin Valley.11 The 2017 water year classification is still to be determined.

11

 $^{^{10}}$ The Regional Permit defines the "monitoring year" as October 1 – September 30. Monitoring events are reported for the fiscal year, due to the time needed for data reporting and processing.

¹¹ <u>https://cdec.water.ca.gov/cgi-</u>

progs/queryCSV?station_id=SOC&sensor_num=45&dur_code=D&start_date=7%2F1%2F2016&end_date=6%2F3 0%2F2017&data_wish=View+CSV+Data

¹² Based on 1981-2010 data. <u>http://www.cnrfc.noaa.gov/awipsProducts/RNOWRKCLI.php</u>

¹¹ http://cdec.water.ca.gov/cgi-progs/iodir/WSIHIST

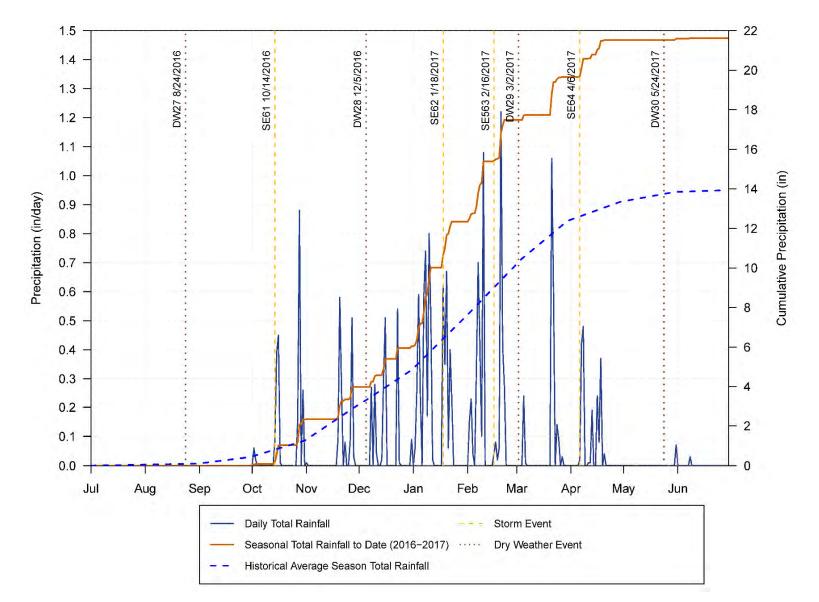


Figure 2. 2016-2017 Precipitation at Stockton Metro Airport and Captured Monitoring Events

Details of 2016-2017 Wet Weather Monitoring Events

Each monitoring event is unique in terms of the antecedent weather conditions, flow in the receiving waterbody, field conditions, etc. Runoff quality is particularly influenced by the amount and intensity of rainfall and time of sampling with respect to the rainfall hydrograph. The conditions for wet weather events conducted during 2016-2017 are summarized in **Table 9**.

Storm Events ^[a, b]	SE61 10/14/2016	SE62 1/18/2017	SE563 2/16/2017	SE64 4/6/2017
Time of first rain	15:15	5:55	5:40	14:05
Time of last rain	21:45	21:45	6:55	20:55
Total rain (in)	0.39	0.94	0.04 ^[c]	0.32
Antecedent Conditions				
Date of last precipitation	10/03/2016	1/12/2017	2/10/2017	3/27/2017
Date of last storm > 0.1in	5/6/2016	1/11/2017	2/10/2017	3/24/2017
Days since last storm	161	7	6	13
Date of last storm > 0.25in	5/6/2016	1/11/2017	2/10/2017	3/22/2017
Days since last storm	161	7	6	15
Cumulative rainfall to date (in)	0.17	10.64	15.42	19.68

Table 9. Details of 2016-2017 Wet Weather Monitoring Events

[a] Precipitation data is collected at the Stockton Metro Airport, and is available at: <u>http://mesowest.utah.edu/cgi-bin/droman/download_ndb.cgi?stn=KSCK&year1=2014&day1=19&month1=6&hour1=&timetype=LOCAL&unit=0</u>

[b] Per the AMP approved by the Regional Board, rainfall events of 0.15"- 0.25" are targeted for the monitoring program.

[c] The forecast prior to and during the storm fit the criteria for a qualifying event, but rainfall at the Airport gauge did not meet the criteria. Central Stockton typically receives higher rainfall than the Airport, and discharge was flowing in to all pump stations during the event.

4.1.2 Outfall and Receiving Water Monitoring

The monitoring program includes urban discharge outfall and receiving water monitoring. Urban discharge outfall monitoring characterizes the quality of urban runoff discharged from four storm drain outfalls along the Calaveras River. In addition, receiving water monitoring characterizes the quality of the receiving waters within the SUA. Three receiving water sites were sampled downstream of the urban discharge sites. The co-located sites are used to help determine if the urban discharge is causing or contributing to exceedances of applicable water quality objectives.

One additional upstream site (upstream of the SUA boundary) was sampled in order to characterize the quality of water entering the SUA. The upstream receiving water site is intended to be as close to the boundary of the SUA as possible.

Monitoring sites that were sampled in 2016-2017 are shown in Table 7.

- Urban discharge sites are labeled with a station and number code (e.g., CR-46).
- Receiving water sites are labeled with an "R" for receiving water (e.g., CR-46R).

The outfall and receiving water monitoring sites and predominant land uses are summarized in **Table 10.**

Site Type	Station ID	Monitoring Site Description	Predominant Land Use	Drainage Area (acres)
	CR-46	West Lane Pump Station (southeast side of Calaveras River at West Lane Bridge)	Industrial with mixed commercial/ residential	230
	CR-42	El Dorado Street/Brookside Pump Station (north side of Calaveras River)	Residential/ Commercial	844
Urban Outfall	CR-41	Pershing Avenue/Brookside Pump Station (north side of Calaveras River)	Residential/ Campus/ Commercial	310
	CR-39	Brookside Estates Pump Station (north side of Calaveras River)	Upscale Residential with minor commercial	297
	CR-46R	Calaveras River at El Dorado Bridge	Industrial with mixed commercial/ residential	NA
Receiving Water	CR-41R	Calaveras River downstream of CR-41 Pump Station	Residential/ Campus/ Commercial	NA
	CR-39R Calaveras River downstream of CR-39 Pump Station		Upscale Residential with minor commercial	NA
Upstream Receiving Water	CR-1R	Stockton Diverting Canal (north side of South Main Street Bridge)	Agriculture/rural residential	NA

Table 10. 2016-2017 Outfall and Receiving Water Monitoring Sites on Calaveras River

NA = Not Applicable

Monitoring is generally conducted during three wet weather events and four dry weather events each year. During 2016-2017, monitoring was completed at each urban discharge and receiving water site four¹³ times during the wet season and four times during the dry season. The timeline of the events is shown in **Figure 2**. The sites that were sampled during each event are listed in **Table 11**. Wet weather events (labeled "SE" for storm event) and dry weather events (labeled "DW" for dry weather) are numbered sequentially from the initiation of monitoring wet weather and dry weather events (in 1992 and 2004, respectively).

Site Type	Station ID	DW27 8/24/16	SE61 10/14/16	DW28 12/5/16	SE62 1/18/17	SE63 ^[a] 2/16/17	DW29 3/2/17	SE64 4/6/17	DW30 5/24/17
	CR-46 ^[b]	G	G	G	G	G	G	G	G
Urban	CR-42	G	G	G	G	G	G	G	G
Discharge	CR-41	G	G	G	G	G	G	G	G
	CR-39	G	G	G	G	G	G	G	G
	CR-46R	G	G	G	G	G	G	G	G
Receiving Water	CR-41R ^[c]	G	G, S	G, S	G, S	G, S	G	G, S	G, S
	CR-39R	G	G, S	G, S	G	G, S	G, S	G, S	G, S
Upstream Receiving Water	CR-1R	NS	NS	NS	G	G	G	G	G

Table 11	. Sites	Sampled	and Type	of Sample	Collected in	2016-2017
----------	---------	---------	----------	-----------	--------------	-----------

Notes:

C = Composite

G = Grab

S = Sonde

NS = Not sampled due to lack of representative upstream flow / dry channel.

[a] A subset of constituents was monitored during this event for a separate monitoring program. The analyses included: *E. Coli*, Fecal Coliform, BOD, DO, TSS, and field measurements.

[b] Grab samples were collected during all events. The composite sampler had technical and mechanical issues, including communication problems (compiler error with the unit), and refrigerator hardware malfunction. The composite sampler will be replaced with newer equipment for the upcoming storm season.

[c] Sonde data were collected upstream, at the CR-42R location (downstream of CR-42).

Monitored Constituents and Analytical Methods

The constituents and corresponding analytical methods for urban discharge and receiving water monitoring are in accordance with the Method Detection Limits (MDLs) that are specified in the monitoring program. During the 2016-2017 events, samples at the historic sites (CR-46 and CR-46R) were analyzed for the constituents shown in **Table 12**. Samples at all other sampling locations on the Calaveras River were analyzed for a targeted set of constituents, based on POCs identified in the 2012 ROWD, as shown in **Table 7**.

¹³ One additional wet weather event was conducted for a limited set of constituents to satisfy another monitoring program. However, the results are also reported here.

Constituents	Method Detection Limits (MDLs)	WQO(s)	WQO Source
Conventional Pollutants	mg/L		
Oil and Grease	5	None	Basin Plan ^[a]
рН	0-14	6.5-8.5	Basin Plan
Dissolved Oxygen	Sensitivity to 5 mg/L	>5-6 ^[b]	Basin Plan
Field Measurements			
Date	mm/dd/yyyy		
Sample Time	hr:min (regular time)		
Weather	degrees F		
Water Temperature	degrees C		
Bacteria	MPN/100 mL		
Fecal coliform	<20	400	Basin Plan
E. coli	<20	235 ^[c]	Basin Plan
General	mg/L		
Turbidity	0.1 NTU		
Total Suspended Solids	2		
Total Dissolved Solids	2		
Total Organic Carbon	1		
Biochemical Oxygen Demand	2		
Chemical Oxygen Demand	20-900		
Total Kjeldahl Nitrogen	0.1		
Alkalinity	2		
Total Ammonia-Nitrogen	0.1		
Specific Conductance	1 µmhos/cm	700/1,000 ^[d]	Bay-Delta WQ Plan ^[e]
Total Hardness	2		
Metals	µg/L		
Aluminum, Dissolved	50	750	EPA Ambient WQ ^[f]
Aluminum, Total	50	200	Secondary MCL ^[g]
Copper, Dissolved	0.5	Hardness-dependent	CTR ^[h]
Copper, Total	0.5	Hardness-dependent	CTR
Iron, Total	100	300	Secondary MCL
Lead, Dissolved	0.5	Hardness-dependent	CTR
Lead, Total	0.5	Hardness-dependent	CTR
Mercury, Total	0.5 ng/L		
Methylmercury, Total	0.05 ng/L		
Zinc, Total	1	Hardness-dependent	CTR
Pesticides	ng/L		
Chlorpyrifos	10	15	Basin Plan
Diazinon ^[1]	50	100	Basin Plan
Pyrethroids	5		
· ·	1	1	1

Table 12. Constituent Analysis for Outfall and Receiving Water Monitoring at Historic Sites

[a] Water Quality Control Plan for the Sacramento River and San Joaquin River Basins.

[b] The WQO is >6 mg/L September 1 – November 30.

[c] Stockton Urban Waterbodies Pathogen TMDL single sample maximum water quality target.

[d] The WQO is a maximum 30-day average of 700 µmhos/cm April – August, and 1,000 µmhos/cm September – March.

[e] Water Quality Control Plan for the San Francisco Bay/Sacramento-San Joaquin Delta Estuary.

[f] United States Environmental Protection Agency Recommended Ambient Water Quality Criteria.

[g] United States Environmental Protection Agency Secondary Maximum Contaminant Level.

[h] 40 C.F.R. Section 138.38(b) California Toxics Rule.

[i] Diazinon is monitored only at Rainwater/Atmospheric Deposition stations.

All waterbody/drainageshed monitoring results are included in **Appendix B**, which contains the following information:

- Sample location
- Station type (urban discharge [UD] or receiving water [RW])
- Sampling method (composite or grab)
- Sample date and time
- Sample result
- MDLs
- Reporting Limits (RLs)
- Data qualifiers
- Comparison to the lowest applicable water quality objective (WQO)
- The name of the analyzing laboratory

For analyses that were non-detect (ND), the value is reported as less than the MDL where the MDL is provided by the lab; otherwise, the value is reported as less than the RL.

Monitoring results for the constituents identified as water quality POCs for the Calaveras River are presented graphically to provide an overview of the characterization of the Calaveras River:

- *E. coli* and fecal coliform (**Figure 3**);
- Chlorpyrifos (**Figure 4**) and pyrethroids (**Figure 5**)
- Total Mercury and Total Methylmercury (**Figure 6**); and
- Dissolved oxygen grab sample data (Figure 7) and sonde data (Figure 8).

Data for the POCs are summarized in tables in Appendix C. A complete assessment of monitoring results from the Calaveras River within the context of all monitored waterbodies, including data from the historic monitoring locations and an assessment of trends, will be provided in the End-Term Report. For this report, general observations are provided below:

- *E. coli* are a more appropriate indicator for risk to human health, as noted in the 2012 United States Environmental Protection Agency Recreational Water Quality Criteria,¹⁴ and the State Water Board's 2017 draft Bacteria Provisions.¹⁵ *E. coli* concentrations in receiving water sites are below the WQO in almost all samples, but showed occasional exceedances at discharge sites. As is typical, indicator bacteria are generally higher during storm events than during dry weather events.
- Chlorpyrifos concentrations were all below the WQO, and were frequently non-detect, except for the first storm sample (SE61) at discharge site CR-41.

19

¹⁴ United States Environmental Protection Agency. 2012. Recreational Water Quality Criteria. Office of Water, 820-F-12-058.

¹⁵ http://www.waterboards.ca.gov/bacterialobjectives/docs/draft_provisions.pdf

- Pyrethroids
 - Few pyrethroids were detected in the upstream monitoring location.
 - All pesticides were more frequently detected during storm events than during dry weather events.
 - A higher number of individual pyrethroid compounds, and higher concentrations of pyrethroids, were detected in discharge samples than receiving water samples.
 - Samples at location CR-42 had the greatest number of individual pyrethroids.
 - Samples from both CR-42 and CR-41 had higher concentrations than the other discharge locations.
 - One instance of an unusually high concentration of cyfluthrin (1,300 ng/l) was observed in a receiving water sample at CR-46R during SE64, where the concentration in the associated discharge location was over three orders of magnitude lower, and where cyfluthrin was not detected in the upstream receiving water location nor in any rainwater samples (rainwater monitoring is described in **Section 4.1.3**).
- Mercury concentrations at the upstream location were similar to the receiving water locations within the SUA. Concentrations at all sites were similar between storm events and dry weather events.
- Dissolved oxygen (DO)
 - DO concentrations were appropriately above the minimum WQO in all receiving water grab samples. Concentrations in discharge samples were lower during storm events than during wet weather events. Concentrations below the minimum WQO were observed during dry weather events at CR-42, and during the first dry weather event at CR-46 and CR-39.
 - DO sonde data were generally above the WQO at both the upstream (CR-42R) and downstream (CR-39R) locations. Excursions below the WQO occurred more frequently in the upstream location, and DO concentrations appeared to be lowest toward the end of October.

20

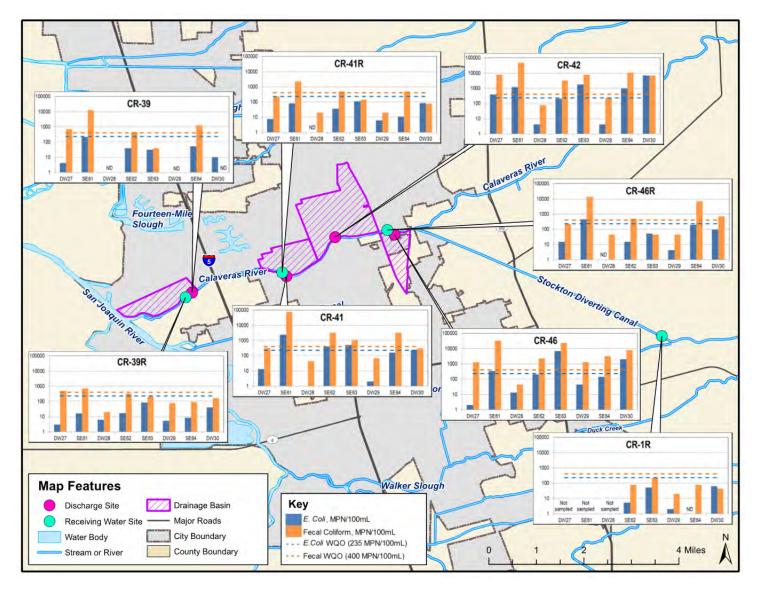


Figure 3. Calaveras River 2016-2017 E. coli and Fecal Coliform Concentrations (MPN/100 mL)

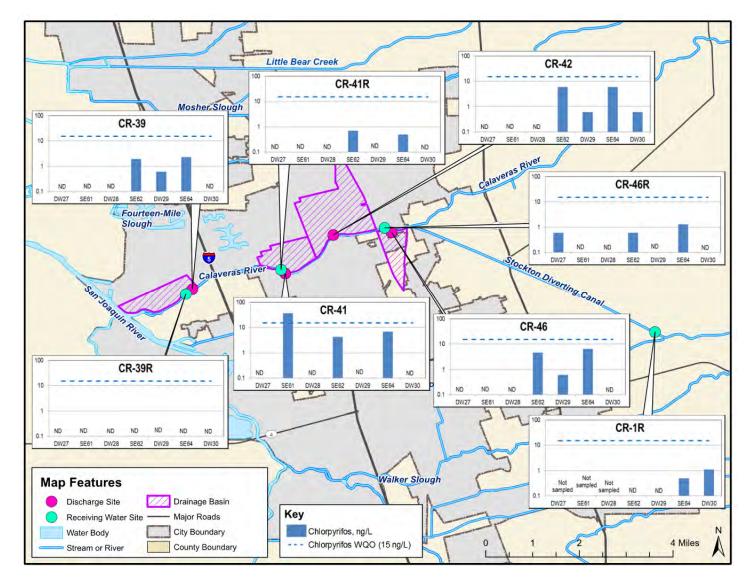


Figure 4. Calaveras River 2016-2017 Chlorpyrifos Concentrations (ng/L)

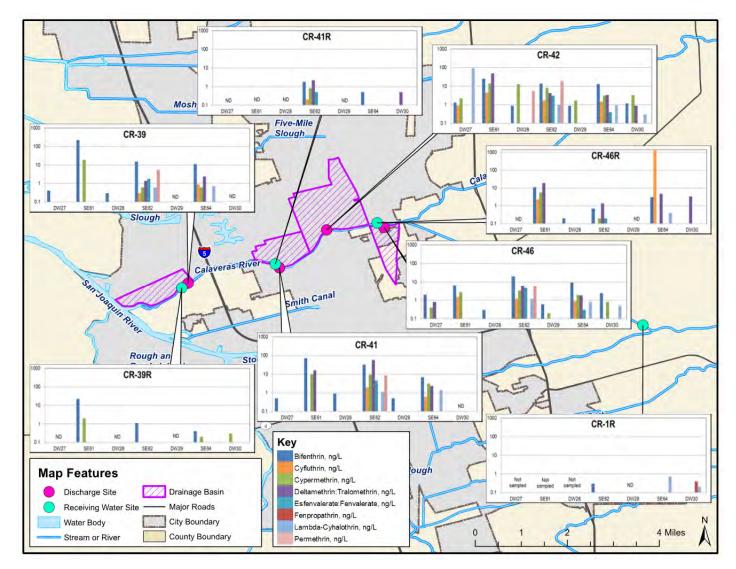


Figure 5. Calaveras River 2016-2017 Pyrethroid Concentrations (ng/L)

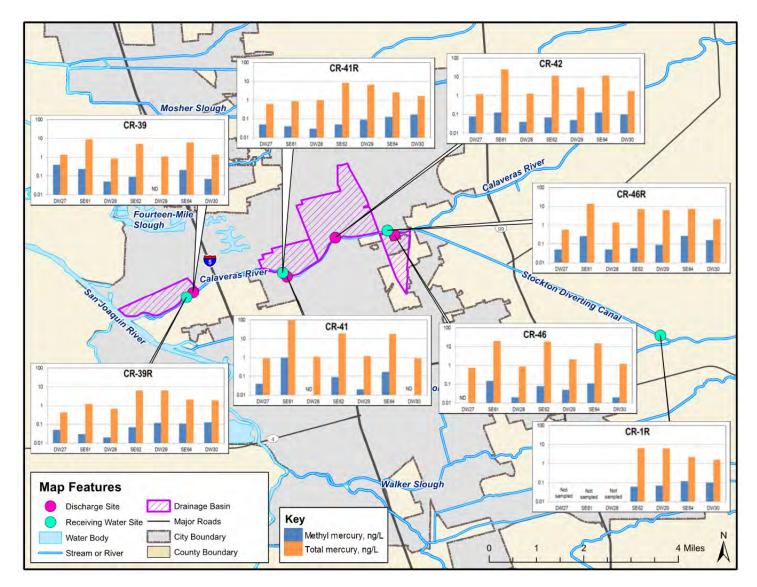


Figure 6. Calaveras River 2016-2017 Total Mercury and Total Methylmercury Concentrations (ng/L)

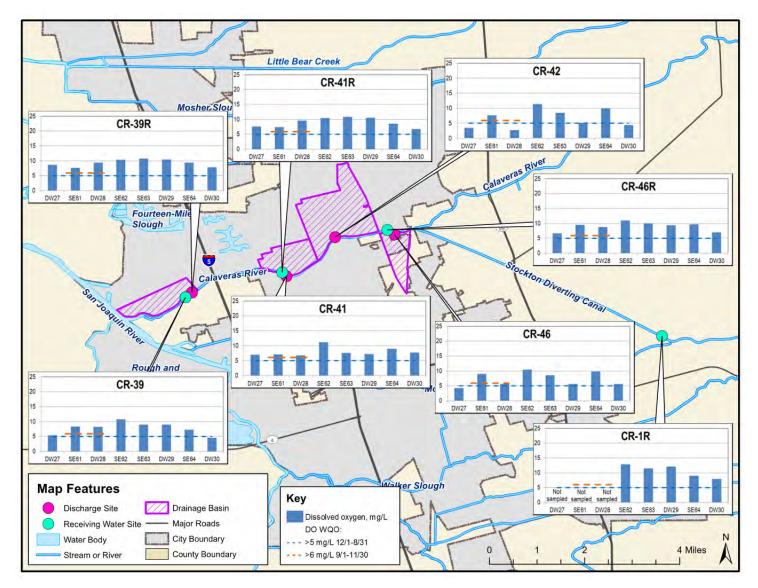


Figure 7. Calaveras River 2016-2017 Dissolved Oxygen Concentrations (mg/L)

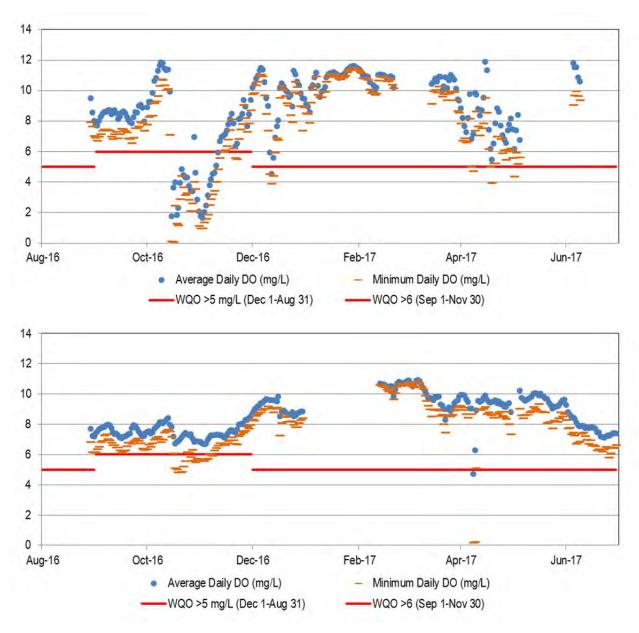


Figure 8. Continuous Sonde Data for Dissolved Oxygen at (top) CR-42R (upstream) and (bottom) CR-39R (downstream)

4.1.3 Rainwater/Atmospheric Deposition Monitoring

During 2016-2017, rainwater/atmospheric deposition was monitored for mercury (total mercury and total methylmercury) and pesticides (chlorpyrifos and pyrethroids) at three representative locations in the SUA. Diazinon was monitored at the NW-Rain location, in addition to chlorpyrifos and pyrethroids. The three locations are shown in **Figure 9**.

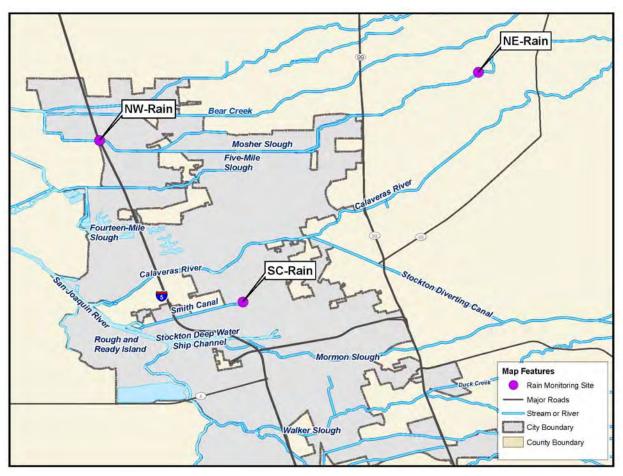


Figure 9. Rainwater/Atmospheric Deposition Monitoring Locations

The monitoring sites include the following:

- NW-Rain Located along Mosher Slough in the northwest corner of the SUA. This site has been historically monitored for the Pesticide Plan. The site is representative of atmospheric deposition generated within and outside of the SUA.
- NE-Rain Located along Mosher Slough outside of the SUA, to the northeast. This site has been historically monitored for the Pesticide Plan. The site is representative of atmospheric deposition generated outside of the SUA.
- SC-Rain Located at the Legion Park Pump Station, in the center of the SUA. This site is representative of atmospheric deposition that is generated within the SUA.

During 2016-2017, rainwater was monitored at all three sites during all four storm events that were sampled for the outfall and receiving water monitoring. Monitoring results are shown in **Figure 10**.

General observations are summarized below:

- Total mercury and methylmercury concentrations were similar at all three locations, and were similar in magnitude to the concentrations observed in urban runoff and receiving water samples.
- Pesticides:
 - Organophosphate (OP) pesticides were detected in most samples, and chlorpyrifos was frequently detected at concentrations close to the WQO.
 - Pyrethroids were most frequently detected at the NE and Smith Canal rainwater locations, with the most individual compounds detected.

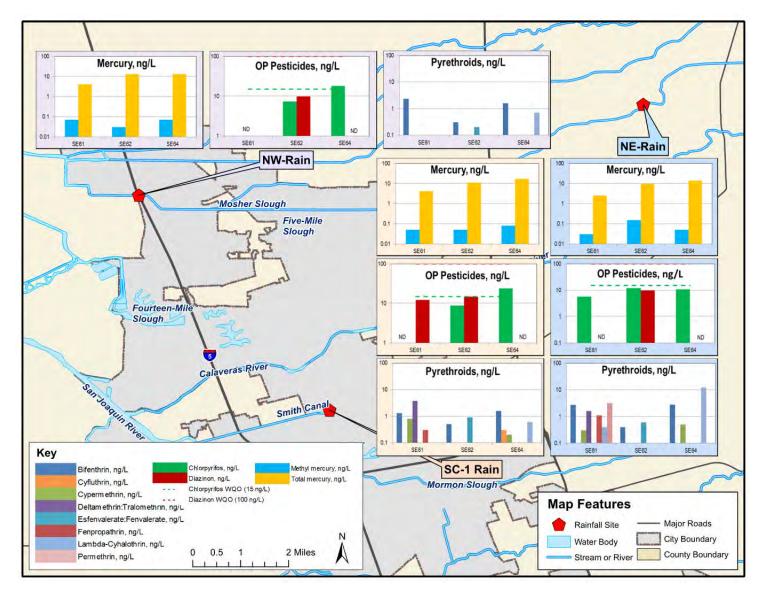


Figure 10. 2016-2017 Rainwater/Atmospheric Deposition Monitoring Results

4.1.4 Sediment Toxicity and Sediment Chemistry

The monitoring program specifies that sediment toxicity be monitored at receiving water sites on each historic waterbody. Monitoring is performed 2-4 days following one storm event and two dry weather events. Sediment samples are analyzed using the USEPA standardized ten-day sediment toxicity testing method¹⁶ for freshwaters using *Hyalella azteca*, and sediment total organic carbon (TOC) and grain size are reported. If toxicity is determined to be statistically significant and a greater than or equal to 50% increase in *Hyalella azteca* mortality¹⁷ is observed, follow-up testing of sediment chemistry is performed for the parameters specified in **Table 13**.

Pesticides in Sediment ^[a]	Target Reporting Limit
Organophosphate Pesticides	µg/kg
Chlorpyrifos	0.01
Diazinon	0.05
Pyrethroid Pesticides ^[b]	ng/g
Bifenthrin	1
Cyfluthrin-1	3
Cyfluthrin-2	3
Cyfluthrin-3	3
Cyfluthrin-4	3
Cypermethrin-1	3
Cypermethrin-2	3
Cypermethrin-3	3
Cypermethrin-4	3
Deltamethrin	2
Esfenvalerate/Fenvalerate-1	2
Esfenvalerate/Fenvalerate-2	1
Lambda-cyhalothrin-1	1
Lambda-cyhalothrin-2	4
Permethrin-1	4
Permethrin-2	1
Notes:	

Table 13. Sediment Chemistry Constituents to be Monitored at the Historic Site (CR-46R)

Notes:

[[]a] Follow-up testing of sediment chemistry will be performed if toxicity is determined to be statistically significant and a greater than or equal to 50% increase in *Hyalella azteca* mortality is observed.

[[]b] Pyrethroid isomers are typically reported as totals instead of the individual isomers except where individual isomers may be obtained.

¹⁶ USEPA 2000. Methods for measuring the toxicity and bioaccumulation of sediment-associated contaminants with freshwater invertebrates. EPA 600/R-99/064. Office of Research and Development. Washington, DC.

¹⁷ City of Stockton and County of San Joaquin. Sediment Toxicity Work Plan. March 27, 2009, revised June 2009.

During 2016-2017, monitoring was completed at CR-46R during three events:

- Three days following SE61, on October 17, 2016
- Two weeks following DW29, on March 14, 2017
- One week following DW30, on June 1, 2017

Sediment toxicity results are summarized in Table 14 and included in Appendix D.

Samples from both storm events showed significant toxicity, and triggered follow up testing of sediment chemistry. Results are summarized below:

- The sample from the second sediment toxicity monitoring event, SE61, showed significant toxicity which can likely be attributed to pesticides (pyrethroids). Survival of *Hyalella azteca (H. azteca)* was 38.8%, a reduction relative to the control of 98.7%. This reduction in survival triggered18 follow-up analysis of pyrethroids in sediment. Sediment chemistry results are shown in **Table 15**. Multiple pyrethroids were detected, with deltamethrin present at the highest concentration. However, pyrethroids were present at lower concentrations in the field duplicate.
- The sample from the third sediment toxicity monitoring event, SE62, also showed significant toxicity which can be attributed to pesticides (pyrethroids). Survival of *Hyalella azteca (H. azteca)* was 48.8%, a reduction relative to the control of 51. 2%. This reduction in survival triggered follow-up analysis of pyrethroids in sediment. Sediment chemistry results are shown in **Table 15**. Multiple pyrethroids were detected, and deltamethrin again was detected at the highest concentration. Deltamethrin was present at a high concentration of 110 ng/g (two orders of magnitude higher than any other of the detected pyrethroids).

Deltamethrin is in a variety of products used to kill a wide range of insects, and is used outdoors on lawns, ornamental gardens, golf courses, and indoors as a spot or crack and crevice treatment for insects.¹⁹ Deltamethrin was detected in the receiving water sample at CR-46R during DW30, but was not detected at the associated discharge location (CR-46), nor in the upstream receiving water location. During the rain event one month prior (SE64), deltamethrin was detected in both the discharge and receiving water samples at the historic locations (CR-46 and CR-46R), but was not detected in the upstream receiving water samples at the historic location (Figure 5).

 $^{^{18}}$ Follow up testing of sediment chemistry is performed when toxicity is determined to be statistically significant, and a greater than or equal to 50% increase in *H. azteca* mortality is observed.

¹⁹ National Pesticide Information Center: http://npic.orst.edu/factsheets/DeltaGen.html

Toxicity Present Relative to Lab Control? Reduction H. azteca H. azteca Mean % in Survival Mean Sample ID Date Survival Growth Survival (%) Growth (mg) **DW29** Control ---97.5 -0.24 CR-46R^[a] 3/14/17 No Yes 96.3 98.7 0.15 CR-46R^[a] 3/14/17 Yes Yes 86.2 88.5 0.18 LD **SE61** 0.23 Control 96.3 ----CR-46R^[a] 10/17/16 Yes Yes 38.8 40.3 0.18 CR-46R^[a] 10/17/16 Yes Yes 47.5 49.4 0.13 FD **SE62** Control 100 0.204 ----CR-46R^[a]

No

35

48.8

51.2

0.188

Table 14. 2016-2017 Sediment Toxicity Results at Calaveras River

Notes:

LD = Lab Duplicate

FD = Field Duplicate

Bold indicates that toxicity observed was statistically significant.

Yes

[a] Sediment samples are collected downstream of CR-46R

6/1/17

	Result (ng/g)			
Pesticides in Sediment	SE61	SE61 FD	SE62	
Organophosphate Pesticides				
Chlorpyrifos	ND	ND	0.23 J	
Diazinon	NR	NR	ND	
Pyrethroid Pesticides				
Allethrin	ND	ND	ND	
Bifenthrin	2.7	0.87	1.9	
Cyfluthrin	0.59	ND	0.46	
Lambda-cyhalothrin	0.58	ND	1.7	
Cypermethrin	0.34	ND	0.35	
Deltamethrin:Tralomethrin	38	3.2	110	
Esfenvalerate:Fenvalerate	ND	ND	0.31 J	
Fenpropathrin	ND	ND	0.081 J	
Tau-Fluvalinate	ND	ND	ND	
Permethrin	4.3	ND	1.1	
Tetramethrin	ND	ND	ND	

Table 15. Follow-Up Sediment Chemistry Results for Events SE61 and SE62

Notes:

J = Concentration is between the MDL and the RL and is therefore an estimated value.

ND = Not Detected

NR = Not Reported

4.1.5 Water Column Toxicity Monitoring

The monitoring program specifies that water column toxicity be monitored during one storm event and one dry weather event when the historic monitoring location (CR-46R) is sampled. Water column toxicity is conducted in accordance with USEPA methods20 using short-term chronic toxicity tests based on two freshwater species: 1) Three-brood (6-8 day) survival and reproduction test with water fleas (the crustacean *Ceriodaphnia dubia*); and 2) Seven-day survival and growth test with larval fathead minnows (*Pimephales promelas*). If 100% mortality of either species is detected in a receiving water sample within 24 hours of test initiation, a dilution series testing is initiated (from 6.25% to 100% receiving water) to determine if toxicity was persistent. If statistically significant toxicity is detected, and a greater than or equal to 50% increase in fathead minnow or *Ceriodaphnia dubia* mortality, or reduction in *Ceriodaphnia dubia* mortality compared to the laboratory control is observed, a Toxicity Identification Evaluation (TIE) is conducted.

During 2016-2017, water column toxicity was monitored at site CR-46R during one storm event and one dry weather event:

- SE61 on October 14, 2016
- DW30 on May 24, 2017

During 2016-2017, no significant reductions in *Ceriodaphnia dubia* survival were observed in any of the water samples. Significant reductions in *Ceriodaphnia dubia* reproduction were observed during both events, but there were no significant reductions in fathead minnow survival or growth in any of the water samples. The water column toxicity results are included in **Appendix E**.

²⁰ USEPA 2002. Short-term methods for estimating the chronic toxicity of effluents and receiving waters to freshwater organisms, 4th Edition. EPA-821-R-02-013. Office of Water. Washington, DC.

4.2 DATA QUALITY EVALUATION

Quality Assurance/Quality Control (QA/QC) refers to the process of reviewing lab and "field" initiated checks on the sampling and analytical process. These checks, which include field blanks, method blanks, field duplicates, lab duplicates and matrix spike/matrix spike duplicates (MS/MSD), and data review are used to confirm that data are of high quality. Lab reports are initially screened by the field monitoring contractor for missing analytical data (both environmental and QA/QC), holding time violations, discrepancies in analytical methods or detection limits, and any apparent out-of-range environmental results. If the analytical work appears to be missing any requested analysis, the lab is asked to complete the missing analysis if possible to do so within the specified holding time. Periodically, data analyses are requested even if samples exceed the hold time. Data qualifiers are appended to the environmental data points where appropriate by applying the data quality objectives provided by the laboratories.

The QA/QC process identifies isolated incidents of out-of-range lab and sampling performance, but more importantly identifies potential long-term trends in lab and sampling performance. An important and ongoing component of the QA/QC program is to report and correct these problems as they arise.

Overall, no significant problems with data quality were identified during 2016-2017. There were isolated instances of constituents detected in field blanks, field duplicates not meeting relative percent difference standards (RPD), and lab QA/QC issues. However, when conducting such a large monitoring and reporting program, it is normal for field, lab, and/or analytical issues to arise for a small number of samples. In general, the data collected and reported are considered of high quality and suitable for data analysis with the qualifications noted in the **Appendix A** data report. The main qualifiers used are summarized in **Table 16**.

Qualifier	Definition of Qualifier	Data to Which Qualifier Applies
FB	The concentration of a given constituent was detected in the field blank. The associated environmental sample taken at the same site is considered an estimate.	 A field blank was taken at one site for all constituents during each monitoring event.
FD	The Relative Percent Difference (RPD) between the concentrations of a given constituent in the field duplicate and the associated environmental sample was outside the acceptable limit. This indicates that the duplicability and precision of the results for this constituent may be low.	 A field duplicate was taken at one site for all constituents during each monitoring event.
J	The concentration of a given constituents is between the MDL and the RL and is therefore an estimate. The J qualifier does not indicate poor data quality because all the RLs used meet permit requirements.	The J-flag qualifier is common in all data in the monitoring program.
ND	A given constituent was not detected and is given as < MDL. The ND qualifier does not indicate poor data quality but rather indicates that a constituent was simply not detected.	The ND qualifier is common in all data in the monitoring program.

4.3 DELTA REGIONAL MONITORING PROGRAM

The Delta RMP is a stakeholder-directed project formed to develop a regional water quality monitoring program to improve understanding of water quality issues in the Sacramento-San Joaquin Delta. The goal of this effort is to better coordinate and design current and future monitoring activities in and around the Delta to create a cost effective approach for providing critically needed water quality information to better inform policy and regulatory decisions of the Regional Water Board and other Federal, State and local agencies and organizations.²¹ The RMP is focusing the initial monitoring efforts on mercury, pesticides, nutrients, and pathogens. The City and County are contributing members of the RMP, which began monitoring in 2015. As the data are collected and results reported, the City and County will reference them within the annual reports and mid-term and end-term reports, as needed.

4.4 TOTAL MAXIMUM DAILY LOADS

The General Permit requires that the City and County continue implementation of the stormwater monitoring program, which includes implementation actions and assessments related to applicable TMDLs. Efforts to fulfill TMDL monitoring requirements (included in Attachment G of the General Permit) are summarized in the following sections.

4.4.1 Sacramento-San Joaquin Delta Diazinon and Chlorpyrifos TMDL (Resolution R5-2006-0061)

The organophosphate (OP) Pesticide TMDL establishes wasteload allocations (WLAs) for the sum of diazinon and chlorpyrifos concentrations relative to their respective WQOs. Attachment G of the General Permit requires that, within one year of the receipt of the notice of applicability (NOA) under the General Permit, the Permittees submit an assessment to determine the diazinon and chlorpyrifos levels and attainment of WLAs in urban discharge and of WQOs in the receiving water. The Permittees performed this assessment during 2016-2017, and submitted the information with the Assessment and Prioritization of Water Quality Constituents in the Stockton Urbanized Area.²² The assessment indicated that, with the exception of Duck Creek, the targets and allocations for the TMDL are largely being met. In addition, Calaveras River, Mosher Slough, and Smith Canal all meet the 303(d) delisting criteria.

4.4.2 Stockton Urban Water Bodies Pathogen TMDL (Resolution No. R5-2009-0030)

The Pathogen TMDL includes WLAs for fecal coliform and *E. coli*. The Permittees are required to continue their monitoring and implementation activities consistent with the Stockton Urban Waterbodies Pathogen Control Program, and document in Mid-Term and End-Term Reports under the General Permit, the implementation of BMPs to control the discharge of pathogens (indicator bacteria) in their urban discharge, as well as submit effectiveness assessments of

²¹<u>http://www.waterboards.ca.gov/centralvalley/water_issues/delta_water_quality/delta_regional_monitoring/index.s</u> <u>html</u>

²² City of Stockton and County of San Joaquin. Assessment and Prioritization of Water Quality Constituents in the Stockton Urbanized Area. Prepared by Larry Walker Associates. May 30, 2017.

implemented BMPs. During 2016-2017, the Permittees monitored for indicator bacteria at the Calaveras River, as described in **Section 4.1.2**.

4.4.3 Delta Methylmercury TMDL (Resolution No. R5-2010-0043)

As a part of Phase I of the Sacramento-San Joaquin Delta Methylmercury TMDL,²³ the City and the County are required to conduct a Methylmercury Control Study (Control Study) and participate in the Mercury Exposure Reduction Program (MERP). Progress for the Control Study and MERP participation are reported in the following sections.

Methylmercury Control Study

The Permittees submitted a Control Study Workplan to the Regional Water Board on April 22, 2013, and received feedback from the technical advisory committee and Regional Water Board staff during August 2013. The Permittees submitted a revised Control Study Workplan in October 2013 to address the comments received. The Control Study focuses on evaluating the mercury and methylmercury removal performance of the Airport Business Center detention basin within the SUA, along with examining the potential for methylmercury production in the basin. The Permittees are implementing the Control Study according to the schedule in **Table 17**.

Task	Estimated Completion	Completed
Submit Control Study Work Plan to Regional Water Board	April 19, 2013	~
Regional Water Board and TAC Work Plan Review	May-July 2013	~
Finalize Work Plan	October 21, 2013	\checkmark
 Initiate Control Study Sampling First Year Monitoring Second Year Monitoring Third Year Monitoring 	October 2013 Oct 2013 – Sep 2014 Oct 2014 – Sep 2015 Oct 2015 – Sep 2016	V
Submit Control Study Progress Report	October 2015	✓
Complete Control Study Sampling	September 2016	✓
Submit Annual Progress Report	October 2016 (submitted as part of Annual Report)	~
Submit Annual Progress Report	October 2017 (submitted as part of Annual Report)	~
Submit Control Study Final Report to Regional Water Board	October 2018	

Table 17. Methylmercury Control Study Schedule

²³ Central Valley Regional Water Quality Control Board. 2012. Amendments to the Water Quality Control Plan for the Sacramento River and San Joaquin River Basins for the Control of Methylmercury and Total Mercury in the Sacramento-San Joaquin River Delta Estuary. Rancho Cordova, CA. Available online: www.waterboards.ca.gov/rwqcb5/water issues/tmdl/central valley projects/delta hg/2011oct20/bpa 20oct2011 final.pdf

The Control Study includes monitoring for mercury and methylmercury using grab samples; along with ancillary constituents (suspended sediment, TSS, TDS, turbidity, phosphorus, sulfate, and iron) using composite samples, and field readings. Samples are collected at the detention basin inlets and outlet. During dry weather events, sediment samples are collected for mercury and methylmercury. Sampling occurs during three wet weather events and one dry weather event for three years.

Monitoring was completed during 2015-2016. The Control Study Progress Report was submitted in October 2015. An annual progress report, per TMDL requirements, was submitted in October 2016. This summary fulfills the requirement for the 2017 annual progress report. One final report will be submitted in October of 2018.

Delta Mercury Exposure Reduction Program Participation

The Delta Mercury Control Program requires the entities identified in the Basin Plan to develop and implement a mercury exposure reduction program. The Delta MERP Participants include those entities and agencies that have formally submitted a letter describing their intent to participate in the collective exposure reduction program. The Permittees submitted their letter during 2013-2014, and are participating in the Delta MERP.

The Delta MERP is designed to increase understanding of contaminants in fish and reduce exposure to mercury among people who eat fish from the Delta. The Delta MERP is producing educational materials based on fish consumption guidelines, and also focusing on presenting a balanced message including health risks associated with exposure to mercury in fish, ways to reduce exposure, the health benefits of eating fish generally, and low-mercury fish species and areas. The Delta MERP is also focusing efforts on training opportunities for entities involved in the Delta MERP including county agencies, Tribal organizations, community-based organizations, and health care providers.

During 2016-2017 the Permittees contributed funding to the MERP and have been actively tracking its progress.

4.4.4 Lower San Joaquin River, Stockton Deep Water Ship Channel Organic Enrichment and Low Dissolved Oxygen TMDL (Resolution No. R5-2005-0005)

The Organic Enrichment and Low Dissolved Oxygen TMDL requires that responsible parties implement BMPs to control and abate the discharge of oxygen-demanding substances. Attachment G of the General Permit requires that the covered Permittees continue implementation of BMPs identified in their SWMP to control oxygen demanding substances in their stormwater discharges. These implementation efforts will be documented in the Mid-Term and End-Term Reports required under the General Permit. During 2016-2017, the Permittees monitored for dissolved oxygen at the Calaveras River using grab samples and continuous data sondes, as described in **Section 4.1.2**.

5. Programmatic Activities and Data

This section provides a summary of the status of the implementation of the stormwater program, as well as the inspections conducted, number and nature of enforcement actions taken, and public education programs implemented during 2016-2017.

As described in **Section 1** and **Section 6**, the City and County submitted a Work Plan as part of their NOI application package (Appendix A). During 2016-2017, the City and County implemented the activities as outlined in the Work Plan.

In addition, throughout each reporting period, the City and County are tracking the data and information necessary to conduct short-term and long-term program effectiveness assessments, which will be completed as part of the Mid-Term and End-Term Reports, respectively. Although this may change from year to year, a summary of the programmatic data and information that is generally tracked for each stormwater program element is provided in **Table 18**.

Table 18. Data and Information Tracked Annually for Each Program Element	
	-

	Pollu	Pollutants of Concern Addressed		essed
Data/Information Tracked Annually (by Program Element)	Dissolved Oxygen	Mercury	Pathogen Indicators	Pesticides
Program Management				
Fiscal Analysis (i.e., current NPDES expenditures, projected expenditures for the next fiscal year)	-	-		-
Illicit Discharges (ID)				
Number of water pollution complaints received/verified and source of complaints	✓	✓	✓	✓
Number of water pollution issues observed/verified by field staff	✓	✓	✓	✓
Number of illegal connections reported/verified/eliminated	✓	-	✓	-
Types of materials involved in the verified incidents	✓	✓	✓	✓
Location of illicit discharges (Illicit Discharges Location Map)	✓	✓	✓	×
Number/types enforcement actions taken for illicit discharges and illegal connections	-	-	-	-
Training sessions held; pre- and post-training survey results	✓	~	✓	
Public Outreach (PO)				
Summary of stream cleanup events, volunteer organizations, and number of volunteers	✓	✓	✓	✓
Amount used oil and household hazardous waste collected	✓	✓	-	✓
Number hotline calls received/verified	✓	1	✓	✓
Number educational materials distributed	 ✓ 	√	1	✓
Summary of installation of pet waste bag dispensing stations	-	-	✓	-
Number/types mixed media campaigns conducted	✓	✓	✓	✓
Summary of community-wide events	✓	~	✓	~
Summary of events held for school-age children	 ✓ 	✓	√	✓

	Pollu	Pollutants of Concern Addressed		essed
Data/Information Tracked Annually (by Program Element)	Dissolved Oxygen	Mercury	Pathogen Indicators	Pesticides
Municipal Operations (MO)				
Summary of sanitary sewer overflows	✓	-	√	-
Information about municipal Capital Improvement Projects (CIPs)/Priority Project status	✓	✓	-	-
Number acres treated with fertilizers; amount applied	✓	-	-	-
Number acres treated with pesticides	-	-	-	✓
Number acres under IPM program	-	-	-	✓
Total pesticide use (by active ingredient, when available) at parks/golf courses/detention basins	-	-	-	✓
Information regarding catch basin prioritization/inspection/cleaning; overall storm drain system maintenance activities	~	✓	✓	✓
Information regarding pump station inspection/cleaning; overall pump station maintenance activities	✓	~	~	~
Number of catch basins stenciled	✓	✓	✓	✓
Number events required to obtain special use permits and address trash and debris removal	✓	✓	✓	-
Total street miles swept, amount debris removed, and amount green waste collected	✓	✓	✓	✓
Training sessions held; pre- and post-training survey results	✓	✓	✓	✓
Industrial and Commercial (IC)				
Number industrial facilities	✓	✓	✓	✓
Number commercial facilities (significant sources) by category	✓	✓	✓	✓
Number/results industrial facility inspections conducted	✓	✓	✓	✓
Number/results commercial facility inspections conducted	✓	✓	✓	✓
Number/results follow-up inspections conducted	✓	✓	✓	✓
Mobile business Self-Certifications mailed/received	✓	✓	✓	✓
Number BMP Fact Sheets distributed during inspections	✓	✓	✓	✓

	Pollu	tants of Co	ncern Addro	essed
Data/Information Tracked Annually (by Program Element)	Dissolved Oxygen	Mercury	Pathogen Indicators	Pesticides
Number/types enforcement actions taken during inspections/illicit discharge responses	√	√	<u>−</u> √	√
Number/causes referrals made to Regional Water Board due to illicit discharge violations	✓	√	1	✓
Number/types enforcement steps taken related to Self-Certification Forms	✓	✓	✓	✓
Number/types enforcement actions taken against carpet cleaners	✓	√	✓	√
Training sessions held; pre- and post-training survey results	✓	✓	✓	✓
Construction (CO)				
Number grading permits issued; number requiring SWPPPs and NOIs	✓	✓	-	-
Number private/public construction sites; number requiring SWPPP; number completed	✓	1	-	-
Number/type outreach materials distributed during inspections	✓	√	-	-
Number active construction sites; number regular/follow-up inspections conducted	✓	✓	-	-
Number/types of enforcement actions taken	✓	√	-	-
Training sessions held; pre- and post-training survey results	✓	✓	-	-
Planning and Land Development (LD)				
Number project plans reviewed for stormwater BMPs	✓	✓	✓	
Number Priority Projects, by Category	✓	4	✓	✓
Total acreage covered by approved Priority Projects	✓	✓	✓	✓
Number/Type approved Control Measures	✓	✓	✓	✓
Information for permanent post-construction stormwater treatment devices (Post-Construction BMP Treatment Devices Database)	✓	✓	✓	✓
Completed priority projects/post-construction BMP maintenance oversight inspection results	✓	✓	✓	✓
Number stormwater treatment device access and maintenance agreements executed	✓	✓	✓	✓
			-	

✓

✓

✓

✓

5.1 OVERVIEW OF INSPECTIONS, ENFORCEMENT ACTIONS, AND PUBLIC EDUCATION PROGRAMS

A summary of the inspections conducted, number and nature of enforcement actions taken, and public education programs implemented during 2016-2017 is provided below.

5.1.1 Inspections

Industrial and Commercial Program Element (IC)

Industrial Facility Inspections

The City is currently reorganizing its efforts regarding industrial and commercial inspections and follow-up enforcement actions to better align its resources with the requirements of the Permit. The reorganization is intended to focus the City's efforts on one geographic grid location at a time, with full coverage of all industrial and commercial facilities within that grid. This approach will allow the City's inspectors to concentrate on geographic grids for inspections and response to violations, with the goals of increasing the number of inspections performed each year, providing better opportunities for outreach to facilities, and achieving full compliance of all facilities with stormwater control requirements.

Number of industrial facilities in current inventory ^[a]	17
Number of facilities inspected in 2016-2017 ^[b]	5
Number of facilities with SWPPPs on site	5
Number of facilities in compliance with stormwater control requirements	5
Number of facilities requiring follow-up inspections	0
Number of facilities in compliance after follow-up inspections	N/A

A summary of the County's industrial facility inspections is provided below:

[a] One site submitted a Notice of Termination (NOT) in 2016-2017 due to lack of exposure to stormwater and was approved. The site will be removed from the industrial site inventory in 2017-2018.

[b] The County maintains an annual presence in the field by inspecting a percentage of industrial sites annually, with the end result being that all sites are inspected at least twice during a normal permit term.

Commercial Facility Inspections

The City is currently reorganizing its efforts regarding industrial and commercial inspections and follow-up enforcement actions to better align its resources with the requirements of the Permit. The reorganization is intended to focus the City's efforts on one geographic grid location at a time, with full coverage of all industrial and commercial facilities within that grid. This approach will allow the City's inspectors to concentrate on geographic grids for inspections and response to violations, with the goals of increasing the number of inspections performed each year, providing better opportunities for outreach to facilities, and achieving full compliance of all facilities with stormwater control requirements.

A summary of the County's 2016-2017 commercial facility inspections is provided below:

Total number of commercial facilities in current inventory	120
Number of commercial facilities requiring inspection ^[a]	60
Number of facilities inspected in 2016-2017 ^[b]	5
Number of facilities adequately implementing BMPs	5
Number of facilities in compliance with stormwater control requirements	5
Number of facilities requiring follow-up inspections	0
Number of facilities in compliance after follow-up inspections	N/A

[a] The total number of commercial facilities requiring inspection is estimated at about half of all the inventoried facilities each year, in order to project an annual presence in the field.

[b] The County maintains an annual presence in the field by inspecting a percentage of commercial sites annually, with the end result being that all sites are inspected at least twice during a normal permit term.

Mobile Business Self-Certification Forms

The Permittees mailed 95 initial Self-Certification requests on January 29, 2016 and received 40 responses. As a follow-up, the Permittees mailed 55 Self-Certification forms to the remaining mobile carpet cleaning businesses on August 5, 2016. These were considered "Second Notifications."

- The Permittees received 10 completed Self-Certification forms.
- Of the remaining 45 businesses, two were no longer in operation.
- Four pieces of mail were returned to the Permittees.

Construction Program Element (CO)

Construction Site Inspections

A summary of the City's construction site inspections for 2016-2017 is provided below:

Number of active construction sites ≥1 acre in size	34
Number of regular inspections conducted at active construction sites	246
Number of follow-up inspections conducted due to violations	11

The County had no active construction sites greater than or equal to one acre in size.

• Because there were no active construction sites, no inspections were necessary.

Planning and Land Development Program Element (LD)

Post-Construction BMP Maintenance Oversight

The City has a total of six completed priority projects with post-construction BMPs.

• A total of six inspections were conducted, and no enforcement actions were issued due to improper maintenance.

The County has a total of four completed priority projects with post-construction BMPs.

• One inspection was conducted, and no enforcement actions were issued due to improper maintenance.

5.1.2 Enforcement Actions

Illicit Discharges Program Element (ID)

The City tracked enforcement actions in the Illicit Discharges Database. A total of 243 enforcement actions were taken by the Stormwater Division and Environmental Control Division in response to 141 reports of illicit discharge. No illegal connections were identified.

The number and types of enforcement actions taken by the City for during the reporting period are summarized below:

Stormwater Division Enforcement Actions	Number of Actions ^[a]
None – No Action Taken ^[b]	23
Administrative	
Verbal Warning	96
Cease and Desist Order ^[c]	1
Violation Warning Notice ^[c]	22
Notice to Clean ^[c]	64
Stop Work Order ^[c]	3
Administrative Citation (Fine) ^[c]	5
Correction Order ^[c]	52
Criminal Enforcement ^[d]	
Misdemeanor	0
Infraction	0
Total	243

Notes:

[a] The total number of enforcement actions taken may be greater than the number of verified incidents due to multiple enforcement actions. These enforcement actions may have occurred on the same day for a single incident.

- [b] None No Action Taken: This enforcement action type denotes that no action was taken. The responsible party may have taken corrective measures before agency personnel arrived and/or a responsible party was not identifiable.
- [c] The "Notice of Violation Administrative Citation form used by MUD Stormwater includes the following enforcement options: Cease and Desist Order; Violation Warning Notice; Notice to Clean; Stop Work Order; Fine; and Correction Order.
- [d] Criminal Enforcement: This category presumes that an action turned over to the District Attorney resulted in a criminal prosecution within the year of the incident. However, data for this category can only be updated in subsequent years (i.e., after criminal prosecution has been successful).

Number of repeat offenders²⁴ identified: <u>16</u>

Total number of complaints/problems referred to the Regional Board: 0

²⁴ Repeat offenders were identified by tracking responsible parties for multiple incidents at the same address on different dates.

The County tracked enforcement actions in the Illicit Discharges Database.

- One enforcement action was taken in response to illicit discharges and illegal connections.
- No repeat offenders were identified, and no complaints or problems were referred to the Regional Water Board. However, one complaint/problem was referred to the Environmental Health Department.

Industrial and Commercial Program Element (IC)

Industrial and Commercial Facility Enforcement Actions

The City is currently reorganizing its efforts regarding industrial and commercial inspections and follow-up enforcement actions to better align its resources with the requirements of the Permit. The reorganization is intended to focus the City's efforts on one geographic grid location at a time, with full coverage of all industrial and commercial facilities within that grid. This approach will allow the City's inspectors to concentrate on geographic grids for inspections and response to violations, with the goals of increasing the number of inspections performed each year, providing better opportunities for outreach to facilities, and achieving full compliance of all facilities with stormwater control requirements.

The County took no enforcement actions against businesses during industrial or commercial inspections.

• All facilities were in compliance with stormwater control requirements.

Mobile Business Enforcement Actions

The Permittees took enforcement steps against mobile businesses with regard to completion of Self-Certification forms in the form of "Second Notifications." A total of 55 Second Notifications were mailed to mobile businesses, and 10 Self-Certification forms were received. No further enforcement was taken during the reporting period.

The City issued one "Notice to Clean" to a carpet cleaning business. This incident and resulting enforcement action was tracked in the Illicit Discharges Database.

Construction Program Element (CO)

Construction Site Enforcement Actions

The City took a total of 268 enforcement actions against construction sites during 246 regular inspections and 11 follow-up inspections. Seven repeat offenders were identified.

The number and types of enforcement actions taken by the City during construction site inspections are shown below.

Enforcement Action Type	Number ^[a]	
Administrative		
Verbal Warning	105	
Written Warning	0	
Notice of Violation ^[b]	7	
Cease and Desist Order ^[b]	0	
Violation Warning Notice ^[b]	14	
Notice to Clean ^[b]	87	
Stop Work Order ^[b]	0	
Administrative Citation (Fine) ^[b]	0	
Correction Order ^[b]	55	
Criminal Enforcement		
Misdemeanor	0	
Infraction	0	
Total	268	

Notes:

[a] Multiple enforcement actions were sometimes taken for a single discharge.

[b] The Notice of Violation – Administrative Citation form used by the City includes the following enforcement options: Cease and Desist Order; Violation Warning Notice; Notice to Clean; Stop Work Order; Fine; and Correction Order.

The County took no enforcement actions against construction sites, since there were no construction sites greater than or equal to one acre in size during the reporting period.

5.1.3 Public Education Programs

The City and County implemented a number of public education and outreach programs during the 2016-2017 reporting period. A summary of these efforts is provided below.

- Identify and/or Create, Revise, and Distribute Educational Materials: The Permittees distributed a total of 3,829 educational materials, including brochures and fact sheets, to the general public.
- **Conduct Mixed Media Campaigns:** The Permittees conducted a total of five mixed media campaigns for the general public. These included store front ads located in the retail space under the Stockton Arena and billboards posted along three major roads. A radio message was also broadcast within the area.
- **Participate in Community-Wide Events:** The Permittees conducted a total of nine community-wide events with an estimated 10,265 total attendees.
- **Reach Out to School Age Children Outside of School:** The Permittees held a total of five events for school-age children, reaching an estimated 657 students. In addition, SAWS held 371 events at Stockton area schools, reaching an estimated 12,130 students.
- **Distribute Educational Material to Selected Businesses:** The Permittees distributed 24 educational materials to high-priority commercial businesses.

6. Proposed Modifications

As a part of the annual reporting process, the City and County have qualitatively evaluated the effectiveness of the stormwater program during the Permit term, as well as the experience that staff has had in implementing the program, to identify potential modifications.

At this time, no program modifications have been identified.

Appendix A Work Plan as submitted November 1, 2016

ID	Task Name	Q3	Q4	Q1	Q2
1	Section 1 - Program Management				
2	Program Coordination				
3	Review/revise SWMP as needed				
4	Co-permittees meet quarterly				
5	Participate in internal quarterly Stormwater Program Meetings				
6	Participate in statewide stormwater-related meetings, conferences, and				
0	stakeholder groups as needed				
7	Review/revise MOUs as necessary				
8	Establish, review, and revise cooperative agreements as needed				
9	Fiscal Analysis				
10	Review and revise the Fiscal Analysis reporting format as needed				
11	Legal Authority				
12	Review the legal authority as needed				

ID	Task Name	Q3	Q4	Q1	Q2
13	Section 2 - Illicit Discharges Program Element (ID)				
14	ID1 - Detection of Illicit Discharges and Illegal Connections				
15	Public Reporting				
16	Maintain and advertise Hotline				
17	Coordinate with other agencies and departments				
18	Field Crew Inspections				
19	Continue field observations for IDIC				
20	ID2 - Illegal Connection Identification and Elimination				
21	Investigate and eliminate illegal connections				
22	Coordinate with Planning and Land Development program				
23	Coordinate with Construction program				
24	ID3 - Investigation/Inspection and Follow Up				
25	Respond to illicit discharges				
26	Maintain contractual services for incident clean-up				
27	Maintain Illicit Discharges Database				
28	ID4 - Enforcement				
29	Implement progressive enforcement policy and procedures				
30	Track enforcement actions in Illicit Discharges Database				
31	ID5 - Training				
32	Conduct training				

ID	Task Name	Q3	Q4	Q1	Q2
33	Section 3 - Public Outreach (PO)				
34	PO1 - Public Participation				
35	Implement Storm Drain Marker Program				
36	Organize, support, and/or participate in stream cleanup events				
37	Promote Used Oil and Household Hazardous Waste Programs				
38	Coordinate with Household Hazardous Waste program for pesticide disposal				
39	PO2 - Hotline				
40	Maintain 24-hr hotline number				
41	Promote/publicize the 24-hr hotline				
42	PO3 - Public Outreach Implementation				
43	Update Website as needed				
44	Implement pet waste outreach program				
45	Track installation of pet waste bag dispensing stations				
46	Participate in community-wide events throughout the year				
47	Conduct mixed media campaigns				
48	Provide community relations				
49	Implement pesticide outreach efforts for staff, residents, retail stores, and PCOs				
50	PO4 - Public School Education				
51	Continue to identify opportunities to reach out to school age children				

ID	Task Name	Q3	Q4	Q1	Q2
52	Section 4 - Municipal Operations (MO)				
53	MO1 - Sanitary Sewer Maintenance & Overflow and Spill Response				
54	Implement the Sanitary Sewer Overflow Emergency Response Plan (SSOERP)				
55	Review the SSOERP and revise as changes occur				
56	MO2 - Construction Requirements for Municipal Capital Improvement Projects				
57	Review CIP designs to ensure specifications and notes are included				
58	Require submission of NOI for CIPs greater than or equal to one acre				
59	If a priority project, develop in conformance with the SWQCCP				
60	Improve interdepartamental communication to facilitate accurate recordkeeping and reporting of data				
61	MO3 - Pollution Prevention at City Facilities				
62	Assess facilities to determine if they require coverage under the General Industrial Permit				
63	Implement SWPPP/FPPP for Corporation Yard and other facilities as needed				
64	Review CIP projects for compliance with general stormwater requirements, including review for vehicle or equipment wash areas				
65	MO4 - Landscape and Pest Management				
66	Implement pesticide and fertilizer application protocol at park sites, landscaped medians, and golf courses				
67	Implement IPM program				
68	Maintain and expand internal inventory on pesticide use and track Parks Division reported pesticide use				
69	Implement Landscaping Standards				
70	MO5 - Storm Drain System Maintenance				
71	Implement storm drain system mapping				
72	Review/revise prioritization for catch basin cleaning as needed				
73	Maintain and annually update Catch Basin Database				
74	Implement catch basin maintenance program				
75	Implement pump station maintenance program				
76	Implement detention basin maintenance program				
77	Implement notification procedures for ID/IC and missing catch basin markers or illegible stencils				
78	Require large events and venues to address trash and debris removal, including containerization and street sweeping as appropriate				

ID	Task Name	Q3	Q4	Q1	Q2
79	MO6 - Street Cleaning and Maintenance				
80	Implement street sweeping program				
81	Review/revise prioritization of streets for street sweeping program as needed				
82	Implement green waste collection program				
83	Implement Maintenance Staff Guide Road Maintenance and Small Construction BMPs				
84	MO7 - Training				
85	Conduct training				
86	Section 5 - Industrial and Commercial Program Element (IC)				
87	IC1 - Facility Inventory				
88	Internal audit of database				
89	Maintain and annually update the inventory and database				
90	Map the industrial and commercial facilities on an annual basis				
91	Implement and track a self-certification program for carpet cleaners				
92	IC2 - Prioritization and Inspection				
93	Prioritization				
94	Prioritize facilities as necessary				
95	Inspections				
96	Review/revise industrial inspection checklists as needed				
97	Conduct inspections				
98	Conduct follow-up inspections as needed				
99	IC3 - BMP Implementation				
100	Review/revise BMP fact sheets for high priority facilities as needed				
101	Distribute BMP Fact Sheets				
102	Implement outreach efforts to carpet cleaners				
103	IC4 - Enforcement				
104	Implement progressive enforcement and referral policy and procedures				
105	Track enforcement actions in the industrial/commercial database				
106	Implement procedures for Regional Water Board based complaints				
107	Review and Revise Industrial General Permit referral policy as needed				
108	IC5 - Training				
109	Conduct training				

ID	Task Name	Q3	Q4	Q1	Q2
110	Section 6 - Construction (CO)				
111	CO1 - Municipal Code for Construction Sites				
112	CO2 - Plan Review and Approval Process				
113	Review grading and building permit applications for SWPPP requirements				
	Review erosion control plans				
114	Distribute the Plan & Permit Application Review Procedure handout				
115	CO3 - Construction Projects Inventory				
116	Maintain and update the Construction Project Database				
117	CO4 - Construction Outreach				
118	Distribute appropriate BMP fact sheets during inspections				
119	CO5 - Construction Site Inspections & BMP Implementation				
120	Inspect construction sites >=1 acre monthly				
121	CO6 - Enforcement				
122	Implement progressive enforcement policy				
123	Track enforcement actions using the construction database				
124	CO7 - Training				
125	Conduct training				

ID	Task Name	Q3	Q4	Q1	Q2
126	Section 7 - Planning and Land Development (LD)				
127	LD1 - Incorporation of Water Quality Protection Principles into City Procedures				
127	and Policies				
128	Revise General Plan as needed				
129	LD2 - New Development Standards				
130	Require priority projects to comply with the revised SWQCCP				
131	LD3 - Plan Review Sign-off				
132	Revise Post-Construction Plan Review Database as needed				
133	Use Post-Construction Plan Review Database				
134	Review project plans and grading plans for stormwater BMPs				
135	Track projects with post-construction treatment control BMPs				
136	Conduct inspections of completed priority projects to ensure that all approved				
150	control measures have been implemented and are being maintained				
137	LD4 - Maintenance Agreement and Transfer				
138	Require Stormwater Treatment Device Access and Maintenance Agreement				
139	Implement Post-Construction BMP Maintenance Oversight Protocols				
140	LD5 - Training				
141	Conduct training				
142	Section 8 - Monitoring and Reporting Program				
143	Water Quality Monitoring (waterbody varies annually)				
144	Water quality parameters as needed				
145	Sediment toxicity and sediment chemistry as needed				
146	Water column toxicity as needed				
147	Delta Regional Monitoring Program				
148	Section 9 - Program Implementation, Evaluation, and Reporting				
149	Program Implementation				
150	Update Work Plan as needed				
151	Annual Report				

This page intentionally left blank

Appendix B 2016-2017 Monitoring Results

This page intentionally left blank

					-	-							
		Date											Analysis
Event	Site Code	Sampled	Analyte	Method	Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Date
DW29	CR-39R	3/2/17	E. Coli	SM 9223B	=	5.2	-	1	MPN/100ml		FGL Env.	3/2/17	3/3/17
SE62	CR-46	1/18/17	E. Coli	SM 9223B	=	204.6	-	1	MPN/100ml		FGL Env.	1/18/17	1/19/17
SE63	CR-46	2/16/17	E. Coli	SM 9223B	=	6867	-	10	MPN/100ml		FGL Env.	2/16/17	2/17/17
SE64	CR-42	4/6/17	E. Coli	SM 9223B	=	980.4	-	1	MPN/100ml		FGL Env.	4/7/17	4/7/17
DW27	CR-46	8/24/16	E. Coli	SM 9223B	=	2	-	1	MPN/100ml		FGL Env.	8/24/16	8/25/16
DW27	CR-46R	8/24/16	E. Coli	SM 9223B	=	14.8	-	1	MPN/100ml		FGL Env.	8/24/16	8/25/16
DW27	CR-42	8/24/16	E. Coli	SM 9223B	=	387.3	-	1	MPN/100ml		FGL Env.	8/24/16	8/25/16
DW27	CR-41	8/24/16	E. Coli	SM 9223B	=	13.4	-	1	MPN/100ml		FGL Env.	8/24/16	8/25/16
DW27	CR-41R	8/24/16	E. Coli	SM 9223B	=	7.5	-	1	MPN/100ml		FGL Env.	8/24/16	8/25/16
DW27	CR-39	8/24/16	E. Coli	SM 9223B	=	4.1	-	1	MPN/100ml		FGL Env.	8/24/16	8/25/16
DW27	CR-39R	8/24/16	E. Coli	SM 9223B	=	3	-	1	MPN/100ml		FGL Env.	8/24/16	8/25/16
DW28	CR-46	12/5/16	E. Coli	SM 9223B	=	13.5	-	1	MPN/100ml		FGL Env.	12/5/16	12/6/16
DW28	CR-46R	12/5/16	E. Coli	SM 9223B	<	1	-	1	MPN/100ml	ND	FGL Env.	12/5/16	12/6/16
DW28	CR-42	12/5/16	E. Coli	SM 9223B	=	4.1	-	1	MPN/100ml		FGL Env.	12/5/16	12/6/16
DW28	CR-41	12/5/16	E. Coli	SM 9223B	=	1	-	1	MPN/100ml		FGL Env.	12/5/16	12/6/16
DW28	CR-41R	12/5/16	E. Coli	SM 9223B	<	1	-	1	MPN/100ml	ND	FGL Env.	12/5/16	12/6/16
DW28	CR-39	12/5/16	E. Coli	SM 9223B	<	1	-	1	MPN/100ml	ND	FGL Env.	12/5/16	12/6/16
DW28	CR-39R	12/5/16	E. Coli	SM 9223B	=	6.3	-	1	MPN/100ml		FGL Env.	12/5/16	12/6/16
DW29	CR-1R	3/2/17	E. Coli	SM 9223B	=	2	-	1	MPN/100ml		FGL Env.	3/2/17	3/3/17
DW29	CR-46	3/2/17	E. Coli	SM 9223B	=	45	-	1	MPN/100ml		FGL Env.	3/2/17	3/3/17
DW29	CR-46R	3/2/17	E. Coli	SM 9223B	=	4.1	-	1	MPN/100ml		FGL Env.	3/2/17	3/3/17
DW29	CR-42	3/2/17	E. Coli	SM 9223B	=	4.1	-	1	MPN/100ml		FGL Env.	3/2/17	3/3/17
DW29	CR-41	3/2/17	E. Coli	SM 9223B	=	2	-	1	MPN/100ml		FGL Env.	3/2/17	3/3/17
DW29	CR-41R	3/2/17	E. Coli	SM 9223B	=	6.3	-	1	MPN/100ml		FGL Env.	3/2/17	3/3/17
DW29	CR-39	3/2/17	E. Coli	SM 9223B	<	1	-	1	MPN/100ml	U, ND	FGL Env.	3/2/17	3/3/17
DW30	CR-1R	5/24/17	E. Coli	SM 9223B	=	63	-	10	MPN/100ml		FGL Env.	5/24/17	5/25/17
DW30	CR-46	5/24/17	E. Coli	SM 9223B	=	2046	-	10	MPN/100ml		FGL Env.	5/24/17	5/25/17
DW30	CR-46R	5/24/17	E. Coli	SM 9223B	=	97	-	1	MPN/100ml		FGL Env.	5/24/17	5/25/17
DW30	CR-42	5/24/17	E. Coli	SM 9223B	=	6867	-	10	MPN/100ml		FGL Env.	5/24/17	5/25/17
DW30	CR-41	5/24/17	E. Coli	SM 9223B	=	241	-	10	MPN/100ml		FGL Env.	5/24/17	5/25/17
DW30	CR-41R	5/24/17	E. Coli	SM 9223B	=	86	-	10	MPN/100ml		FGL Env.	5/24/17	5/25/17
DW30	CR-39	5/24/17	E. Coli	SM 9223B	=	10	-	10	MPN/100ml		FGL Env.	5/24/17	5/25/17

					-	•							
		Date											Analysis
Event	Site Code	Sampled	Analyte	Method	Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Date
DW30	CR-39R	5/24/17	E. Coli	SM 9223B	=	41	-	10	MPN/100ml		FGL Env.	5/24/17	5/25/17
SE61	CR-39	10/14/16	E. Coli	SM 9223B	=	209.8	-	1	MPN/100ml		FGL Env.	10/14/16	10/15/16
SE61	CR-39R	10/14/16	E. Coli	SM 9223B	=	16	-	1	MPN/100ml		FGL Env.	10/14/16	10/15/16
SE61	CR-41	10/14/16	E. Coli	SM 9223B	=	2419.6	-	1	MPN/100ml		FGL Env.	10/14/16	10/15/16
SE61	CR-41R	10/14/16	E. Coli	SM 9223B	=	80.5	-	1	MPN/100ml		FGL Env.	10/14/16	10/15/16
SE61	CR-42	10/14/16	E. Coli	SM 9223B	=	1203.3	-	1	MPN/100ml		FGL Env.	10/14/16	10/15/16
SE61	CR-46	10/14/16	E. Coli	SM 9223B	=	344.8	-	1	MPN/100ml		FGL Env.	10/14/16	10/15/16
SE61	CR-46R	10/14/16	E. Coli	SM 9223B	=	461.1	-	1	MPN/100ml		FGL Env.	10/14/16	10/15/16
SE62	CR-1R	1/18/17	E. Coli	SM 9223B	=	5.2	-	1	MPN/100ml		FGL Env.	1/18/17	1/19/17
SE62	CR-39	1/18/17	E. Coli	SM 9223B	=	39.9	-	1	MPN/100ml		FGL Env.	1/18/17	1/19/17
SE62	CR-39R	1/18/17	E. Coli	SM 9223B	=	17.1	-	1	MPN/100ml		FGL Env.	1/18/17	1/19/17
SE62	CR-41	1/18/17	E. Coli	SM 9223B	=	410.6	-	1	MPN/100ml		FGL Env.	1/18/17	1/19/17
SE62	CR-41R	1/18/17	E. Coli	SM 9223B	=	36.4	-	1	MPN/100ml		FGL Env.	1/18/17	1/19/17
SE62	CR-42	1/18/17	E. Coli	SM 9223B	=	206.4	-	1	MPN/100ml		FGL Env.	1/18/17	1/19/17
SE62	CR-46R	1/18/17	E. Coli	SM 9223B	=	14.8	-	1	MPN/100ml		FGL Env.	1/18/17	1/19/17
SE63	CR-1R	2/16/17	E. Coli	SM 9223B	=	52	-	10	MPN/100ml		FGL Env.	2/16/17	2/17/17
SE63	CR-39	2/16/17	E. Coli	SM 9223B	=	31	-	10	MPN/100ml		FGL Env.	2/16/17	2/17/17
SE63	CR-39R	2/16/17	E. Coli	SM 9223B	=	86	-	10	MPN/100ml		FGL Env.	2/16/17	2/17/17
SE63	CR-41	2/16/17	E. Coli	SM 9223B	=	512	-	10	MPN/100ml		FGL Env.	2/16/17	2/17/17
SE63	CR-41R	2/16/17	E. Coli	SM 9223B	=	110	-	10	MPN/100ml		FGL Env.	2/16/17	2/17/17
SE63	CR-42	2/16/17	E. Coli	SM 9223B	=	1782	-	10	MPN/100ml		FGL Env.	1/18/17	2/17/17
SE63	CR-46R	2/16/17	E. Coli	SM 9223B	=	52	-	10	MPN/100ml		FGL Env.	2/16/17	2/17/17
SE64	CR-1R	4/6/17	E. Coli	SM 9223B	<	1	-	1	MPN/100ml	ND	FGL Env.	4/7/17	4/7/17
SE64	CR-39	4/6/17	E. Coli	SM 9223B	=	51.2	-	1	MPN/100ml		FGL Env.	4/7/17	4/7/17
SE64	CR-39R	4/6/17	E. Coli	SM 9223B	=	8.6	-	1	MPN/100ml		FGL Env.	4/7/17	4/7/17
SE64	CR-41	4/6/17	E. Coli	SM 9223B	=	162.4	-	1	MPN/100ml		FGL Env.	4/7/17	4/7/17
SE64	CR-41R	4/6/17	E. Coli	SM 9223B	=	11	-	1	MPN/100ml		FGL Env.	4/7/17	4/7/17
SE64	CR-46	4/6/17	E. Coli	SM 9223B	=	142.1	-	1	MPN/100ml		FGL Env.	4/7/17	4/7/17
SE64	CR-46R	4/6/17	E. Coli	SM 9223B	=	193.5	-	1	MPN/100ml		FGL Env.	4/7/17	4/7/17
DW29	CR-1R	3/2/17	Fecal Coliform	SM 9221B	=	20	-	18	MPN/100ml		FGL Env.	3/2/17	3/5/17
DW29	CR-46	3/2/17	Fecal Coliform	SM 9221B	=	1300	-	18	MPN/100ml		FGL Env.	3/2/17	3/5/17
DW29	CR-39R	3/2/17	Fecal Coliform	SM 9221B	=	78	-	18	MPN/100ml		FGL Env.	3/2/17	3/4/17

Event													
Event		Date											Analysis
	Site Code	Sampled	Analyte	Method	Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Date
SE62	CR-46	1/18/17	Fecal Coliform	SM 9221B	=	2300	-	180	MPN/100ml		FGL Env.	1/18/17	1/21/17
SE63	CR-46	2/16/17	Fecal Coliform	SM 9221B	=	23000	-	1800	MPN/100ml		FGL Env.	2/16/17	2/19/17
SE64	CR-42	4/6/17	Fecal Coliform	SM 9221B	=	11000	-	180	MPN/100ml		FGL Env.	4/7/17	4/9/17
DW27	CR-46	8/24/16	Fecal Coliform	SM 9221B	=	1300	-	18	MPN/100ml		FGL Env.	8/24/16	8/27/16
DW27	CR-46R	8/24/16	Fecal Coliform	SM 9221B	=	220	-	18	MPN/100ml		FGL Env.	8/24/16	8/28/16
DW27	CR-42	8/24/16	Fecal Coliform	SM 9221B	=	7900	-	180	MPN/100ml		FGL Env.	8/24/16	8/28/16
DW27	CR-41	8/24/16	Fecal Coliform	SM 9221B	=	330	-	18	MPN/100ml		FGL Env.	8/24/16	8/28/16
DW27	CR-41R	8/24/16	Fecal Coliform	SM 9221B	=	230	-	18	MPN/100ml		FGL Env.	8/24/16	8/28/16
DW27	CR-39	8/24/16	Fecal Coliform	SM 9221B	=	700	-	18	MPN/100ml		FGL Env.	8/24/16	8/28/16
DW27	CR-39R	8/24/16	Fecal Coliform	SM 9221B	=	490	-	18	MPN/100ml		FGL Env.	8/24/16	8/28/16
DW28	CR-46	12/5/16	Fecal Coliform	SM 9221B	=	45	-	18	MPN/100ml		FGL Env.	12/5/16	12/8/16
DW28	CR-46R	12/5/16	Fecal Coliform	SM 9221B	=	45	-	18	MPN/100ml		FGL Env.	12/5/16	12/8/16
DW28	CR-42	12/5/16	Fecal Coliform	SM 9221B	=	78	-	18	MPN/100ml		FGL Env.	12/5/16	12/7/16
DW28	CR-41	12/5/16	Fecal Coliform	SM 9221B	=	45	-	18	MPN/100ml		FGL Env.	12/5/16	12/8/16
DW28	CR-41R	12/5/16	Fecal Coliform	SM 9221B	=	20	-	18	MPN/100ml		FGL Env.	12/5/16	12/7/16
DW28	CR-39	12/5/16	Fecal Coliform	SM 9221B	<	18	-	18	MPN/100ml	ND	FGL Env.	12/5/16	12/8/16
DW28	CR-39R	12/5/16	Fecal Coliform	SM 9221B	=	20	-	18	MPN/100ml		FGL Env.	12/5/16	12/9/16
DW29	CR-46R	3/2/17	Fecal Coliform	SM 9221B	=	45	-	18	MPN/100ml		FGL Env.	3/2/17	3/5/17
DW29	CR-42	3/2/17	Fecal Coliform	SM 9221B	=	230	-	18	MPN/100ml		FGL Env.	3/2/17	3/5/17
DW29	CR-41	3/2/17	Fecal Coliform	SM 9221B	=	68	-	18	MPN/100ml		FGL Env.	3/2/17	3/5/17
DW29	CR-41R	3/2/17	Fecal Coliform	SM 9221B	=	20	-	18	MPN/100ml		FGL Env.	3/2/17	3/5/17
DW29	CR-39	3/2/17	Fecal Coliform	SM 9221B	<	18	-	18	MPN/100ml	U, ND	FGL Env.	3/2/17	3/5/17
DW30	CR-1R	5/24/17	Fecal Coliform	SM 9221B	=	45	-	18	MPN/100ml		FGL Env.	5/24/17	5/27/17
DW30	CR-46	5/24/17	Fecal Coliform	SM 9221B	=	7900	-	180	MPN/100ml		FGL Env.	5/24/17	5/27/17
DW30	CR-46R	5/24/17	Fecal Coliform	SM 9221B	=	700	-	18	MPN/100ml		FGL Env.	5/24/17	5/28/17
DW30	CR-42	5/24/17	Fecal Coliform	SM 9221B	=	7000	-	180	MPN/100ml		FGL Env.	5/24/17	5/27/17
DW30	CR-41	5/24/17	Fecal Coliform	SM 9221B	=	310	-	18	MPN/100ml		FGL Env.	5/24/17	5/28/17
DW30	CR-41R	5/24/17	Fecal Coliform	SM 9221B	=	78	-	18	MPN/100ml		FGL Env.	5/24/17	5/27/17
DW30	CR-39	5/24/17	Fecal Coliform	SM 9221B	<	18	-	18	MPN/100ml		FGL Env.	5/24/17	5/27/17
DW30	CR-39R	5/24/17	Fecal Coliform	SM 9221B	=	170	-	18	MPN/100ml		FGL Env.	5/24/17	5/27/17
SE61	CR-39	10/14/16	Fecal Coliform	SM 9221B	=	13000	-	180	MPN/100ml		FGL Env.	10/14/16	10/17/16
SE61	CR-39R	10/14/16	Fecal Coliform	SM 9221B	=	700	-	18	MPN/100ml		FGL Env.	10/14/16	10/17/16

		Date											Analysis
Event	Site Code	Sampled	Analyte	Method	Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Date
SE61	CR-41	10/14/16	Fecal Coliform	SM 9221B	=	79000	-	1800	MPN/100ml		FGL Env.	10/14/16	10/16/16
SE61	CR-41R	10/14/16	Fecal Coliform	SM 9221B	=	2300	-	180	MPN/100ml		FGL Env.	10/14/16	10/17/16
SE61	CR-42	10/14/16	Fecal Coliform	SM 9221B	=	49000	-	1800	MPN/100ml		FGL Env.	10/14/16	10/17/16
SE61	CR-46	10/14/16	Fecal Coliform	SM 9221B	=	33000	-	1800	MPN/100ml		FGL Env.	10/14/16	10/16/16
SE61	CR-46R	10/14/16	Fecal Coliform	SM 9221B	=	14000	-	180	MPN/100ml		FGL Env.	10/14/16	10/17/16
SE62	CR-1R	1/18/17	Fecal Coliform	SM 9221B	=	78	-	18	MPN/100ml		FGL Env.	1/18/17	1/21/17
SE62	CR-39	1/18/17	Fecal Coliform	SM 9221B	=	460	-	18	MPN/100ml		FGL Env.	1/18/17	1/21/17
SE62	CR-39R	1/18/17	Fecal Coliform	SM 9221B	=	330	-	18	MPN/100ml		FGL Env.	1/18/17	1/21/17
SE62	CR-41	1/18/17	Fecal Coliform	SM 9221B	=	3300	-	180	MPN/100ml		FGL Env.	1/18/17	1/21/17
SE62	CR-41R	1/18/17	Fecal Coliform	SM 9221B	=	490	-	18	MPN/100ml		FGL Env.	1/18/17	1/21/17
SE62	CR-42	1/18/17	Fecal Coliform	SM 9221B	=	3300	-	180	MPN/100ml		FGL Env.	1/18/17	1/21/17
SE62	CR-46R	1/18/17	Fecal Coliform	SM 9221B	=	490	-	18	MPN/100ml		FGL Env.	1/18/17	1/21/17
SE63	CR-1R	2/16/17	Fecal Coliform	SM 9221B	=	220	-	18	MPN/100ml		FGL Env.	2/16/17	2/19/17
SE63	CR-39	2/16/17	Fecal Coliform	SM 9221B	=	40	-	18	MPN/100ml		FGL Env.	2/16/17	2/19/17
SE63	CR-39R	2/16/17	Fecal Coliform	SM 9221B	=	210	-	18	MPN/100ml		FGL Env.	2/16/17	2/19/17
SE63	CR-41	2/16/17	Fecal Coliform	SM 9221B	=	1100	-	18	MPN/100ml		FGL Env.	2/16/17	2/19/17
SE63	CR-41R	2/16/17	Fecal Coliform	SM 9221B	=	140	-	18	MPN/100ml		FGL Env.	2/16/17	2/19/17
SE63	CR-42	2/16/17	Fecal Coliform	SM 9221B	=	7900	-	180	MPN/100ml		FGL Env.	2/16/17	2/19/17
SE63	CR-46R	2/16/17	Fecal Coliform	SM 9221B	=	45	-	18	MPN/100ml		FGL Env.	2/16/17	2/19/17
SE64	CR-1R	4/6/17	Fecal Coliform	SM 9221B	=	78	-	18	MPN/100ml		FGL Env.	4/6/17	4/8/17
SE64	CR-39	4/6/17	Fecal Coliform	SM 9221B	=	1300	-	18	MPN/100ml		FGL Env.	4/7/17	4/9/17
SE64	CR-39R	4/6/17	Fecal Coliform	SM 9221B	=	93	-	18	MPN/100ml		FGL Env.	4/7/17	4/9/17
SE64	CR-41	4/6/17	Fecal Coliform	SM 9221B	=	3300	-	180	MPN/100ml		FGL Env.	4/7/17	4/9/17
SE64	CR-41R	4/6/17	Fecal Coliform	SM 9221B	=	490	-	18	MPN/100ml		FGL Env.	4/7/17	4/9/17
SE64	CR-46	4/6/17	Fecal Coliform	SM 9221B	=	3300	-	180	MPN/100ml		FGL Env.	4/7/17	4/9/17
SE64	CR-46R	4/6/17	Fecal Coliform	SM 9221B	=	7000	-	180	MPN/100ml		FGL Env.	4/7/17	4/9/17
DW29	CR-1R	3/2/17	Total Coliform	SM 9221B	=	1700	-	18	MPN/100ml		FGL Env.	3/2/17	3/5/17
DW29	CR-1R	3/2/17	Total Coliform	SM 9223B	=	214.3	-	1	MPN/100ml		FGL Env.	3/2/17	3/3/17
DW29	CR-46	3/2/17	Total Coliform	SM 9221B	=	7900	-	180	MPN/100ml		FGL Env.	3/2/17	3/5/17
DW29	CR-46	3/2/17	Total Coliform	SM 9223B	=	178.2	-	1	MPN/100ml		FGL Env.	3/2/17	3/3/17
DW29	CR-39R	3/2/17	Total Coliform	SM 9221B	=	4900	-	180	MPN/100ml		FGL Env.	3/2/17	3/4/17
DW29	CR-39R	3/2/17	Total Coliform	SM 9223B	=	275.5	-	1	MPN/100ml		FGL Env.	3/2/17	3/3/17

					-	•							
		Date											Analysis
Event	Site Code	Sampled	Analyte	Method	Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Date
SE62	CR-46	1/18/17	Total Coliform	SM 9221B	=	79000	-	1800	MPN/100ml		FGL Env.	1/18/17	1/21/17
SE62	CR-46	1/18/17	Total Coliform	SM 9223B	>	2419.6	-	1	MPN/100ml		FGL Env.	1/18/17	1/19/17
SE63	CR-46	2/16/17	Total Coliform	SM 9221B	=	130000	-	1800	MPN/100ml		FGL Env.	2/16/17	2/19/17
SE63	CR-46	2/16/17	Total Coliform	SM 9223B	>	24196	-	10	MPN/100ml		FGL Env.	2/16/17	2/17/17
SE64	CR-42	4/6/17	Total Coliform	SM 9221B	=	230000	-	18000	MPN/100ml		FGL Env.	4/7/17	4/9/17
SE64	CR-42	4/6/17	Total Coliform	SM 9223B	>	2419.6	-	1	MPN/100ml		FGL Env.	4/7/17	4/7/17
DW27	CR-46	8/24/16	Total Coliform	SM 9221B	=	12000	-	180	MPN/100ml		FGL Env.	8/24/16	8/27/16
DW27	CR-46	8/24/16	Total Coliform	SM 9223B	=	727	-	1	MPN/100ml		FGL Env.	8/24/16	8/25/16
DW27	CR-46R	8/24/16	Total Coliform	SM 9221B	=	11000	-	180	MPN/100ml		FGL Env.	8/24/16	8/28/16
DW27	CR-46R	8/24/16	Total Coliform	SM 9223B	=	770.1	-	1	MPN/100ml		FGL Env.	8/24/16	8/25/16
DW27	CR-42	8/24/16	Total Coliform	SM 9221B	=	49000	-	1800	MPN/100ml		FGL Env.	8/24/16	8/28/16
DW27	CR-42	8/24/16	Total Coliform	SM 9223B	=	2419.6	-	1	MPN/100ml		FGL Env.	8/24/16	8/25/16
DW27	CR-41	8/24/16	Total Coliform	SM 9221B	=	22000	-	180	MPN/100ml		FGL Env.	8/24/16	8/28/16
DW27	CR-41	8/24/16	Total Coliform	SM 9223B	>	2419.6	-	1	MPN/100ml		FGL Env.	8/24/16	8/25/16
DW27	CR-41R	8/24/16	Total Coliform	SM 9221B	=	7900	-	180	MPN/100ml		FGL Env.	8/24/16	8/28/16
DW27	CR-41R	8/24/16	Total Coliform	SM 9223B	=	1203.3	-	1	MPN/100ml		FGL Env.	8/24/16	8/25/16
DW27	CR-39	8/24/16	Total Coliform	SM 9221B	=	23000	-	1800	MPN/100ml		FGL Env.	8/24/16	8/28/16
DW27	CR-39	8/24/16	Total Coliform	SM 9223B	=	1986.3	-	1	MPN/100ml		FGL Env.	8/24/16	8/25/16
DW27	CR-39R	8/24/16	Total Coliform	SM 9221B	=	33000	-	1800	MPN/100ml		FGL Env.	8/24/16	8/28/16
DW27	CR-39R	8/24/16	Total Coliform	SM 9223B	=	1413.6	-	1	MPN/100ml		FGL Env.	8/24/16	8/25/16
DW28	CR-46	12/5/16	Total Coliform	SM 9221B	=	4900	-	180	MPN/100ml		FGL Env.	12/5/16	12/8/16
DW28	CR-46	12/5/16	Total Coliform	SM 9223B	=	140.1	-	1	MPN/100ml		FGL Env.	12/5/16	12/6/16
DW28	CR-46R	12/5/16	Total Coliform	SM 9221B	=	170	-	18	MPN/100ml		FGL Env.	12/5/16	12/8/16
DW28	CR-46R	12/5/16	Total Coliform	SM 9223B	=	62.2	-	1	MPN/100ml		FGL Env.	12/5/16	12/6/16
DW28	CR-42	12/5/16	Total Coliform	SM 9221B	=	230	-	18	MPN/100ml		FGL Env.	12/5/16	12/7/16
DW28	CR-42	12/5/16	Total Coliform	SM 9223B	=	579.4	-	1	MPN/100ml		FGL Env.	12/5/16	12/6/16
DW28	CR-41	12/5/16	Total Coliform	SM 9221B	=	1300	-	18	MPN/100ml		FGL Env.	12/5/16	12/8/16
DW28	CR-41	12/5/16	Total Coliform	SM 9223B	=	344.8	-	1	MPN/100ml		FGL Env.	12/5/16	12/6/16
DW28	CR-41R	12/5/16	Total Coliform	SM 9221B	=	230	-	18	MPN/100ml		FGL Env.	12/5/16	12/7/16
DW28	CR-41R	12/5/16	Total Coliform	SM 9223B	=	131.4	-	1	MPN/100ml		FGL Env.	12/5/16	12/6/16
DW28	CR-39	12/5/16	Total Coliform	SM 9221B	=	1100	-	18	MPN/100ml		FGL Env.	12/5/16	12/8/16
DW28	CR-39	12/5/16	Total Coliform	SM 9223B	=	517.2	-	1	MPN/100ml		FGL Env.	12/5/16	12/6/16
								•					

Event Sile Code Sampled Analyte Method O Result MDL RLML Units Flag Lab Name Prep Date Data DV28 CR 39R 125/76 Total Collform SM 92218 = 330 - 18 MPN100m FGL Erv. 125/16 120 DV29 CR 46R 3/217 Total Collform SM 92218 = 1300 - 18 MPN100m FGL Erv. 3/217 3/3 DV29 CR 44R 3/217 Total Collform SM 92218 = 248.9 - 1 MPN100m FGL Erv. 3/217 3/3 DV29 CR 41 3/217 Total Collform SM 92218 = 198.3 - 18 MPN100m FGL Erv. 3/217 3/3 DV29 CR 41R 3/217 Total Collform SM 92218 = 191.8 MPN100m FGL Erv. 3/217 3/3 DV29 CR 41R 3/217 Total Collform SM 92						U	0							
DN28 CR.39R 12/5/16 Total Collform SM 9221B = 330 18 MPN100ml FGL Env. 12/5/16 12/5/16 DW29 CR.44R 3/2/17 Total Collform SM 9223B = 73.3 1 MPN100ml FGL Env. 12/5/16 12/6 DW29 CR.44R 3/2/17 Total Collform SM 9221B = 7000 180 MPN100ml FGL Env. 3/2/17 3/3 DW29 CR.44R 3/2/17 Total Collform SM 9221B = 7000 180 MPN100ml FGL Env. 3/2/17 3/3 DW29 CR.41 3/2/17 Total Collform SM 9221B = 700 18 MPN100ml FGL Env. 3/2/17 3/3 DW29 CR.41 3/2/17 Total Collform SM 9223B = 488.4 1 MPN100ml FGL Env. 3/2/17 3/3 DW29 CR.41R 3/2/17 Total Collform SM 9221B = 490 18			Date											Analysis
DN28 CR-39R 12/5/16 Total Collform SM 9223B = 73.3 - 1 MPN/100ml FGL Env. 12/5/16 12/6 DN29 CR-40R 3/2/17 Total Collform SM 9223B = 13000 - 180 MPN/100ml FGL Env. 3/2/17 3/3 DN29 CR-40R 3/2/17 Total Collform SM 9223B = 7000 - 180 MPN/100ml FGL Env. 3/2/17 3/3 DN29 CR-41 3/2/17 Total Collform SM 9221B = 7000 - 18 MPN/100ml FGL Env. 3/2/17 3/3 DN29 CR-411 3/2/17 Total Collform SM 9221B = 1700 - 18 MPN/100ml FGL Env. 3/2/17 3/3 DN29 CR-411 3/2/17 Total Collform SM 9221B = 488.4 - 1 MPN/100ml FGL Env. 3/2/17 3/3 DN29 CR-39 3/2/17	Event	Site Code	Sampled	Analyte	Method	Q	Result	MDL	RL/ML	Units	Flag		Prep Date	Date
DW29 CR.46R 3/2/17 Total Collform SM 9218 = 13000 - 180 MPN/100ml FGL Env. 3/2/17 3/5/ DW29 CR.46R 3/2/17 Total Collform SM 92238 = 248.9 - 1 MPN/100ml FGL Env. 3/2/17 3/3/1 DW29 CR.42 3/2/17 Total Collform SM 92238 = 198.6.3 - 1 MPN/100ml FGL Env. 3/2/17 3/3/17 3/3/3 DW29 CR.41 3/2/17 Total Collform SM 92238 = 198.6 - 1 MPN/100ml FGL Env. 3/2/17 3/3/3 DW29 CR.411 3/2/17 Total Collform SM 92238 = 488.4 - 1 MPN/100ml FGL Env. 3/2/17 3/3/3 DW29 CR.418 3/2/17 Total Collform SM 92238 = 488.4 - 1 MPN/100ml FGL Env. 3/2/17 3/3/3 DW30 CR-18	DW28	CR-39R	12/5/16	Total Coliform	SM 9221B	=	330	-	18	MPN/100ml			12/5/16	12/9/16
DW29 CR-46R 3/2/17 Total Collform SM 9223B = 248.9 - 1 MPN/100ml FGL Env. 3/2/17 3/3 DW29 CR-42 3/2/17 Total Collform SM 9221B = 7000 - 180 MPN/100ml FGL Env. 3/2/17 3/3 DW29 CR-41 3/2/17 Total Collform SM 9223B = 1986.3 - 1 MPN/100ml FGL Env. 3/2/17 3/3 DW29 CR-41 3/2/17 Total Collform SM 9223B = 1918. 1 MPN/100ml FGL Env. 3/2/17 3/3 DW29 CR-41 3/2/17 Total Collform SM 9223B = 488.4 - 1 MPN/100ml FGL Env. 3/2/17 3/3 DW29 CR-18 3/2/17 Total Collform SM 9223B = 2300 - 18 MPN/100ml FGL Env. 3/2/17 3/3 DW29 CR-18 5/2/17 Total Collform	DW28	CR-39R	12/5/16	Total Coliform	SM 9223B	=	73.3	-	1	MPN/100ml			12/5/16	12/6/16
DW29 CR-42 3/2/17 Total Collform SM 9221B = 7000 - 180 MPN/100ml FGL Env. 3/2/17 3/5/ DW29 CR-42 3/2/17 Total Collform SM 9221B = 196.3 - 1 MPN/100ml FGL Env. 3/2/17 3/3/3 DW29 CR-41 3/2/17 Total Collform SM 9221B = 191.8 - 1 MPN/100ml FGL Env. 3/2/17 3/3/3 DW29 CR-41 3/2/17 Total Collform SM 9221B = 191.8 - 1 MPN/100ml FGL Env. 3/2/17 3/3/3 DW29 CR-31 3/2/17 Total Collform SM 9221B = 490 - 18 MPN/100ml FGL Env. 3/2/17 3/3/3 DW29 CR-39 3/2/17 Total Collform SM 9221B = 2300 - 180 MPN/100ml FGL Env. 5/2/4/17 5/2 DW30 CR-46 5/2/4/17	DW29	CR-46R	3/2/17	Total Coliform	SM 9221B	=	13000	-	180	MPN/100ml			3/2/17	3/5/17
DW29 CR.42 3/2/17 Total Coliform SM 9223B = 1986.3 1 MPN/100ml FGL Env. 3/2/17 3/3 DW29 CR.41 3/2/17 Total Coliform SM 9223B = 191.8 1 MPN/100ml FGL Env. 3/2/17 3/3 DW29 CR.41 3/2/17 Total Coliform SM 9223B = 191.8 1 MPN/100ml FGL Env. 3/2/17 3/5 DW29 CR.41R 3/2/17 Total Coliform SM 9223B = 488.4 - 1 MPN/100ml FGL Env. 3/2/17 3/3 DW29 CR.41R 3/2/17 Total Coliform SM 9223B = 235.9 1 MPN/100ml FGL Env. 3/2/17 3/3 DW30 CR.41 5/2/4/17 Total Coliform SM 9223B = 280.0 1.80 MPN/100ml FGL Env. 5/2/17 5/2 DW30 CR.46 5/2/4/17 Total Coliform SM 9223B = 4890.0 1.80	DW29	CR-46R	3/2/17	Total Coliform	SM 9223B	=	248.9	-	1	MPN/100ml			3/2/17	3/3/17
DW29 CR-41 3/2/17 Total Collform SM 9221B = 790 - 18 MPN/100ml FGL Env. 3/2/17 3/5/17 3/5/17 3/5/17 3/5/17 3/5/17 3/5/17 3/5/17 3/5/17 3/5/17 3/5/17 3/2/17	DW29	CR-42	3/2/17	Total Coliform	SM 9221B	=	7000	-	180	MPN/100ml		FGL Env.	3/2/17	3/5/17
DW29 CR-41 3/2/17 Total Coliform SM 9223B = 191.8 - 1 MPN/100ml FGL Env. 3/2/17 3/3/3/17 3/3/3 3/3/17 <td>DW29</td> <td>CR-42</td> <td>3/2/17</td> <td>Total Coliform</td> <td>SM 9223B</td> <td>=</td> <td>1986.3</td> <td>-</td> <td>1</td> <td>MPN/100ml</td> <td></td> <td>FGL Env.</td> <td>3/2/17</td> <td>3/3/17</td>	DW29	CR-42	3/2/17	Total Coliform	SM 9223B	=	1986.3	-	1	MPN/100ml		FGL Env.	3/2/17	3/3/17
DW29 CR-41R 3/2/17 Total Collform SM 92218 = 1700 - 18 MPN/100ml FGL Env. 3/2/17 3/2/17 3/2/17 3/2/17 3/2/17 3/2/17 3/2/17 3/2/17 3/2/17 3/2/17 3/2/17 3/2/17 3/2/17 Total Collform SM 92218 = 488.4 - 1 MPN/100ml FGL Env. 3/2/17 3/2/17 3/2/17 3/2/17 Total Collform SM 92218 = 2300 - 18 MPN/100ml FGL Env. 3/2/17 5/2/17	DW29	CR-41	3/2/17	Total Coliform	SM 9221B	=	790	-	18	MPN/100ml		FGL Env.	3/2/17	3/5/17
DW29 CR-41R 3/2/17 Total Coliform SM 9223B = 488.4 - 1 MPN/100ml FGL Env. 3/2/17 3/3/17 3/3/17 3/3/17 3/3/17 3/3/17 3/3/17 Total Coliform SM 9221B = 490 - 18 MPN/100ml FGL Env. 3/2/17 3/3/17 DW30 CR-39 3/2/17 Total Coliform SM 9221B = 230.0 - 1.0 MPN/100ml FGL Env. 3/2/17 5/2/4/17 <td>DW29</td> <td>CR-41</td> <td>3/2/17</td> <td>Total Coliform</td> <td>SM 9223B</td> <td>=</td> <td>191.8</td> <td>-</td> <td>1</td> <td>MPN/100ml</td> <td></td> <td>FGL Env.</td> <td>3/2/17</td> <td>3/3/17</td>	DW29	CR-41	3/2/17	Total Coliform	SM 9223B	=	191.8	-	1	MPN/100ml		FGL Env.	3/2/17	3/3/17
DW29 CR-39 3/2/17 Total Coliform SM 9221B = 490 - 18 MPN/100ml FGL Env. 3/2/17 3/5/17 3/2/17 3/5/17 3/5/17 3/5/17 3/5/17 3/5/17 3/2/17 3/5/17 3/5/17 3/2/17	DW29	CR-41R	3/2/17	Total Coliform	SM 9221B	=	1700	-	18	MPN/100ml		FGL Env.	3/2/17	3/5/17
DW29 CR-39 3/2/17 Total Collform SM 9223B = 235.9 - 1 MPN/100ml FGL Env. 3/2/17 3/3/ DW30 CR-1R 5/24/17 Total Collform SM 9221B = 2300 - 180 MPN/100ml FGL Env. 5/24/17 <td>DW29</td> <td>CR-41R</td> <td>3/2/17</td> <td>Total Coliform</td> <td>SM 9223B</td> <td>=</td> <td>488.4</td> <td>-</td> <td>1</td> <td>MPN/100ml</td> <td></td> <td>FGL Env.</td> <td>3/2/17</td> <td>3/3/17</td>	DW29	CR-41R	3/2/17	Total Coliform	SM 9223B	=	488.4	-	1	MPN/100ml		FGL Env.	3/2/17	3/3/17
DW30 CR-1R 5/24/17 Total Coliform SM 9221B = 2300 - 180 MPN/100ml FGL Env. 5/24/17 <td>DW29</td> <td>CR-39</td> <td>3/2/17</td> <td>Total Coliform</td> <td>SM 9221B</td> <td>=</td> <td>490</td> <td>-</td> <td>18</td> <td>MPN/100ml</td> <td></td> <td>FGL Env.</td> <td>3/2/17</td> <td>3/5/17</td>	DW29	CR-39	3/2/17	Total Coliform	SM 9221B	=	490	-	18	MPN/100ml		FGL Env.	3/2/17	3/5/17
DW30 CR-1R 5/24/17 Total Collform SM 9223B = 19863 - 10 MPN/100ml FGL Env. 5/24/17 <td>DW29</td> <td>CR-39</td> <td>3/2/17</td> <td>Total Coliform</td> <td>SM 9223B</td> <td>=</td> <td>235.9</td> <td>-</td> <td>1</td> <td>MPN/100ml</td> <td></td> <td>FGL Env.</td> <td>3/2/17</td> <td>3/3/17</td>	DW29	CR-39	3/2/17	Total Coliform	SM 9223B	=	235.9	-	1	MPN/100ml		FGL Env.	3/2/17	3/3/17
DW30 CR-46 5/24/17 Total Coliform SM 9221B = 13000 - 180 MPN/100ml FGL Env. 5/24/17 5/27 DW30 CR-46 5/24/17 Total Coliform SM 9223B = 4884 - 10 MPN/100ml FGL Env. 5/24/17 5/25 DW30 CR-46R 5/24/17 Total Coliform SM 9221B = 4900 - 180 MPN/100ml FGL Env. 5/24/17 5/24	DW30	CR-1R	5/24/17	Total Coliform	SM 9221B	=	2300	-	180	MPN/100ml		FGL Env.	5/24/17	5/27/17
DW30 CR-46 5/24/17 Total Coliform SM 9223B = 4884 - 10 MPN/100ml FGL Env. 5/24/17	DW30	CR-1R	5/24/17	Total Coliform	SM 9223B	=	19863	-	10	MPN/100ml		FGL Env.	5/24/17	5/25/17
DW30 CR-46R 5/24/17 Total Coliform SM 9221B = 4900 - 180 MPN/100ml FGL Env. 5/24/17 5/28/17 DW30 CR-46R 5/24/17 Total Coliform SM 9223B = 9208 - 1 MPN/100ml FGL Env. 5/24/17 5/24/17 5/24/17 5/24/17 5/24/17 Total Coliform SM 9221B = 79000 - 180 MPN/100ml FGL Env. 5/24/17 5/24/17 5/24/17 5/24/17 5/24 5/24/17 Total Coliform SM 9223B > 24196 - 10 MPN/100ml FGL Env. 5/24/17 <t< td=""><td>DW30</td><td>CR-46</td><td>5/24/17</td><td>Total Coliform</td><td>SM 9221B</td><td>=</td><td>13000</td><td>-</td><td>180</td><td>MPN/100ml</td><td></td><td>FGL Env.</td><td>5/24/17</td><td>5/27/17</td></t<>	DW30	CR-46	5/24/17	Total Coliform	SM 9221B	=	13000	-	180	MPN/100ml		FGL Env.	5/24/17	5/27/17
DW30 CR-46R 5/24/17 Total Coliform SM 9223B = 9208 - 1 MPN/100ml FGL Env. 5/24/17 5/24/17 5/24/17 5/24/17 Total Coliform SM 9221B = 79000 - 1800 MPN/100ml FGL Env. 5/24/17 5/24/17 5/24/17 5/24/17 Total Coliform SM 9223B > 24196 - 10 MPN/100ml FGL Env. 5/24/17 5/24/17 5/24/17 5/24/17 5/24/17 Total Coliform SM 9223B = 24196 - 10 MPN/100ml FGL Env. 5/24/17 </td <td>DW30</td> <td>CR-46</td> <td>5/24/17</td> <td>Total Coliform</td> <td>SM 9223B</td> <td>=</td> <td>4884</td> <td>-</td> <td>10</td> <td>MPN/100ml</td> <td></td> <td>FGL Env.</td> <td>5/24/17</td> <td>5/25/17</td>	DW30	CR-46	5/24/17	Total Coliform	SM 9223B	=	4884	-	10	MPN/100ml		FGL Env.	5/24/17	5/25/17
DW30 CR-42 5/24/17 Total Coliform SM 9221B = 79000 - 1800 MPN/100ml FGL Env. 5/24/17 </td <td>DW30</td> <td>CR-46R</td> <td>5/24/17</td> <td>Total Coliform</td> <td>SM 9221B</td> <td>=</td> <td>4900</td> <td>-</td> <td>180</td> <td>MPN/100ml</td> <td></td> <td>FGL Env.</td> <td>5/24/17</td> <td>5/28/17</td>	DW30	CR-46R	5/24/17	Total Coliform	SM 9221B	=	4900	-	180	MPN/100ml		FGL Env.	5/24/17	5/28/17
DW30 CR-42 5/24/17 Total Coliform SM 9223B > 24196 - 10 MPN/100ml FGL Env. 5/24/17 5/24/17 5/24/17 5/24 DW30 CR-41 5/24/17 Total Coliform SM 9221B = 2800 - 18 MPN/100ml FGL Env. 5/24/17 5/24 DW30 CR-41 5/24/17 Total Coliform SM 9223B = 24196 - 10 MPN/100ml FGL Env. 5/24/17 5/25 DW30 CR-41 5/24/17 Total Coliform SM 9223B = 24196 - 10 MPN/100ml FGL Env. 5/24/17 5/24/17 5/24 DW30 CR-41R 5/24/17 Total Coliform SM 9223B = 9804 - 10 MPN/100ml FGL Env. 5/24/17 5/24/17 5/24 5/24/17 5/24 5/24/17 5/24 5/24/17 5/25 DW30 CR-39 5/24/17 Total Coliform SM 9223B = 3500 - 18 MPN/100ml FGL Env. 5/24/17 5/24 <td< td=""><td>DW30</td><td>CR-46R</td><td>5/24/17</td><td>Total Coliform</td><td>SM 9223B</td><td>=</td><td>9208</td><td>-</td><td>1</td><td>MPN/100ml</td><td></td><td></td><td>5/24/17</td><td>5/25/17</td></td<>	DW30	CR-46R	5/24/17	Total Coliform	SM 9223B	=	9208	-	1	MPN/100ml			5/24/17	5/25/17
DW30 CR-41 5/24/17 Total Coliform SM 9221B = 2800 - 18 MPN/100ml FGL Env. 5/24/17 5/24/17 5/28 DW30 CR-41 5/24/17 Total Coliform SM 9223B = 24196 - 10 MPN/100ml FGL Env. 5/24/17 5/24/17 5/24 DW30 CR-41R 5/24/17 Total Coliform SM 9221B = 7900 - 180 MPN/100ml FGL Env. 5/24/17 5/24/17 5/24 DW30 CR-41R 5/24/17 Total Coliform SM 9223B = 9804 - 10 MPN/100ml FGL Env. 5/24/17 5/24 DW30 CR-39 5/24/17 Total Coliform SM 9223B = 3500 - 18 MPN/100ml FGL Env. 5/24/17 5/24/17 5/24 DW30 CR-39 5/24/17 Total Coliform SM 9223B = 5794 - 10 MPN/100ml FGL Env. 5/24/17 5/24/17 5/24 DW30 CR-39R 5/24/17 Total Coliform	DW30	CR-42	5/24/17	Total Coliform	SM 9221B	=	79000	-	1800	MPN/100ml		FGL Env.	5/24/17	5/27/17
DW30 CR-41 5/24/17 Total Coliform SM 9223B = 24196 - 10 MPN/100ml FGL Env. 5/24/17 5/24	DW30	CR-42	5/24/17	Total Coliform	SM 9223B	>	24196	-	10	MPN/100ml		FGL Env.	5/24/17	5/25/17
DW30 CR-41R 5/24/17 Total Coliform SM 9221B = 7900 - 180 MPN/100ml FGL Env. 5/24/17 5/2	DW30	CR-41	5/24/17	Total Coliform	SM 9221B	=	2800	-	18	MPN/100ml		FGL Env.	5/24/17	5/28/17
DW30 CR-41R 5/24/17 Total Coliform SM 9223B = 9804 - 10 MPN/100ml FGL Env. 5/24/17 5/25 DW30 CR-39 5/24/17 Total Coliform SM 9221B = 3500 - 18 MPN/100ml FGL Env. 5/24/17 5/	DW30	CR-41	5/24/17	Total Coliform	SM 9223B	=	24196	-	10	MPN/100ml		FGL Env.	5/24/17	5/25/17
DW30 CR-39 5/24/17 Total Coliform SM 9221B = 3500 - 18 MPN/100ml FGL Env. 5/24/17 5/27 DW30 CR-39 5/24/17 Total Coliform SM 9223B = 5794 - 10 MPN/100ml FGL Env. 5/24/17 5/24/17 5/24/17 5/24/17 5/24/17 5/24/17 5/24/17 Total Coliform SM 9221B = 5794 - 10 MPN/100ml FGL Env. 5/24/17 5/24/17 5/24/17 5/24/17 5/24/17 Total Coliform SM 9221B = 1400 - 18 MPN/100ml FGL Env. 5/24/17 5/2	DW30	CR-41R	5/24/17	Total Coliform	SM 9221B	=	7900	-	180	MPN/100ml		FGL Env.	5/24/17	5/27/17
DW30 CR-39 5/24/17 Total Coliform SM 9223B = 5794 - 10 MPN/100ml FGL Env. 5/24/17 5/25 DW30 CR-39R 5/24/17 Total Coliform SM 9223B = 1400 - 18 MPN/100ml FGL Env. 5/24/17 5/	DW30	CR-41R	5/24/17	Total Coliform	SM 9223B	=	9804	-	10	MPN/100ml		FGL Env.	5/24/17	5/25/17
DW30 CR-39R 5/24/17 Total Coliform SM 9221B = 1400 - 18 MPN/100ml FGL Env. 5/24/17 5/27 DW30 CR-39R 5/24/17 Total Coliform SM 9223B = 2909 - 10 MPN/100ml FGL Env. 5/24/17 5/25 SE61 CR-39 10/14/16 Total Coliform SM 9223B = 33000 - 1800 MPN/100ml FGL Env. 5/24/17 5/25 SE61 CR-39 10/14/16 Total Coliform SM 9223B > 2419.6 - 1 MPN/100ml FGL Env. 10/14/16 10/14 SE61 CR-39R 10/14/16 Total Coliform SM 9221B = 11000 - 180 MPN/100ml FGL Env. 10/14/16 10/14 SE61 CR-39R 10/14/16 Total Coliform SM 9221B = 11000 - 180 MPN/100ml FGL Env. 10/14/16 10/14 SE61 CR-39R 10/14/16 Total Coliform SM 9221B = 11000 - 180	DW30	CR-39	5/24/17	Total Coliform	SM 9221B	=	3500	-	18	MPN/100ml		FGL Env.	5/24/17	5/27/17
DW30 CR-39R 5/24/17 Total Coliform SM 9223B = 2909 - 10 MPN/100ml FGL Env. 5/24/17 5/25 SE61 CR-39 10/14/16 Total Coliform SM 9221B = 33000 - 1800 MPN/100ml FGL Env. 10/14/16	DW30	CR-39	5/24/17	Total Coliform	SM 9223B	=	5794	-	10	MPN/100ml		FGL Env.	5/24/17	5/25/17
SE61 CR-39 10/14/16 Total Coliform SM 9221B = 33000 - 1800 MPN/100ml FGL Env. 10/14/16 10/14 SE61 CR-39 10/14/16 Total Coliform SM 9223B > 2419.6 - 1 MPN/100ml FGL Env. 10/14/16 10/14 SE61 CR-39R 10/14/16 Total Coliform SM 9221B = 11000 - 180 MPN/100ml FGL Env. 10/14/16 10/14 SE61 CR-39R 10/14/16 Total Coliform SM 9221B = 11000 - 180 MPN/100ml FGL Env. 10/14/16 10/14	DW30	CR-39R	5/24/17	Total Coliform	SM 9221B	=	1400	-	18	MPN/100ml		FGL Env.	5/24/17	5/27/17
SE61 CR-39 10/14/16 Total Coliform SM 9223B > 2419.6 - 1 MPN/100ml FGL Env. 10/14/16<	DW30	CR-39R	5/24/17	Total Coliform	SM 9223B	=	2909	-	10	MPN/100ml		FGL Env.	5/24/17	5/25/17
SE61 CR-39R 10/14/16 Total Coliform SM 9221B = 11000 - 180 MPN/100ml FGL Env. 10/14/16 10/12	SE61	CR-39	10/14/16	Total Coliform	SM 9221B	=	33000	-	1800	MPN/100ml		FGL Env.	10/14/16	10/17/16
	SE61	CR-39	10/14/16	Total Coliform	SM 9223B	>	2419.6	-	1	MPN/100ml		FGL Env.	10/14/16	10/15/16
SE61 CR-39R 10/14/16 Total Coliform SM 9223B = 866.4 - 1 MPN/100ml FGL Env. 10/14/16 10/15	SE61	CR-39R	10/14/16	Total Coliform	SM 9221B	=	11000	-	180	MPN/100ml		FGL Env.	10/14/16	10/17/16
	SE61	CR-39R	10/14/16	Total Coliform	SM 9223B	=	866.4	-	1	MPN/100ml		FGL Env.	10/14/16	10/15/16
	SE61	CR-39R	10/14/16	Total Coliform	SM 9223B	=	866.4	-	1	MPN/100ml		FGL Env.	10/14/16	10/15

		Date											Analysis
Event	Site Code	Sampled	Analyte	Method	Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Date
SE61	CR-41	10/14/16	Total Coliform	SM 9221B	=	230000	-	18000	MPN/100ml		FGL Env.	10/14/16	10/16/16
SE61	CR-41	10/14/16	Total Coliform	SM 9223B	>	2419.6	-	1	MPN/100ml		FGL Env.	10/14/16	10/15/16
SE61	CR-41R	10/14/16	Total Coliform	SM 9221B	=	7900	-	180	MPN/100ml		FGL Env.	10/14/16	10/17/16
SE61	CR-41R	10/14/16	Total Coliform	SM 9223B	=	461.1	-	1	MPN/100ml		FGL Env.	10/14/16	10/15/16
SE61	CR-42	10/14/16	Total Coliform	SM 9221B	=	490000	-	18000	MPN/100ml		FGL Env.	10/14/16	10/17/16
SE61	CR-42	10/14/16	Total Coliform	SM 9223B	>	2419.6	-	1	MPN/100ml		FGL Env.	10/14/16	10/15/16
SE61	CR-46	10/14/16	Total Coliform	SM 9221B	=	33000	-	1800	MPN/100ml		FGL Env.	10/14/16	10/16/16
SE61	CR-46	10/14/16	Total Coliform	SM 9223B	>	2419.6	-	1	MPN/100ml		FGL Env.	10/14/16	10/15/16
SE61	CR-46R	10/14/16	Total Coliform	SM 9221B	=	280000	-	1800	MPN/100ml		FGL Env.	10/14/16	10/17/16
SE61	CR-46R	10/14/16	Total Coliform	SM 9223B	>	2419.6	-	1	MPN/100ml		FGL Env.	10/14/16	10/15/16
SE62	CR-1R	1/18/17	Total Coliform	SM 9221B	=	3300	-	180	MPN/100ml		FGL Env.	1/18/17	1/21/17
SE62	CR-1R	1/18/17	Total Coliform	SM 9223B	=	187.2	-	1	MPN/100ml		FGL Env.	1/18/17	1/19/17
SE62	CR-39	1/18/17	Total Coliform	SM 9221B	=	23000	-	1800	MPN/100ml		FGL Env.	1/18/17	1/21/17
SE62	CR-39	1/18/17	Total Coliform	SM 9223B	=	2419.6	-	1	MPN/100ml		FGL Env.	1/18/17	1/19/17
SE62	CR-39R	1/18/17	Total Coliform	SM 9221B	=	3300	-	180	MPN/100ml		FGL Env.	1/18/17	1/21/17
SE62	CR-39R	1/18/17	Total Coliform	SM 9223B	=	770.1	-	1	MPN/100ml		FGL Env.	1/18/17	1/19/17
SE62	CR-41	1/18/17	Total Coliform	SM 9221B	=	22000	-	180	MPN/100ml		FGL Env.	1/18/17	1/21/17
SE62	CR-41	1/18/17	Total Coliform	SM 9223B	>	2419.6	-	1	MPN/100ml		FGL Env.	1/18/17	1/19/17
SE62	CR-41R	1/18/17	Total Coliform	SM 9221B	=	7900	-	180	MPN/100ml		FGL Env.	1/18/17	1/21/17
SE62	CR-41R	1/18/17	Total Coliform	SM 9223B	=	866.4	-	1	MPN/100ml		FGL Env.	1/18/17	1/19/17
SE62	CR-42	1/18/17	Total Coliform	SM 9221B	=	23000	-	1800	MPN/100ml		FGL Env.	1/18/17	1/21/17
SE62	CR-42	1/18/17	Total Coliform	SM 9223B	>	2419.6	-	1	MPN/100ml		FGL Env.	1/18/17	1/19/17
SE62	CR-46R	1/18/17	Total Coliform	SM 9221B	=	1500	-	18	MPN/100ml		FGL Env.	1/18/17	1/21/17
SE62	CR-46R	1/18/17	Total Coliform	SM 9223B	=	1046.2	-	1	MPN/100ml		FGL Env.	1/18/17	1/19/17
SE63	CR-1R	2/16/17	Total Coliform	SM 9221B	=	1700	-	18	MPN/100ml		FGL Env.	2/16/17	2/19/17
SE63	CR-1R	2/16/17	Total Coliform	SM 9223B	=	2909	-	10	MPN/100ml		FGL Env.	2/16/17	2/17/17
SE63	CR-39	2/16/17	Total Coliform	SM 9221B	=	23000	-	1800	MPN/100ml		FGL Env.	2/16/17	2/19/17
SE63	CR-39	2/16/17	Total Coliform	SM 9223B	>	24196	-	10	MPN/100ml		FGL Env.	2/16/17	2/17/17
SE63	CR-39R	2/16/17	Total Coliform	SM 9221B	=	13000	-	180	MPN/100ml		FGL Env.	2/16/17	2/19/17
SE63	CR-39R	2/16/17	Total Coliform	SM 9223B	=	5794	-	10	MPN/100ml		FGL Env.	2/16/17	2/17/17
SE63	CR-41	2/16/17	Total Coliform	SM 9221B	=	49000	-	1800	MPN/100ml		FGL Env.	2/16/17	2/19/17
SE63	CR-41	2/16/17	Total Coliform	SM 9223B	>	24196	-	10	MPN/100ml		FGL Env.	2/16/17	2/17/17

		Date			-	-							Analysis
Event	Site Code	Sampled	Analyte	Method	Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Date
SE63	CR-41R	2/16/17	Total Coliform	SM 9221B	=	23000	-	18000	MPN/100ml		FGL Env.	2/16/17	2/19/17
SE63	CR-41R	2/16/17	Total Coliform	SM 9223B	>	24196	-	10	MPN/100ml		FGL Env.	2/16/17	2/17/17
SE63	CR-42	2/16/17	Total Coliform	SM 9221B	=	230000	-	18000	MPN/100ml		FGL Env.	2/16/17	2/19/17
SE63	CR-42	2/16/17	Total Coliform	SM 9223B	>	24196	-	10	MPN/100ml		FGL Env.	1/18/17	2/17/17
SE63	CR-46R	2/16/17	Total Coliform	SM 9221B	=	3300	-	180	MPN/100ml		FGL Env.	2/16/17	2/19/17
SE63	CR-46R	2/16/17	Total Coliform	SM 9223B	=	2382	-	10	MPN/100ml		FGL Env.	2/16/17	2/17/17
SE64	CR-1R	4/6/17	Total Coliform	SM 9221B	=	23000	-	1800	MPN/100ml		FGL Env.	4/6/17	4/8/17
SE64	CR-1R	4/6/17	Total Coliform	SM 9223B	=	770.1	-	1	MPN/100ml		FGL Env.	4/7/17	4/7/17
SE64	CR-39	4/6/17	Total Coliform	SM 9221B	=	230000	-	18000	MPN/100ml		FGL Env.	4/7/17	4/9/17
SE64	CR-39	4/6/17	Total Coliform	SM 9223B	>	2419.6	-	1	MPN/100ml		FGL Env.	4/7/17	4/7/17
SE64	CR-39R	4/6/17	Total Coliform	SM 9221B	=	23000	-	1800	MPN/100ml		FGL Env.	4/7/17	4/9/17
SE64	CR-39R	4/6/17	Total Coliform	SM 9223B	=	1046.2	-	1	MPN/100ml		FGL Env.	4/7/17	4/7/17
SE64	CR-41	4/6/17	Total Coliform	SM 9221B	=	230000	-	18000	MPN/100ml		FGL Env.	4/7/17	4/9/17
SE64	CR-41	4/6/17	Total Coliform	SM 9223B	>	2419.6	-	1	MPN/100ml		FGL Env.	4/7/17	4/7/17
SE64	CR-41R	4/6/17	Total Coliform	SM 9221B	=	49000	-	1800	MPN/100ml		FGL Env.	4/7/17	4/9/17
SE64	CR-41R	4/6/17	Total Coliform	SM 9223B	=	1046.2	-	1	MPN/100ml		FGL Env.	4/7/17	4/7/17
SE64	CR-46	4/6/17	Total Coliform	SM 9221B	=	330000	-	18000	MPN/100ml		FGL Env.	4/7/17	4/9/17
SE64	CR-46	4/6/17	Total Coliform	SM 9223B	>	2419.6	-	1	MPN/100ml		FGL Env.	4/7/17	4/7/17
SE64	CR-46R	4/6/17	Total Coliform	SM 9221B	=	230000	-	18000	MPN/100ml		FGL Env.	4/7/17	4/9/17
SE64	CR-46R	4/6/17	Total Coliform	SM 9223B	>	2419.6	-	1	MPN/100ml		FGL Env.	4/7/17	4/7/17
DW27	CR-46	8/24/16	Mercury	EPA 1631E	=	0.76	0.2	0.5	ng/L		Caltest	8/31/16	9/1/16
DW27	CR-46R	8/24/16	Mercury	EPA 1631E	=	0.59	0.2	0.5	ng/L		Caltest	8/31/16	9/1/16
DW27	CR-42	8/24/16	Mercury	EPA 1631E	=	1.2	0.2	0.5	ng/L		Caltest	8/31/16	9/1/16
DW27	CR-41	8/24/16	Mercury	EPA 1631E	=	0.91	0.2	0.5	ng/L		Caltest	8/31/16	9/1/16
DW27	CR-41R	8/24/16	Mercury	EPA 1631E	=	0.65	0.2	0.5	ng/L		Caltest	8/31/16	9/1/16
DW27	CR-39	8/24/16	Mercury	EPA 1631E	=	1.4	0.2	0.5	ng/L		Caltest	8/31/16	9/1/16
DW27	CR-39R	8/24/16	Mercury	EPA 1631E	=	0.44	0.2		ng/L	J	Caltest	8/31/16	9/1/16
DW28	CR-46	12/5/16	Mercury	EPA 1631E	=	0.87	0.2	0.5	ng/L		Caltest	12/12/16	12/13/16
DW28	CR-46R	12/5/16	Mercury	EPA 1631E	=	1.4	0.2	0.5	ng/L		Caltest	12/12/16	12/13/16
DW28	CR-42	12/5/16	Mercury	EPA 1631E	=	1.3	0.2	0.5	ng/L		Caltest	12/12/16	12/13/16
DW28	CR-41	12/5/16	Mercury	EPA 1631E	=	1.1	0.2	0.5	ng/L		Caltest	12/12/16	12/13/16
DW28	CR-41R	12/5/16	Mercury	EPA 1631E	=	1	0.2	0.5	ng/L		Caltest	12/12/16	12/13/16
DW28	CR-39	12/5/16	Mercury	EPA 1631E	=	0.89	0.2	0.5	ng/L		Caltest	12/12/16	12/13/16

		Date											Analysis
Event	Site Code	Sampled	Analyte	Method	Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Date
DW28	CR-39R	12/5/16	Mercury	EPA 1631E	=	0.69	0.2	0.5	ng/L		Caltest	12/12/16	12/13/16
DW29	CR-1R	3/2/17	Mercury	EPA 1631E	=	6.3	0.2	0.5	ng/L		Caltest	3/21/17	3/22/17
DW29	CR-46	3/2/17	Mercury	EPA 1631E	=	2.1	0.2	0.5	ng/L		Caltest	3/21/17	3/22/17
DW29	CR-46R	3/2/17	Mercury	EPA 1631E	=	6.4	0.2	0.5	ng/L		Caltest	3/21/17	3/22/17
DW29	CR-42	3/2/17	Mercury	EPA 1631E	=	2.7	0.2	0.5	ng/L		Caltest	3/21/17	3/22/17
DW29	CR-41	3/2/17	Mercury	EPA 1631E	=	1.2	0.2	0.5	ng/L		Caltest	3/21/17	3/22/17
DW29	CR-41R	3/2/17	Mercury	EPA 1631E	=	6.6	0.2	0.5	ng/L		Caltest	3/21/17	3/22/17
DW29	CR-39	3/2/17	Mercury	EPA 1631E	=	1.1	0.2	0.5	ng/L		Caltest	3/21/17	3/22/17
DW29	CR-39R	3/2/17	Mercury	EPA 1631E	=	6.5	0.2	0.5	ng/L		Caltest	3/21/17	3/22/17
DW30	CR-1R	5/24/17	Mercury	EPA 1631E	=	1.6	0.2	0.5	ng/L		Caltest	6/1/17	6/2/17
DW30	CR-46	5/24/17	Mercury	EPA 1631E	=	1.2	0.2	0.5	ng/L		Caltest	6/1/17	6/2/17
DW30	CR-46R	5/24/17	Mercury	EPA 1631E	=	2.1	0.2	0.5	ng/L		Caltest	6/1/17	6/2/17
DW30	CR-42	5/24/17	Mercury	EPA 1631E	=	1.8	0.2	0.5	ng/L		Caltest	6/1/17	6/2/17
DW30	CR-41	5/24/17	Mercury	EPA 1631E	=	0.9	0.2	0.5	ng/L		Caltest	6/1/17	6/2/17
DW30	CR-41R	5/24/17	Mercury	EPA 1631E	=	1.7	0.2	0.5	ng/L		Caltest	6/1/17	6/2/17
DW30	CR-39	5/24/17	Mercury	EPA 1631E	=	1.4	0.2	0.5	ng/L		Caltest	6/1/17	6/2/17
DW30	CR-39R	5/24/17	Mercury	EPA 1631E	=	1.9	0.2	0.5	ng/L		Caltest	6/1/17	6/2/17
SE61	CR-39	10/14/16	Mercury	EPA 1631E	=	9	0.2	0.5	ng/L		Caltest	10/20/16	10/21/16
SE61	CR-39R	10/14/16	Mercury	EPA 1631E	=	1.2	0.2	0.5	ng/L		Caltest	10/20/16	10/21/16
SE61	CR-41	10/14/16	Mercury	EPA 1631E	=	95	0.4	1	ng/L		Caltest	10/20/16	10/21/16
SE61	CR-41R	10/14/16	Mercury	EPA 1631E	=	0.88	0.2	0.5	ng/L		Caltest	10/20/16	10/21/16
SE61	CR-42	10/14/16	Mercury	EPA 1631E	=	26	0.2	0.5	ng/L		Caltest	10/20/16	10/21/16
SE61	CR-46	10/14/16	Mercury	EPA 1631E	=	20	0.2	0.5	ng/L		Caltest	10/20/16	10/21/16
SE61	CR-46R	10/14/16	Mercury	EPA 1631E	=	14	0.2	0.5	ng/L		Caltest	10/20/16	10/21/16
SE61	NW-RAIN	10/14/16	Mercury	EPA 1631E	=	4	0.2	0.5	ng/L		Caltest	10/20/16	10/21/16
SE61	NE-RAIN	10/14/16	Mercury	EPA 1631E	=	2.5	0.2	0.5	ng/L		Caltest	10/20/16	10/21/16
SE61	SC-1 RAIN	10/14/16	Mercury	EPA 1631E	=	4.1	0.2	0.5	ng/L		Caltest	10/20/16	10/21/16
SE62	CR-1R	1/18/17	Mercury	EPA 1631E	=	6.6	0.2	0.5	ng/L		Caltest	2/7/17	2/8/17
SE62	CR-39	1/18/17	Mercury	EPA 1631E	=	5.1	0.2	0.5	ng/L		Caltest	2/7/17	2/9/17
SE62	CR-39R	1/18/17	Mercury	EPA 1631E	=	6.4	0.2	0.5	ng/L		Caltest	2/7/17	2/9/17
SE62	CR-41	1/18/17	Mercury	EPA 1631E	=	19	0.2	0.5	ng/L		Caltest	2/7/17	2/8/17
SE62	CR-41R	1/18/17	Mercury	EPA 1631E	=	8.4	0.2	0.5	ng/L		Caltest	2/7/17	2/9/17
SE62	CR-42	1/18/17	Mercury	EPA 1631E	=	12	0.2	0.5	ng/L		Caltest	2/7/17	2/8/17
SE62	CR-46	1/18/17	Mercury	EPA 1631E	=	19	0.2	0.5	ng/L		Caltest	2/7/17	2/8/17

					-	-							Analysia
Event	Site Code	Date Sampled	Analyte	Method	Q	Result	MDL	RL/ML	Unite	Flag	Lab Name	Prep Date	Analysis Date
SE62			· · · · · · · · · · · · · · · · · · ·							Гіау			2/8/17
	CR-46R	1/18/17	Mercury	EPA 1631E	=	7.1	0.2	0.5	ng/L		Caltest	2/7/17	
SE62 SE62	NE-RAIN	1/18/17	Mercury	EPA 1631E EPA 1631E	=	9.7 13	0.2	0.5	ng/L		Caltest	2/7/17	2/8/17
	NW-RAIN	1/18/17	Mercury		=		0.2	0.5	ng/L		Caltest	2/7/17	2/8/17
SE62	SC-1 RAIN	1/18/17	Mercury	EPA 1631E	=	11	0.2	0.5	ng/L		Caltest	2/7/17	2/8/17
SE64	CR-1R	4/6/17	Mercury	EPA 1631E	=	2.2	0.2	0.5	ng/L		Caltest	4/18/17	4/19/17
SE64	CR-39	4/6/17	Mercury	EPA 1631E	=	6	0.2	0.5	ng/L		Caltest	4/18/17	4/19/17
SE64	CR-39R	4/6/17	Mercury	EPA 1631E	=	2.1	0.2	0.5	ng/L		Caltest	4/18/17	4/19/17
SE64	CR-41	4/6/17	Mercury	EPA 1631E	=	18	0.2	0.5	ng/L		Caltest	4/18/17	4/19/17
SE64	CR-41R	4/6/17	Mercury	EPA 1631E	=	2.6	0.2	0.5	ng/L		Caltest	4/18/17	4/19/17
SE64	CR-42	4/6/17	Mercury	EPA 1631E	=	12	0.2	0.5	ng/L		Caltest	4/18/17	4/19/17
SE64	CR-46	4/6/17	Mercury	EPA 1631E	=	15	0.2	0.5	ng/L		Caltest	4/18/17	4/19/17
SE64	CR-46R	4/6/17	Mercury	EPA 1631E	=	7.4	0.2	0.5	ng/L		Caltest	4/18/17	4/19/17
SE64	NE-RAIN	4/6/17	Mercury	EPA 1631E	=	14	0.2	0.5	ng/L		Caltest	4/20/17	4/21/17
SE64	NW-RAIN	4/6/17	Mercury	EPA 1631E	=	13	0.2	0.5	ng/L		Caltest	4/20/17	4/21/17
SE64	SC-1 RAIN	4/6/17	Mercury	EPA 1631E	=	17	0.2	0.5	ng/L		Caltest	4/18/17	4/19/17
DW27	CR-46	8/24/16	Methyl Mercury	EPA 1630	<	0.02	0.02	0.05	ng/L	ND	Caltest	9/6/16	9/6/16
DW27	CR-46R	8/24/16	Methyl Mercury	EPA 1630	=	0.05	0.02	0.05	ng/L		Caltest	9/6/16	9/6/16
DW27	CR-42	8/24/16	Methyl Mercury	EPA 1630	=	0.08	0.02	0.05	ng/L		Caltest	9/6/16	9/6/16
DW27	CR-41	8/24/16	Methyl Mercury	EPA 1630	=	0.04	0.02	0.05	ng/L	J	Caltest	9/6/16	9/6/16
DW27	CR-41R	8/24/16	Methyl Mercury	EPA 1630	=	0.05	0.02	0.05	ng/L		Caltest	9/6/16	9/6/16
DW27	CR-39	8/24/16	Methyl Mercury	EPA 1630	=	0.39	0.02	0.05	ng/L		Caltest	9/6/16	9/6/16
DW27	CR-39R	8/24/16	Methyl Mercury	EPA 1630	=	0.05	0.02	0.05	ng/L		Caltest	9/6/16	9/6/16
DW28	CR-46	12/5/16	Methyl Mercury	EPA 1630	=	0.02	0.02	0.05	ng/L	J	Caltest	12/8/16	12/8/16
DW28	CR-46R	12/5/16	Methyl Mercury	EPA 1630	=	0.05	0.02	0.05	ng/L		Caltest	12/8/16	12/8/16
DW28	CR-42	12/5/16	Methyl Mercury	EPA 1630	=	0.04	0.02	0.05	ng/L	J	Caltest	12/8/16	12/8/16
DW28	CR-41	12/5/16	Methyl Mercury	EPA 1630	<	0.02	0.02	0.05	ng/L	ND	Caltest	12/8/16	12/8/16
DW28	CR-41R	12/5/16	Methyl Mercury	EPA 1630	=	0.03	0.02	0.05	ng/L	J	Caltest	12/8/16	12/8/16
DW28	CR-39	12/5/16	Methyl Mercury	EPA 1630	=	0.05	0.02	0.05	ng/L		Caltest	12/8/16	12/8/16
DW28	CR-39R	12/5/16	Methyl Mercury	EPA 1630	=	0.02	0.02	0.05	ng/L	J	Caltest	12/8/16	12/8/16
DW29	CR-1R	3/2/17	Methyl Mercury	EPA 1630	=	0.07	0.02	0.05	ng/L		Caltest	3/21/17	3/22/17
DW29	CR-46	3/2/17	Methyl Mercury	EPA 1630	=	0.05	0.02	0.05	ng/L		Caltest	3/21/17	3/22/17
DW29	CR-46R	3/2/17	Methyl Mercury	EPA 1630	=	0.09	0.02	0.05	ng/L		Caltest	3/21/17	3/22/17
DW29	CR-42	3/2/17	Methyl Mercury	EPA 1630	=	0.05	0.02	0.05	ng/L		Caltest	3/21/17	3/22/17
DW29	CR-41	3/2/17	Methyl Mercury	EPA 1630	=	0.02	0.02	0.05	ng/L	J	Caltest	3/21/17	3/22/17
		-	J J			-	-		J				· · · · · · · · · · · · · · · · · · ·

-					-	•							
		Date											Analysis
Event	Site Code	Sampled	Analyte	Method	Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Date
DW29	CR-41R	3/2/17	Methyl Mercury	EPA 1630	=	0.09	0.02	0.05	ng/L		Caltest	3/21/17	3/22/17
DW29	CR-39	3/2/17	Methyl Mercury	EPA 1630	<	0.02	0.02	0.05	ng/L	ND	Caltest	3/21/17	3/22/17
DW29	CR-39R	3/2/17	Methyl Mercury	EPA 1630	=	0.12	0.02	0.05	ng/L		Caltest	3/21/17	3/22/17
DW30	CR-1R	5/24/17	Methyl Mercury	EPA 1630	=	0.1	0.02	0.05	ng/L		Caltest	5/30/17	5/30/17
DW30	CR-46	5/24/17	Methyl Mercury	EPA 1630	=	0.02	0.02	0.05	ng/L	J	Caltest	5/30/17	5/30/17
DW30	CR-46R	5/24/17	Methyl Mercury	EPA 1630	=	0.16	0.02	0.05	ng/L		Caltest	5/30/17	5/30/17
DW30	CR-42	5/24/17	Methyl Mercury	EPA 1630	=	0.1	0.02	0.05	ng/L		Caltest	5/30/17	5/30/17
DW30	CR-41	5/24/17	Methyl Mercury	EPA 1630	<	0.02	0.02	0.05	ng/L	ND	Caltest	5/30/17	5/30/17
DW30	CR-41R	5/24/17	Methyl Mercury	EPA 1630	=	0.17	0.02	0.05	ng/L		Caltest	5/30/17	5/30/17
DW30	CR-39	5/24/17	Methyl Mercury	EPA 1630	=	0.07	0.02	0.05	ng/L		Caltest	5/30/17	5/30/17
DW30	CR-39R	5/24/17	Methyl Mercury	EPA 1630	=	0.13	0.02	0.05	ng/L		Caltest	5/30/17	5/30/17
SE61	CR-39	10/14/16	Methyl Mercury	EPA 1630	=	0.24	0.02	0.05	ng/L		Caltest	11/14/16	11/15/16
SE61	CR-39R	10/14/16	Methyl Mercury	EPA 1630	=	0.03	0.02	0.05	ng/L	J	Caltest	11/14/16	11/15/16
SE61	CR-41	10/14/16	Methyl Mercury	EPA 1630	=	0.98	0.02	0.05	ng/L		Caltest	11/14/16	11/15/16
SE61	CR-41R	10/14/16	Methyl Mercury	EPA 1630	=	0.04	0.02	0.05	ng/L	J	Caltest	11/14/16	11/15/16
SE61	CR-42	10/14/16	Methyl Mercury	EPA 1630	=	0.13	0.02	0.05	ng/L		Caltest	11/14/16	11/15/16
SE61	CR-46	10/14/16	Methyl Mercury	EPA 1630	=	0.15	0.02	0.05	ng/L		Caltest	11/14/16	11/15/16
SE61	CR-46R	10/14/16	Methyl Mercury	EPA 1630	=	0.26	0.02	0.05	ng/L		Caltest	11/14/16	11/15/16
SE61	NW-RAIN	10/14/16	Methyl Mercury	EPA 1630	=	0.07	0.02	0.05	ng/L		Caltest	11/16/16	11/16/16
SE61	NE-RAIN	10/14/16	Methyl Mercury	EPA 1630	=	0.03	0.02	0.05	ng/L	J	Caltest	11/16/16	11/16/16
SE61	SC-1 RAIN	10/14/16	Methyl Mercury	EPA 1630	=	0.05	0.02	0.05	ng/L		Caltest	11/16/16	11/16/16
SE62	CR-1R	1/18/17	Methyl Mercury	EPA 1630	=	0.06	0.02	0.05	ng/L		Caltest	1/31/17	2/1/17
SE62	CR-39	1/18/17	Methyl Mercury	EPA 1630	=	0.09	0.02	0.05	ng/L		Caltest	1/31/17	2/1/17
SE62	CR-39R	1/18/17	Methyl Mercury	EPA 1630	=	0.07	0.02	0.05	ng/L		Caltest	1/31/17	2/1/17
SE62	CR-41	1/18/17	Methyl Mercury	EPA 1630	=	0.09	0.02	0.05	ng/L		Caltest	1/31/17	2/1/17
SE62	CR-41R	1/18/17	Methyl Mercury	EPA 1630	=	0.05	0.02	0.05	ng/L		Caltest	1/31/17	2/1/17
SE62	CR-42	1/18/17	Methyl Mercury	EPA 1630	=	0.07	0.02	0.05	ng/L		Caltest	1/31/17	2/1/17
SE62	CR-46	1/18/17	Methyl Mercury	EPA 1630	=	0.08	0.02	0.05	ng/L		Caltest	1/31/17	2/1/17
SE62	CR-46R	1/18/17	Methyl Mercury	EPA 1630	=	0.06	0.02	0.05	ng/L		Caltest	1/31/17	2/1/17
SE62	NE-RAIN	1/18/17	Methyl Mercury	EPA 1630	=	0.15	0.02	0.05	ng/L		Caltest	1/31/17	2/1/17
SE62	NW-RAIN	1/18/17	Methyl Mercury	EPA 1630	=	0.03	0.02	0.05	ng/L	J	Caltest	1/31/17	2/1/17
SE62	SC-1 RAIN	1/18/17	Methyl Mercury	EPA 1630	=	0.05	0.02	0.05	ng/L		Caltest	1/31/17	2/1/17
SE64	CR-1R	4/6/17	Methyl Mercury	EPA 1630	=	0.12	0.02	0.05	ng/L		Caltest	4/25/17	4/26/17
SE64	CR-39	4/6/17	Methyl Mercury	EPA 1630	=	0.21	0.02	0.05	ng/L		Caltest	4/25/17	4/26/17
-									-				

					-	-							
		Date											Analysis
Event	Site Code	Sampled	Analyte	Method	Q	Result	MDL	RL/ML		Flag	Lab Name	Prep Date	Date
SE64	CR-39R	4/6/17	Methyl Mercury	EPA 1630	=	0.11	0.02		ng/L		Caltest	4/25/17	4/26/17
SE64	CR-41	4/6/17	Methyl Mercury	EPA 1630	=	0.17	0.02		ng/L		Caltest	4/25/17	4/26/17
SE64	CR-41R	4/6/17	Methyl Mercury	EPA 1630	=	0.13	0.02		ng/L		Caltest	4/25/17	4/26/17
SE64	CR-42	4/6/17	Methyl Mercury	EPA 1630	=	0.13	0.02		ng/L		Caltest	4/25/17	4/26/17
SE64	CR-46	4/6/17	Methyl Mercury	EPA 1630	=	0.11	0.02		ng/L		Caltest	4/25/17	4/26/17
SE64	CR-46R	4/6/17	Methyl Mercury	EPA 1630	=	0.27	0.02		ng/L		Caltest	4/25/17	4/26/17
SE64	NE-RAIN	4/6/17	Methyl Mercury	EPA 1630	=	0.05	0.02		ng/L		Caltest	4/25/17	4/26/17
SE64	NW-RAIN	4/6/17	Methyl Mercury	EPA 1630	=	0.07	0.02		ng/L		Caltest	4/25/17	4/26/17
SE64	SC-1 RAIN	4/6/17	Methyl Mercury	EPA 1630	=	0.08	0.02		ng/L		Caltest	4/25/17	4/26/17
DW27	CR-46	8/24/16	Aluminum, Dissolved	EPA 200.8	=	4.25	0.1		ug/L	J	FGL Env.	8/29/16	8/29/16
DW27	CR-46R	8/24/16	Aluminum, Dissolved	EPA 200.8	=	5.73	0.1	10	ug/L	J	FGL Env.	8/29/16	8/29/16
DW28	CR-46	12/5/16	Aluminum, Dissolved	EPA 200.8	=	7.99	0.071	10	ug/L	J, h	FGL Env.	12/8/16	12/8/16
DW28	CR-46R	12/5/16	Aluminum, Dissolved	EPA 200.8	=	10.5	0.071	10	ug/L	h	FGL Env.	12/8/16	12/8/16
DW29	CR-46	3/2/17	Aluminum, Dissolved	EPA 200.8	=	57.7	0.1	10	ug/L		FGL Env.	3/4/17	3/4/17
DW29	CR-46R	3/2/17	Aluminum, Dissolved	EPA 200.8	=	4.59	0.1	10	ug/L	J	FGL Env.	3/4/17	3/4/17
DW30	CR-46	5/24/17	Aluminum, Dissolved	EPA 200.8	=	2.7	0.1	10	ug/L	J	FGL Env.	5/26/17	5/26/17
DW30	CR-46R	5/24/17	Aluminum, Dissolved	EPA 200.8	=	10.8	0.1	10	ug/L		FGL Env.	5/26/17	5/26/17
SE61	CR-46	10/14/16	Aluminum, Dissolved	EPA 200.8	=	40.9	0.1	10	ug/L		FGL Env.	10/24/16	10/24/16
SE61	CR-46R	10/14/16	Aluminum, Dissolved	EPA 200.8	=	70.5	0.1	10	ug/L		FGL Env.	10/24/16	10/24/16
SE62	CR-46	1/18/17	Aluminum, Dissolved	EPA 200.8	=	23.6	0.071	10	ug/L	h	FGL Env.	1/25/17	1/25/17
SE62	CR-46R	1/18/17	Aluminum, Dissolved	EPA 200.8	=	17.1	0.071	10	ug/L	h	FGL Env.	1/25/17	1/25/17
SE64	CR-46	4/6/17	Aluminum, Dissolved	EPA 200.8	=	27.5	0.1	10	ug/L		FGL Env.	4/11/17	4/11/17
SE64	CR-46R	4/6/17	Aluminum, Dissolved	EPA 200.8	=	4.55	0.1		ug/L	J	FGL Env.	4/11/17	4/11/17
DW27	CR-46	8/24/16	Aluminum, Total	EPA 200.8	=	91.3	0.05	10	ug/L	Р	FGL Env.	9/1/16	9/6/16
DW27	CR-46R	8/24/16	Aluminum, Total	EPA 200.8	=	224	0.05		ug/L	Р	FGL Env.	9/1/16	9/6/16
DW28	CR-46	12/5/16	Aluminum, Total	EPA 200.8	=	35.3	0.05	10	ug/L		FGL Env.	12/7/16	12/9/16
DW28	CR-46R	12/5/16	Aluminum, Total	EPA 200.8	=	280	0.05		ug/L		FGL Env.	12/7/16	12/9/16
DW29	CR-46	3/2/17	Aluminum, Total	EPA 200.8	=	1230	0.05		ug/L	Р	FGL Env.	3/20/17	3/21/17
DW29	CR-46R	3/2/17	Aluminum, Total	EPA 200.8	=	180	0.05		ug/L	Р	FGL Env.	3/20/17	3/20/17
DW30	CR-46	5/24/17	Aluminum, Total	EPA 200.8	=	28.9	0.05		ug/L	Р	FGL Env.	6/2/17	6/2/17
DW30	CR-46R	5/24/17	Aluminum, Total	EPA 200.8	=	148	0.05		ug/L	P	FGL Env.	6/2/17	6/2/17
SE61	CR-46	10/14/16	Aluminum, Total	EPA 200.8	=	3140	0.05		ug/L	P	FGL Env.	10/24/16	10/31/16
SE61	CR-46R	10/14/16	Aluminum, Total	EPA 200.8	=	2750	0.05		ug/L	P	FGL Env.	10/24/16	10/31/16
0201	511 1011	10/11/10		217120010		2,00	0.00	100	~9' L		1 02 2.10.	10/2 1/10	

		Date											Analysis
Event	Site Code	Sampled	Analyte	Method	Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Date
SE62	CR-46	1/18/17	Aluminum, Total	EPA 200.8	=	3710	0.2	200	ug/L	Р	FGL Env.	1/23/17	1/26/17
SE62	CR-46R	1/18/17	Aluminum, Total	EPA 200.8	=	1840	0.2	100	ug/L	Р	FGL Env.	1/23/17	1/26/17
SE64	CR-46	4/6/17	Aluminum, Total	EPA 200.8	=	1230	0.2	100	ug/L	h, P	FGL Env.	4/19/17	5/1/17
SE64	CR-46R	4/6/17	Aluminum, Total	EPA 200.8	=	553	0.2	50	ug/L	Р	FGL Env.	4/21/17	5/1/17
DW27	CR-46	8/24/16	Copper, Dissolved	EPA 200.8	=	1.86	0.043	1	ug/L		FGL Env.	8/29/16	8/29/16
DW27	CR-46R	8/24/16	Copper, Dissolved	EPA 200.8	=	2.02	0.043	1	ug/L		FGL Env.	8/29/16	8/29/16
DW28	CR-46	12/5/16	Copper, Dissolved	EPA 200.8	=	2.41	0.038	1	ug/L		FGL Env.	12/8/16	12/8/16
DW28	CR-46R	12/5/16	Copper, Dissolved	EPA 200.8	=	1.49	0.038	1	ug/L		FGL Env.	12/8/16	12/8/16
DW29	CR-46	3/2/17	Copper, Dissolved	EPA 200.8	=	0.954	0.066	1	ug/L	J	FGL Env.	3/4/17	3/4/17
DW29	CR-46R	3/2/17	Copper, Dissolved	EPA 200.8	=	1.26	0.066	1	ug/L		FGL Env.	3/4/17	3/4/17
DW30	CR-46	5/24/17	Copper, Dissolved	EPA 200.8	=	0.668	0.066	1	ug/L	J	FGL Env.	5/26/17	5/26/17
DW30	CR-46R	5/24/17	Copper, Dissolved	EPA 200.8	=	1.84	0.066	1	ug/L		FGL Env.	5/26/17	5/26/17
SE61	CR-46	10/14/16	Copper, Dissolved	EPA 200.8	=	18.4	0.038	1	ug/L		FGL Env.	10/19/16	10/19/16
SE61	CR-46R	10/14/16	Copper, Dissolved	EPA 200.8	=	74.6	0.038	1	ug/L		FGL Env.	10/19/16	10/19/16
SE62	CR-46	1/18/17	Copper, Dissolved	EPA 200.8	=	4.46	0.038	1	ug/L		FGL Env.	1/25/17	1/25/17
SE62	CR-46R	1/18/17	Copper, Dissolved	EPA 200.8	=	6.7	0.038	1	ug/L		FGL Env.	1/25/17	1/25/17
SE64	CR-46	4/6/17	Copper, Dissolved	EPA 200.8	=	4.47	0.066	1	ug/L		FGL Env.	4/11/17	4/11/17
SE64	CR-46R	4/6/17	Copper, Dissolved	EPA 200.8	=	2.58	0.066	1	ug/L		FGL Env.	4/11/17	4/11/17
DW27	CR-46	8/24/16	Copper, Total	EPA 200.8	=	3.69	0.071	1	ug/L		FGL Env.	9/1/16	9/6/16
DW27	CR-46R	8/24/16	Copper, Total	EPA 200.8	=	3.17	0.071	1	ug/L		FGL Env.	9/1/16	9/6/16
DW28	CR-46	12/5/16	Copper, Total	EPA 200.8	=	3.39	0.071	1	ug/L		FGL Env.	12/7/16	12/9/16
DW28	CR-46R	12/5/16	Copper, Total	EPA 200.8	=	2.5	0.071	1	ug/L		FGL Env.	12/7/16	12/9/16
DW29	CR-46	3/2/17	Copper, Total	EPA 200.8	=	2.85	0.071	1	ug/L		FGL Env.	3/20/17	3/20/17
DW29	CR-46R	3/2/17	Copper, Total	EPA 200.8	=	2.27	0.071	1	ug/L		FGL Env.	3/20/17	3/20/17
DW30	CR-46	5/24/17	Copper, Total	EPA 200.8	=	1.71	0.071	1	ug/L		FGL Env.	6/2/17	6/2/17
DW30	CR-46R	5/24/17	Copper, Total	EPA 200.8	=	4.39	0.071	1	ug/L		FGL Env.	6/2/17	6/2/17
SE61	CR-46	10/14/16	Copper, Total	EPA 200.8	=	43.8	0.071	1	ug/L		FGL Env.	10/24/16	10/29/16
SE61	CR-46R	10/14/16	Copper, Total	EPA 200.8	=	39.8	0.071	1	ug/L		FGL Env.	10/24/16	10/29/16
SE62	CR-46	1/18/17	Copper, Total	EPA 200.8	=	13.9	0.012	1	ug/L	h, P	FGL Env.	1/23/17	1/25/17
SE62	CR-46R	1/18/17	Copper, Total	EPA 200.8	=	5.11	0.012	1	ug/L	h, P	FGL Env.	1/24/17	1/24/17
SE64	CR-46	4/6/17	Copper, Total	EPA 200.8	=	13.9	0.071	1	ug/L	h, P	FGL Env.	4/19/17	4/20/17
SE64	CR-46R	4/6/17	Copper, Total	EPA 200.7	=	5.89	0.071	1	ug/L		FGL Env.	4/19/17	4/19/17

		Date											Analysis
Event	Site Code	Sampled	Analyte	Method	Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Date
DW27	CR-46	8/24/16	Iron	EPA 200.7	=	203	0.97	50	ug/L		FGL Env.	8/31/16	8/31/16
DW27	CR-46R	8/24/16	Iron	EPA 200.7	=	415	0.97	50	ug/L		FGL Env.	8/31/16	8/31/16
DW28	CR-46	12/5/16	Iron	EPA 200.7	=	92.8	0.97	50	ug/L		FGL Env.	12/7/16	12/7/16
DW28	CR-46R	12/5/16	Iron	EPA 200.7	=	348	0.97	50	ug/L		FGL Env.	12/7/16	12/7/16
DW29	CR-46	3/2/17	Iron	EPA 200.7	=	1420	0.97	50	ug/L		FGL Env.	3/7/17	3/7/17
DW29	CR-46R	3/2/17	Iron	EPA 200.7	=	259	0.97	50	ug/L		FGL Env.	3/7/17	3/7/17
DW30	CR-46	5/24/17	Iron	EPA 200.7	=	110	0.97	50	ug/L		FGL Env.	6/2/17	6/5/17
DW30	CR-46R	5/24/17	Iron	EPA 200.7	=	639	0.97	50	ug/L		FGL Env.	6/5/17	6/5/17
SE61	CR-46	10/14/16	Iron	EPA 200.7	=	4120	0.97	50	ug/L	Р	FGL Env.	10/21/16	10/24/16
SE61	CR-46R	10/14/16	Iron	EPA 200.7	=	2970	0.97	50	ug/L	Р	FGL Env.	10/21/16	10/24/16
SE62	CR-46	1/18/17	Iron	EPA 200.7	=	2690	0.97	50	ug/L	ļ	FGL Env.	1/24/17	1/24/17
SE62	CR-46R	1/18/17	Iron	EPA 200.7	=	1150	0.97	50	ug/L	I	FGL Env.	1/24/17	1/24/17
SE64	CR-46	4/6/17	Iron	EPA 200.7	=	1600	0.97	50	ug/L		FGL Env.	4/18/17	4/19/17
SE64	CR-46R	4/6/17	Iron	EPA 200.7	=	803	0.97	50	ug/L		FGL Env.	4/19/17	4/19/17
DW27	CR-46	8/24/16	Lead, Dissolved	EPA 200.8	=	0.121	0.015	0.2	ug/L	J	FGL Env.	8/29/16	8/29/16
DW27	CR-46R	8/24/16	Lead, Dissolved	EPA 200.8	=	0.032	0.015	0.2	ug/L	J	FGL Env.	8/29/16	8/29/16
DW28	CR-46	12/5/16	Lead, Dissolved	EPA 200.8	=	0.121	0.036	0.2	ug/L	J	FGL Env.	12/8/16	12/8/16
DW28	CR-46R	12/5/16	Lead, Dissolved	EPA 200.8	=	0.047	0.036	0.2	ug/L	J	FGL Env.	12/8/16	12/8/16
DW29	CR-46	3/2/17	Lead, Dissolved	EPA 200.8	=	0.035	0.015	0.2	ug/L	J	FGL Env.	3/4/17	3/4/17
DW29	CR-46R	3/2/17	Lead, Dissolved	EPA 200.8	=	0.036	0.015	0.2	ug/L	J	FGL Env.	3/4/17	3/4/17
DW30	CR-46	5/24/17	Lead, Dissolved	EPA 200.8	<	0.015	0.015	0.2	ug/L	U, ND	FGL Env.	5/26/17	5/26/17
DW30	CR-46R	5/24/17	Lead, Dissolved	EPA 200.8	=	0.018	0.015	0.2	ug/L	J	FGL Env.	5/26/17	5/26/17
SE61	CR-46	10/14/16	Lead, Dissolved	EPA 200.8	=	0.852	0.036	0.2	ug/L		FGL Env.	10/19/16	10/19/16
SE61	CR-46R	10/14/16	Lead, Dissolved	EPA 200.8	=	0.93	0.036	0.2	ug/L		FGL Env.	10/19/16	10/19/16
SE62	CR-46	1/18/17	Lead, Dissolved	EPA 200.8	=	0.211	0.036	0.2	ug/L		FGL Env.	1/25/17	1/25/17
SE62	CR-46R	1/18/17	Lead, Dissolved	EPA 200.8	=	0.073	0.036	0.2	ug/L	J	FGL Env.	1/25/17	1/25/17
SE64	CR-46	4/6/17	Lead, Dissolved	EPA 200.8	=	0.085	0.015	0.2	ug/L	J	FGL Env.	4/11/17	4/11/17
SE64	CR-46R	4/6/17	Lead, Dissolved	EPA 200.8	=	0.04	0.015	0.2	ug/L	J	FGL Env.	4/11/17	4/11/17
DW27	CR-46	8/24/16	Lead, Total	EPA 200.8	=	1.19	0.013	0.2	ug/L	I	FGL Env.	9/1/16	9/6/16
DW27	CR-46R	8/24/16	Lead, Total	EPA 200.8	=	3.73	0.013	0.2	ug/L	I	FGL Env.	9/1/16	9/6/16
DW28	CR-46	12/5/16	Lead, Total	EPA 200.7	<	2.7	2.7	10	ug/L	U, ND	FGL Env.	12/7/16	12/7/16
DW28	CR-46R	12/5/16	Lead, Total	EPA 200.7	=	3.89	2.7	10	ug/L	J	FGL Env.	12/7/16	12/7/16

					-	-							
		Date											Analysis
Event	Site Code	Sampled	Analyte	Method	Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Date
DW29	CR-46	3/2/17	Lead, Total	EPA 200.8	=	1.4	0.013	0.2	ug/L		FGL Env.	3/20/17	3/20/17
DW29	CR-46R	3/2/17	Lead, Total	EPA 200.8	=	0.465	0.013	0.2	ug/L		FGL Env.	3/20/17	3/20/17
DW30	CR-46	5/24/17	Lead, Total	EPA 200.8	=	0.409	0.013	0.2	ug/L		FGL Env.	6/2/17	6/2/17
DW30	CR-46R	5/24/17	Lead, Total	EPA 200.8	=	0.437	0.013	0.2	ug/L		FGL Env.	6/2/17	6/2/17
SE61	CR-46	10/14/16	Lead, Total	EPA 200.8	=	18.2	0.013	0.2	ug/L		FGL Env.	10/24/16	10/29/16
SE61	CR-46R	10/14/16	Lead, Total	EPA 200.8	=	8.37	0.013	0.2	ug/L		FGL Env.	10/24/16	10/29/16
SE62	CR-46	1/18/17	Lead, Total	EPA 200.8	=	6.6	0.016	0.2	ug/L	h, P	FGL Env.	1/23/17	1/25/17
SE62	CR-46R	1/18/17	Lead, Total	EPA 200.8	=	1.1	0.016	0.2	ug/L	h, P	FGL Env.	1/23/17	1/25/17
SE64	CR-46	4/6/17	Lead, Total	EPA 200.8	=	5.48	0.013	0.2	ug/L	h, P	FGL Env.	4/19/17	4/20/17
SE64	CR-46R	4/6/17	Lead, Total	EPA 200.8	=	1.52	0.013	0.2	ug/L		FGL Env.	4/21/17	4/21/17
DW27	CR-46	8/24/16	Zinc	EPA 200.8	=	33	0.1	10	ug/L	Р	FGL Env.	9/1/16	9/6/16
DW27	CR-46R	8/24/16	Zinc	EPA 200.8	=	6.48	0.1	10	ug/L	JP	FGL Env.	9/1/16	9/6/16
DW28	CR-46	12/5/16	Zinc	EPA 200.8	=	61.1	0.11	10	ug/L	I, P	FGL Env.	12/7/16	12/14/16
DW28	CR-46R	12/5/16	Zinc	EPA 200.8	=	11	0.11	10	ug/L	I, P	FGL Env.	12/7/16	12/14/16
DW29	CR-46	3/2/17	Zinc	EPA 200.8	=	16.6	0.1	10	ug/L	I, P	FGL Env.	3/20/17	3/20/17
DW29	CR-46R	3/2/17	Zinc	EPA 200.8	=	97.9	0.1	10	ug/L	I, P	FGL Env.	3/20/17	3/20/17
DW30	CR-46	5/24/17	Zinc	EPA 200.8	=	39.5	0.1	10	ug/L	h	FGL Env.	6/2/17	6/2/17
DW30	CR-46R	5/24/17	Zinc	EPA 200.8	=	16	0.1	10	ug/L	h	FGL Env.	6/2/17	6/2/17
SE61	CR-46	10/14/16	Zinc	EPA 200.8	=	377	0.1	10	ug/L	Р	FGL Env.	10/24/16	10/29/16
SE61	CR-46R	10/14/16	Zinc	EPA 200.8	=	209	0.1	10	ug/L	Р	FGL Env.	10/24/16	10/29/16
SE62	CR-46	1/18/17	Zinc	EPA 200.8	=	128	0.11	10	ug/L	h, P	FGL Env.	1/23/17	1/25/17
SE62	CR-46R	1/18/17	Zinc	EPA 200.8	=	16.7	0.11	10	ug/L	h, P	FGL Env.	1/23/17	1/25/17
SE64	CR-46	4/6/17	Zinc	EPA 200.8	=	140	0.1	10	ug/L		FGL Env.	4/19/17	4/20/17
SE64	CR-46R	4/6/17	Zinc	EPA 200.8	=	25.9	0.1	10	ug/L	h, P	FGL Env.	4/21/17	4/21/17
DW27	CR-46	8/24/16	Chlorpyrifos	EPA 8270M_NCI	<	0.5	0.5	1	ng/L	ND	Caltest	8/26/16	8/31/16
DW27	CR-46R	8/24/16	Chlorpyrifos	EPA 8270M_NCI	=	0.6	0.5	1	ng/L	J	Caltest	8/26/16	8/31/16
DW27	CR-42	8/24/16	Chlorpyrifos	EPA 8270M_NCI	<	0.5	0.5	1	ng/L	ND	Caltest	8/26/16	8/31/16
DW27	CR-41	8/24/16	Chlorpyrifos	EPA 8270M_NCI	<	0.5	0.5	1	ng/L	ND	Caltest	8/26/16	8/31/16
DW27	CR-41R	8/24/16	Chlorpyrifos	EPA 8270M_NCI	<	0.5	0.5	1	ng/L	ND	Caltest	8/26/16	8/31/16
DW27	CR-39	8/24/16	Chlorpyrifos	EPA 8270M_NCI	<	0.6	0.6	1.1	ng/L	ND	Caltest	8/26/16	9/1/16
DW27	CR-39R	8/24/16	Chlorpyrifos	EPA 8270M_NCI	<	0.5	0.5	1	ng/L	ND	Caltest	8/26/16	9/1/16
DW28	CR-46	12/5/16	Chlorpyrifos	EPA 8270M_NCI	<	0.5	0.5	1	ng/L	ND	Caltest	12/8/16	12/31/16
DW28	CR-46R	12/5/16	Chlorpyrifos	EPA 8270M_NCI	<	0.5	0.5	1	ng/L	ND	Caltest	12/8/16	12/31/16

		Date											Analysis
Event	Site Code	Sampled	Analyte	Method	Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Date
DW28	CR-42	12/5/16	Chlorpyrifos	EPA 8270M_NCI	<	0.5	0.5	1	ng/L	ND	Caltest	12/8/16	12/31/16
DW28	CR-41	12/5/16	Chlorpyrifos	EPA 8270M_NCI	<	0.5	0.5	1	ng/L	ND	Caltest	12/8/16	12/31/16
DW28	CR-41R	12/5/16	Chlorpyrifos	EPA 8270M_NCI	<	0.5	0.5	1	ng/L	ND	Caltest	12/8/16	12/31/16
DW28	CR-39	12/5/16	Chlorpyrifos	EPA 8270M_NCI	<	0.5	0.5	1	ng/L	ND	Caltest	12/8/16	12/31/16
DW28	CR-39R	12/5/16	Chlorpyrifos	EPA 8270M_NCI	<	0.5	0.5	1	ng/L	ND	Caltest	12/8/16	12/31/16
DW29	CR-1R	3/2/17	Chlorpyrifos	EPA 8270M_NCI	<	0.5	0.5	1	ng/L	ND	Caltest	3/3/17	3/15/17
DW29	CR-46	3/2/17	Chlorpyrifos	EPA 8270M_NCI	=	0.6	0.5	1	ng/L	J	Caltest	3/3/17	3/15/17
DW29	CR-46R	3/2/17	Chlorpyrifos	EPA 8270M_NCI	<	0.5	0.5	1	ng/L	ND	Caltest	3/3/17	3/15/17
DW29	CR-42	3/2/17	Chlorpyrifos	EPA 8270M_NCI	=	0.6	0.5	1	ng/L	J	Caltest	3/3/17	3/15/17
DW29	CR-41	3/2/17	Chlorpyrifos	EPA 8270M_NCI	<	0.5	0.5	1	ng/L	ND	Caltest	3/3/17	3/15/17
DW29	CR-41R	3/2/17	Chlorpyrifos	EPA 8270M_NCI	<	0.5	0.5	1	ng/L	ND	Caltest	3/3/17	3/15/17
DW29	CR-39	3/2/17	Chlorpyrifos	EPA 8270M_NCI	=	0.6	0.5	1	ng/L	J	Caltest	3/3/17	3/15/17
DW29	CR-39R	3/2/17	Chlorpyrifos	EPA 8270M_NCI	<	0.5	0.5	1	ng/L	ND	Caltest	3/3/17	3/15/17
DW30	CR-1R	5/24/17	Chlorpyrifos	EPA 8270M_NCI	=	1.1	0.5	1	ng/L		Caltest	5/25/17	6/20/17
DW30	CR-46	5/24/17	Chlorpyrifos	EPA 8270M_NCI	<	0.6	0.6	1.2	ng/L	ND	Caltest	5/25/17	6/20/17
DW30	CR-46R	5/24/17	Chlorpyrifos	EPA 8270M_NCI	<	0.5	0.5	1	ng/L	ND	Caltest	5/25/17	6/20/17
DW30	CR-42	5/24/17	Chlorpyrifos	EPA 8270M_NCI	=	0.6	0.6	1.1	ng/L	J	Caltest	5/25/17	6/20/17
DW30	CR-41	5/24/17	Chlorpyrifos	EPA 8270M_NCI	<	0.5	0.5	1	ng/L	ND	Caltest	5/25/17	6/20/17
DW30	CR-41R	5/24/17	Chlorpyrifos	EPA 8270M_NCI	<	0.5	0.5	1	ng/L	ND	Caltest	5/25/17	6/20/17
DW30	CR-39	5/24/17	Chlorpyrifos	EPA 8270M_NCI	<	0.5	0.5	1	ng/L	ND	Caltest	5/25/17	6/20/17
DW30	CR-39R	5/24/17	Chlorpyrifos	EPA 8270M_NCI	<	0.5	0.5	1	ng/L	ND	Caltest	5/25/17	6/20/17
SE61	CR-39	10/14/16	Chlorpyrifos	EPA 8270M_NCI	<	2	2	5	ng/L	ND	Caltest	10/17/16	11/20/16
SE61	CR-39R	10/14/16	Chlorpyrifos	EPA 8270M_NCI	<	2	2	5	ng/L	ND	Caltest	10/17/16	11/20/16
SE61	CR-41	10/14/16	Chlorpyrifos	EPA 8270M_NCI	=	36	10	20	ng/L		Caltest	10/17/16	11/21/16
SE61	CR-41R	10/14/16	Chlorpyrifos	EPA 8270M_NCI	<	0.5	0.5	1	ng/L	ND	Caltest	10/17/16	10/29/16
SE61	CR-42	10/14/16	Chlorpyrifos	EPA 8270M_NCI	<	5	5	10	ng/L	ND	Caltest	10/17/16	11/21/16
SE61	CR-46	10/14/16	Chlorpyrifos	EPA 8270M_NCI	<	2	2	5	ng/L	ND	Caltest	10/17/16	11/19/16
SE61	CR-46R	10/14/16	Chlorpyrifos	EPA 8270M_NCI	<	2	2	5	ng/L	ND	Caltest	10/17/16	11/19/16
SE61	NW-RAIN	10/14/16	Chlorpyrifos	EPA 8270M_NCI	<	2	2	5	ng/L	ND	Caltest	10/17/16	11/20/16
SE61	NE-RAIN	10/14/16	Chlorpyrifos	EPA 8270M_NCI	=	5.7	0.5	1	ng/L		Caltest	10/17/16	10/29/16
SE61	SC-1 RAIN	10/14/16	Chlorpyrifos	EPA 8270M_NCI	<	0.5	0.5	1	ng/L	ND	Caltest	10/17/16	10/29/16
SE62	CR-1R	1/18/17	Chlorpyrifos	EPA 8270M_NCI	<	0.5	0.5	1	ng/L	ND	Caltest	1/20/17	2/8/17
SE62	CR-39	1/18/17	Chlorpyrifos	EPA 8270M_NCI	=	1.9	0.5	1	ng/L		Caltest	1/20/17	2/8/17
SE62	CR-39R	1/18/17	Chlorpyrifos	EPA 8270M_NCI	<	0.5	0.5	1	ng/L	ND	Caltest	1/20/17	2/8/17

		Date											Analysis
Event	Site Code	Sampled	Analyte	Method	Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Date
SE62	CR-41	1/18/17	Chlorpyrifos	EPA 8270M_NCI	=	4.2	0.5	1	ng/L		Caltest	1/20/17	2/8/17
SE62	CR-41R	1/18/17	Chlorpyrifos	EPA 8270M_NCI	=	0.7	0.5	1	ng/L	J	Caltest	1/20/17	2/8/17
SE62	CR-42	1/18/17	Chlorpyrifos	EPA 8270M_NCI	=	6	0.5	1	ng/L		Caltest	1/20/17	2/8/17
SE62	CR-46	1/18/17	Chlorpyrifos	EPA 8270M_NCI	=	4.6	0.5	1	ng/L		Caltest	1/20/17	2/8/17
SE62	CR-46R	1/18/17	Chlorpyrifos	EPA 8270M_NCI	=	0.6	0.5	1	ng/L	J	Caltest	1/20/17	2/8/17
SE62	NE-RAIN	1/18/17	Chlorpyrifos	EPA 8270M_NCI	=	12	0.5	1	ng/L		Caltest	1/20/17	2/8/17
SE62	NW-RAIN	1/18/17	Chlorpyrifos	EPA 8270M_NCI	=	7.3	0.5	1	ng/L		Caltest	1/20/17	2/8/17
SE62	SC-1 RAIN	1/18/17	Chlorpyrifos	EPA 8270M_NCI	=	8.7	0.5	1	ng/L		Caltest	1/20/17	2/8/17
SE64	CR-1R	4/6/17	Chlorpyrifos	EPA 8270M_NCI	=	0.5	0.5	1	ng/L	J	Caltest	4/7/17	4/29/17
SE64	CR-39	4/6/17	Chlorpyrifos	EPA 8270M_NCI	=	2.3	0.5	1	ng/L		Caltest	4/7/17	4/29/17
SE64	CR-39R	4/6/17	Chlorpyrifos	EPA 8270M_NCI	<	0.5	0.5	1	ng/L	ND	Caltest	4/7/17	4/29/17
SE64	CR-41	4/6/17	Chlorpyrifos	EPA 8270M_NCI	=	6.8	1	2	ng/L		Caltest	4/7/17	5/3/17
SE64	CR-41R	4/6/17	Chlorpyrifos	EPA 8270M_NCI	=	0.5	0.5	1	ng/L	J	Caltest	4/7/17	4/29/17
SE64	CR-42	4/6/17	Chlorpyrifos	EPA 8270M_NCI	=	5.9	0.5	1	ng/L		Caltest	4/7/17	5/3/17
SE64	CR-46	4/6/17	Chlorpyrifos	EPA 8270M_NCI	=	6.5	0.5	1	ng/L		Caltest	4/7/17	4/29/17
SE64	CR-46R	4/6/17	Chlorpyrifos	EPA 8270M_NCI	=	1.3	0.5	1	ng/L		Caltest	4/7/17	4/29/17
SE64	NE-RAIN	4/6/17	Chlorpyrifos	EPA 8270M_NCI	=	11	0.5	1	ng/L		Caltest	4/7/17	4/29/17
SE64	NW-RAIN	4/6/17	Chlorpyrifos	EPA 8270M_NCI	=	18	0.5	1	ng/L		Caltest	4/7/17	4/29/17
SE64	SC-1 RAIN	4/6/17	Chlorpyrifos	EPA 8270M_NCI	=	24	0.5	1	ng/L		Caltest	4/7/17	4/29/17
DW28	CR-46	12/5/16	Diazinon	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	12/8/16	12/31/16
DW28	CR-46R	12/5/16	Diazinon	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	12/8/16	12/31/16
DW28	CR-42	12/5/16	Diazinon	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	12/8/16	12/31/16
DW28	CR-41	12/5/16	Diazinon	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	12/8/16	12/31/16
DW28	CR-41R	12/5/16	Diazinon	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	12/8/16	12/31/16
DW28	CR-39	12/5/16	Diazinon	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	12/8/16	12/31/16
DW28	CR-39R	12/5/16	Diazinon	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	12/8/16	12/31/16
SE61	NW-RAIN	10/14/16	Diazinon	EPA 8270M_NCI	<	0.5	0.5	2.5	ng/L	ND	Caltest	10/17/16	11/20/16
SE61	NE-RAIN	10/14/16	Diazinon	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	10/17/16	10/29/16
SE61	SC-1 RAIN	10/14/16	Diazinon	EPA 8270M_NCI	=	12	0.1	0.5	ng/L		Caltest	10/17/16	10/29/16
SE62	NE-RAIN	1/18/17	Diazinon	EPA 8270M_NCI	=	9.8	0.1	0.5	ng/L		Caltest	1/20/17	2/8/17
SE62	NW-RAIN	1/18/17	Diazinon	EPA 8270M_NCI	=	9.8	0.1	0.5	ng/L		Caltest	1/20/17	2/8/17
SE62	SC-1 RAIN	1/18/17	Diazinon	EPA 8270M_NCI	=	15	0.1	0.5	ng/L		Caltest	1/20/17	2/8/17
SE64	NE-RAIN	4/6/17	Diazinon	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	4/7/17	4/29/17
SE64	NW-RAIN	4/6/17	Diazinon	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	4/7/17	4/29/17

		Date											Analysis
Event	Site Code	Sampled	Analyte	Method	Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Date
SE64	SC-1 RAIN	4/6/17	Diazinon	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	4/7/17	4/29/17
DW27	CR-46	8/24/16	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	8/26/16	8/31/16
DW27	CR-46R	8/24/16	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	8/26/16	8/31/16
DW27	CR-42	8/24/16	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	8/26/16	8/31/16
DW27	CR-41	8/24/16	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	8/26/16	8/31/16
DW27	CR-41R	8/24/16	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	8/26/16	8/31/16
DW27	CR-39	8/24/16	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.6	ng/L	ND, 1	Caltest	8/26/16	9/1/16
DW27	CR-39R	8/24/16	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	8/26/16	9/1/16
DW28	CR-46	12/5/16	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	12/8/16	12/31/16
DW28	CR-46R	12/5/16	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	12/8/16	12/31/16
DW28	CR-42	12/5/16	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	12/8/16	12/31/16
DW28	CR-41	12/5/16	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	12/8/16	12/31/16
DW28	CR-41R	12/5/16	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	12/8/16	12/31/16
DW28	CR-39	12/5/16	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	12/8/16	12/31/16
DW28	CR-39R	12/5/16	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	12/8/16	12/31/16
DW29	CR-1R	3/2/17	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND, 1	Caltest	3/3/17	3/15/17
DW29	CR-46	3/2/17	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND, 1	Caltest	3/3/17	3/15/17
DW29	CR-46R	3/2/17	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND, 1	Caltest	3/3/17	3/15/17
DW29	CR-42	3/2/17	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND, 1	Caltest	3/3/17	3/15/17
DW29	CR-41	3/2/17	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND, 1	Caltest	3/3/17	3/15/17
DW29	CR-41R	3/2/17	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND, 1	Caltest	3/3/17	3/15/17
DW29	CR-39	3/2/17	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND, 1	Caltest	3/3/17	3/15/17
DW29	CR-39R	3/2/17	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND, 1	Caltest	3/3/17	3/15/17
DW30	CR-1R	5/24/17	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	5/25/17	6/20/17
DW30	CR-46	5/24/17	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.6	ng/L	ND, 1	Caltest	5/25/17	6/20/17
DW30	CR-46R	5/24/17	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	5/25/17	6/20/17
DW30	CR-42	5/24/17	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.6	ng/L	ND, 1	Caltest	5/25/17	6/20/17
DW30	CR-41	5/24/17	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	5/25/17	6/20/17
DW30	CR-41R	5/24/17	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	5/25/17	6/20/17
DW30	CR-39	5/24/17	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	5/25/17	6/20/17
DW30	CR-39R	5/24/17	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	5/25/17	6/20/17
SE61	CR-39	10/14/16	Allethrin	EPA 8270M_NCI	<	0.5	0.5	2.5	ng/L	ND, 1	Caltest	10/17/16	11/20/16
SE61	CR-39R	10/14/16	Allethrin	EPA 8270M_NCI	<	0.5	0.5	2.5	ng/L	ND, 1	Caltest	10/17/16	11/20/16
SE61	CR-41	10/14/16	Allethrin	EPA 8270M_NCI	<	2	2	10	ng/L	ND, 1, 3	Caltest	10/17/16	11/21/16

		Date											Analysis
Event	Site Code	Sampled	Analyte	Method	Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Date
SE61	CR-41R	10/14/16	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	10/17/16	10/29/16
SE61	CR-42	10/14/16	Allethrin	EPA 8270M_NCI	<	1	1	5	ng/L	ND, 1, 3	Caltest	10/17/16	11/21/16
SE61	CR-46	10/14/16	Allethrin	EPA 8270M_NCI	<	0.5	0.5	2.5	ng/L	ND, 1	Caltest	10/17/16	11/19/16
SE61	CR-46R	10/14/16	Allethrin	EPA 8270M_NCI	<	0.5	0.5	2.5	ng/L	ND, 1	Caltest	10/17/16	11/19/16
SE61	NW-RAIN	10/14/16	Allethrin	EPA 8270M_NCI	<	0.5	0.5	2.5	ng/L	ND, 1	Caltest	10/17/16	11/20/16
SE61	NE-RAIN	10/14/16	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	10/17/16	10/29/16
SE61	SC-1 RAIN	10/14/16	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	10/17/16	10/29/16
SE62	CR-1R	1/18/17	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND, 1	Caltest	1/20/17	2/8/17
SE62	CR-39	1/18/17	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND, 1	Caltest	1/20/17	2/8/17
SE62	CR-39R	1/18/17	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND, 1	Caltest	1/20/17	2/8/17
SE62	CR-41	1/18/17	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND, 1	Caltest	1/20/17	2/8/17
SE62	CR-41R	1/18/17	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND, 1	Caltest	1/20/17	2/8/17
SE62	CR-42	1/18/17	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND, 1	Caltest	1/20/17	2/8/17
SE62	CR-46	1/18/17	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND, 1	Caltest	1/20/17	2/8/17
SE62	CR-46R	1/18/17	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND, 1	Caltest	1/20/17	2/8/17
SE62	NE-RAIN	1/18/17	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND, 1	Caltest	1/20/17	2/8/17
SE62	NW-RAIN	1/18/17	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND, 1	Caltest	1/20/17	2/8/17
SE62	SC-1 RAIN	1/18/17	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND, 1, 2	Caltest	1/20/17	2/8/17
SE64	CR-1R	4/6/17	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	4/7/17	4/29/17
SE64	CR-39	4/6/17	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	4/7/17	4/29/17
SE64	CR-39R	4/6/17	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	4/7/17	4/29/17
SE64	CR-41	4/6/17	Allethrin	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	4/7/17	5/3/17
SE64	CR-41R	4/6/17	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	4/7/17	4/29/17
SE64	CR-42	4/6/17	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	4/7/17	5/3/17
SE64	CR-46	4/6/17	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	4/7/17	4/29/17
SE64	CR-46R	4/6/17	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND,1	Caltest	4/7/17	4/29/17
SE64	NE-RAIN	4/6/17	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND,1	Caltest	4/7/17	4/29/17
SE64	NW-RAIN	4/6/17	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND,1,5	Caltest	4/7/17	4/29/17
SE64	SC-1 RAIN	4/6/17	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND,1, 5	Caltest	4/7/17	4/29/17
DW27	CR-46	8/24/16	Bifenthrin	EPA 8270M_NCI	=	2	0.1	0.5	ng/L		Caltest	8/26/16	8/31/16
DW27	CR-46R	8/24/16	Bifenthrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	8/26/16	8/31/16
DW27	CR-42	8/24/16	Bifenthrin	EPA 8270M_NCI	=	1.3	0.1	0.5	ng/L		Caltest	8/26/16	8/31/16
DW27	CR-41	8/24/16	Bifenthrin	EPA 8270M_NCI	=	0.5	0.1	0.5	ng/L		Caltest	8/26/16	8/31/16
DW27	CR-41R	8/24/16	Bifenthrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	8/26/16	8/31/16

		Date											Analysis
Event	Site Code	Sampled	Analyte	Method	Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Date
DW27	CR-39	8/24/16	Bifenthrin	EPA 8270M_NCI	=	0.4	0.1	0.6	ng/L	J	Caltest	8/26/16	9/1/16
DW27	CR-39R	8/24/16	Bifenthrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	8/26/16	9/1/16
DW28	CR-46	12/5/16	Bifenthrin	EPA 8270M_NCI	=	0.3	0.1	0.5	ng/L	J	Caltest	12/8/16	12/31/16
DW28	CR-46R	12/5/16	Bifenthrin	EPA 8270M_NCI	=	0.2	0.1	0.5	ng/L	J	Caltest	12/8/16	12/31/16
DW28	CR-42	12/5/16	Bifenthrin	EPA 8270M_NCI	=	0.9	0.1	0.5	ng/L		Caltest	12/8/16	12/31/16
DW28	CR-41	12/5/16	Bifenthrin	EPA 8270M_NCI	=	0.9	0.1	0.5	ng/L		Caltest	12/8/16	12/31/16
DW28	CR-41R	12/5/16	Bifenthrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	12/8/16	12/31/16
DW28	CR-39	12/5/16	Bifenthrin	EPA 8270M_NCI	=	0.3	0.1	0.5	ng/L	J	Caltest	12/8/16	12/31/16
DW28	CR-39R	12/5/16	Bifenthrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	12/8/16	12/31/16
DW29	CR-1R	3/2/17	Bifenthrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	3/3/17	3/15/17
DW29	CR-46	3/2/17	Bifenthrin	EPA 8270M_NCI	=	0.6	0.1	0.5	ng/L		Caltest	3/3/17	3/15/17
DW29	CR-46R	3/2/17	Bifenthrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	3/3/17	3/15/17
DW29	CR-42	3/2/17	Bifenthrin	EPA 8270M_NCI	=	0.9	0.1	0.5	ng/L		Caltest	3/3/17	3/15/17
DW29	CR-41	3/2/17	Bifenthrin	EPA 8270M_NCI	=	0.5	0.1	0.5	ng/L		Caltest	3/3/17	3/15/17
DW29	CR-41R	3/2/17	Bifenthrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	3/3/17	3/15/17
DW29	CR-39	3/2/17	Bifenthrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	3/3/17	3/15/17
DW29	CR-39R	3/2/17	Bifenthrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	3/3/17	3/15/17
DW30	CR-1R	5/24/17	Bifenthrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	5/25/17	6/20/17
DW30	CR-46	5/24/17	Bifenthrin	EPA 8270M_NCI	=	2.4	0.1	0.6	ng/L		Caltest	5/25/17	6/20/17
DW30	CR-46R	5/24/17	Bifenthrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	5/25/17	6/20/17
DW30	CR-42	5/24/17	Bifenthrin	EPA 8270M_NCI	=	1.2	0.1	0.6	ng/L		Caltest	5/25/17	6/20/17
DW30	CR-41	5/24/17	Bifenthrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	5/25/17	6/20/17
DW30	CR-41R	5/24/17	Bifenthrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	5/25/17	6/20/17
DW30	CR-39	5/24/17	Bifenthrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	5/25/17	6/20/17
DW30	CR-39R	5/24/17	Bifenthrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	5/25/17	6/20/17
SE61	CR-39	10/14/16	Bifenthrin	EPA 8270M_NCI	=	220	0.5	2.5	ng/L		Caltest	10/17/16	11/20/16
SE61	CR-39R	10/14/16	Bifenthrin	EPA 8270M_NCI	=	22	0.5	2.5	ng/L		Caltest	10/17/16	11/20/16
SE61	CR-41	10/14/16	Bifenthrin	EPA 8270M_NCI	=	72	2	10	ng/L		Caltest	10/17/16	11/21/16
SE61	CR-41R	10/14/16	Bifenthrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	10/17/16	10/29/16
SE61	CR-42	10/14/16	Bifenthrin	EPA 8270M_NCI	=	25	1	5	ng/L		Caltest	10/17/16	11/21/16
SE61	CR-46	10/14/16	Bifenthrin	EPA 8270M_NCI	=	6.7	0.5	2.5	ng/L		Caltest	10/17/16	11/19/16
SE61	CR-46R	10/14/16	Bifenthrin	EPA 8270M_NCI	=	11	0.5	2.5	ng/L		Caltest	10/17/16	11/19/16
SE61	NW-RAIN	10/14/16	Bifenthrin	EPA 8270M_NCI	=	2.3	0.5	2.5	ng/L	J	Caltest	10/17/16	11/20/16
SE61	NE-RAIN	10/14/16	Bifenthrin	EPA 8270M_NCI	=	2.7	0.1	0.5	ng/L		Caltest	10/17/16	10/29/16

		Date											Analysis
Event	Site Code	Sampled	Analyte	Method	Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Date
SE61	SC-1 RAIN	10/14/16	Bifenthrin	EPA 8270M_NCI	=	1.3	0.1	0.5	ng/L		Caltest	10/17/16	10/29/16
SE62	CR-1R	1/18/17	Bifenthrin	EPA 8270M_NCI	=	0.3	0.1	0.5	ng/L	J	Caltest	1/20/17	2/8/17
SE62	CR-39	1/18/17	Bifenthrin	EPA 8270M_NCI	=	15	0.1	0.5	ng/L		Caltest	1/20/17	2/8/17
SE62	CR-39R	1/18/17	Bifenthrin	EPA 8270M_NCI	=	1.1	0.1	0.5	ng/L		Caltest	1/20/17	2/8/17
SE62	CR-41	1/18/17	Bifenthrin	EPA 8270M_NCI	=	33	0.1	0.5	ng/L		Caltest	1/20/17	2/8/17
SE62	CR-41R	1/18/17	Bifenthrin	EPA 8270M_NCI	=	1.8	0.1	0.5	ng/L		Caltest	1/20/17	2/8/17
SE62	CR-42	1/18/17	Bifenthrin	EPA 8270M_NCI	=	14	0.1	0.5	ng/L		Caltest	1/20/17	2/8/17
SE62	CR-46	1/18/17	Bifenthrin	EPA 8270M_NCI	=	20	0.1	0.5	ng/L		Caltest	1/20/17	2/8/17
SE62	CR-46R	1/18/17	Bifenthrin	EPA 8270M_NCI	=	0.7	0.1	0.5	ng/L		Caltest	1/20/17	2/8/17
SE62	NE-RAIN	1/18/17	Bifenthrin	EPA 8270M_NCI	=	0.4	0.1	0.5	ng/L	J	Caltest	1/20/17	2/8/17
SE62	NW-RAIN	1/18/17	Bifenthrin	EPA 8270M_NCI	=	0.3	0.1	0.5	ng/L	J	Caltest	1/20/17	2/8/17
SE62	SC-1 RAIN	1/18/17	Bifenthrin	EPA 8270M_NCI	=	0.5	0.1	0.5	ng/L		Caltest	1/20/17	2/8/17
SE64	CR-1R	4/6/17	Bifenthrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	4/7/17	4/29/17
SE64	CR-39	4/6/17	Bifenthrin	EPA 8270M_NCI	=	11	0.1	0.5	ng/L		Caltest	4/7/17	4/29/17
SE64	CR-39R	4/6/17	Bifenthrin	EPA 8270M_NCI	=	0.4	0.1	0.5	ng/L	J	Caltest	4/7/17	4/29/17
SE64	CR-41	4/6/17	Bifenthrin	EPA 8270M_NCI	=	6.8	0.2	1	ng/L		Caltest	4/7/17	5/3/17
SE64	CR-41R	4/6/17	Bifenthrin	EPA 8270M_NCI	=	0.5	0.1	0.5	ng/L		Caltest	4/7/17	4/29/17
SE64	CR-42	4/6/17	Bifenthrin	EPA 8270M_NCI	=	13	0.1	0.5	ng/L		Caltest	4/7/17	5/3/17
SE64	CR-46	4/6/17	Bifenthrin	EPA 8270M_NCI	=	9.5	0.1	0.5	ng/L		Caltest	4/7/17	4/29/17
SE64	CR-46R	4/6/17	Bifenthrin	EPA 8270M_NCI	=	3.1	0.1	0.5	ng/L		Caltest	4/7/17	4/29/17
SE64	NE-RAIN	4/6/17	Bifenthrin	EPA 8270M_NCI	=	2.8	0.1	0.5	ng/L		Caltest	4/7/17	4/29/17
SE64	NW-RAIN	4/6/17	Bifenthrin	EPA 8270M_NCI	=	1.6	0.1	0.5	ng/L		Caltest	4/7/17	4/29/17
SE64	SC-1 RAIN	4/6/17	Bifenthrin	EPA 8270M_NCI	=	1.6	0.1	0.5	ng/L		Caltest	4/7/17	4/29/17
DW27	CR-46	8/24/16	Cyfluthrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	8/26/16	8/31/16
DW27	CR-46R	8/24/16	Cyfluthrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	8/26/16	8/31/16
DW27	CR-42	8/24/16	Cyfluthrin	EPA 8270M_NCI	=	0.9	0.2	0.5	ng/L		Caltest	8/26/16	8/31/16
DW27	CR-41	8/24/16	Cyfluthrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	8/26/16	8/31/16
DW27	CR-41R	8/24/16	Cyfluthrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	8/26/16	8/31/16
DW27	CR-39	8/24/16	Cyfluthrin	EPA 8270M_NCI	<	0.2	0.2	0.6	ng/L	ND	Caltest	8/26/16	9/1/16
DW27	CR-39R	8/24/16	Cyfluthrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	8/26/16	9/1/16
DW28	CR-46	12/5/16	Cyfluthrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	12/8/16	12/31/16
DW28	CR-46R	12/5/16	Cyfluthrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	12/8/16	12/31/16
DW28	CR-42	12/5/16	Cyfluthrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	12/8/16	12/31/16
DW28	CR-41	12/5/16	Cyfluthrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	12/8/16	12/31/16

		Date											Analysis
Event	Site Code	Sampled	Analyte	Method	Q	Result	MDL	RL/ML		Flag	Lab Name	Prep Date	Date
DW28	CR-41R	12/5/16	Cyfluthrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	12/8/16	12/31/16
DW28	CR-39	12/5/16	Cyfluthrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	12/8/16	12/31/16
DW28	CR-39R	12/5/16	Cyfluthrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	12/8/16	12/31/16
DW29	CR-1R	3/2/17	Cyfluthrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	3/3/17	3/15/17
DW29	CR-46	3/2/17	Cyfluthrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	3/3/17	3/15/17
DW29	CR-46R	3/2/17	Cyfluthrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	3/3/17	3/15/17
DW29	CR-42	3/2/17	Cyfluthrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	3/3/17	3/15/17
DW29	CR-41	3/2/17	Cyfluthrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	3/3/17	3/15/17
DW29	CR-41R	3/2/17	Cyfluthrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	3/3/17	3/15/17
DW29	CR-39	3/2/17	Cyfluthrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	3/3/17	3/15/17
DW29	CR-39R	3/2/17	Cyfluthrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	3/3/17	3/15/17
DW30	CR-1R	5/24/17	Cyfluthrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	5/25/17	6/20/17
DW30	CR-46	5/24/17	Cyfluthrin	EPA 8270M_NCI	<	0.2	0.2	0.6	ng/L	ND	Caltest	5/25/17	6/20/17
DW30	CR-46R	5/24/17	Cyfluthrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	5/25/17	6/20/17
DW30	CR-42	5/24/17	Cyfluthrin	EPA 8270M_NCI	<	0.2	0.2	0.6	ng/L	ND	Caltest	5/25/17	6/20/17
DW30	CR-41	5/24/17	Cyfluthrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	5/25/17	6/20/17
DW30	CR-41R	5/24/17	Cyfluthrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	5/25/17	6/20/17
DW30	CR-39	5/24/17	Cyfluthrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	5/25/17	6/20/17
DW30	CR-39R	5/24/17	Cyfluthrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	5/25/17	6/20/17
SE61	CR-39	10/14/16	Cyfluthrin	EPA 8270M_NCI	<	1	1	2.5	ng/L	ND	Caltest	10/17/16	11/20/16
SE61	CR-39R	10/14/16	Cyfluthrin	EPA 8270M_NCI	<	1	1	2.5	ng/L	ND	Caltest	10/17/16	11/20/16
SE61	CR-41	10/14/16	Cyfluthrin	EPA 8270M_NCI	<	4	4	10	ng/L	ND	Caltest	10/17/16	11/21/16
SE61	CR-41R	10/14/16	Cyfluthrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	10/17/16	10/29/16
SE61	CR-42	10/14/16	Cyfluthrin	EPA 8270M_NCI	=	4.5	2	5	ng/L	J	Caltest	10/17/16	11/21/16
SE61	CR-46	10/14/16	Cyfluthrin	EPA 8270M_NCI	=	1.5	1	2.5	ng/L	J	Caltest	10/17/16	11/19/16
SE61	CR-46R	10/14/16	Cyfluthrin	EPA 8270M_NCI	=	2.3	1	2.5	ng/L	J	Caltest	10/17/16	11/19/16
SE61	NW-RAIN	10/14/16	Cyfluthrin	EPA 8270M_NCI	<	1	1	2.5	ng/L	ND	Caltest	10/17/16	11/20/16
SE61	NE-RAIN	10/14/16	Cyfluthrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	10/17/16	10/29/16
SE61	SC-1 RAIN	10/14/16	Cyfluthrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	10/17/16	10/29/16
SE62	CR-1R	1/18/17	Cyfluthrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	1/20/17	2/8/17
SE62	CR-39	1/18/17	Cyfluthrin	EPA 8270M_NCI	=	0.3	0.2	0.5	ng/L	J	Caltest	1/20/17	2/8/17
SE62	CR-39R	1/18/17	Cyfluthrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	1/20/17	2/8/17
SE62	CR-41	1/18/17	Cyfluthrin	EPA 8270M_NCI	=	1.9	0.2	0.5	ng/L		Caltest	1/20/17	2/8/17
SE62	CR-41R	1/18/17	Cyfluthrin	EPA 8270M_NCI	=	0.2	0.2	0.5	ng/L	J	Caltest	1/20/17	2/8/17

		Date											Analysis
Event	Site Code	Sampled	Analyte	Method	Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Date
SE62	CR-42	1/18/17	Cyfluthrin	EPA 8270M_NCI	=	1.7	0.2	0.5	ng/L		Caltest	1/20/17	2/8/17
SE62	CR-46	1/18/17	Cyfluthrin	EPA 8270M_NCI	=	1.2	0.2	0.5	ng/L		Caltest	1/20/17	2/8/17
SE62	CR-46R	1/18/17	Cyfluthrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	1/20/17	2/8/17
SE62	NE-RAIN	1/18/17	Cyfluthrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	1/20/17	2/8/17
SE62	NW-RAIN	1/18/17	Cyfluthrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	1/20/17	2/8/17
SE62	SC-1 RAIN	1/18/17	Cyfluthrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	1/20/17	2/8/17
SE64	CR-1R	4/6/17	Cyfluthrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	4/7/17	4/29/17
SE64	CR-39	4/6/17	Cyfluthrin	EPA 8270M_NCI	=	0.9	0.2	0.5	ng/L		Caltest	4/7/17	4/29/17
SE64	CR-39R	4/6/17	Cyfluthrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	4/7/17	4/29/17
SE64	CR-41	4/6/17	Cyfluthrin	EPA 8270M_NCI	=	0.6	0.4	1	ng/L	J	Caltest	4/7/17	5/3/17
SE64	CR-41R	4/6/17	Cyfluthrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	4/7/17	4/29/17
SE64	CR-42	4/6/17	Cyfluthrin	EPA 8270M_NCI	=	1.5	0.2	0.5	ng/L		Caltest	4/7/17	5/3/17
SE64	CR-46	4/6/17	Cyfluthrin	EPA 8270M_NCI	=	0.9	0.2	0.5	ng/L		Caltest	4/7/17	4/29/17
SE64	CR-46R	4/6/17	Cyfluthrin	EPA 8270M_NCI	=	1300	4	10	ng/L		2 Caltest	4/7/17	5/3/17
SE64	NE-RAIN	4/6/17	Cyfluthrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	4/7/17	4/29/17
SE64	NW-RAIN	4/6/17	Cyfluthrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	4/7/17	4/29/17
SE64	SC-1 RAIN	4/6/17	Cyfluthrin	EPA 8270M_NCI	=	0.3	0.2	0.5	ng/L	J	Caltest	4/7/17	4/29/17
DW27	CR-46	8/24/16	Cypermethrin	EPA 8270M_NCI	=	0.4	0.2	0.5	ng/L	J	Caltest	8/26/16	8/31/16
DW27	CR-46R	8/24/16	Cypermethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	8/26/16	8/31/16
DW27	CR-42	8/24/16	Cypermethrin	EPA 8270M_NCI	=	2.2	0.2	0.5	ng/L		Caltest	8/26/16	8/31/16
DW27	CR-41	8/24/16	Cypermethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	8/26/16	8/31/16
DW27	CR-41R	8/24/16	Cypermethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	8/26/16	8/31/16
DW27	CR-39	8/24/16	Cypermethrin	EPA 8270M_NCI	<	0.2	0.2	0.6	ng/L	ND	Caltest	8/26/16	9/1/16
DW27	CR-39R	8/24/16	Cypermethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	8/26/16	9/1/16
DW28	CR-46	12/5/16	Cypermethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	12/8/16	12/31/16
DW28	CR-46R	12/5/16	Cypermethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	12/8/16	12/31/16
DW28	CR-42	12/5/16	Cypermethrin	EPA 8270M_NCI	=	13	0.2	0.5	ng/L		Caltest	12/8/16	12/31/16
DW28	CR-41	12/5/16	Cypermethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	12/8/16	12/31/16
DW28	CR-41R	12/5/16	Cypermethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	12/8/16	12/31/16
DW28	CR-39	12/5/16	Cypermethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	12/8/16	12/31/16
DW28	CR-39R	12/5/16	Cypermethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	12/8/16	12/31/16
DW29	CR-1R	3/2/17	Cypermethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	3/3/17	3/15/17
DW29	CR-46	3/2/17	Cypermethrin	EPA 8270M_NCI	=	0.2	0.2	0.5	ng/L	J	Caltest	3/3/17	3/15/17
DW29	CR-46R	3/2/17	Cypermethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	3/3/17	3/15/17

		Date											Analysis
Event	Site Code	Sampled	Analyte	Method	Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Date
DW29	CR-42	3/2/17	Cypermethrin	EPA 8270M_NCI	=	1.7	0.2	0.5	ng/L		Caltest	3/3/17	3/15/17
DW29	CR-41	3/2/17	Cypermethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	3/3/17	3/15/17
DW29	CR-41R	3/2/17	Cypermethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	3/3/17	3/15/17
DW29	CR-39	3/2/17	Cypermethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	3/3/17	3/15/17
DW29	CR-39R	3/2/17	Cypermethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	3/3/17	3/15/17
DW30	CR-1R	5/24/17	Cypermethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	5/25/17	6/20/17
DW30	CR-46	5/24/17	Cypermethrin	EPA 8270M_NCI	=	0.8	0.2	0.6	ng/L		Caltest	5/25/17	6/20/17
DW30	CR-46R	5/24/17	Cypermethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	5/25/17	6/20/17
DW30	CR-42	5/24/17	Cypermethrin	EPA 8270M_NCI	=	3.3	0.2	0.6	ng/L		Caltest	5/25/17	6/20/17
DW30	CR-41	5/24/17	Cypermethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	5/25/17	6/20/17
DW30	CR-41R	5/24/17	Cypermethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	5/25/17	6/20/17
DW30	CR-39	5/24/17	Cypermethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	5/25/17	6/20/17
DW30	CR-39R	5/24/17	Cypermethrin	EPA 8270M_NCI	=	0.3	0.2	0.5	ng/L	J	Caltest	5/25/17	6/20/17
SE61	CR-39	10/14/16	Cypermethrin	EPA 8270M_NCI	=	19	1	2.5	ng/L		Caltest	10/17/16	11/20/16
SE61	CR-39R	10/14/16	Cypermethrin	EPA 8270M_NCI	=	2	1	2.5	ng/L	J	Caltest	10/17/16	11/20/16
SE61	CR-41	10/14/16	Cypermethrin	EPA 8270M_NCI	=	9.8	4	10	ng/L	J	Caltest	10/17/16	11/21/16
SE61	CR-41R	10/14/16	Cypermethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	10/17/16	10/29/16
SE61	CR-42	10/14/16	Cypermethrin	EPA 8270M_NCI	=	14	2	5	ng/L		Caltest	10/17/16	11/21/16
SE61	CR-46	10/14/16	Cypermethrin	EPA 8270M_NCI	=	2.7	1	2.5	ng/L		Caltest	10/17/16	11/19/16
SE61	CR-46R	10/14/16	Cypermethrin	EPA 8270M_NCI	=	5.6	1	2.5	ng/L		Caltest	10/17/16	11/19/16
SE61	NW-RAIN	10/14/16	Cypermethrin	EPA 8270M_NCI	<	1	1	2.5	ng/L	ND	Caltest	10/17/16	11/20/16
SE61	NE-RAIN	10/14/16	Cypermethrin	EPA 8270M_NCI	=	0.3	0.2	0.5	ng/L	J	Caltest	10/17/16	10/29/16
SE61	SC-1 RAIN	10/14/16	Cypermethrin	EPA 8270M_NCI	=	0.8	0.2	0.5	ng/L		Caltest	10/17/16	10/29/16
SE62	CR-1R	1/18/17	Cypermethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	1/20/17	2/8/17
SE62	CR-39	1/18/17	Cypermethrin	EPA 8270M_NCI	=	0.6	0.2	0.5	ng/L		Caltest	1/20/17	2/8/17
SE62	CR-39R	1/18/17	Cypermethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	1/20/17	2/8/17
SE62	CR-41	1/18/17	Cypermethrin	EPA 8270M_NCI	=	9.3	0.2	0.5	ng/L		Caltest	1/20/17	2/8/17
SE62	CR-41R	1/18/17	Cypermethrin	EPA 8270M_NCI	=	0.8	0.2	0.5	ng/L		Caltest	1/20/17	2/8/17
SE62	CR-42	1/18/17	Cypermethrin	EPA 8270M_NCI	=	8.2	0.2	0.5	ng/L		Caltest	1/20/17	2/8/17
SE62	CR-46	1/18/17	Cypermethrin	EPA 8270M_NCI	=	3.3	0.2	0.5	ng/L		Caltest	1/20/17	2/8/17
SE62	CR-46R	1/18/17	Cypermethrin	EPA 8270M_NCI	=	0.2	0.2	0.5	ng/L	J	Caltest	1/20/17	2/8/17
SE62	NE-RAIN	1/18/17	Cypermethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	1/20/17	2/8/17
SE62	NW-RAIN	1/18/17	Cypermethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	1/20/17	2/8/17
SE62	SC-1 RAIN	1/18/17	Cypermethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	1/20/17	2/8/17

		Date											Analysis
Event	Site Code	Sampled	Analyte	Method	Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Date
SE64	CR-1R	4/6/17	Cypermethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	4/7/17	4/29/17
SE64	CR-39	4/6/17	Cypermethrin	EPA 8270M_NCI	=	0.6	0.2	0.5	ng/L		Caltest	4/7/17	4/29/17
SE64	CR-39R	4/6/17	Cypermethrin	EPA 8270M_NCI	=	0.2	0.2	0.5	ng/L	J	Caltest	4/7/17	4/29/17
SE64	CR-41	4/6/17	Cypermethrin	EPA 8270M_NCI	=	3.1	0.4	1	ng/L		Caltest	4/7/17	5/3/17
SE64	CR-41R	4/6/17	Cypermethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	4/7/17	4/29/17
SE64	CR-42	4/6/17	Cypermethrin	EPA 8270M_NCI	=	3.1	0.2	0.5	ng/L		Caltest	4/7/17	5/3/17
SE64	CR-46	4/6/17	Cypermethrin	EPA 8270M_NCI	=	1.9	0.2	0.5	ng/L		Caltest	4/7/17	4/29/17
SE64	CR-46R	4/6/17	Cypermethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	4/7/17	4/29/17
SE64	NE-RAIN	4/6/17	Cypermethrin	EPA 8270M_NCI	=	0.5	0.2	0.5	ng/L		Caltest	4/7/17	4/29/17
SE64	NW-RAIN	4/6/17	Cypermethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	4/7/17	4/29/17
SE64	SC-1 RAIN	4/6/17	Cypermethrin	EPA 8270M_NCI	=	0.2	0.2	0.5	ng/L	J	Caltest	4/7/17	4/29/17
DW27	CR-46	8/24/16	Deltamethrin:Tralomethrin	EPA 8270M_NCI	=	0.8	0.2	1	ng/L	J	Caltest	8/26/16	8/31/16
DW27	CR-46R	8/24/16	Deltamethrin:Tralomethrin	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	8/26/16	8/31/16
DW27	CR-42	8/24/16	Deltamethrin:Tralomethrin	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	8/26/16	8/31/16
DW27	CR-41	8/24/16	Deltamethrin:Tralomethrin	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	8/26/16	8/31/16
DW27	CR-41R	8/24/16	Deltamethrin:Tralomethrin	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	8/26/16	8/31/16
DW27	CR-39	8/24/16	Deltamethrin:Tralomethrin	EPA 8270M_NCI	<	0.2	0.2	1.1	ng/L	ND	Caltest	8/26/16	9/1/16
DW27	CR-39R	8/24/16	Deltamethrin:Tralomethrin	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	8/26/16	9/1/16
DW28	CR-46	12/5/16	Deltamethrin:Tralomethrin	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	12/8/16	12/31/16
DW28	CR-46R	12/5/16	Deltamethrin:Tralomethrin	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	12/8/16	12/31/16
DW28	CR-42	12/5/16	Deltamethrin:Tralomethrin	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	12/8/16	12/31/16
DW28	CR-41	12/5/16	Deltamethrin:Tralomethrin	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	12/8/16	12/31/16
DW28	CR-41R	12/5/16	Deltamethrin:Tralomethrin	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	12/8/16	12/31/16
DW28	CR-39	12/5/16	Deltamethrin:Tralomethrin	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	12/8/16	12/31/16
DW28	CR-39R	12/5/16	Deltamethrin:Tralomethrin	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	12/8/16	12/31/16
DW29	CR-1R	3/2/17	Deltamethrin:Tralomethrin	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	3/3/17	3/15/17
DW29	CR-46	3/2/17	Deltamethrin:Tralomethrin	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	3/3/17	3/15/17
DW29	CR-46R	3/2/17	Deltamethrin:Tralomethrin	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	3/3/17	3/15/17
DW29	CR-42	3/2/17	Deltamethrin:Tralomethrin	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	3/3/17	3/15/17
DW29	CR-41	3/2/17	Deltamethrin:Tralomethrin	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	3/3/17	3/15/17
DW29	CR-41R	3/2/17	Deltamethrin:Tralomethrin	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	3/3/17	3/15/17
DW29	CR-39	3/2/17	Deltamethrin:Tralomethrin	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	3/3/17	3/15/17
DW29	CR-39R	3/2/17	Deltamethrin:Tralomethrin	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	3/3/17	3/15/17
DW30	CR-1R	5/24/17	Deltamethrin:Tralomethrin	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	5/25/17	6/20/17

		Date											Analysis
Event	Site Code	Sampled	Analyte	Method	Q	Result	MDL	RL/ML		Flag	Lab Name	Prep Date	Date
DW30	CR-46	5/24/17	Deltamethrin:Tralomethrin	EPA 8270M_NCI	<	0.2	0.2	1.2	ng/L	ND	Caltest	5/25/17	6/20/17
DW30	CR-46R	5/24/17	Deltamethrin:Tralomethrin	EPA 8270M_NCI	=	3.4	0.2	1	ng/L		Caltest	5/25/17	6/20/17
DW30	CR-42	5/24/17	Deltamethrin:Tralomethrin	EPA 8270M_NCI	=	0.9	0.2	1.1	ng/L	J	Caltest	5/25/17	6/20/17
DW30	CR-41	5/24/17	Deltamethrin:Tralomethrin	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	5/25/17	6/20/17
DW30	CR-41R	5/24/17	Deltamethrin:Tralomethrin	EPA 8270M_NCI	=	0.5	0.2	1	ng/L	J	Caltest	5/25/17	6/20/17
DW30	CR-39	5/24/17	Deltamethrin:Tralomethrin	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	5/25/17	6/20/17
DW30	CR-39R	5/24/17	Deltamethrin:Tralomethrin	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	5/25/17	6/20/17
SE61	CR-39	10/14/16	Deltamethrin:Tralomethrin	EPA 8270M_NCI	<	1	1	5	ng/L	ND	Caltest	10/17/16	11/20/16
SE61	CR-39R	10/14/16	Deltamethrin:Tralomethrin	EPA 8270M_NCI	<	1	1	5	ng/L	ND	Caltest	10/17/16	11/20/16
SE61	CR-41	10/14/16	Deltamethrin:Tralomethrin	EPA 8270M_NCI	=	16	4	20	ng/L	J	Caltest	10/17/16	11/21/16
SE61	CR-41R	10/14/16	Deltamethrin:Tralomethrin	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	10/17/16	10/29/16
SE61	CR-42	10/14/16	Deltamethrin:Tralomethrin	EPA 8270M_NCI	=	49	2	10	ng/L		Caltest	10/17/16	11/21/16
SE61	CR-46	10/14/16	Deltamethrin:Tralomethrin	EPA 8270M_NCI	<	1	1	5	ng/L	ND	Caltest	10/17/16	11/19/16
SE61	CR-46R	10/14/16	Deltamethrin:Tralomethrin	EPA 8270M_NCI	=	19	1	5	ng/L		Caltest	10/17/16	11/19/16
SE61	NW-RAIN	10/14/16	Deltamethrin:Tralomethrin	EPA 8270M_NCI	<	1	1	5	ng/L	ND	Caltest	10/17/16	11/20/16
SE61	NE-RAIN	10/14/16	Deltamethrin:Tralomethrin	EPA 8270M_NCI	=	1.6	0.2	1	ng/L		Caltest	10/17/16	10/29/16
SE61	SC-1 RAIN	10/14/16	Deltamethrin:Tralomethrin	EPA 8270M_NCI	=	3.8	0.2	1	ng/L		Caltest	10/17/16	10/29/16
SE62	CR-1R	1/18/17	Deltamethrin:Tralomethrin	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	1/20/17	2/8/17
SE62	CR-39	1/18/17	Deltamethrin:Tralomethrin	EPA 8270M_NCI	=	1.4	0.2	1	ng/L		Caltest	1/20/17	2/8/17
SE62	CR-39R	1/18/17	Deltamethrin:Tralomethrin	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	1/20/17	2/8/17
SE62	CR-41	1/18/17	Deltamethrin:Tralomethrin	EPA 8270M_NCI	=	58	0.2	1	ng/L		Caltest	1/20/17	2/8/17
SE62	CR-41R	1/18/17	Deltamethrin:Tralomethrin	EPA 8270M_NCI	=	2.2	0.2	1	ng/L		Caltest	1/20/17	2/8/17
SE62	CR-42	1/18/17	Deltamethrin:Tralomethrin	EPA 8270M_NCI	=	4.3	0.2	1	ng/L		Caltest	1/20/17	2/8/17
SE62	CR-46	1/18/17	Deltamethrin:Tralomethrin	EPA 8270M_NCI	=	6.3	0.2	1	ng/L		Caltest	1/20/17	2/8/17
SE62	CR-46R	1/18/17	Deltamethrin:Tralomethrin	EPA 8270M_NCI	=	1.4	0.2	1	ng/L		Caltest	1/20/17	2/8/17
SE62	NE-RAIN	1/18/17	Deltamethrin:Tralomethrin	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	1/20/17	2/8/17
SE62	NW-RAIN	1/18/17	Deltamethrin:Tralomethrin	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	1/20/17	2/8/17
SE62	SC-1 RAIN	1/18/17	Deltamethrin:Tralomethrin	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	1/20/17	2/8/17
SE64	CR-1R	4/6/17	Deltamethrin:Tralomethrin	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	4/7/17	4/29/17
SE64	CR-39	4/6/17	Deltamethrin:Tralomethrin	EPA 8270M_NCI	=	2.4	0.2	1	ng/L		Caltest	4/7/17	4/29/17
SE64	CR-39R	4/6/17	Deltamethrin:Tralomethrin	 EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	4/7/17	4/29/17
SE64	CR-41	4/6/17	Deltamethrin:Tralomethrin	 EPA 8270M_NCI	=	2.3	0.4	2	ng/L		Caltest	4/7/17	5/3/17
SE64	CR-41R	4/6/17	Deltamethrin:Tralomethrin	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	4/7/17	4/29/17
SE64	CR-42	4/6/17	Deltamethrin:Tralomethrin	EPA 8270M_NCI	=	3.4	0.2	1	ng/L		Caltest	4/7/17	5/3/17

		Date											Analysis
Event	Site Code	Sampled	Analyte	Method	Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Date
SE64	CR-46	4/6/17	Deltamethrin:Tralomethrin	EPA 8270M_NCI	=	1.8	0.2	1	ng/L		Caltest	4/7/17	4/29/17
SE64	CR-46R	4/6/17	Deltamethrin:Tralomethrin	EPA 8270M_NCI	=	4.7	0.2	1	ng/L		Caltest	4/7/17	4/29/17
SE64	NE-RAIN	4/6/17	Deltamethrin:Tralomethrin	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	4/7/17	4/29/17
SE64	NW-RAIN	4/6/17	Deltamethrin:Tralomethrin	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	4/7/17	4/29/17
SE64	SC-1 RAIN	4/6/17	Deltamethrin:Tralomethrin	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	4/7/17	4/29/17
DW27	CR-46	8/24/16	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	8/26/16	8/31/16
DW27	CR-46R	8/24/16	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	8/26/16	8/31/16
DW27	CR-42	8/24/16	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	8/26/16	8/31/16
DW27	CR-41	8/24/16	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	8/26/16	8/31/16
DW27	CR-41R	8/24/16	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	8/26/16	8/31/16
DW27	CR-39	8/24/16	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	0.2	0.2	1.1	ng/L	ND	Caltest	8/26/16	9/1/16
DW27	CR-39R	8/24/16	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	8/26/16	9/1/16
DW28	CR-46	12/5/16	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	12/8/16	12/31/16
DW28	CR-46R	12/5/16	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	12/8/16	12/31/16
DW28	CR-42	12/5/16	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	12/8/16	12/31/16
DW28	CR-41	12/5/16	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	12/8/16	12/31/16
DW28	CR-41R	12/5/16	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	12/8/16	12/31/16
DW28	CR-39	12/5/16	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	12/8/16	12/31/16
DW28	CR-39R	12/5/16	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	12/8/16	12/31/16
DW29	CR-1R	3/2/17	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	3/3/17	3/15/17
DW29	CR-46	3/2/17	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	3/3/17	3/15/17
DW29	CR-46R	3/2/17	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	3/3/17	3/15/17
DW29	CR-42	3/2/17	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	3/3/17	3/15/17
DW29	CR-41	3/2/17	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	3/3/17	3/15/17
DW29	CR-41R	3/2/17	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	3/3/17	3/15/17
DW29	CR-39	3/2/17	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	3/3/17	3/15/17
DW29	CR-39R	3/2/17	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	3/3/17	3/15/17
DW30	CR-1R	5/24/17	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	5/25/17	6/20/17
DW30	CR-46	5/24/17	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	0.2	0.2	1.2	ng/L	ND	Caltest	5/25/17	6/20/17
DW30	CR-46R	5/24/17	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	5/25/17	6/20/17
DW30	CR-42	5/24/17	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	0.2	0.2	1.1	ng/L	ND	Caltest	5/25/17	6/20/17
DW30	CR-41	5/24/17	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	5/25/17	6/20/17
DW30	CR-41R	5/24/17	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	5/25/17	6/20/17
DW30	CR-39	5/24/17	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	5/25/17	6/20/17

		Date											Analysis
Event	Site Code	Sampled	Analyte	Method	Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Date
DW30	CR-39R	5/24/17	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	5/25/17	6/20/17
SE61	CR-39	10/14/16	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	1	1	5	ng/L	ND	Caltest	10/17/16	11/20/16
SE61	CR-39R	10/14/16	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	1	1	5	ng/L	ND	Caltest	10/17/16	11/20/16
SE61	CR-41	10/14/16	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	4	4	20	ng/L	ND	Caltest	10/17/16	11/21/16
SE61	CR-41R	10/14/16	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	10/17/16	10/29/16
SE61	CR-42	10/14/16	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	2	2	10	ng/L	ND	Caltest	10/17/16	11/21/16
SE61	CR-46	10/14/16	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	1	1	5	ng/L	ND	Caltest	10/17/16	11/19/16
SE61	CR-46R	10/14/16	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	1	1	5	ng/L	ND	Caltest	10/17/16	11/19/16
SE61	NW-RAIN	10/14/16	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	1	1	5	ng/L	ND	Caltest	10/17/16	11/20/16
SE61	NE-RAIN	10/14/16	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	10/17/16	10/29/16
SE61	SC-1 RAIN	10/14/16	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	10/17/16	10/29/16
SE62	CR-1R	1/18/17	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	1/20/17	2/8/17
SE62	CR-39	1/18/17	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	=	1.8	0.2	1	ng/L		Caltest	1/20/17	2/8/17
SE62	CR-39R	1/18/17	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	1/20/17	2/8/17
SE62	CR-41	1/18/17	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	=	4.5	0.2	1	ng/L		Caltest	1/20/17	2/8/17
SE62	CR-41R	1/18/17	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	=	0.5	0.2	1	ng/L	J	Caltest	1/20/17	2/8/17
SE62	CR-42	1/18/17	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	=	3.1	0.2	1	ng/L		Caltest	1/20/17	2/8/17
SE62	CR-46	1/18/17	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	=	4.6	0.2	1	ng/L		Caltest	1/20/17	2/8/17
SE62	CR-46R	1/18/17	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	=	0.2	0.2	1	ng/L	J	Caltest	1/20/17	2/8/17
SE62	NE-RAIN	1/18/17	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	=	0.6	0.2	1	ng/L	J	Caltest	1/20/17	2/8/17
SE62	NW-RAIN	1/18/17	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	=	0.2	0.2	1	ng/L	J	Caltest	1/20/17	2/8/17
SE62	SC-1 RAIN	1/18/17	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	=	0.9	0.2	1	ng/L	J	Caltest	1/20/17	2/8/17
SE64	CR-1R	4/6/17	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	4/7/17	4/29/17
SE64	CR-39	4/6/17	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	4/7/17	4/29/17
SE64	CR-39R	4/6/17	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	4/7/17	4/29/17
SE64	CR-41	4/6/17	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	0.4	0.4	2	ng/L	ND	Caltest	4/7/17	5/3/17
SE64	CR-41R	4/6/17	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	4/7/17	4/29/17
SE64	CR-42	4/6/17	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	=	0.4	0.2	1	ng/L	J	Caltest	4/7/17	5/3/17
SE64	CR-46	4/6/17	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	=	0.3	0.2	1	ng/L	J	Caltest	4/7/17	4/29/17
SE64	CR-46R	4/6/17	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	4/7/17	4/29/17
SE64	NE-RAIN	4/6/17	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	4/7/17	4/29/17
SE64	NW-RAIN	4/6/17	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	4/7/17	4/29/17
SE64	SC-1 RAIN	4/6/17	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	4/7/17	4/29/17
DW27	CR-46	8/24/16	Fenpropathrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	8/26/16	8/31/16

		Date											Analysis
Event	Site Code	Sampled	Analyte	Method	Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Date
DW27	CR-46R	8/24/16	Fenpropathrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	8/26/16	8/31/16
DW27	CR-42	8/24/16	Fenpropathrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	8/26/16	8/31/16
DW27	CR-41	8/24/16	Fenpropathrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	8/26/16	8/31/16
DW27	CR-41R	8/24/16	Fenpropathrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	8/26/16	8/31/16
DW27	CR-39	8/24/16	Fenpropathrin	EPA 8270M_NCI	<	0.2	0.2	0.6	ng/L	ND	Caltest	8/26/16	9/1/16
DW27	CR-39R	8/24/16	Fenpropathrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	8/26/16	9/1/16
DW28	CR-46	12/5/16	Fenpropathrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	12/8/16	12/31/16
DW28	CR-46R	12/5/16	Fenpropathrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	12/8/16	12/31/16
DW28	CR-42	12/5/16	Fenpropathrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	12/8/16	12/31/16
DW28	CR-41	12/5/16	Fenpropathrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	12/8/16	12/31/16
DW28	CR-41R	12/5/16	Fenpropathrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	12/8/16	12/31/16
DW28	CR-39	12/5/16	Fenpropathrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	12/8/16	12/31/16
DW28	CR-39R	12/5/16	Fenpropathrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	12/8/16	12/31/16
DW29	CR-1R	3/2/17	Fenpropathrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	3/3/17	3/15/17
DW29	CR-46	3/2/17	Fenpropathrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	3/3/17	3/15/17
DW29	CR-46R	3/2/17	Fenpropathrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	3/3/17	3/15/17
DW29	CR-42	3/2/17	Fenpropathrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	3/3/17	3/15/17
DW29	CR-41	3/2/17	Fenpropathrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	3/3/17	3/15/17
DW29	CR-41R	3/2/17	Fenpropathrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	3/3/17	3/15/17
DW29	CR-39	3/2/17	Fenpropathrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	3/3/17	3/15/17
DW29	CR-39R	3/2/17	Fenpropathrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	3/3/17	3/15/17
DW30	CR-1R	5/24/17	Fenpropathrin	EPA 8270M_NCI	=	0.4	0.2	0.5	ng/L	J	Caltest	5/25/17	6/20/17
DW30	CR-46	5/24/17	Fenpropathrin	EPA 8270M_NCI	<	0.2	0.2	0.6	ng/L	ND	Caltest	5/25/17	6/20/17
DW30	CR-46R	5/24/17	Fenpropathrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	5/25/17	6/20/17
DW30	CR-42	5/24/17	Fenpropathrin	EPA 8270M_NCI	<	0.2	0.2	0.6	ng/L	ND	Caltest	5/25/17	6/20/17
DW30	CR-41	5/24/17	Fenpropathrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	5/25/17	6/20/17
DW30	CR-41R	5/24/17	Fenpropathrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	5/25/17	6/20/17
DW30	CR-39	5/24/17	Fenpropathrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	5/25/17	6/20/17
DW30	CR-39R	5/24/17	Fenpropathrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	5/25/17	6/20/17
SE61	CR-39	10/14/16	Fenpropathrin	EPA 8270M_NCI	<	1	1	2.5	ng/L	ND	Caltest	10/17/16	11/20/16
SE61	CR-39R	10/14/16	Fenpropathrin	EPA 8270M_NCI	<	1	1	2.5	ng/L	ND	Caltest	10/17/16	11/20/16
SE61	CR-41	10/14/16	Fenpropathrin	EPA 8270M_NCI	<	4	4	10	ng/L	ND	Caltest	10/17/16	11/21/16
SE61	CR-41R	10/14/16	Fenpropathrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	10/17/16	10/29/16
SE61	CR-42	10/14/16	Fenpropathrin	EPA 8270M_NCI	<	2	2	5	ng/L	ND	Caltest	10/17/16	11/21/16

Ennet		Date	Archite	Marka a	0	Decili	MDI		11-21-	Els.	Lab Niana	Dron Data	Analysis
Event	Site Code	Sampled	Analyte	Method	Q	Result	MDL	RL/ML		Flag	Lab Name	Prep Date	Date
SE61	CR-46	10/14/16	Fenpropathrin	EPA 8270M_NCI	<	1	1	2.5	ng/L	ND	Caltest	10/17/16	11/19/16
SE61	CR-46R	10/14/16	Fenpropathrin	EPA 8270M_NCI	<	1	1	2.5	ng/L	ND	Caltest	10/17/16	11/19/16
SE61	NW-RAIN	10/14/16	Fenpropathrin	EPA 8270M_NCI	<	1	1	2.5	ng/L	ND	Caltest	10/17/16	11/20/16
SE61	NE-RAIN	10/14/16	Fenpropathrin	EPA 8270M_NCI	=	1.1	0.2	0.5	ng/L		Caltest	10/17/16	10/29/16
SE61	SC-1 RAIN	10/14/16	Fenpropathrin	EPA 8270M_NCI	=	0.3	0.2	0.5	ng/L	J	Caltest	10/17/16	10/29/16
SE62	CR-1R	1/18/17	Fenpropathrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	1/20/17	2/8/17
SE62	CR-39	1/18/17	Fenpropathrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	1/20/17	2/8/17
SE62	CR-39R	1/18/17	Fenpropathrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	1/20/17	2/8/17
SE62	CR-41	1/18/17	Fenpropathrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	1/20/17	2/8/17
SE62	CR-41R	1/18/17	Fenpropathrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	1/20/17	2/8/17
SE62	CR-42	1/18/17	Fenpropathrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	1/20/17	2/8/17
SE62	CR-46	1/18/17	Fenpropathrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	1/20/17	2/8/17
SE62	CR-46R	1/18/17	Fenpropathrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	1/20/17	2/8/17
SE62	NE-RAIN	1/18/17	Fenpropathrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	1/20/17	2/8/17
SE62	NW-RAIN	1/18/17	Fenpropathrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	1/20/17	2/8/17
SE62	SC-1 RAIN	1/18/17	Fenpropathrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	1/20/17	2/8/17
SE64	CR-1R	4/6/17	Fenpropathrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	4/7/17	4/29/17
SE64	CR-39	4/6/17	Fenpropathrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	4/7/17	4/29/17
SE64	CR-39R	4/6/17	Fenpropathrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	4/7/17	4/29/17
SE64	CR-41	4/6/17	Fenpropathrin	EPA 8270M_NCI	<	0.4	0.4	1	ng/L	ND	Caltest	4/7/17	5/3/17
SE64	CR-41R	4/6/17	Fenpropathrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	4/7/17	4/29/17
SE64	CR-42	4/6/17	Fenpropathrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	4/7/17	5/3/17
SE64	CR-46	4/6/17	Fenpropathrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	4/7/17	4/29/17
SE64	CR-46R	4/6/17	Fenpropathrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	4/7/17	4/29/17
SE64	NE-RAIN	4/6/17	Fenpropathrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	4/7/17	4/29/17
SE64	NW-RAIN	4/6/17	Fenpropathrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	4/7/17	4/29/17
SE64	SC-1 RAIN	4/6/17	Fenpropathrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	4/7/17	4/29/17
DW27	CR-46	8/24/16	Lambda-Cyhalothrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	8/26/16	8/31/16
DW27	CR-46R	8/24/16	Lambda-Cyhalothrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	8/26/16	8/31/16
DW27	CR-42	8/24/16	Lambda-Cyhalothrin	EPA 8270M_NCI	=	92	0.2	0.5	ng/L		Caltest	8/26/16	8/31/16
DW27	CR-41	8/24/16	Lambda-Cyhalothrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	8/26/16	8/31/16
DW27	CR-41R	8/24/16	Lambda-Cyhalothrin	 EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	8/26/16	8/31/16
DW27	CR-39	8/24/16	Lambda-Cyhalothrin	EPA 8270M_NCI	<	0.2	0.2	0.6	ng/L	ND	Caltest	8/26/16	9/1/16
DW27	CR-39R	8/24/16	Lambda-Cyhalothrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	8/26/16	9/1/16

DW28 DW28 DW28 DW28	Site Code CR-46 CR-46R CR-42 CR-41	Sampled 12/5/16 12/5/16	Analyte Lambda-Cyhalothrin	Method	Q	Result			Linita	Elag	Lab Manaa	Dran Data	
DW28 DW28 DW28	CR-46R CR-42	12/5/16	5				MDL	RL/ML	UNILS	Flag	Lab Name	Prep Date	Date
DW28 DW28	CR-42			EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	12/8/16	12/31/16
DW28			Lambda-Cyhalothrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	12/8/16	12/31/16
-	CR-41	12/5/16	Lambda-Cyhalothrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	12/8/16	12/31/16
D\W/28		12/5/16	Lambda-Cyhalothrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	12/8/16	12/31/16
DWZO	CR-41R	12/5/16	Lambda-Cyhalothrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	12/8/16	12/31/16
DW28	CR-39	12/5/16	Lambda-Cyhalothrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	12/8/16	12/31/16
DW28	CR-39R	12/5/16	Lambda-Cyhalothrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	12/8/16	12/31/16
DW29	CR-1R	3/2/17	Lambda-Cyhalothrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	3/3/17	3/15/17
DW29	CR-46	3/2/17	Lambda-Cyhalothrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	3/3/17	3/15/17
DW29	CR-46R	3/2/17	Lambda-Cyhalothrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	3/3/17	3/15/17
DW29	CR-42	3/2/17	Lambda-Cyhalothrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	3/3/17	3/15/17
DW29	CR-41	3/2/17	Lambda-Cyhalothrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	3/3/17	3/15/17
DW29	CR-41R	3/2/17	Lambda-Cyhalothrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	3/3/17	3/15/17
DW29	CR-39	3/2/17	Lambda-Cyhalothrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	3/3/17	3/15/17
DW29	CR-39R	3/2/17	Lambda-Cyhalothrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	3/3/17	3/15/17
DW30	CR-1R	5/24/17	Lambda-Cyhalothrin	EPA 8270M_NCI	=	0.2	0.2	0.5	ng/L	J	Caltest	5/25/17	6/20/17
DW30	CR-46	5/24/17	Lambda-Cyhalothrin	EPA 8270M_NCI	=	0.5	0.2	0.6	ng/L	J	Caltest	5/25/17	6/20/17
DW30	CR-46R	5/24/17	Lambda-Cyhalothrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	5/25/17	6/20/17
DW30	CR-42	5/24/17	Lambda-Cyhalothrin	EPA 8270M_NCI	=	0.3	0.2	0.6	ng/L	J	Caltest	5/25/17	6/20/17
DW30	CR-41	5/24/17	Lambda-Cyhalothrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	5/25/17	6/20/17
DW30	CR-41R	5/24/17	Lambda-Cyhalothrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	5/25/17	6/20/17
DW30	CR-39	5/24/17	Lambda-Cyhalothrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	5/25/17	6/20/17
DW30	CR-39R	5/24/17	Lambda-Cyhalothrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	5/25/17	6/20/17
SE61	CR-39	10/14/16	Lambda-Cyhalothrin	EPA 8270M_NCI	<	1	1	2.5	ng/L	ND	Caltest	10/17/16	11/20/16
SE61	CR-39R	10/14/16	Lambda-Cyhalothrin	EPA 8270M_NCI	<	1	1	2.5	ng/L	ND	Caltest	10/17/16	11/20/16
SE61	CR-41	10/14/16	Lambda-Cyhalothrin	EPA 8270M_NCI	<	4	4	10	ng/L	ND	Caltest	10/17/16	11/21/16
SE61	CR-41R	10/14/16	Lambda-Cyhalothrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	10/17/16	10/29/16
SE61	CR-42	10/14/16	Lambda-Cyhalothrin	EPA 8270M_NCI	<	2	2	5	ng/L	ND	Caltest	10/17/16	11/21/16
SE61	CR-46	10/14/16	Lambda-Cyhalothrin	EPA 8270M_NCI	<	1	1	2.5	ng/L	ND	Caltest	10/17/16	11/19/16
SE61	CR-46R	10/14/16	Lambda-Cyhalothrin	EPA 8270M_NCI	<	1	1	2.5	ng/L	ND	Caltest	10/17/16	11/19/16
SE61	NW-RAIN	10/14/16	Lambda-Cyhalothrin	EPA 8270M_NCI	<	1	1	2.5	ng/L	ND	Caltest	10/17/16	11/20/16
SE61	NE-RAIN	10/14/16	Lambda-Cyhalothrin	EPA 8270M_NCI	=	0.4	0.2	0.5	ng/L	J	Caltest	10/17/16	10/29/16
SE61	SC-1 RAIN	10/14/16	Lambda-Cyhalothrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	10/17/16	10/29/16
SE62	CR-1R	1/18/17	Lambda-Cyhalothrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	1/20/17	2/8/17

		Date											Analysis
Event	Site Code	Sampled	Analyte	Method	Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Date
SE62	CR-39	1/18/17	Lambda-Cyhalothrin	EPA 8270M_NCI	=	0.6	0.2	0.5	ng/L		Caltest	1/20/17	2/8/17
SE62	CR-39R	1/18/17	Lambda-Cyhalothrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	1/20/17	2/8/17
SE62	CR-41	1/18/17	Lambda-Cyhalothrin	EPA 8270M_NCI	=	1.1	0.2	0.5	ng/L		Caltest	1/20/17	2/8/17
SE62	CR-41R	1/18/17	Lambda-Cyhalothrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	1/20/17	2/8/17
SE62	CR-42	1/18/17	Lambda-Cyhalothrin	EPA 8270M_NCI	=	1	0.2	0.5	ng/L		Caltest	1/20/17	2/8/17
SE62	CR-46	1/18/17	Lambda-Cyhalothrin	EPA 8270M_NCI	=	1.2	0.2	0.5	ng/L		Caltest	1/20/17	2/8/17
SE62	CR-46R	1/18/17	Lambda-Cyhalothrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	1/20/17	2/8/17
SE62	NE-RAIN	1/18/17	Lambda-Cyhalothrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	1/20/17	2/8/17
SE62	NW-RAIN	1/18/17	Lambda-Cyhalothrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	1/20/17	2/8/17
SE62	SC-1 RAIN	1/18/17	Lambda-Cyhalothrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	1/20/17	2/8/17
SE64	CR-1R	4/6/17	Lambda-Cyhalothrin	EPA 8270M_NCI	=	0.7	0.2	0.5	ng/L		Caltest	4/7/17	4/29/17
SE64	CR-39	4/6/17	Lambda-Cyhalothrin	EPA 8270M_NCI	=	0.7	0.2	0.5	ng/L		Caltest	4/7/17	4/29/17
SE64	CR-39R	4/6/17	Lambda-Cyhalothrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	4/7/17	4/29/17
SE64	CR-41	4/6/17	Lambda-Cyhalothrin	EPA 8270M_NCI	=	1.4	0.4	1	ng/L		Caltest	4/7/17	5/3/17
SE64	CR-41R	4/6/17	Lambda-Cyhalothrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	4/7/17	4/29/17
SE64	CR-42	4/6/17	Lambda-Cyhalothrin	EPA 8270M_NCI	=	1	0.2	0.5	ng/L		Caltest	4/7/17	5/3/17
SE64	CR-46	4/6/17	Lambda-Cyhalothrin	EPA 8270M_NCI	=	0.8	0.2	0.5	ng/L		Caltest	4/7/17	4/29/17
SE64	CR-46R	4/6/17	Lambda-Cyhalothrin	EPA 8270M_NCI	=	0.4	0.2	0.5	ng/L	J	Caltest	4/7/17	4/29/17
SE64	NE-RAIN	4/6/17	Lambda-Cyhalothrin	EPA 8270M_NCI	=	12	0.2	0.5	ng/L		Caltest	4/7/17	4/29/17
SE64	NW-RAIN	4/6/17	Lambda-Cyhalothrin	EPA 8270M_NCI	=	0.7	0.2	0.5	ng/L		Caltest	4/7/17	4/29/17
SE64	SC-1 RAIN	4/6/17	Lambda-Cyhalothrin	EPA 8270M_NCI	=	0.6	0.2	0.5	ng/L		Caltest	4/7/17	4/29/17
DW27	CR-46	8/24/16	Permethrin	EPA 8270M_NCI	<	2	2	10	ng/L	ND	Caltest	8/26/16	8/31/16
DW27	CR-46R	8/24/16	Permethrin	EPA 8270M_NCI	<	2	2	10	ng/L	ND	Caltest	8/26/16	8/31/16
DW27	CR-42	8/24/16	Permethrin	EPA 8270M_NCI	<	2	2	10	ng/L	ND	Caltest	8/26/16	8/31/16
DW27	CR-41	8/24/16	Permethrin	EPA 8270M_NCI	<	2	2	10	ng/L	ND	Caltest	8/26/16	8/31/16
DW27	CR-41R	8/24/16	Permethrin	EPA 8270M_NCI	<	2	2	10	ng/L	ND	Caltest	8/26/16	8/31/16
DW27	CR-39	8/24/16	Permethrin	EPA 8270M_NCI	<	2	2	11	ng/L	ND	Caltest	8/26/16	9/1/16
DW27	CR-39R	8/24/16	Permethrin	EPA 8270M_NCI	<	2	2	10	ng/L	ND	Caltest	8/26/16	9/1/16
DW28	CR-46	12/5/16	Permethrin	EPA 8270M_NCI	<	2	2	10	ng/L	ND	Caltest	12/8/16	12/31/16
DW28	CR-46R	12/5/16	Permethrin	EPA 8270M_NCI	<	2	2	10	ng/L	ND	Caltest	12/8/16	12/31/16
DW28	CR-42	12/5/16	Permethrin	EPA 8270M_NCI	=	5.5	2	10	ng/L	J	Caltest	12/8/16	12/31/16
DW28	CR-41	12/5/16	Permethrin	EPA 8270M_NCI	<	2	2	10	ng/L	ND	Caltest	12/8/16	12/31/16
DW28	CR-41R	12/5/16	Permethrin	EPA 8270M_NCI	<	2	2	10	ng/L	ND	Caltest	12/8/16	12/31/16
DW28	CR-39	12/5/16	Permethrin	EPA 8270M_NCI	<	2	2	10	ng/L	ND	Caltest	12/8/16	12/31/16

		Date											Analysis
Event	Site Code	Sampled	Analyte	Method	Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Date
DW28	CR-39R	12/5/16	Permethrin	EPA 8270M_NCI	<	2	2	10	ng/L	ND	Caltest	12/8/16	12/31/16
DW29	CR-1R	3/2/17	Permethrin	EPA 8270M_NCI	<	2	2	10	ng/L	ND	Caltest	3/3/17	3/15/17
DW29	CR-46	3/2/17	Permethrin	EPA 8270M_NCI	<	2	2	10	ng/L	ND	Caltest	3/3/17	3/15/17
DW29	CR-46R	3/2/17	Permethrin	EPA 8270M_NCI	<	2	2	10	ng/L	ND	Caltest	3/3/17	3/15/17
DW29	CR-42	3/2/17	Permethrin	EPA 8270M_NCI	<	2	2	10	ng/L	ND	Caltest	3/3/17	3/15/17
DW29	CR-41	3/2/17	Permethrin	EPA 8270M_NCI	<	2	2	10	ng/L	ND	Caltest	3/3/17	3/15/17
DW29	CR-41R	3/2/17	Permethrin	EPA 8270M_NCI	<	2	2	10	ng/L	ND	Caltest	3/3/17	3/15/17
DW29	CR-39	3/2/17	Permethrin	EPA 8270M_NCI	<	2	2	10	ng/L	ND	Caltest	3/3/17	3/15/17
DW29	CR-39R	3/2/17	Permethrin	EPA 8270M_NCI	<	2	2	10	ng/L	ND	Caltest	3/3/17	3/15/17
DW30	CR-1R	5/24/17	Permethrin	EPA 8270M_NCI	<	2	2	10	ng/L	ND	Caltest	5/25/17	6/20/17
DW30	CR-46	5/24/17	Permethrin	EPA 8270M_NCI	<	2	2	10	ng/L	ND	Caltest	5/25/17	6/20/17
DW30	CR-46R	5/24/17	Permethrin	EPA 8270M_NCI	<	2	2	10	ng/L	ND	Caltest	5/25/17	6/20/17
DW30	CR-42	5/24/17	Permethrin	EPA 8270M_NCI	<	2	2	10	ng/L	ND	Caltest	5/25/17	6/20/17
DW30	CR-41	5/24/17	Permethrin	EPA 8270M_NCI	<	2	2	10	ng/L	ND	Caltest	5/25/17	6/20/17
DW30	CR-41R	5/24/17	Permethrin	EPA 8270M_NCI	<	2	2	10	ng/L	ND	Caltest	5/25/17	6/20/17
DW30	CR-39	5/24/17	Permethrin	EPA 8270M_NCI	<	2	2	10	ng/L	ND	Caltest	5/25/17	6/20/17
DW30	CR-39R	5/24/17	Permethrin	EPA 8270M_NCI	<	2	2	10	ng/L	ND	Caltest	5/25/17	6/20/17
SE61	CR-39	10/14/16	Permethrin	EPA 8270M_NCI	<	10	10	50	ng/L	ND	Caltest	10/17/16	11/20/16
SE61	CR-39R	10/14/16	Permethrin	EPA 8270M_NCI	<	10	10	50	ng/L	ND	Caltest	10/17/16	11/20/16
SE61	CR-41	10/14/16	Permethrin	EPA 8270M_NCI	<	40	40	200	ng/L	ND	Caltest	10/17/16	11/21/16
SE61	CR-41R	10/14/16	Permethrin	EPA 8270M_NCI	<	2	2	10	ng/L	ND	Caltest	10/17/16	10/29/16
SE61	CR-42	10/14/16	Permethrin	EPA 8270M_NCI	<	20	20	100	ng/L	ND	Caltest	10/17/16	11/21/16
SE61	CR-46	10/14/16	Permethrin	EPA 8270M_NCI	<	10	10	50	ng/L	ND	Caltest	10/17/16	11/19/16
SE61	CR-46R	10/14/16	Permethrin	EPA 8270M_NCI	<	10	10	50	ng/L	ND	Caltest	10/17/16	11/19/16
SE61	NW-RAIN	10/14/16	Permethrin	EPA 8270M_NCI	<	10	10	50	ng/L	ND	Caltest	10/17/16	11/20/16
SE61	NE-RAIN	10/14/16	Permethrin	EPA 8270M_NCI	=	3.2	2	10	ng/L	J	Caltest	10/17/16	10/29/16
SE61	SC-1 RAIN	10/14/16	Permethrin	EPA 8270M_NCI	<	2	2	10	ng/L	ND	Caltest	10/17/16	10/29/16
SE62	CR-1R	1/18/17	Permethrin	EPA 8270M_NCI	<	2	2	10	ng/L	ND	Caltest	1/20/17	2/8/17
SE62	CR-39	1/18/17	Permethrin	EPA 8270M_NCI	=	5.4	2	10	ng/L	J	Caltest	1/20/17	2/8/17
SE62	CR-39R	1/18/17	Permethrin	EPA 8270M_NCI	<	2	2	10	ng/L	ND	Caltest	1/20/17	2/8/17
SE62	CR-41	1/18/17	Permethrin	EPA 8270M_NCI	=	8.6	2	10	ng/L	J	Caltest	1/20/17	2/8/17
SE62	CR-41R	1/18/17	Permethrin	EPA 8270M_NCI	<	2	2	10	ng/L	ND	Caltest	1/20/17	2/8/17
SE62	CR-42	1/18/17	Permethrin	EPA 8270M_NCI	=	19	2	10	ng/L		Caltest	1/20/17	2/8/17
SE62	CR-46	1/18/17	Permethrin	EPA 8270M_NCI	=	5.6	2	10	ng/L	J	Caltest	1/20/17	2/8/17

		Date											Analysis
Event	Site Code	Sampled	Analyte	Method	Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Date
SE62	CR-46R	1/18/17	Permethrin	EPA 8270M_NCI	=	2	2	10	ng/L	ND	Caltest	1/20/17	2/8/17
SE62	NE-RAIN	1/18/17	Permethrin	EPA 8270M_NCI	<	2	2	10	ng/L	ND	Caltest	1/20/17	2/8/17
SE62	NW-RAIN	1/18/17	Permethrin	EPA 8270M_NCI	<	2	2	10	ng/L	ND	Caltest	1/20/17	2/8/17
SE62	SC-1 RAIN	1/18/17	Permethrin	EPA 8270M_NCI	<	2	2	10	ng/L	ND	Caltest	1/20/17	2/8/17
SE64	CR-1R	4/6/17	Permethrin	EPA 8270M_NCI	<	2	2	10	ng/L	ND	Caltest	4/7/17	4/29/17
SE64	CR-39	4/6/17	Permethrin	EPA 8270M_NCI	<	2	2	10	ng/L	ND	Caltest	4/7/17	4/29/17
SE64	CR-39R	4/6/17	Permethrin	EPA 8270M_NCI	<	2	2	10	ng/L	ND	Caltest	4/7/17	4/29/17
SE64	CR-41	4/6/17	Permethrin	EPA 8270M_NCI	<	4	4	10	ng/L	ND	Caltest	4/7/17	5/3/17
SE64	CR-41R	4/6/17	Permethrin	EPA 8270M_NCI	<	2	2	10	ng/L	ND	Caltest	4/7/17	4/29/17
SE64	CR-42	4/6/17	Permethrin	EPA 8270M_NCI	<	2	2	10	ng/L	ND	Caltest	4/7/17	5/3/17
SE64	CR-46	4/6/17	Permethrin	EPA 8270M_NCI	<	2	2	10	ng/L	ND	Caltest	4/7/17	4/29/17
SE64	CR-46R	4/6/17	Permethrin	EPA 8270M_NCI	<	2	2	10	ng/L	ND	Caltest	4/7/17	4/29/17
SE64	NE-RAIN	4/6/17	Permethrin	EPA 8270M_NCI	<	2	2	10	ng/L	ND	Caltest	4/7/17	4/29/17
SE64	NW-RAIN	4/6/17	Permethrin	EPA 8270M_NCI	<	2	2	10	ng/L	ND	Caltest	4/7/17	4/29/17
SE64	SC-1 RAIN	4/6/17	Permethrin	EPA 8270M_NCI	<	2	2	10	ng/L	ND	Caltest	4/7/17	4/29/17
DW27	CR-46	8/24/16	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	8/26/16	8/31/16
DW27	CR-46R	8/24/16	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	8/26/16	8/31/16
DW27	CR-42	8/24/16	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	8/26/16	8/31/16
DW27	CR-41	8/24/16	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	8/26/16	8/31/16
DW27	CR-41R	8/24/16	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	8/26/16	8/31/16
DW27	CR-39	8/24/16	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.6	ng/L	ND	Caltest	8/26/16	9/1/16
DW27	CR-39R	8/24/16	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	8/26/16	9/1/16
DW28	CR-46	12/5/16	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	12/8/16	12/31/16
DW28	CR-46R	12/5/16	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	12/8/16	12/31/16
DW28	CR-42	12/5/16	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	12/8/16	12/31/16
DW28	CR-41	12/5/16	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	12/8/16	12/31/16
DW28	CR-41R	12/5/16	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	12/8/16	12/31/16
DW28	CR-39	12/5/16	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	12/8/16	12/31/16
DW28	CR-39R	12/5/16	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	12/8/16	12/31/16
DW29	CR-1R	3/2/17	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	3/3/17	3/15/17
DW29	CR-46	3/2/17	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	3/3/17	3/15/17
DW29	CR-46R	3/2/17	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	3/3/17	3/15/17
DW29	CR-42	3/2/17	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	3/3/17	3/15/17
DW29	CR-41	3/2/17	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	3/3/17	3/15/17

		Date											Analysis
Event	Site Code	Sampled	Analyte	Method	Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Date
DW29	CR-41R	3/2/17	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	3/3/17	3/15/17
DW29	CR-39	3/2/17	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	3/3/17	3/15/17
DW29	CR-39R	3/2/17	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	3/3/17	3/15/17
DW30	CR-1R	5/24/17	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	5/25/17	6/20/17
DW30	CR-46	5/24/17	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.6	ng/L	ND	Caltest	5/25/17	6/20/17
DW30	CR-46R	5/24/17	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	5/25/17	6/20/17
DW30	CR-42	5/24/17	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.6	ng/L	ND	Caltest	5/25/17	6/20/17
DW30	CR-41	5/24/17	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	5/25/17	6/20/17
DW30	CR-41R	5/24/17	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	5/25/17	6/20/17
DW30	CR-39	5/24/17	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	5/25/17	6/20/17
DW30	CR-39R	5/24/17	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	5/25/17	6/20/17
SE61	CR-39	10/14/16	Tau-Fluvalinate	EPA 8270M_NCI	<	1	1	2.5	ng/L	ND, 2	Caltest	10/17/16	11/20/16
SE61	CR-39R	10/14/16	Tau-Fluvalinate	EPA 8270M_NCI	<	1	1	2.5	ng/L	ND, 2	Caltest	10/17/16	11/20/16
SE61	CR-41	10/14/16	Tau-Fluvalinate	EPA 8270M_NCI	<	4	4	10	ng/L	ND, 2	Caltest	10/17/16	11/21/16
SE61	CR-41R	10/14/16	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND, 2	Caltest	10/17/16	10/29/16
SE61	CR-42	10/14/16	Tau-Fluvalinate	EPA 8270M_NCI	<	2	2	5	ng/L	ND, 2	Caltest	10/17/16	11/21/16
SE61	CR-46	10/14/16	Tau-Fluvalinate	EPA 8270M_NCI	<	1	1	2.5	ng/L	ND, 2	Caltest	10/17/16	11/19/16
SE61	CR-46R	10/14/16	Tau-Fluvalinate	EPA 8270M_NCI	<	1	1	2.5	ng/L	ND, 2	Caltest	10/17/16	11/19/16
SE61	NW-RAIN	10/14/16	Tau-Fluvalinate	EPA 8270M_NCI	<	1	1	2.5	ng/L	ND, 2	Caltest	10/17/16	11/20/16
SE61	NE-RAIN	10/14/16	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND, 2	Caltest	10/17/16	10/29/16
SE61	SC-1 RAIN	10/14/16	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND, 2	Caltest	10/17/16	10/29/16
SE62	CR-1R	1/18/17	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	1/20/17	2/8/17
SE62	CR-39	1/18/17	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	1/20/17	2/8/17
SE62	CR-39R	1/18/17	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	1/20/17	2/8/17
SE62	CR-41	1/18/17	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	1/20/17	2/8/17
SE62	CR-41R	1/18/17	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	1/20/17	2/8/17
SE62	CR-42	1/18/17	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	1/20/17	2/8/17
SE62	CR-46	1/18/17	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	1/20/17	2/8/17
SE62	CR-46R	1/18/17	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	1/20/17	2/8/17
SE62	NE-RAIN	1/18/17	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	1/20/17	2/8/17
SE62	NW-RAIN	1/18/17	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	1/20/17	2/8/17
SE62	SC-1 RAIN	1/18/17	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	1/20/17	2/8/17
SE64	CR-1R	4/6/17	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	4/7/17	4/29/17
SE64	CR-39	4/6/17	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	4/7/17	4/29/17

		Date											Analysis
Event	Site Code	Sampled	Analyte	Method	Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Date
SE64	CR-39R	4/6/17	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	4/7/17	4/29/17
SE64	CR-41	4/6/17	Tau-Fluvalinate	EPA 8270M_NCI	<	0.4	0.4	1	ng/L	ND	Caltest	4/7/17	5/3/17
SE64	CR-41R	4/6/17	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	4/7/17	4/29/17
SE64	CR-42	4/6/17	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	4/7/17	5/3/17
SE64	CR-46	4/6/17	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	4/7/17	4/29/17
SE64	CR-46R	4/6/17	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	4/7/17	4/29/17
SE64	NE-RAIN	4/6/17	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	4/7/17	4/29/17
SE64	NW-RAIN	4/6/17	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	4/7/17	4/29/17
SE64	SC-1 RAIN	4/6/17	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	4/7/17	4/29/17
DW27	CR-46	8/24/16	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	8/26/16	8/31/16
DW27	CR-46R	8/24/16	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	8/26/16	8/31/16
DW27	CR-42	8/24/16	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	8/26/16	8/31/16
DW27	CR-41	8/24/16	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	8/26/16	8/31/16
DW27	CR-41R	8/24/16	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	8/26/16	8/31/16
DW27	CR-39	8/24/16	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.6	ng/L	ND	Caltest	8/26/16	9/1/16
DW27	CR-39R	8/24/16	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	8/26/16	9/1/16
DW28	CR-46	12/5/16	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	12/8/16	12/31/16
DW28	CR-46R	12/5/16	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	12/8/16	12/31/16
DW28	CR-42	12/5/16	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	12/8/16	12/31/16
DW28	CR-41	12/5/16	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	12/8/16	12/31/16
DW28	CR-41R	12/5/16	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	12/8/16	12/31/16
DW28	CR-39	12/5/16	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	12/8/16	12/31/16
DW28	CR-39R	12/5/16	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	12/8/16	12/31/16
DW29	CR-1R	3/2/17	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	3/3/17	3/15/17
DW29	CR-46	3/2/17	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	3/3/17	3/15/17
DW29	CR-46R	3/2/17	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	3/3/17	3/15/17
DW29	CR-42	3/2/17	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	3/3/17	3/15/17
DW29	CR-41	3/2/17	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	3/3/17	3/15/17
DW29	CR-41R	3/2/17	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	3/3/17	3/15/17
DW29	CR-39	3/2/17	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	3/3/17	3/15/17
DW29	CR-39R	3/2/17	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	3/3/17	3/15/17
DW30	CR-1R	5/24/17	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	5/25/17	6/20/17
DW30	CR-46	5/24/17	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.6	ng/L	ND	Caltest	5/25/17	6/20/17
DW30	CR-46R	5/24/17	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	5/25/17	6/20/17

		Date											Analysis
Event	Site Code	Sampled	Analyte	Method	Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Date
DW30	CR-42	5/24/17	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.6	ng/L	ND	Caltest	5/25/17	6/20/17
DW30	CR-41	5/24/17	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	5/25/17	6/20/17
DW30	CR-41R	5/24/17	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	5/25/17	6/20/17
DW30	CR-39	5/24/17	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	5/25/17	6/20/17
DW30	CR-39R	5/24/17	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	5/25/17	6/20/17
SE61	CR-39	10/14/16	Tetramethrin	EPA 8270M_NCI	<	1	1	2.5	ng/L	ND	Caltest	10/17/16	11/20/16
SE61	CR-39R	10/14/16	Tetramethrin	EPA 8270M_NCI	<	1	1	2.5	ng/L	ND	Caltest	10/17/16	11/20/16
SE61	CR-41	10/14/16	Tetramethrin	EPA 8270M_NCI	<	4	4	10	ng/L	ND	Caltest	10/17/16	11/21/16
SE61	CR-41R	10/14/16	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	10/17/16	10/29/16
SE61	CR-42	10/14/16	Tetramethrin	EPA 8270M_NCI	<	2	2	5	ng/L	ND	Caltest	10/17/16	11/21/16
SE61	CR-46	10/14/16	Tetramethrin	EPA 8270M_NCI	<	1	1	2.5	ng/L	ND	Caltest	10/17/16	11/19/16
SE61	CR-46R	10/14/16	Tetramethrin	EPA 8270M_NCI	<	1	1	2.5	ng/L	ND	Caltest	10/17/16	11/19/16
SE61	NW-RAIN	10/14/16	Tetramethrin	EPA 8270M_NCI	<	1	1	2.5	ng/L	ND	Caltest	10/17/16	11/20/16
SE61	NE-RAIN	10/14/16	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	10/17/16	10/29/16
SE61	SC-1 RAIN	10/14/16	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	10/17/16	10/29/16
SE62	CR-1R	1/18/17	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	1/20/17	2/8/17
SE62	CR-39	1/18/17	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	1/20/17	2/8/17
SE62	CR-39R	1/18/17	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	1/20/17	2/8/17
SE62	CR-41	1/18/17	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	1/20/17	2/8/17
SE62	CR-41R	1/18/17	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	1/20/17	2/8/17
SE62	CR-42	1/18/17	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	1/20/17	2/8/17
SE62	CR-46	1/18/17	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	1/20/17	2/8/17
SE62	CR-46R	1/18/17	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	1/20/17	2/8/17
SE62	NE-RAIN	1/18/17	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	1/20/17	2/8/17
SE62	NW-RAIN	1/18/17	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	1/20/17	2/8/17
SE62	SC-1 RAIN	1/18/17	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	1/20/17	2/8/17
SE64	CR-1R	4/6/17	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	4/7/17	4/29/17
SE64	CR-39	4/6/17	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	4/7/17	4/29/17
SE64	CR-39R	4/6/17	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	4/7/17	4/29/17
SE64	CR-41	4/6/17	Tetramethrin	EPA 8270M_NCI	<	0.4	0.4	1	ng/L	ND	Caltest	4/7/17	5/3/17
SE64	CR-41R	4/6/17	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	4/7/17	4/29/17
SE64	CR-42	4/6/17	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	4/7/17	5/3/17
SE64	CR-46	4/6/17	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	4/7/17	4/29/17
SE64	CR-46R	4/6/17	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	4/7/17	4/29/17

		Date											Analysis
Event	Site Code	Sampled	Analyte	Method	Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Date
SE64	NE-RAIN	4/6/17	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	4/7/17	4/29/17
SE64	NW-RAIN	4/6/17	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	4/7/17	4/29/17
SE64	SC-1 RAIN	4/6/17	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	4/7/17	4/29/17
DW27	CR-46	8/24/16	Alkalinity (as CaCO3)	2320B	=	163	1.1	10	mg/L		FGL Env.	8/26/16	8/26/16
DW27	CR-46R	8/24/16	Alkalinity (as CaCO3)	2320B	=	78.4	1.1	10	mg/L		FGL Env.	8/26/16	8/26/16
DW28	CR-46	12/5/16	Alkalinity (as CaCO3)	2320B	=	87.2	1.1	10	mg/L		FGL Env.	12/7/16	12/7/16
DW28	CR-46R	12/5/16	Alkalinity (as CaCO3)	2320B	=	18.8	1.1	10	mg/L		FGL Env.	12/7/16	12/7/16
DW29	CR-46	3/2/17	Alkalinity (as CaCO3)	2320B	=	44.5	1.1	10	mg/L		FGL Env.	3/6/17	3/6/17
DW29	CR-46R	3/2/17	Alkalinity (as CaCO3)	2320B	=	58.4	1.1	10	mg/L		FGL Env.	3/6/17	3/6/17
DW30	CR-46	5/24/17	Alkalinity (as CaCO3)	2320B	=	165	1.1	10	mg/L		FGL Env.	5/26/17	5/26/17
DW30	CR-46R	5/24/17	Alkalinity (as CaCO3)	2320B	=	63.3	1.1	10	mg/L		FGL Env.	5/26/17	5/26/17
SE61	CR-46	10/14/16	Alkalinity (as CaCO3)	2320B	=	10.6	1.1	10	mg/L		FGL Env.	10/19/16	10/19/16
SE61	CR-46R	10/14/16	Alkalinity (as CaCO3)	2320B	=	51.5	1.1	10	mg/L		FGL Env.	10/19/16	10/19/16
SE62	CR-46	1/18/17	Alkalinity (as CaCO3)	2320B	=	8.48	1.1	10	mg/L	J	FGL Env.	1/23/17	1/23/17
SE62	CR-46R	1/18/17	Alkalinity (as CaCO3)	2320B	=	52.8	1.1	10	mg/L		FGL Env.	1/23/17	1/23/17
SE64	CR-46	4/6/17	Alkalinity (as CaCO3)	2320B	=	9.18	1.1	10	mg/L	J	FGL Env.	4/12/17	4/12/17
SE64	CR-46R	4/6/17	Alkalinity (as CaCO3)	2320B	=	52.7	1.1	10	mg/L		FGL Env.	4/12/17	4/12/17
DW27	CR-46	8/24/16	Ammonia Nitrogen	4500NH3G	<	0.072	0.072	0.2	mg/L	Uh	FGL Env.	8/26/16	8/26/16
DW27	CR-46R	8/24/16	Ammonia Nitrogen	4500NH3G	<	0.072	0.072	0.2	mg/L	U	FGL Env.	8/26/16	8/26/16
DW28	CR-46	12/5/16	Ammonia Nitrogen	4500NH3G	<	0.072	0.072	0.2	mg/L	U, ND	FGL Env.	12/7/16	12/7/16
DW28	CR-46R	12/5/16	Ammonia Nitrogen	4500NH3G	<	0.072	0.072	0.2	mg/L	U, ND	FGL Env.	12/7/16	12/7/16
DW29	CR-46	3/2/17	Ammonia Nitrogen	4500NH3G	<	0.072	0.072	0.2	mg/L	U, ND	FGL Env.	3/8/17	3/8/17
DW29	CR-46R	3/2/17	Ammonia Nitrogen	4500NH3G	=	0.186	0.072	0.2	mg/L	J	FGL Env.	3/6/17	3/6/17
DW30	CR-46	5/24/17	Ammonia Nitrogen	4500NH3G	<	0.072	0.072	0.2	mg/L	U, ND	FGL Env.	5/30/17	5/30/17
DW30	CR-46R	5/24/17	Ammonia Nitrogen	4500NH3G	<	0.072	0.072	0.2	mg/L	U, I, ND	FGL Env.	5/31/17	6/1/17
SE61	CR-46	10/14/16	Ammonia Nitrogen	4500NH3G	=	1.23	0.072	0.2	mg/L		FGL Env.	10/19/16	10/19/16
SE61	CR-46R	10/14/16	Ammonia Nitrogen	4500NH3G	=	1.57	0.072	0.2	mg/L		FGL Env.	10/19/16	10/19/16
SE62	CR-46	1/18/17	Ammonia Nitrogen	4500NH3G	=	0.394	0.072	0.2	mg/L		FGL Env.	1/23/17	1/23/17
SE62	CR-46R	1/18/17	Ammonia Nitrogen	4500NH3G	<	0.072	0.072	0.2	mg/L	ND, U	FGL Env.	1/23/17	1/23/17
SE64	CR-46	4/6/17	Ammonia Nitrogen	4500NH3G	=	0.601	0.072	0.2	mg/L		FGL Env.	4/11/17	4/11/17
SE64	CR-46R	4/6/17	Ammonia Nitrogen	4500NH3G	=	0.146	0.072	0.2	mg/L	J	FGL Env.	4/11/17	4/11/17
DW27	CR-46	8/24/16	Bicarbonate	2320B	=	199	1.1	10	mg/L		FGL Env.	8/26/16	8/26/16

		Date											Analysis
Event	Site Code	Sampled	Analyte	Method	Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Date
DW27	CR-46R	8/24/16	Bicarbonate	2320B	=	95.6	1.1	10	mg/L		FGL Env.	8/26/16	8/26/16
DW28	CR-46	12/5/16	Bicarbonate	2320B	=	106	1.1	10	mg/L		FGL Env.	12/7/16	12/7/16
DW28	CR-46R	12/5/16	Bicarbonate	2320B	=	22.9	1.1	10	mg/L		FGL Env.	12/7/16	12/7/16
DW29	CR-46	3/2/17	Bicarbonate	2320B	=	54.4	1.1	10	mg/L		FGL Env.	3/6/17	3/6/17
DW29	CR-46R	3/2/17	Bicarbonate	2320B	=	71.2	1.1	10	mg/L		FGL Env.	3/6/17	3/6/17
DW30	CR-46	5/24/17	Bicarbonate	2320B	=	201	1.1	10	mg/L		FGL Env.	5/26/17	5/26/17
DW30	CR-46R	5/24/17	Bicarbonate	2320B	=	77.3	1.1	10	mg/L		FGL Env.	5/26/17	5/26/17
SE61	CR-46	10/14/16	Bicarbonate	2320B	=	12.9	1.1	10	mg/L		FGL Env.	10/19/16	10/19/16
SE61	CR-46R	10/14/16	Bicarbonate	2320B	=	62.7	1.1	10	mg/L		FGL Env.	10/19/16	10/19/16
SE62	CR-46	1/18/17	Bicarbonate	2320B	=	10.2	1.1	10	mg/L		FGL Env.	1/23/17	1/23/17
SE62	CR-46R	1/18/17	Bicarbonate	2320B	=	64.4	1.1	10	mg/L		FGL Env.	1/23/17	1/23/17
SE64	CR-46	4/6/17	Bicarbonate	2320B	=	11.2	1.1	10	mg/L		FGL Env.	4/12/17	4/12/17
SE64	CR-46R	4/6/17	Bicarbonate	2320B	=	64.4	1.1	10	mg/L		FGL Env.	4/12/17	4/12/17
DW27	CR-46	8/24/16	BOD	5210B	=	5.7	0.19	2	mg/L	Н	FGL Env.	8/25/16	8/30/16
DW27	CR-46R	8/24/16	BOD	5210B	=	2.2	0.19	2	mg/L	Н	FGL Env.	8/25/16	8/30/16
DW28	CR-46	12/5/16	BOD	5210B	=	1.2	0.19	2	mg/L	J, I	FGL Env.	12/5/16	12/10/16
DW28	CR-46R	12/5/16	BOD	5210B	=	1.4	0.19	2	mg/L	J, I	FGL Env.	12/5/16	12/10/16
DW29	CR-46	3/2/17	BOD	5210B	=	0.5	0.19	2	mg/L	J	FGL Env.	3/2/17	3/7/17
DW29	CR-46R	3/2/17	BOD	5210B	=	0.5	0.19	2	mg/L	J	FGL Env.	3/2/17	3/7/17
DW30	CR-46	5/24/17	BOD	5210B	=	1.7	0.19	2	mg/L	J, I	FGL Env.	5/24/17	5/29/17
DW30	CR-46R	5/24/17	BOD	5210B	=	3.1	0.19	2	mg/L	I	FGL Env.	5/24/17	5/29/17
SE61	CR-46	10/14/16	BOD	5210B	=	20.9	0.19	8.7	mg/L	J	FGL Env.	10/15/16	10/20/16
SE61	CR-46R	10/14/16	BOD	5210B	=	66.3	0.19	32	mg/L		FGL Env.	10/15/16	10/20/16
SE62	CR-1R	1/18/17	BOD	5210B	=	1.2	0.19	2	mg/L	J	FGL Env.	1/19/17	1/24/17
SE62	CR-39	1/18/17	BOD	5210B	=	4.6	0.19	2	mg/L		FGL Env.	1/19/17	1/24/17
SE62	CR-39R	1/18/17	BOD	5210B	=	2	0.19	2	mg/L		FGL Env.	1/19/17	1/24/17
SE62	CR-41	1/18/17	BOD	5210B	=	4.7	0.19	2	mg/L		FGL Env.	1/19/17	1/24/17
SE62	CR-41R	1/18/17	BOD	5210B	=	1.1	0.19	2	mg/L	J	FGL Env.	1/19/17	1/24/17
SE62	CR-42	1/18/17	BOD	5210B	=	4.1	0.19	2	mg/L		FGL Env.	1/19/17	1/24/17
SE62	CR-46	1/18/17	BOD	5210B	=	4.3	0.19	2	mg/L		FGL Env.	1/19/17	1/24/17
SE62	CR-46R	1/18/17	BOD	5210B	=	1.5	0.19	2	mg/L	J	FGL Env.	1/19/17	1/24/17
SE63	CR-1R	2/16/17	BOD	5210B	=	0.6	0.19	2	mg/L	J, I	FGL Env.	2/16/17	2/21/17

SE63 CR-3 SE63 CR-4	39R 2/16/17 41 2/16/17 41R 2/16/17 42 2/16/17	Analyte BOD BOD BOD BOD	Method 5210B 5210B	Q =	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Analysis Date
SE63 CR-3 SE63 CR-4 SE63 CR-4	39 2/16/17 39R 2/16/17 41 2/16/17 41R 2/16/17 42 2/16/17	BOD BOD BOD	5210B 5210B	=		MDL	RL/ML	Units	Flag	Lab Name	Pren Date	Date
SE63 CR-3 SE63 CR-4	39R 2/16/17 41 2/16/17 41R 2/16/17 42 2/16/17	BOD BOD	5210B		0.0				5		. Top Duit	Date
SE63 CR-4 SE63 CR-4 SE63 CR-4 SE63 CR-4 SE63 CR-4 SE63 CR-4	412/16/1741R2/16/17422/16/17	BOD			3.9	0.19	2	mg/L	I	FGL Env.	2/16/17	2/21/17
SE63 CR-4 SE63 CR-4 SE63 CR-4 SE63 CR-4 SE63 CR-4	41R2/16/17422/16/17			=	1.4	0.19	2	mg/L	I	FGL Env.	2/16/17	2/21/17
SE63 CR-4 SE63 CR-4 SE63 CR-4	42 2/16/17	BOD	5210B	=	5.6	0.19	2	mg/L	I	FGL Env.	2/16/17	2/21/17
SE63 CR-4 SE63 CR-4			5210B	=	1.9	0.19	2	mg/L	J, I	FGL Env.	2/16/17	2/21/17
SE63 CR-4		BOD	5210B	=	28.9	0.19	8.7	mg/L	I	FGL Env.	2/16/17	2/21/17
	46 2/16/17	BOD	5210B	=	11	0.19	4.3	mg/L	I	FGL Env.	2/16/17	2/21/17
	16R 2/16/17	BOD	5210B	=	0.8	0.19	2	mg/L	J, I	FGL Env.	2/16/17	2/21/17
SE64 CR-1	IR 4/6/17	BOD	5210B	=	3	0.19	2	mg/L	l	FGL Env.	4/7/17	4/12/17
SE64 CR-3	39 4/6/17	BOD	5210B	=	26	0.19	8.7	mg/L	I	FGL Env.	4/7/17	4/12/17
SE64 CR-3	39R 4/6/17	BOD	5210B	=	1.7	0.19	2	mg/L	JI	FGL Env.	4/7/17	4/12/17
SE64 CR-4	41 4/6/17	BOD	5210B	=	14.1	0.19	4.3	mg/L	l	FGL Env.	4/7/17	4/12/17
SE64 CR-4	41R 4/6/17	BOD	5210B	=	4.5	0.19	2	mg/L		FGL Env.	4/7/17	4/12/17
SE64 CR-4	4/6/17	BOD	5210B	=	15.8	0.19	4.3	mg/L		FGL Env.	4/7/17	4/12/17
SE64 CR-4	46 4/6/17	BOD	5210B	=	5.8	0.19	2	mg/L	l	FGL Env.	4/7/17	4/12/17
SE64 CR-4	46R 4/6/17	BOD	5210B	=	12.4	0.19	4.3	mg/L	l	FGL Env.	4/7/17	4/12/17
DW27 CR-4	16 8/24/16	Carbonate	2320B	<	1.1	1.1	10	mg/L	U	FGL Env.	8/26/16	8/26/16
DW27 CR-4	16R 8/24/16	Carbonate	2320B	<	1.1	1.1	10	mg/L	U	FGL Env.	8/26/16	8/26/16
DW28 CR-4	16 12/5/16	Carbonate	2320B	<	1.1	1.1	10	mg/L	U, ND	FGL Env.	12/7/16	12/7/16
DW28 CR-4	16R 12/5/16	Carbonate	2320B	<	1.1	1.1	10	mg/L	U, ND	FGL Env.	12/7/16	12/7/16
DW29 CR-4	46 3/2/17	Carbonate	2320B	<	1.1	1.1	10	mg/L	U, ND	FGL Env.	3/6/17	3/6/17
DW29 CR-4	46R 3/2/17	Carbonate	2320B	<	1.1	1.1	10	mg/L	U, ND	FGL Env.	3/6/17	3/6/17
DW30 CR-4	16 5/24/17	Carbonate	2320B	<	1.1	1.1	10	mg/L	U, ND	FGL Env.	5/26/17	5/26/17
DW30 CR-4	46R 5/24/17	Carbonate	2320B	<	1.1	1.1	10	mg/L	U, ND	FGL Env.	5/26/17	5/26/17
SE61 CR-4	10/14/16	Carbonate	2320B	<	1.1	1.1	10	mg/L	U, ND	FGL Env.	10/19/16	10/19/16
SE61 CR-4	46R 10/14/16	Carbonate	2320B	<	1.1	1.1	10	mg/L	U, ND	FGL Env.	10/19/16	10/19/16
SE62 CR-4	1/18/17	Carbonate	2320B	<	1.1	1.1	10	mg/L	U, ND	FGL Env.	1/23/17	1/23/17
SE62 CR-4	46R 1/18/17	Carbonate	2320B	<	1.1	1.1	10	mg/L	ND, U	FGL Env.	1/23/17	1/23/17
SE64 CR-4	46 4/6/17	Carbonate	2320B	<	1.1	1.1	10	mg/L	U, ND	FGL Env.	4/12/17	4/12/17
SE64 CR-4	46R 4/6/17	Carbonate	2320B	<	1.1	1.1	10	mg/L	U, ND	FGL Env.	4/12/17	4/12/17
DW27 CR-4	46 8/24/16	COD	5220D	=	8.89	4.4	20	mg/L	Jb	FGL Env.	9/6/16	9/6/16
DW27 CR-4	46R 8/24/16	COD	5220D	=	17.7	4.4	20	mg/L	J	FGL Env.	9/12/16	9/12/16
DW28 CR-4		COD	5220D	=	8.89	4.4	20	mg/L	J, b	FGL Env.	12/12/16	12/12/16

					•	•							
		Date											Analysis
Event	Site Code	Sampled	Analyte	Method	Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Date
DW28	CR-46R	12/5/16	COD	5220D	=	6.68	4.4	20	mg/L	J, b	FGL Env.	12/12/16	12/12/16
DW29	CR-46	3/2/17	COD	5220D	<	4.4	4.4	20	mg/L	U, ND	FGL Env.	3/13/17	3/13/17
DW29	CR-46R	3/2/17	COD	5220D	<	4.4	4.4	20	mg/L	U, ND	FGL Env.	3/13/17	3/13/17
DW30	CR-46	5/24/17	COD	5220D	<	4.4	4.4	20	mg/L	U,b, h, ND	FGL Env.	6/5/17	6/5/17
DW30	CR-46R	5/24/17	COD	5220D	<	4.4	4.4	20	mg/L	U, b, h, ND	FGL Env.	6/5/17	6/5/17
SE61	CR-46	10/14/16	COD	5220D	=	104	4.4	20	mg/L	b	FGL Env.	10/31/16	10/31/16
SE61	CR-46R	10/14/16	COD	5220D	=	225	4.4	20	mg/L	b	FGL Env.	10/31/16	10/31/16
SE62	CR-46	1/18/17	COD	5220D	=	44.5	4.4	20	mg/L		FGL Env.	2/6/17	2/6/17
SE62	CR-46R	1/18/17	COD	5220D	=	15.2	4.4	20	mg/L	J	FGL Env.	2/6/17	2/6/17
SE64	CR-46	4/6/17	COD	5220D	=	40	4.4	20	mg/L		FGL Env.	4/17/17	4/17/17
SE64	CR-46R	4/6/17	COD	5220D	=	35.5	4.4	20	mg/L		FGL Env.	4/24/17	4/24/17
DW27	CR-46	8/24/16	Dissolved Oxygen	Field	=	4.25	-	0.01	mg/L		Field	-	
DW27	CR-46R	8/24/16	Dissolved Oxygen	Field	=	6.66	-	0.01	mg/L		Field	-	-
DW27	CR-42	8/24/16	Dissolved Oxygen	Field	=	3.41	-	0.01	mg/L		Field	-	-
DW27	CR-41	8/24/16	Dissolved Oxygen	Field	=	6.96	-	0.01	mg/L		Field	-	-
DW27	CR-41R	8/24/16	Dissolved Oxygen	Field	=	7.6	-	0.01	mg/L		Field	-	-
DW27	CR-39	8/24/16	Dissolved Oxygen	Field	=	5.43	-	0.01	mg/L		Field	-	-
DW27	CR-39R	8/24/16	Dissolved Oxygen	Field	=	8.62	-	0.01	mg/L		Field	-	-
DW28	CR-46	12/5/16	Dissolved Oxygen	Field	=	5.65	-	0.01	mg/L		Field	-	-
DW28	CR-46R	12/5/16	Dissolved Oxygen	Field	=	8.75	-	0.01	mg/L		Field	-	-
DW28	CR-42	12/5/16	Dissolved Oxygen	Field	=	2.71	-	0.01	mg/L		Field	-	-
DW28	CR-41	12/5/16	Dissolved Oxygen	Field	=	6.77	-	0.01	mg/L		Field	-	-
DW28	CR-41R	12/5/16	Dissolved Oxygen	Field	=	9.62	-	0.01	mg/L		Field	-	-
DW28	CR-39	12/5/16	Dissolved Oxygen	Field	=	8.28	-	0.01	mg/L		Field	-	-
DW28	CR-39R	12/5/16	Dissolved Oxygen	Field	=	9.43	-	0.01	mg/L		Field	-	-
DW29	CR-1R	3/2/17	Dissolved Oxygen	Field	=	12.08	-	0.01	mg/L		Field	-	-
DW29	CR-46	3/2/17	Dissolved Oxygen	Field	=	5.63	-	0.01	mg/L		Field	-	-
DW29	CR-46R	3/2/17	Dissolved Oxygen	Field	=	9.44	-	0.01	mg/L		Field	-	-
DW29	CR-42	3/2/17	Dissolved Oxygen	Field	=	5.02	-	0.01	mg/L		Field	-	-
DW29	CR-41	3/2/17	Dissolved Oxygen	Field	=	7.19	-	0.01	mg/L		Field	-	-
DW29	CR-41R	3/2/17	Dissolved Oxygen	Field	=	10.55	-	0.01	mg/L		Field	-	-
DW29	CR-39	3/2/17	Dissolved Oxygen	Field	=	9.01	-	0.01	mg/L		Field	-	-
DW29	CR-39R	3/2/17	Dissolved Oxygen	Field	=	10.45	-	0.01	mg/L		Field	-	-

		Date											Analysis
Event	Site Code	Sampled	Analyte	Method	Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Date
DW30	CR-1R	5/24/17	Dissolved Oxygen	Field	=	7.9	-	0.01	mg/L		Field	-	-
DW30	CR-46	5/24/17	Dissolved Oxygen	Field	=	5.65	-	0.01	mg/L		Field	-	-
DW30	CR-46R	5/24/17	Dissolved Oxygen	Field	=	6.97	-	0.01	mg/L		Field	-	-
DW30	CR-42	5/24/17	Dissolved Oxygen	Field	=	4.39	-	0.01	mg/L		Field	-	-
DW30	CR-41	5/24/17	Dissolved Oxygen	Field	=	7.74	-	0.01	mg/L		Field	-	-
DW30	CR-41R	5/24/17	Dissolved Oxygen	Field	=	6.78	-	0.01	mg/L		Field	-	-
DW30	CR-39	5/24/17	Dissolved Oxygen	Field	=	4.56	-	0.01	mg/L		Field	-	-
DW30	CR-39R	5/24/17	Dissolved Oxygen	Field	=	7.85	-	0.01	mg/L		Field	-	-
SE61	CR-39	10/14/16	Dissolved Oxygen	Field	=	8.35	-	0.01	mg/L		Field	-	-
SE61	CR-39R	10/14/16	Dissolved Oxygen	Field	=	7.61	-	0.01	mg/L		Field	-	-
SE61	CR-41	10/14/16	Dissolved Oxygen	Field	=	7.11	-	0.01	mg/L		Field	-	-
SE61	CR-41R	10/14/16	Dissolved Oxygen	Field	=	7.39	-	0.01	mg/L		Field	-	-
SE61	CR-42	10/14/16	Dissolved Oxygen	Field	=	7.58	-	0.01	mg/L		Field	-	-
SE61	CR-46	10/14/16	Dissolved Oxygen	Field	=	8.92	-	0.01	mg/L		Field	-	-
SE61	CR-46R	10/14/16	Dissolved Oxygen	Field	=	9.45	-	0.01	mg/L		Field	-	-
SE61	NW-RAIN	10/14/16	Dissolved Oxygen	Field	=	13.42	-	0.01	mg/L		Field	-	-
SE61	NE-RAIN	10/14/16	Dissolved Oxygen	Field	=	8.38	-	0.01	mg/L		Field	-	-
SE61	SC-1 RAIN	10/14/16	Dissolved Oxygen	Field	=	9.63	-	0.01	mg/L		Field	-	-
SE62	CR-1R	1/18/17	Dissolved Oxygen	Field	=	12.82	-	0.01	mg/L		Field	-	-
SE62	CR-39	1/18/17	Dissolved Oxygen	Field	=	10.75	-	0.01	mg/L		Field	-	-
SE62	CR-39R	1/18/17	Dissolved Oxygen	Field	=	10.34	-	0.01	mg/L		Field	-	-
SE62	CR-41	1/18/17	Dissolved Oxygen	Field	=	11.12	-	0.01	mg/L		Field	-	-
SE62	CR-41R	1/18/17	Dissolved Oxygen	Field	=	10.45	-	0.01	mg/L		Field	-	-
SE62	CR-42	1/18/17	Dissolved Oxygen	Field	=	11.34	-	0.01	mg/L		Field	-	-
SE62	CR-46	1/18/17	Dissolved Oxygen	Field	=	10.41	-	0.01	mg/L		Field	-	-
SE62	CR-46R	1/18/17	Dissolved Oxygen	Field	=	10.97	-	0.01	mg/L		Field	-	-
SE62	NE-RAIN	1/18/17	Dissolved Oxygen	Field	=	11.27	-	0.01	mg/L		Field	-	-
SE62	NW-RAIN	1/18/17	Dissolved Oxygen	Field	=	11.73	-	0.01	mg/L		Field	-	-
SE62	SC-1 RAIN	1/18/17	Dissolved Oxygen	Field	=	10.31	-	0.01	mg/L		Field	-	-
SE63	CR-1R	2/16/17	Dissolved Oxygen	Field	=	11.45	-	0.01	mg/L		Field	-	-
SE63	CR-39	2/16/17	Dissolved Oxygen	Field	=	9.02	-	0.01	mg/L		Field	-	-
SE63	CR-39R	2/16/17	Dissolved Oxygen	Field	=	10.75	-	0.01	mg/L		Field	-	-
SE63	CR-41	2/16/17	Dissolved Oxygen	Field	=	7.59	-	0.01	mg/L		Field	-	-
SE63	CR-41R	2/16/17	Dissolved Oxygen	Field	=	10.83	-	0.01	mg/L		Field	-	-

													Analysia
Fuent	Site Code	Date	Apoluto	Method	0	Decult	МП		Unite	Flog	Lab Name	Drop Data	Analysis Date
Event		Sampled	Analyte		Q	Result	MDL	RL/ML		Flag		Prep Date	Dale
SE63	CR-42	2/16/17	Dissolved Oxygen	Field	=	8.44	-	0.01	mg/L		Field	-	-
SE63	CR-46	2/16/17	Dissolved Oxygen	Field	=	8.57	-	0.01	mg/L		Field	-	-
SE63	CR-46R	2/16/17	Dissolved Oxygen	Field	=	10.04	-	0.01	mg/L		Field	-	-
SE64	CR-1R	4/6/17	Dissolved Oxygen	Field	=	9.01	-	0.01	mg/L		Field	-	-
SE64	CR-39	4/6/17	Dissolved Oxygen	Field	=	7.28	-	0.01	mg/L		Field	-	-
SE64	CR-39R	4/6/17	Dissolved Oxygen	Field	=	9.39	-	0.01	mg/L		Field	-	-
SE64	CR-41	4/6/17	Dissolved Oxygen	Field	=	8.94	-	0.01	mg/L		Field	-	-
SE64	CR-41R	4/6/17	Dissolved Oxygen	Field	=	8.51	-	0.01	mg/L		Field	-	-
SE64	CR-42	4/6/17	Dissolved Oxygen	Field	=	9.86	-	0.01	mg/L		Field	-	-
SE64	CR-46	4/6/17	Dissolved Oxygen	Field	=	9.82	-	0.01	mg/L		Field	-	-
SE64	CR-46R	4/6/17	Dissolved Oxygen	Field	=	9.65	-	0.01	mg/L		Field	-	-
SE64	NE-RAIN	4/6/17	Dissolved Oxygen	Field	=	10.24	-	0.01	mg/L		Field	-	-
SE64	NW-RAIN	4/6/17	Dissolved Oxygen	Field	=	9.61	-	0.01	mg/L		Field	-	-
SE64	SC-1 RAIN	4/6/17	Dissolved Oxygen	Field	=	11.02	-	0.01	mg/L		Field	-	-
DW27	CR-46	8/24/16	EC - Field	Field	=	418	-	1	µmhos/cm		Field	-	-
DW27	CR-46R	8/24/16	EC - Field	Field	=	374	-	1	µmhos/cm		Field	-	-
DW27	CR-42	8/24/16	EC - Field	Field	=	369	-	1	µmhos/cm		Field	-	-
DW27	CR-41	8/24/16	EC - Field	Field	=	604	-	1	µmhos/cm		Field	-	-
DW27	CR-41R	8/24/16	EC - Field	Field	=	638	-	1	µmhos/cm		Field	-	-
DW27	CR-39	8/24/16	EC - Field	Field	=	1094	-	1	µmhos/cm		Field	-	-
DW27	CR-39R	8/24/16	EC - Field	Field	=	531	-	1	µmhos/cm		Field	-	-
DW28	CR-46	12/5/16	EC - Field	Field	=	273	-	1	µmhos/cm		Field	-	-
DW28	CR-46R	12/5/16	EC - Field	Field	=	63	-	1	µmhos/cm		Field	-	-
DW28	CR-42	12/5/16	EC - Field	Field	=	86.6	-	1	µmhos/cm		Field	-	-
DW28	CR-41	12/5/16	EC - Field	Field	=	708	-	1	µmhos/cm		Field	-	-
DW28	CR-41R	12/5/16	EC - Field	Field	=	96	-	1	µmhos/cm		Field	-	-
DW28	CR-39	12/5/16	EC - Field	Field	=	1211	-	1	µmhos/cm		Field	-	-
DW28	CR-39R	12/5/16	EC - Field	Field	=	521	-	1	µmhos/cm		Field	-	-
DW29	CR-1R	3/2/17	EC - Field	Field	=	120	-	1	µmhos/cm		Field	-	-
DW29	CR-46	3/2/17	EC - Field	Field	=	168	-	1	µmhos/cm		Field	-	-
DW29	CR-46R	3/2/17	EC - Field	Field	=	123	-	1	µmhos/cm		Field	-	-
DW29	CR-42	3/2/17	EC - Field	Field	=	531	-	1	µmhos/cm		Field	-	-
DW29	CR-41	3/2/17	EC - Field	Field	=	817	-	1	µmhos/cm		Field	-	-
DW29	CR-41R	3/2/17	EC - Field	Field	=	136	-	1	µmhos/cm		Field	-	-

		Date											Analysis
Event	Site Code	Sampled	Analyte	Method	Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Date
DW29	CR-39	3/2/17	EC - Field	Field	=	1371	-	1	µmhos/cm		Field	-	-
DW29	CR-39R	3/2/17	EC - Field	Field	=	184	-	1	µmhos/cm		Field	-	-
DW30	CR-1R	5/24/17	EC - Field	Field	=	151.1	-	1	µmhos/cm		Field	-	-
DW30	CR-46	5/24/17	EC - Field	Field	=	443.8	-	1	µmhos/cm		Field	-	-
DW30	CR-46R	5/24/17	EC - Field	Field	=	166.3	-	1	µmhos/cm		Field	-	-
DW30	CR-42	5/24/17	EC - Field	Field	=	549	-	1	µmhos/cm		Field	-	-
DW30	CR-41	5/24/17	EC - Field	Field	=	654	-	1	µmhos/cm		Field	-	-
DW30	CR-41R	5/24/17	EC - Field	Field	=	199.8	-	1	µmhos/cm		Field	-	-
DW30	CR-39	5/24/17	EC - Field	Field	=	1026	-	1	µmhos/cm		Field	-	-
DW30	CR-39R	5/24/17	EC - Field	Field	=	187.8	-	1	µmhos/cm		Field	-	-
SE61	CR-39	10/14/16	EC - Field		=	580	-	1	µmhos/cm		Field	-	-
SE61	CR-39R	10/14/16	EC - Field		=	755	-	1	µmhos/cm		Field	-	-
SE61	CR-41	10/14/16	EC - Field		=	212	-	1	µmhos/cm		Field	-	-
SE61	CR-41R	10/14/16	EC - Field		=	567	-	1	µmhos/cm		Field	-	-
SE61	CR-42	10/14/16	EC - Field		=	261	-	1	µmhos/cm		Field	-	-
SE61	CR-46	10/14/16	EC - Field		=	64	-	1	µmhos/cm		Field	-	-
SE61	CR-46R	10/14/16	EC - Field		=	216	-	1	µmhos/cm		Field	-	-
SE61	NW-RAIN	10/14/16	EC - Field		=	15	-	1	µmhos/cm		Field	-	-
SE61	NE-RAIN	10/14/16	EC - Field		=	18	-	1	µmhos/cm		Field	-	-
SE61	SC-1 RAIN	10/14/16	EC - Field		=	10	-	1	µmhos/cm		Field	-	-
SE62	CR-1R	1/18/17	EC - Field		=	167	-	1	µmhos/cm		Field	-	-
SE62	CR-39	1/18/17	EC - Field		=	752	-	1	µmhos/cm		Field	-	-
SE62	CR-39R	1/18/17	EC - Field		=	188	-	1	µmhos/cm		Field	-	-
SE62	CR-41	1/18/17	EC - Field		=	47	-	1	µmhos/cm		Field	-	-
SE62	CR-41R	1/18/17	EC - Field		=	134	-	1	µmhos/cm		Field	-	-
SE62	CR-42	1/18/17	EC - Field		=	17	-	1	µmhos/cm		Field	-	-
SE62	CR-46	1/18/17	EC - Field		=	40	-	1	µmhos/cm		Field	-	-
SE62	CR-46R	1/18/17	EC - Field		=	136	-	1	µmhos/cm		Field	-	-
SE62	NE-RAIN	1/18/17	EC - Field		=	11	-	1	µmhos/cm		Field	-	-
SE62	NW-RAIN	1/18/17	EC - Field		=	7	-	1	µmhos/cm		Field	-	-
SE62	SC-1 RAIN	1/18/17	EC - Field		=	6	-	1	µmhos/cm		Field	-	-
SE63	CR-1R	2/16/17	EC - Field		=	134	-	1	µmhos/cm		Field	-	-
SE63	CR-39	2/16/17	EC - Field		=	1114	-	1	µmhos/cm		Field	-	-
SE63	CR-39R	2/16/17	EC - Field		=	150	-	1	µmhos/cm		Field	-	-

SE63 SE63	Site Code CR-41	Sampled	Analuta										Analysis
SE63	CP-/1	1	Analyte	Method	Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Date
		2/16/17	EC - Field		=	536	-	1	µmhos/cm		Field	-	-
	CR-41R	2/16/17	EC - Field		=	137	-	1	µmhos/cm		Field	-	-
	CR-42	2/16/17	EC - Field		=	103	-	1	µmhos/cm		Field	-	-
	CR-46	2/16/17	EC - Field		=	70	-	1	µmhos/cm		Field	-	-
-	CR-46R	2/16/17	EC - Field		=	128	-	1	µmhos/cm		Field	-	-
-	CR-1R	4/6/17	EC - Field		=	190	-	1	µmhos/cm		Field	-	-
	CR-39	4/6/17	EC - Field		=	553.1	-	1	µmhos/cm		Field	-	-
	CR-39R	4/6/17	EC - Field		=	217.3	-	1	µmhos/cm		Field	-	-
	CR-41	4/6/17	EC - Field		=	104.2	-	1	µmhos/cm		Field	-	-
	CR-41R	4/6/17	EC - Field		=	179.1	-	1	µmhos/cm		Field	-	-
	CR-42	4/6/17	EC - Field		=	31	-	1	µmhos/cm		Field	-	-
	CR-46	4/6/17	EC - Field		=	48	-	1	µmhos/cm		Field	-	-
	CR-46R	4/6/17	EC - Field		=	153	-	1	µmhos/cm		Field	-	-
-	NE-RAIN	4/6/17	EC - Field		=	25	-	1	µmhos/cm		Field	-	-
	NW-RAIN	4/6/17	EC - Field		=	11.5	-	1	µmhos/cm		Field	-	-
	SC-1 RAIN	4/6/17	EC - Field		=	13	-	1	µmhos/cm		Field	-	
	CR-46	8/24/16	Hydroxide	2320B	<	1.1	1.1	10	mg/L	U	FGL Env.	8/26/16	8/26/16
-	CR-46R	8/24/16	Hydroxide	2320B	<	1.1	1.1	10	mg/L	U	FGL Env.	8/26/16	8/26/16
DW28	CR-46	12/5/16	Hydroxide	2320B	<	1.1	1.1	10	mg/L	U, ND	FGL Env.	12/7/16	12/7/16
DW28	CR-46R	12/5/16	Hydroxide	2320B	<	1.1	1.1	10	mg/L	U, ND	FGL Env.	12/7/16	12/7/16
DW29	CR-46	3/2/17	Hydroxide	2320B	<	1.1	1.1	10	mg/L	U, ND	FGL Env.	3/6/17	3/6/17
DW29	CR-46R	3/2/17	Hydroxide	2320B	<	1.1	1.1	10	mg/L	U, ND	FGL Env.	3/6/17	3/6/17
DW30	CR-46	5/24/17	Hydroxide	2320B	<	1.1	1.1	10	mg/L	U, ND	FGL Env.	5/26/17	5/26/17
DW30	CR-46R	5/24/17	Hydroxide	2320B	<	1.1	1.1	10	mg/L	U, ND	FGL Env.	5/26/17	5/26/17
SE61	CR-46	10/14/16	Hydroxide	2320B	<	1.1	1.1	10	mg/L	U, ND	FGL Env.	10/19/16	10/19/16
SE61	CR-46R	10/14/16	Hydroxide	2320B	<	1.1	1.1	10	mg/L	U, ND	FGL Env.	10/19/16	10/19/16
SE62	CR-46	1/18/17	Hydroxide	2320B	<	1.1	1.1	10	mg/L	U, ND	FGL Env.	1/23/17	1/23/17
SE62	CR-46R	1/18/17	Hydroxide	2320B	<	1.1	1.1	10	mg/L	ND, U	FGL Env.	1/23/17	1/23/17
SE64	CR-46	4/6/17	Hydroxide	2320B	<	1.1	1.1	10	mg/L	U, ND	FGL Env.	4/12/17	4/12/17
SE64	CR-46R	4/6/17	Hydroxide	2320B	<	1.1	1.1	10	mg/L	U, ND	FGL Env.	4/12/17	4/12/17
-	CR-46	8/24/16	Nitrogen, Total Kjeldahl	EPA 351.2	=	0.695	0.32	0.5	mg/L	Jb	FGL Env.	8/27/16	8/29/16
	CR-46R	8/24/16	Nitrogen, Total Kjeldahl	EPA 351.2	=	1.67	0.32	0.5	mg/L	b	FGL Env.	8/27/16	8/29/16
	CR-46	12/5/16	Nitrogen, Total Kjeldahl	EPA 351.2	<	0.32	0.32	0.5	mg/L	U, ND	FGL Env.	12/7/16	12/8/16

		Date											Analysis
Event	Site Code	Sampled	Analyte	Method	Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Date
DW28	CR-46R	12/5/16	Nitrogen, Total Kjeldahl	EPA 351.2	<	0.32	0.32	0.5	mg/L	U, ND	FGL Env.	12/7/16	12/8/16
DW29	CR-46	3/2/17	Nitrogen, Total Kjeldahl	EPA 351.2	<	0.32	0.32	0.5	mg/L	U, b, ND	FGL Env.	3/6/17	3/7/17
DW29	CR-46R	3/2/17	Nitrogen, Total Kjeldahl	EPA 351.2	=	0.409	0.32	0.5	mg/L	J	FGL Env.	3/7/17	3/8/17
DW30	CR-46	5/24/17	Nitrogen, Total Kjeldahl	EPA 351.2	<	0.19	0.19	0.5	mg/L	U, ND	FGL Env.	5/26/17	5/30/17
DW30	CR-46R	5/24/17	Nitrogen, Total Kjeldahl	EPA 351.2	<	0.19	0.19	0.5	mg/L	U, ND	FGL Env.	5/26/17	5/30/17
SE61	CR-46	10/14/16	Nitrogen, Total Kjeldahl	EPA 351.2	=	2.98	0.32	0.5	mg/L		FGL Env.	10/20/16	10/21/16
SE61	CR-46R	10/14/16	Nitrogen, Total Kjeldahl	EPA 351.2	=	4.11	0.32	0.5	mg/L		FGL Env.	10/20/16	10/21/16
SE62	CR-46	1/18/17	Nitrogen, Total Kjeldahl	EPA 351.2	<	0.32	0.32	0.5	mg/L	ND, U, I	FGL Env.	1/23/17	1/24/17
SE62	CR-46R	1/18/17	Nitrogen, Total Kjeldahl	EPA 351.2	<	0.32	0.32	0.5	mg/L	ND, U, I	FGL Env.	1/23/17	1/24/17
SE64	CR-46	4/6/17	Nitrogen, Total Kjeldahl	EPA 351.2	=	0.718	0.32	0.5	mg/L		FGL Env.	4/19/17	4/20/17
SE64	CR-46R	4/6/17	Nitrogen, Total Kjeldahl	EPA 351.2	=	1.41	0.32	0.5	mg/L		FGL Env.	4/19/17	4/20/17
DW27	CR-46	8/24/16	Oil and Grease	1664	=	2.72	1.5	3.3	mg/L	J	FGL Env.	9/1/16	9/2/16
DW27	CR-46R	8/24/16	Oil and Grease	1664	<	1.5	1.5	3.3	mg/L	U	FGL Env.	9/1/16	9/2/16
DW28	CR-46	12/5/16	Oil and Grease	1664A	<	1.5	1.5	3.3	mg/L	U, b, ND	FGL Env.	12/14/16	12/14/16
DW28	CR-46R	12/5/16	Oil and Grease	1664A	<	1.5	1.5	3.3	mg/L	U, b, ND	FGL Env.	12/14/16	12/14/16
DW29	CR-46	3/2/17	Oil and Grease	1664A	=	4.4	1.5	3.3	mg/L		FGL Env.	3/13/17	3/13/17
DW29	CR-46R	3/2/17	Oil and Grease	1664A	<	1.5	1.5	3.3	mg/L	U, ND	FGL Env.	3/13/17	3/13/17
DW30	CR-46	5/24/17	Oil and Grease	1664A	<	1.5	1.5	3.3	mg/L	U, ND	FGL Env.	6/4/17	6/5/17
DW30	CR-46R	5/24/17	Oil and Grease	1664A	=	5.98	1.5	3.3	mg/L		FGL Env.	6/4/17	6/5/17
SE61	CR-46	10/14/16	Oil and Grease	1664A	=	1.68	1.5	3.3	mg/L	J	FGL Env.	10/27/16	10/28/16
SE61	CR-46R	10/14/16	Oil and Grease	1664A	<	1.5	1.5	3.3	mg/L	U	FGL Env.	10/27/16	10/28/16
SE62	CR-46	1/18/17	Oil and Grease	1664A	<	1.5	1.5	3.3	mg/L	ND, U	FGL Env.	2/8/17	2/8/17
SE62	CR-46R	1/18/17	Oil and Grease	1664A	=	1.94	1.5	3.3	mg/L	J	FGL Env.	2/8/17	2/8/17
SE64	CR-46	4/6/17	Oil and Grease	1664A	=	1.52	1.5	3.3	mg/L	J	FGL Env.	4/17/17	4/18/17
SE64	CR-46R	4/6/17	Oil and Grease	1664A	<	1.5	1.5	3.3	mg/L	U, ND	FGL Env.	4/17/17	4/18/17
DW27	CR-46	8/24/16	pH - Field	Field	=	7.9	-	0-14	pH Units		Field	-	-
DW27	CR-46R	8/24/16	pH - Field	Field	=	7.52	-	0-14	pH Units		Field	-	-
DW27	CR-42	8/24/16	pH - Field	Field	=	7.32	-	0-14	pH Units		Field	-	-
DW27	CR-41	8/24/16	pH - Field	Field	=	7.35	-	0-14	pH Units		Field	-	-
DW27	CR-41R	8/24/16	pH - Field	Field	=	8.08	-	0-14	pH Units		Field	-	-
DW27	CR-39	8/24/16	pH - Field	Field	=	8.16	-	0-14	pH Units		Field	-	-
DW27	CR-39R	8/24/16	pH - Field	Field	=	8.63	-	0-14	pH Units		Field	-	-

					-	-							
		Date											Analysis
Event	Site Code	Sampled	Analyte	Method	Q	Result	MDL	RL/ML		Flag		Prep Date	Date
DW28	CR-46	12/5/16	pH - Field	Field	=	7.77	-	0-14	pH Units		Field	-	-
DW28	CR-46R	12/5/16	pH - Field	Field	=	7.4	-	0-14	pH Units		Field	-	-
DW28	CR-42	12/5/16	pH - Field	Field	=	7.78	-	0-14	pH Units		Field	-	-
DW28	CR-41	12/5/16	pH - Field	Field	=	7.46	-	0-14	pH Units		Field	-	-
DW28	CR-41R	12/5/16	pH - Field	Field	=	8.05	-	0-14	pH Units		Field	-	-
DW28	CR-39	12/5/16	pH - Field	Field	=	7.45	-	0-14	pH Units		Field	-	-
DW28	CR-39R	12/5/16	pH - Field	Field	=	8.09	-	0-14	pH Units		Field	-	-
DW29	CR-1R	3/2/17	pH - Field	Field	=	8.19	-	0-14	pH Units		Field	-	-
DW29	CR-46	3/2/17	pH - Field	Field	=	6.73	-	0-14	pH Units		Field	-	-
DW29	CR-46R	3/2/17	pH - Field	Field	=	7.42	-	0-14	pH Units		Field	-	-
DW29	CR-42	3/2/17	pH - Field	Field	=	6.84	-	0-14	pH Units		Field	-	-
DW29	CR-41	3/2/17	pH - Field	Field	=	7.82	-	0-14	pH Units		Field	-	-
DW29	CR-41R	3/2/17	pH - Field	Field	=	8.35	-	0-14	pH Units		Field	-	-
DW29	CR-39	3/2/17	pH - Field	Field	=	7.35	-	0-14	pH Units		Field	-	-
DW29	CR-39R	3/2/17	pH - Field	Field	=	8.16	-	0-14	pH Units		Field	-	-
DW30	CR-1R	5/24/17	pH - Field	Field	=	8.37	-	0-14	pH Units		Field	-	-
DW30	CR-46	5/24/17	pH - Field	Field	=	8.01	-	0-14	pH Units		Field	-	-
DW30	CR-46R	5/24/17	pH - Field	Field	=	8.17	-	0-14	pH Units		Field	-	-
DW30	CR-42	5/24/17	pH - Field	Field	=	8.06	-	0-14	pH Units		Field	-	-
DW30	CR-41	5/24/17	pH - Field	Field	=	7.85	-	0-14	pH Units		Field	-	-
DW30	CR-41R	5/24/17	pH - Field	Field	=	8.28	-	0-14	pH Units		Field	-	-
DW30	CR-39	5/24/17	pH - Field	Field	=	7.5	-	0-14	pH Units		Field	-	-
DW30	CR-39R	5/24/17	pH - Field	Field	=	8.44	-	0-14	pH Units		Field	-	-
SE61	CR-39	10/14/16	pH - Field		=	7.59	-	0-14	pH Units		Field	-	-
SE61	CR-39R	10/14/16	pH - Field		=	7.86	-	0-14	pH Units		Field	-	-
SE61	CR-41	10/14/16	pH - Field		=	7.57	-	0-14	pH Units		Field	-	-
SE61	CR-41R	10/14/16	pH - Field		=	7.5	-	0-14	pH Units		Field	-	-
SE61	CR-42	10/14/16	pH - Field		=	7.37	-	0-14	pH Units		Field	-	-
SE61	CR-46	10/14/16	pH - Field		=	7.56	-	0-14	pH Units		Field	-	-
SE61	CR-46R	10/14/16	pH - Field		=	7.63	-	0-14	pH Units		Field	-	_
SE61	NW-RAIN	10/14/16	pH - Field		=	8.02	-	0-14	pH Units		Field	-	_
SE61	NE-RAIN	10/14/16	pH - Field		=	6.13	-	0-14	pH Units		Field	-	-
SE61	SC-1 RAIN	10/14/16	pH - Field		=	7.62	-	0-14	pH Units		Field	-	-
SE62	CR-1R	1/18/17	pH - Field			9.95	-	0-14	pH Units		Field	-	-
JLUZ	011-111	1/10/17	pri - riciu		-	7.75	-	0-14	prionits		I ICIU	-	-

		Date											Analysis
Event	Site Code	Sampled	Analyte	Method	Q	Result	MDL	RL/ML		Flag	Lab Name	Prep Date	Date
SE62	CR-39	1/18/17	pH - Field		=	8.09	-	0-14	pH Units		Field	-	-
SE62	CR-39R	1/18/17	pH - Field		=	8.24	-	0-14	pH Units		Field	-	-
SE62	CR-41	1/18/17	pH - Field		=	8.39	-	0-14	pH Units		Field	-	-
SE62	CR-41R	1/18/17	pH - Field		=	7.86	-	0-14	pH Units		Field	-	-
SE62	CR-42	1/18/17	pH - Field		=	7.92	-	0-14	pH Units		Field	-	-
SE62	CR-46	1/18/17	pH - Field		=	7.46	-	0-14	pH Units		Field	-	-
SE62	CR-46R	1/18/17	pH - Field		=	7.67	-	0-14	pH Units		Field	-	-
SE62	NE-RAIN	1/18/17	pH - Field		=	6.65	-	0-14	pH Units		Field	-	-
SE62	NW-RAIN	1/18/17	pH - Field		=	8.32	-	0-14	pH Units		Field	-	-
SE62	SC-1 RAIN	1/18/17	pH - Field		=	5.4	-	0-14	pH Units		Field	-	-
SE63	CR-1R	2/16/17	pH - Field		=	7.48	-	0-14	pH Units		Field	-	-
SE63	CR-39	2/16/17	pH - Field		=	7.54	-	0-14	pH Units		Field	-	-
SE63	CR-39R	2/16/17	pH - Field		=	6.9	-	0-14	pH Units		Field	-	-
SE63	CR-41	2/16/17	pH - Field		=	7.53	-	0-14	pH Units		Field	-	-
SE63	CR-41R	2/16/17	pH - Field		=	8.01	-	0-14	pH Units		Field	-	-
SE63	CR-42	2/16/17	pH - Field		=	7.76	-	0-14	pH Units		Field	-	-
SE63	CR-46	2/16/17	pH - Field		=	7.91	-	0-14	pH Units		Field	-	-
SE63	CR-46R	2/16/17	pH - Field		=	7.67	-	0-14	pH Units		Field	-	-
SE64	CR-1R	4/6/17	pH - Field		=	8.2	-	0-14	pH Units		Field	-	-
SE64	CR-39	4/6/17	pH - Field		=	8.02	-	0-14	pH Units		Field	-	-
SE64	CR-39R	4/6/17	pH - Field		=	8.55	-	0-14	pH Units		Field	-	-
SE64	CR-41	4/6/17	pH - Field		=	8.33	-	0-14	pH Units		Field	-	-
SE64	CR-41R	4/6/17	pH - Field		=	8.21	-	0-14	pH Units		Field	-	-
SE64	CR-42	4/6/17	pH - Field		=	6.99	-	0-14	pH Units		Field	-	-
SE64	CR-46	4/6/17	pH - Field		=	6.98	-	0-14	pH Units		Field	-	-
SE64	CR-46R	4/6/17	pH - Field		=	7.18	-	0-14	pH Units		Field	-	-
SE64	NE-RAIN	4/6/17	pH - Field		=	7.36	-	0-14	pH Units		Field	-	-
SE64	NW-RAIN	4/6/17	pH - Field		=	8.62	-	0-14	pH Units		Field	-	-
SE64	SC-1 RAIN	4/6/17	pH - Field		=	7.35	-	0-14	pH Units		Field	-	-
DW27	CR-46	8/24/16	Solids, Total Suspended (TSS)	2540D	=	4.58	0.019	1.1	mg/L		FGL Env.	8/24/16	8/25/16
DW27	CR-46R	8/24/16	Solids, Total Suspended (TSS)	2540D	=	6.72	0.019	1.1	mg/L		FGL Env.	8/24/16	8/25/16
DW28	CR-46	12/5/16	Solids, Total Suspended (TSS)	2540D	=	0.8	0.019	1.2	mg/L	J	FGL Env.	12/5/16	12/6/16
DW28	CR-46R	12/5/16	Solids, Total Suspended (TSS)	2540D	=	3.52	0.019	1.1	mg/L		FGL Env.	12/5/16	12/6/16

					-								
		Date											Analysis
Event	Site Code	Sampled	Analyte	Method	Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Date
DW29	CR-46	3/2/17	Solids, Total Suspended (TSS)	2540D	=	45.8	0.019	2.2	mg/L		FGL Env.	3/2/17	3/3/17
DW29	CR-46R	3/2/17	Solids, Total Suspended (TSS)	2540D	=	2.26	0.019	1.1	mg/L		FGL Env.	3/2/17	3/3/17
DW30	CR-46	5/24/17	Solids, Total Suspended (TSS)	2540D	=	3.09	0.019	1.1	mg/L		FGL Env.	5/24/17	5/25/17
DW30	CR-46R	5/24/17	Solids, Total Suspended (TSS)	2540D	=	8.24	0.019	1.9	mg/L		FGL Env.	5/24/17	5/25/17
SE61	CR-46	10/14/16	Solids, Total Suspended (TSS)	2540D	=	45.6	0.019	4	mg/L		FGL Env.	10/17/16	10/18/16
SE61	CR-46R	10/14/16	Solids, Total Suspended (TSS)	2540D	=	64.9	0.019	6.7	mg/L		FGL Env.	10/17/16	10/18/16
SE62	CR-46	1/18/17	Solids, Total Suspended (TSS)	2540D	=	72.4	0.019	4	mg/L		FGL Env.	1/21/17	1/22/17
SE62	CR-46R	1/18/17	Solids, Total Suspended (TSS)	2540D	=	19.9	0.019	2.5	mg/L		FGL Env.	1/21/17	1/22/17
SE63	CR-46	2/16/17	Solids, Total Suspended (TSS)	2540D	=	23.9	0.019	3.2	mg/L	b	FGL Env.	2/16/17	2/17/17
SE63	CR-46R	2/16/17	Solids, Total Suspended (TSS)	2540D	=	50	0.019	2	mg/L	b	FGL Env.	2/16/17	2/17/17
SE64	CR-46	4/6/17	Solids, Total Suspended (TSS)	2540D	=	25.7	0.019	2	mg/L	I	FGL Env.	4/7/17	4/8/17
SE64	CR-46R	4/6/17	Solids, Total Suspended (TSS)	2540D	=	22.7	0.019	2.6	mg/L	I	FGL Env.	4/7/17	4/8/17
DW27	CR-46	8/24/16	Specific Conductance	2510B	=	451	-	1	µmhos/cm		FGL Env.	8/26/16	8/26/16
DW27	CR-46R	8/24/16	Specific Conductance	2510B	=	392	-	1	µmhos/cm		FGL Env.	8/26/16	8/26/16
DW28	CR-46	12/5/16	Specific Conductance	2510B	=	250	-	1	µmhos/cm		FGL Env.	12/7/16	12/7/16
DW28	CR-46R	12/5/16	Specific Conductance	2510B	=	59.1	-	1	µmhos/cm		FGL Env.	12/7/16	12/11/16
DW29	CR-46	3/2/17	Specific Conductance	2510B	=	124	-	1	µmhos/cm		FGL Env.	3/6/17	3/6/17
DW29	CR-46R	3/2/17	Specific Conductance	2510B	=	179	-	1	µmhos/cm		FGL Env.	3/6/17	3/6/17
DW30	CR-46	5/24/17	Specific Conductance	2510B	=	441	-	1	µmhos/cm		FGL Env.	5/26/17	5/26/17
DW30	CR-46R	5/24/17	Specific Conductance	2510B	=	170	-	1	µmhos/cm		FGL Env.	5/26/17	5/26/17
SE61	CR-46	10/14/16	Specific Conductance	2510B	=	62.2	-	1	µmhos/cm		FGL Env.	10/19/16	10/19/16
SE61	CR-46R	10/14/16	Specific Conductance	2510B	=	256	-	1	µmhos/cm		FGL Env.	10/19/16	10/19/16
SE62	CR-46	1/18/17	Specific Conductance	2510B	=	29.3	-	1	µmhos/cm		FGL Env.	1/23/17	1/23/17
SE62	CR-46R	1/18/17	Specific Conductance	2510B	=	162	-	1	µmhos/cm		FGL Env.	1/23/17	1/23/17
SE64	CR-46	4/6/17	Specific Conductance	2510B	=	36.2	0.16	1	µmhos/cm		FGL Env.	4/12/17	4/12/17
SE64	CR-46R	4/6/17	Specific Conductance	2510B	=	153	0.16	1	µmhos/cm		FGL Env.	4/12/17	4/12/17
DW27	CR-46	8/24/16	Temperature - Field	Field	=	22.38	-	0.1	°C		Field	-	-
DW27	CR-46R	8/24/16	Temperature - Field	Field	=	24.07	-	0.1	°C		Field	-	-
DW27	CR-42	8/24/16	Temperature - Field	Field	=	23.06	-	0.1	°C		Field	-	-
DW27	CR-41	8/24/16	Temperature - Field	Field	=	21.64	-	0.1	°C		Field	-	-
DW27	CR-41R	8/24/16	Temperature - Field	Field	=	22.49	-	0.1	°C		Field	-	-
DW27	CR-39	8/24/16	Temperature - Field	Field	=	24.58	-	0.1	°C		Field	-	-

		Date											Analysis
Event	Site Code	Sampled	Analyte	Method	Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Date
DW27	CR-39R	8/24/16	Temperature - Field	Field	=	25.63	-	0.1	°C		Field	-	-
DW28	CR-46	12/5/16	Temperature - Field	Field	=	15.4	-	0.1	°C		Field	-	-
DW28	CR-46R	12/5/16	Temperature - Field	Field	=	10.1	-	0.1	°C		Field	-	-
DW28	CR-42	12/5/16	Temperature - Field	Field	=	15.3	-	0.1	°C		Field	-	-
DW28	CR-41	12/5/16	Temperature - Field	Field	=	14.98	-	0.1	°C		Field	-	-
DW28	CR-41R	12/5/16	Temperature - Field	Field	=	11.93	-	0.1	°C		Field	-	-
DW28	CR-39	12/5/16	Temperature - Field	Field	=	12.3	-	0.1	°C		Field	-	-
DW28	CR-39R	12/5/16	Temperature - Field	Field	=	10.9	-	0.1	°C		Field	-	-
DW29	CR-1R	3/2/17	Temperature - Field	Field	=	12.9	-	0.1	°C		Field	-	-
DW29	CR-46	3/2/17	Temperature - Field	Field	=	15.68	-	0.1	°C		Field	-	-
DW29	CR-46R	3/2/17	Temperature - Field	Field	=	14.7	-	0.1	°C		Field	-	-
DW29	CR-42	3/2/17	Temperature - Field	Field	=	16.27	-	0.1	°C		Field	-	-
DW29	CR-41	3/2/17	Temperature - Field	Field	=	18.3	-	0.1	°C		Field	-	-
DW29	CR-41R	3/2/17	Temperature - Field	Field	=	12.9	-	0.1	°C		Field	-	-
DW29	CR-39	3/2/17	Temperature - Field	Field	=	14.7	-	0.1	°C		Field	-	-
DW29	CR-39R	3/2/17	Temperature - Field	Field	=	12.2	-	0.1	°C		Field	-	-
DW30	CR-1R	5/24/17	Temperature - Field	Field	=	28.1	-	0.1	°C		Field	-	-
DW30	CR-46	5/24/17	Temperature - Field	Field	=	19.7	-	0.1	°C		Field	-	-
DW30	CR-46R	5/24/17	Temperature - Field	Field	=	27.9	-	0.1	°C		Field	-	-
DW30	CR-42	5/24/17	Temperature - Field	Field	=	20.3	-	0.1	°C		Field	-	-
DW30	CR-41	5/24/17	Temperature - Field	Field	=	20.9	-	0.1	°C		Field	-	-
DW30	CR-41R	5/24/17	Temperature - Field	Field	=	25.3	-	0.1	°C		Field	-	-
DW30	CR-39	5/24/17	Temperature - Field	Field	=	22.5	-	0.1	°C		Field	-	-
DW30	CR-39R	5/24/17	Temperature - Field	Field	=	22.3	-	0.1	°C		Field	-	-
SE61	CR-39	10/14/16	Temperature - Field		=	19.18	-	0.01	°C		Field	-	-
SE61	CR-39R	10/14/16	Temperature - Field		=	19.11	-	0.01	°C		Field	-	-
SE61	CR-41	10/14/16	Temperature - Field		=	22.04	-	0.01	°C		Field	-	-
SE61	CR-41R	10/14/16	Temperature - Field		=	18.13	-	0.01	°C		Field	-	-
SE61	CR-42	10/14/16	Temperature - Field		=	21.45	-	0.01	°C		Field	-	-
SE61	CR-46	10/14/16	Temperature - Field		=	19.81	-	0.01	°C		Field	-	-
SE61	CR-46R	10/14/16	Temperature - Field		=	20.79	-	0.01	°C		Field	-	-
SE61	NW-RAIN	10/14/16	Temperature - Field		=	16.61	-	0.01	°C		Field	-	-
SE61	NE-RAIN	10/14/16	Temperature - Field		=	16.43	-	0.01	°C		Field	-	-
SE61	SC-1 RAIN	10/14/16	Temperature - Field		=	17.24	-	0.01	°C		Field	-	-

		Date											Analysis
Event	Site Code	Sampled	Analyte	Method	Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Date
SE62	CR-1R	1/18/17	Temperature - Field		=	8.9	-	0.01	°C		Field	-	-
SE62	CR-39	1/18/17	Temperature - Field		=	10.9	-	0.01	°C		Field	-	-
SE62	CR-39R	1/18/17	Temperature - Field		=	9.8	-	0.01	°C		Field	-	-
SE62	CR-41	1/18/17	Temperature - Field		=	10	-	0.01	°C		Field	-	-
SE62	CR-41R	1/18/17	Temperature - Field		=	9.7	-	0.01	°C		Field	-	-
SE62	CR-42	1/18/17	Temperature - Field		=	9.28	-	0.01	°C		Field	-	-
SE62	CR-46	1/18/17	Temperature - Field		=	9.18	-	0.01	°C		Field	-	-
SE62	CR-46R	1/18/17	Temperature - Field		=	9.69	-	0.01	°C		Field	-	-
SE62	NE-RAIN	1/18/17	Temperature - Field		=	8.01	-	0.01	°C		Field	-	-
SE62	NW-RAIN	1/18/17	Temperature - Field		=	8.4	-	0.01	°C		Field	-	-
SE62	SC-1 RAIN	1/18/17	Temperature - Field		=	8.5	-	0.01	°C		Field	-	-
SE63	CR-1R	2/16/17	Temperature - Field		=	11.72	-	0.01	°C		Field	-	-
SE63	CR-39	2/16/17	Temperature - Field		=	14.43	-	0.01	°C		Field	-	-
SE63	CR-39R	2/16/17	Temperature - Field		=	12.21	-	0.01	°C		Field	-	-
SE63	CR-41	2/16/17	Temperature - Field		=	16.6	-	0.01	°C		Field	-	-
SE63	CR-41R	2/16/17	Temperature - Field		=	12.34	-	0.01	°C		Field	-	-
SE63	CR-42	2/16/17	Temperature - Field		=	14.98	-	0.01	°C		Field	-	-
SE63	CR-46	2/16/17	Temperature - Field		=	14.62	-	0.01	°C		Field	-	-
SE63	CR-46R	2/16/17	Temperature - Field		=	12.47	-	0.01	°C		Field	-	-
SE64	CR-1R	4/6/17	Temperature - Field		=	15.88	-	0.01	°C		Field	-	-
SE64	CR-39	4/6/17	Temperature - Field		=	17.1	-	0.01	°C		Field	-	-
SE64	CR-39R	4/6/17	Temperature - Field		=	16.5	-	0.01	°C		Field	-	-
SE64	CR-41	4/6/17	Temperature - Field		=	16.1	-	0.01	°C		Field	-	-
SE64	CR-41R	4/6/17	Temperature - Field		=	16.8	-	0.01	°C		Field	-	-
SE64	CR-42	4/6/17	Temperature - Field		=	15.18	-	0.01	°C		Field	-	-
SE64	CR-46	4/6/17	Temperature - Field		=	15.18	-	0.01	°C		Field	-	-
SE64	CR-46R	4/6/17	Temperature - Field		=	16.37	-	0.01	°C		Field	-	-
SE64	NE-RAIN	4/6/17	Temperature - Field		=	11.46	-	0.01	°C		Field	-	-
SE64	NW-RAIN	4/6/17	Temperature - Field		=	11.6	-	0.01	°C		Field	-	-
SE64	SC-1 RAIN	4/6/17	Temperature - Field		=	12.03	-	0.01	°C		Field	-	-
DW27	CR-46	8/24/16	TOC	5310C	=	2.63	0.15	0.5	mg/L		FGL Env.	9/3/16	9/4/16
DW27	CR-46R	8/24/16	ТОС	5310C	=	5.98	0.15	0.5	mg/L		FGL Env.	9/3/16	9/4/16
DW28	CR-46	12/5/16	TOC	5310C	=	2.65	0.15	0.5	mg/L		FGL Env.	12/11/16	12/11/16

		Date											Analysis
Event	Site Code	Sampled	Analyte	Method	Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Date
DW28	CR-46R	12/5/16	TOC	5310C	=	3.04	0.15	0.5	mg/L		FGL Env.	12/11/16	12/11/16
DW29	CR-46	3/2/17	TOC	5310C	=	3.65	0.15	0.5	mg/L	h	FGL Env.	3/13/17	3/13/17
DW29	CR-46R	3/2/17	TOC	5310C	=	2.27	0.15	0.5	mg/L	h	FGL Env.	3/13/17	3/13/17
DW30	CR-46	5/24/17	TOC	5310C	=	1.5	0.15	0.5	mg/L	1*	FGL Env.	6/4/17	6/4/17
DW30	CR-46R	5/24/17	TOC	5310C	=	4.46	0.15	0.5	mg/L	1*	FGL Env.	6/4/17	6/4/17
SE61	CR-46	10/14/16	TOC	5310C	=	23.6	0.015	0.5	mg/L		FGL Env.	10/22/16	10/23/16
SE61	CR-46R	10/14/16	TOC	5310C	=	68.9	0.015	2.5	mg/L		FGL Env.	10/23/16	10/23/16
SE62	CR-46	1/18/17	TOC	5310C	=	2.51	0.15	0.5	mg/L	h	FGL Env.	1/21/17	1/22/17
SE62	CR-46R	1/18/17	TOC	5310C	=	4.31	0.15	0.5	mg/L	h	FGL Env.	1/21/17	1/22/17
SE64	CR-46	4/6/17	TOC	5310C	=	6.75	0.15	0.5	mg/L	b, h	FGL Env.	4/24/17	4/24/17
SE64	CR-46R	4/6/17	TOC	5310C	=	9.17	0.15	0.5	mg/L	b,h	FGL Env.	4/24/17	4/24/17
DW27	CR-46	8/24/16	Total Dissolved Solids (TFR)	2540C	=	289	5.8	20	mg/L	b	FGL Env.	8/26/16	8/29/16
DW27	CR-46R	8/24/16	Total Dissolved Solids (TFR)	2540C	=	232	5.8	20	mg/L	b	FGL Env.	8/26/16	8/29/16
DW28	CR-46	12/5/16	Total Dissolved Solids (TFR)	2540C	=	156	5.8	20	mg/L		FGL Env.	12/7/16	12/8/16
DW28	CR-46R	12/5/16	Total Dissolved Solids (TFR)	2540C	=	46.1	5.8	11	mg/L		FGL Env.	12/7/16	12/8/16
DW29	CR-46	3/2/17	Total Dissolved Solids (TFR)	2540C	=	65.3	5.8	20	mg/L		FGL Env.	3/7/17	3/8/17
DW29	CR-46R	3/2/17	Total Dissolved Solids (TFR)	2540C	=	122	5.8	20	mg/L		FGL Env.	3/7/17	3/8/17
DW30	CR-46	5/24/17	Total Dissolved Solids (TFR)	2540C	=	271	5.8	20	mg/L	I, b	FGL Env.	5/27/17	5/30/17
DW30	CR-46R	5/24/17	Total Dissolved Solids (TFR)	2540C	=	121	5.8	20	mg/L	I, b	FGL Env.	5/27/17	5/30/17
SE61	CR-46	10/14/16	Total Dissolved Solids (TFR)	2540C	=	52.9	5.8	11	mg/L	b	FGL Env.	10/19/16	10/20/16
SE61	CR-46R	10/14/16	Total Dissolved Solids (TFR)	2540C	=	203	5.8	20	mg/L	b	FGL Env.	10/19/16	10/20/16
SE62	CR-46	1/18/17	Total Dissolved Solids (TFR)	2540C	=	15.3	5.8	11	mg/L	b	FGL Env.	1/20/17	1/23/17
SE62	CR-46R	1/18/17	Total Dissolved Solids (TFR)	2540C	=	99.4	5.8	20	mg/L	b	FGL Env.	1/20/17	1/23/17
SE64	CR-46	4/6/17	Total Dissolved Solids (TFR)	2540C	=	29	5.8	11	mg/L		FGL Env.	4/11/17	4/12/17
SE64	CR-46R	4/6/17	Total Dissolved Solids (TFR)	2540C	=	109	5.8	20	mg/L		FGL Env.	4/11/17	4/12/17
DW27	CR-46	8/24/16	Total Hardness as CaCO3	EPA 200.7	=	157	0.0075	2.5	mg/L		FGL Env.	8/31/16	8/31/16
DW27	CR-46R	8/24/16	Total Hardness as CaCO3	EPA 200.7	=	99.9	0.0075	2.5	mg/L		FGL Env.	8/31/16	8/31/16
DW28	CR-46	12/5/16	Total Hardness as CaCO3	EPA 200.7	=	76.6	0.0075	2.5	mg/L		FGL Env.	12/7/16	12/7/16
DW28	CR-46R	12/5/16	Total Hardness as CaCO3	EPA 200.7	=	19.7	0.0075	2.5	mg/L		FGL Env.	12/7/16	12/7/16
DW29	CR-46	3/2/17	Total Hardness as CaCO3	EPA 200.7	=	51.4	0.0075	2.5	mg/L	Р	FGL Env.	3/7/17	3/7/17
DW29	CR-46R	3/2/17	Total Hardness as CaCO3	EPA 200.7	=	64.1	0.0075	2.5	mg/L	Р	FGL Env.	3/7/17	3/7/17
DW30	CR-46	5/24/17	Total Hardness as CaCO3	EPA 200.7	=	163	0.0075	2.5	mg/L		FGL Env.	6/2/17	6/5/17

					-	-							
Event	Site Code	Date Sampled	Analyte	Method	Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Analysis Date
DW30	CR-46R	5/24/17	Total Hardness as CaCO3	EPA 200.7	=	65.3	0.0075	2.5	mg/L	T lag	FGL Env.	6/5/17	6/5/17
SE61	CR-46	10/14/16	Total Hardness as CaCO3	EPA 200.7	=	23.2	0.0075	2.5	mg/L	P	FGL Env.	10/21/16	10/24/16
SE61	CR-46R	10/14/16	Total Hardness as CaCO3	EPA 200.7	=	75.1	0.0075	2.5	mg/L	P	FGL Env.	10/21/16	10/24/16
SE62	CR-46	1/18/17	Total Hardness as CaCO3	EPA 200.7	=	11.7	0.0075	2.5	mg/L		FGL Env.	1/24/17	1/24/17
SE62	CR-46R	1/18/17	Total Hardness as CaCO3	EPA 200.7	=	52.7	0.0075	2.5	mg/L		FGL Env.	1/24/17	1/24/17
SE64	CR-46	4/6/17	Total Hardness as CaCO3	EPA 200.7	=	13.7	0.0075	2.5	mg/L	h, P	FGL Env.	4/18/17	4/19/17
SE64	CR-46R	4/6/17	Total Hardness as CaCO3	EPA 200.7	=	59.4	0.0075	2.5	mg/L		FGL Env.	4/19/17	4/19/17
DW27	CR-46	8/24/16	Turbidity	2130B	=	2.89	0.021	0.2	NTU		FGL Env.	8/25/16	8/25/16
DW27	CR-46R	8/24/16	Turbidity	2130B	=	6.41	0.021	0.2	NTU		FGL Env.	8/25/16	8/25/16
DW28	CR-46	12/5/16	Turbidity	2130B	=	1.2	0.021	0.2	NTU		FGL Env.	12/5/16	12/5/16
DW28	CR-46R	12/5/16	Turbidity	2130B	=	5.28	0.021	0.2	NTU		FGL Env.	12/5/16	12/5/16
DW29	CR-46	3/2/17	Turbidity	2130B	=	23.9	0.021	0.2	NTU		FGL Env.	3/2/17	3/2/17
DW29	CR-46R	3/2/17	Turbidity	2130B	=	5.27	0.021	0.2	NTU		FGL Env.	3/2/17	3/2/17
DW30	CR-46	5/24/17	Turbidity	2130B	=	1.71	0.021	0.2	NTU		FGL Env.	5/25/17	5/25/17
DW30	CR-46R	5/24/17	Turbidity	2130B	=	6.58	0.021	0.2	NTU		FGL Env.	5/25/17	5/25/17
SE61	CR-46	10/14/16	Turbidity	2130B	=	48.2	0.021	0.2	NTU		FGL Env.	10/15/16	10/15/16
SE61	CR-46R	10/14/16	Turbidity	2130B	=	46.3	0.021	0.2	NTU		FGL Env.	10/15/16	10/15/16
SE62	CR-46	1/18/17	Turbidity	2130B	=	61.7	0.021	0.2	NTU		FGL Env.	1/19/17	1/19/17
SE62	CR-46R	1/18/17	Turbidity	2130B	=	21.6	0.021	0.2	NTU		FGL Env.	1/19/17	1/19/17
SE64	CR-46	4/6/17	Turbidity	2130B	=	20.2	0.021	0.2	NTU		FGL Env.	4/7/17	4/7/17
SE64	CR-46R	4/6/17	Turbidity	2130B	=	13.2	0.021	0.2	NTU		FGL Env.	4/7/17	4/7/17

This page intentionally left blank

Appendix C 2016-2017 Data Summary Tables

This page intentionally left blank

CALAVERAS RIVER 2016-2017 DATA FOR POLLUTANTS OF CONCERN

Fecal Indicator Bacteria

Event	CR-1R	CR-39	CR-39R	CR-41	CR-41R	CR-42	CR-46	CR-46R	WQO
E. Coli (MPN	/100mL)								
DW27	-	4.1	3	13.4	7.5	387.3	2	14.8	235
DW28	-	<1	6.3	1	<1	4.1	13.5	<1	235
DW29	2	<1	5.2	2	6.3	4.1	45	4.1	235
DW30	63	10	41	241	86	6867	2046	97	235
SE61	-	209.8	16	2419.6	80.5	1203.3	344.8	461.1	235
SE62	5.2	39.9	17.1	410.6	36.4	206.4	204.6	14.8	235
SE63	52	31	86	512	110	1782	6867	52	235
SE64	<1	51.2	8.6	162.4	11	980.4	142.1	193.5	235
Fecal Colifo	rm (MPN/10	00mL)	·						
DW27	-	700	490	330	230	7900	1300	220	400
DW28	-	<18	20	45	20	78	45	45	400
DW29	20	<18	78	68	20	230	1300	45	400
DW30	45	<18	170	310	78	7000	7900	700	400
SE61	-	13000	700	79000	2300	49000	33000	14000	400
SE62	78	460	330	3300	490	3300	2300	490	400
SE63	220	40	210	1100	140	7900	23000	45	400
SE64	78	1300	93	3300	490	11000	3300	7000	400

Mercury

Event	CR-1R	CR-39	CR-39R	CR-41	CR-41R	CR-42	CR-46	CR-46R	NE- RAIN	NW- RAIN	SC-1 RAIN
Methyl Mer				-	-	-					
DW27	-	0.39	0.05	0.04	0.05	0.08	<0.02	0.05	-	-	-
DW28	-	0.05	0.02	<0.02	0.03	0.04	0.02	0.05	-	-	-
DW29	0.07	<0.02	0.12	0.02	0.09	0.05	0.05	0.09	-	-	-
DW30	0.10	0.07	0.13	<0.02	0.17	0.10	0.02	0.16	-	-	-
SE61	-	0.24	0.03	0.98	0.04	0.13	0.15	0.26	0.03	0.07	0.05
SE62	0.06	0.09	0.07	0.09	0.05	0.07	0.08	0.06	0.15	0.03	0.05
SE64	0.12	0.21	0.11	0.17	0.13	0.13	0.11	0.27	0.05	0.07	0.08
Mercury, To	otal (ng/L)							•			
DW27	-	1.4	0.44	0.91	0.65	1.2	0.76	0.59	-	-	-
DW28	-	0.89	0.69	1.1	1.0	1.3	0.87	1.4	-	-	-
DW29	6.3	1.1	6.5	1.2	6.6	2.7	2.1	6.4	-	-	-
DW30	1.6	1.4	1.9	0.9	1.7	1.8	1.2	2.1	-	-	-
SE61	-	9.0	1.2	95	0.88	26	20	14	2.5	4.0	4.1
SE62	6.6	5.1	6.4	19	8.4	12	19	7.1	9.7	13	11
SE64	2.2	6.0	2.1	18	2.6	12	15	7.4	14	13	17

Dissolved Oxygen

Event	CR-1R	CR-39	CR-39R	CR-41	CR-41R	CR-42	CR-46	CR-46R	NE- RAIN	NW- RAIN	SC-1 RAIN	WQO
Dissolved Ox	ygen (mg/	/L)										
DW27	-	5.43	8.62	6.96	7.6	3.41	4.25	6.66	-	-	-	>5 - 6
DW28	-	8.28	9.43	6.77	9.62	2.71	5.65	8.75	-	-	-	>5 - 6
DW29	12.08	9.01	10.45	7.19	10.55	5.02	5.63	9.44	-	-	-	>5 - 6
DW30	7.9	4.56	7.85	7.74	6.78	4.39	5.65	6.97	-	-	-	>5 - 6
SE61	-	8.35	7.61	7.11	7.39	7.58	8.92	9.45	8.38	13.42	9.63	>5 - 6
SE62	12.82	10.75	10.34	11.12	10.45	11.34	10.41	10.97	11.27	11.73	10.31	>5 - 6
SE63	11.45	9.02	10.75	7.59	10.83	8.44	8.57	10.04	-	-	-	>5 - 6
SE64	9.01	7.28	9.39	8.94	8.51	9.86	9.82	9.65	10.24	9.61	11.02	>5 - 6

Chlorpyrifos

Event	CR-1R	CR-39	CR-39R	CR-41	CR-41R	CR-42	CR-46	CR-46R	NE- RAIN	NW- RAIN	SC-1 RAIN	WQO
Chlorpyrifos	(ng/L)											
DW27	-	<0.6	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	-	-	-	15
DW28	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-	-	-	15
DW29	<0.5	0.6	<0.5	<0.5	<0.5	0.6	0.6	<0.5	-	-	-	15
DW30	1.1	<0.5	<0.5	<0.5	<0.5	0.6	<0.6	<0.5	-	-	-	15
SE61	-	<2	<2	36	<0.5	<5	<2	<2	5.7	<2	<0.5	15
SE62	<0.5	1.9	<0.5	4.2	0.7	6	4.6	0.6	12	7.3	8.7	15
SE64	0.5	2.3	<0.5	6.8	0.5	5.9	6.5	1.3	11	18	24	15

Pyrethroids

Event	CR-1R	CR-39	CR-39R	CR-41	CR-41R	CR-42	CR-46	CR-46R	NE- RAIN	NW- RAIN	SC-1 RAIN
Allethrin (n	g/L)										
DW27	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	-	-
DW28	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	-	-
DW29	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	-	-
DW30	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	-	-
SE61	-	<0.5	<0.5	<2	<0.1	<1	<0.5	<0.5	<0.1	<0.5	<0.1
SE62	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
SE64	<0.1	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Bifenthrin (ng/L)							•			ł
DW27	-	0.4	<0.1	0.5	<0.1	1.3	2	<0.1	-	-	-
DW28	-	0.3	<0.1	0.9	<0.1	0.9	0.3	0.2	-	-	-
DW29	<0.1	<0.1	<0.1	0.5	<0.1	0.9	0.6	<0.1	-	-	-
DW30	<0.1	<0.1	<0.1	<0.1	<0.1	1.2	2.4	<0.1	-	-	-
SE61	-	220	22	72	<0.1	25	6.7	11	2.7	2.3	1.3
SE62	0.3	15	1.1	33	1.8	14	20	0.7	0.4	0.3	0.5
SE64	<0.1	11	0.4	6.8	0.5	13	9.5	3.1	2.8	1.6	1.6
Cyfluthrin (ng/L)						•	•			
DW27	-	<0.2	<0.2	<0.2	<0.2	0.9	<0.2	<0.2	-	-	-
DW28	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	-	-	-
DW29	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	-	-	-
DW30	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	-	-	-
SE61	-	<1	<1	<4	<0.2	4.5	1.5	2.3	<0.2	<1	<0.2
SE62	<0.2	0.3	<0.2	1.9	0.2	1.7	1.2	<0.2	<0.2	<0.2	<0.2
SE64	<0.2	0.9	<0.2	0.6	<0.2	1.5	0.9	1300	<0.2	<0.2	0.3

Event	CR-1R	CR-39	CR-39R	CR-41	CR-41R	CR-42	CR-46	CR-46R	NE- RAIN	NW- RAIN	SC-1 RAIN
Cypermeth	rin (ng/L)		•	•							
DW27	-	<0.2	<0.2	<0.2	<0.2	2.2	0.4	<0.2	-	-	-
DW28	-	<0.2	<0.2	<0.2	<0.2	13	<0.2	<0.2	-	-	-
DW29	<0.2	<0.2	<0.2	<0.2	<0.2	1.7	0.2	<0.2	-	-	-
DW30	<0.2	<0.2	0.3	<0.2	<0.2	3.3	0.8	<0.2	-	-	-
SE61	-	19	2	9.8	<0.2	14	2.7	5.6	0.3	<1	0.8
SE62	<0.2	0.6	<0.2	9.3	0.8	8.2	3.3	0.2	<0.2	<0.2	<0.2
SE64	<0.2	0.6	0.2	3.1	<0.2	3.1	1.9	<0.2	0.5	<0.2	0.2
Deltamethr	in:Tralomet	hrin (ng/L)									•
DW27	-	<0.2	<0.2	<0.2	<0.2	<0.2	0.8	<0.2	-	-	-
DW28	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	-	-	-
DW29	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	-	-	-
DW30	<0.2	<0.2	<0.2	<0.2	0.5	0.9	<0.2	3.4	-	-	-
SE61	-	<1	<1	16	<0.2	49	<1	19	1.6	<1	3.8
SE62	<0.2	1.4	<0.2	58	2.2	4.3	6.3	1.4	<0.2	<0.2	<0.2
SE64	<0.2	2.4	<0.2	2.3	<0.2	3.4	1.8	4.7	<0.2	<0.2	<0.2
Esfenvalera	ate:Fenvale	rate (ng/L)									·
DW27	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	-	-	-
DW28	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	-	-	-
DW29	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	-	-	-
DW30	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	-	-	-
SE61	-	<1	<1	<4	<0.2	<2	<1	<1	<0.2	<1	<0.2
SE62	<0.2	1.8	<0.2	4.5	0.5	3.1	4.6	0.2	0.6	0.2	0.9
SE64	<0.2	<0.2	<0.2	<0.4	<0.2	0.4	0.3	<0.2	<0.2	<0.2	<0.2

Event	CR-1R	CR-39	CR-39R	CR-41	CR-41R	CR-42	CR-46	CR-46R	NE- RAIN	NW- RAIN	SC-1 RAIN
Fenpropath	nrin (ng/L)						•	L			
DW27	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	-	-	-
DW28	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	-	-	-
DW29	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	-	-	-
DW30	0.4	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	-	-	-
SE61	-	<1	<1	<4	<0.2	<2	<1	<1	1.1	<1	0.3
SE62	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
SE64	<0.2	<0.2	<0.2	<0.4	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Lambda-Cy	vhalothrin (r	ng/L)				•					
DW27	-	<0.2	<0.2	<0.2	<0.2	92	<0.2	<0.2	-	-	-
DW28	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	-	-	-
DW29	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	-	-	-
DW30	0.2	<0.2	<0.2	<0.2	<0.2	0.3	0.5	<0.2	-	-	-
SE61	-	<1	<1	<4	<0.2	<2	<1	<1	0.4	<1	<0.2
SE62	<0.2	0.6	<0.2	1.1	<0.2	1	1.2	<0.2	<0.2	<0.2	<0.2
SE64	0.7	0.7	<0.2	1.4	<0.2	1	0.8	0.4	12	0.7	0.6
Permethrin	(ng/L)							•			•
DW27	-	<2	<2	<2	<2	<2	<2	<2	-	-	-
DW28	-	<2	<2	<2	<2	5.5	<2	<2	-	-	-
DW29	<2	<2	<2	<2	<2	<2	<2	<2	-	-	-
DW30	<2	<2	<2	<2	<2	<2	<2	<2	-	-	-
SE61	-	<10	<10	<40	<2	<20	<10	<10	3.2	<10	<2
SE62	<2	5.4	<2	8.6	<2	19	5.6	<2	<2	<2	<2
SE64	<2	<2	<2	<4	<2	<2	<2	<2	<2	<2	<2

Event	CR-1R	CR-39	CR-39R	CR-41	CR-41R	CR-42	CR-46	CR-46R	NE- RAIN	NW- RAIN	SC-1 RAIN
Tau-Fluvali	nate (ng/L)				·	-				·	
DW27	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	-	-	-
DW28	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	-	-	-
DW29	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	-	-	-
DW30	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	-	-	-
SE61	-	<1	<1	<4	<0.2	<2	<1	<1	<0.2	<1	<0.2
SE62	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
SE64	<0.2	<0.2	<0.2	<0.4	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Tetramethri	in (ng/L)										
DW27	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	-	-	-
DW28	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	-	-	-
DW29	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	-	-	-
DW30	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	-	-	-
SE61	-	<1	<1	<4	<0.2	<2	<1	<1	<0.2	<1	<0.2
SE62	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
SE64	<0.2	<0.2	<0.2	<0.4	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2

This page intentionally left blank

Appendix D 2016-2017 Sediment Toxicity Results

This page intentionally left blank

Sediment Toxicity Lab Report October 17, 2016 at CR-46R After Storm Event

November 22, 2016

Micheline Kipf Condor Earth Technologies, Inc. 188 Frank West Circle, Suite I Stockton, CA 95206

Dear Micheline:

I have enclosed a copy of our report "An Evaluation of the Toxicity of City of Stockton Stormwater Program Sediment Samples" for the samples that were collected October 17, 2016. The results of this testing are summarized below:

Summary of Stockton Stormwater Program sediment effects on Hyalella azteca.										
Sample Station	Sample Station Toxicity Present Relative to Lab Control?									
Sample Station	Survival	Growth								
CR-46RPP	YES	YES								
FD YES YES										

If you have any questions regarding the performance and interpretation of this testing, please contact my colleague Michael McElroy or myself at (707) 207-7760.

Sincerely,

Stephen L. Clark Vice President/Special Projects Director

Pacific EcoRisk is accredited in accordance with NELAP (ORELAP ID 4043). Pacific EcoRisk certifies that the test results reported herein conform to the most current NELAP requirements for parameters for which accreditation is required and available. Any exceptions to NELAP requirements are noted, where applicable, in the body of the report. This report shall not be reproduced, except in full, without the written consent of Pacific EcoRisk. This testing was performed under Lab Order 26442.

An Evaluation of the Toxicity of City of Stockton Stormwater Program Sediment Samples

Samples collected October 17, 2016

Prepared For:

Condor Earth Technologies, Inc. 188 Frank West Circle, Suite I Stockton, CA 95206

Prepared By:

Pacific EcoRisk 2250 Cordelia Rd. Fairfield, CA 94534 (707) 207-7760

November 2016

An Evaluation of the Toxicity of City of Stockton Stormwater Program Sediment Samples

Samples collected October 17, 2016

Table of Contents

	Page
1. INTRODUCTION	1
2. SEDIMENT TOXICITY TEST PROCEDURES	1
2.1 Receipt and Handling of the Sediment Samples	1
2.2 Solid-Phase Sediment Toxicity Testing with Hyalella azteca	1
3. RESULTS	3
3.1 Effects of the Stockton Stormwater Program Sediments on Hyalella azteca	3
4. SUMMARY AND CONCLUSIONS	4
4.1 QA/QC Summary	4

Appendices

- Appendix A Chain-of-Custody Record for the Collection and Delivery of the Stockton Stormwater Program Sediment Samples
- Appendix BTest Data and Summary of Statistics for the Evaluation of the Toxicity of
Stockton Stormwater Program Sediment Samples to Hyalella azteca

1. INTRODUCTION

In compliance with the City of Stockton Stormwater Program NPDES permit monitoring requirements, Condor Earth Technologies, Inc., has contracted Pacific EcoRisk (PER) to perform evaluations of the toxicity of selected ambient water and sediment samples. The current testing event was designed to meet the sediment monitoring requirements using sediment samples that were collected on October 17, 2016. This evaluation consisted of performing the US EPA 10-day survival and growth test with the amphipod *Hyalella azteca*. This report describes the performance and results of this testing.

2. SEDIMENT TOXICITY TEST PROCEDURES

This testing followed the guidelines established by the EPA manual "Methods for Measuring the Toxicity and Bioaccumulation of Sediment-associated Contaminants with Freshwater Invertebrates, Second Edition" (EPA/600/R-99/064).

2.1 Receipt and Handling of the Sediment Samples

On October 17, two sediment samples were collected into appropriately cleaned sample containers. These samples were transported on ice and under chain-of-custody, to the PER laboratory in Fairfield, CA (Table 1). The samples were then stored at $\leq 6^{\circ}$ C until being used to initiate toxicity tests within 14 days of collection. The chain-of-custody record for the collection and delivery of these samples is presented in Appendix A.

Table 1. Sampling stations and date of sediment collection for theStockton Stormwater Program monitoring.											
Sample Station											
CR-46RPP	CR-46RPP 10/17/16 10/18/16										
FD*											

* - Field Duplicate sample.

2.2 Solid-Phase Sediment Toxicity Testing with Hyalella azteca

The sediment toxicity test with *H. azteca* consists of exposing the amphipods to the sediment for 10 days, after which effects on survival and growth are evaluated. The specific procedures used in this testing are described below.

The *H. azteca* used in this testing were obtained from a commercial supplier (Chesapeake Cultures Inc, Hayes, VA). Upon receipt at the laboratory, the amphipods were maintained in tanks containing Lab Water Control medium at 23°C, and were fed a commercial Yeast-Cerophyll[®]-Trout chow (YCT) food amended with freeze-dried *Spirulina*.

The Control treatment sediment for this testing consisted of a composite of reference site sediments that have been maintained under culture at the PER lab for >3 months. The sediment samples were each tested at the 100% concentration only. There were eight replicates for each test treatment, each replicate container consisting of a 300-mL tall-form glass beaker with a 3-cm ribbon of 540 μ m mesh NITEX attached to the top of the beaker with silicone sealant. Each sediment sample was homogenized prior to loading of sediment into the test replicates. For each sediment, approximately 100 mL of sediment was then loaded into each of the test replicate containers. Each test replicate was then carefully filled with clean Lab Water Control medium (= Standard Artificial Medium [SAM-5S] water [Borgmann 1996]). The test replicates with sediments and clean overlying water were established ~24 hrs prior to the introduction of the amphipods, and were placed in a temperature-controlled room at 23°C during this pre-test period.

After this initial 24 hr period, the overlying water in each replicate was flushed with one volume (approximately 150 mL) of fresh overlying water. For each test treatment, a small aliquot of the renewed overlying water was then collected from each of the eight replicates and composited for measurement of "initial" water quality characteristics (pH, dissolved oxygen [D.O.], conductivity, alkalinity, hardness, and total ammonia). The testing was then initiated with the random allocation of ten 11 day-old amphipods into each replicate, followed by the addition of 1.0 mL of *Spirulina*-amended YCT food. The test replicates were then placed in a temperature-controlled room at 23°C. At the time of test initiation, eight replicates of 10 randomly-selected organisms were collected, dried, and weighed (described below) to determine the mean dry weight of the test organisms at test initiation (T_0).

Each day, for the following nine days, each test replicate was examined and any dead amphipods were removed via pipette and the mortality recorded. A small aliquot of the overlying water in each of the eight replicates for each test treatment was then collected and composited as before for measurement of "old" D.O., after which each replicate was flushed with one volume of fresh water. Another small aliquot of the overlying water in each of the eight replicates was then collected and composited as before for measurement of "new" D.O., after which each replicate was fed 1.0 mL of *Spirulina*-amended YCT.

After 10 days exposure, testing was terminated. An aliquot of overlying water was collected from each replicate and composited for analysis of the "final" water quality characteristics. The sediments in each replicate container were then carefully sorted and sieved and the number of surviving amphipods determined. The surviving organisms were euthanized in methanol, rinsed in de-ionized water, and transferred to small pre-tared weighing pans, which were placed into a drying oven at 100°C. After drying for ~24 hrs, the pans were transferred to a desiccator to cool, and then weighed to the nearest 0.01 mg to determine the mean dry weight per surviving organism for each replicate. The resulting survival and growth (mean dry weight) data were then analyzed to evaluate any impairment due to the sediments; all statistical analyses were performed using the CETIS[®] statistical software (TidePool Scientific, McKinleyville, CA).

3. RESULTS

3.1 Effects of the Stockton Stormwater Program Sediments on Hyalella azteca

The results of this testing are summarized below in Table 2. There were significant reductions in survival and growth in each of the sediment samples. The test data and summary of statistical analyses for this testing are presented in Appendix B.

Table	2. Data summa	ary for the Stoc	kton Stor	mwater Program	sediment samp	oles.		
Test	% Survival	% of	Toxic?	Mean dry	% of	Toxic?		
Treatment	70 Survivar	Control	(Y/N)	weight (mg)	Control	(Y/N)		
Control	96.3 N/A N/A 0.23 N/A N/A							
CR-46RPP	38.8*	40.3	Y	0.18*	77.8	Y		
FD	47.5*	49.4	Y	0.13*	55.8	Y		

* The response at this test treatment was significantly less than the Control sediment response (at p<0.05).

Page 3 6/21

4. SUMMARY AND CONCLUSIONS

The results of this testing are summarized below. There were significant reductions in survival and growth in the CR-46RPP and FD sediment samples.

Summary of Stocktor	Summary of Stockton Stormwater Program sediment effects on Hyalella azteca.									
Sample Station	Sample Station Toxicity Present Relative to Lab Control?									
Sample Station	Survival	Growth								
CR-46RPP	YES	YES								
FD YES YES										

4.1 QA/QC Summary

Test Conditions – All test conditions (pH, D.O., temperature, etc.) were within acceptable limits. All analyses were performed according to laboratory Standard Operating Procedures.

Negative Control – The biological responses for the test organisms at the Lab Control treatment were within acceptable limits.

Appendix A

Chain-of-Custody Record for the Collection and Delivery of the Stockton Stormwater Program Sediment Samples

	CHAIN-OF-CUSTODY Sample Results TAT: Rush X Standard 10 Day (discount)						47	7	HIN.		19		P.0	O. Box 3 mora, C.	905/216 4 95370	663 Bria	an Lane Kest Circle, Suite I Stockton, CA 95206
<u>SHIPPE</u>	<u>:D TO:</u>							(со	NC	DOR	2	20	19.532.03 19.532.01 Indor.sor	773 (fax		209.234.0518 209.388.9601 209.234.0538 (fax) 209.388.1778 (fax) urth.com condor.stockton@condorearth.com condor.merced@condorearth.com
Paci	Fiz E	coRisk (3	107)207-7760	2	SEND RESULTS TO:												
3250	Cor	LORISK (Furf	eld (A 94534								NAM	IE: AIL:	N	lich	el.	ne	condarearth.com
		b									[7	PLE/	ASE &	-MA	L Co	preferred) / OR FAX RESULTS TO ADDRESS MARKED ABOVE
PROJEC	T NAME/	LOCATION: Cas ure	BAN DISCHARG	E			EDI	FRE	SULI	rs ri	EQUI						SITE GLOBAL ID:
PROJEC	T NO.: 🕻	60665-04-	0)			ow)				7	/*	š/	7	7	7	7	
SAMPLI	ED BY: (S	ignature) Zurh				ee bel			/	/ /	8 E F	/ /		/ /	' /	/ /	
Date	Time	Sample Site Name	Sample ID (if different)	Matrix	# of containers	Preservatives (see below)	ANA,	METHOD.	H. Filters	1/2 1 × 1/2	0						REMARKS LAB ID #
10/124	1000	$(\mathcal{A})(\mathcal{A})(\mathcal{A})$			* 2	- -			$\sqrt{\frac{2}{3}}$		7	/	_	\leftarrow	\leftarrow		
19/17/6		CR-46RPP FD		5	2			7		$\overline{\checkmark}$	Ð	<u>۲</u>	-				# chronic freshwater (EPA)
91110	11:13			-				1-	\vdash		· ^		-				Gooly-910003) Hyalellastera surviva
						-								\vdash			and growth
											\square						
																	Conducted d. hand
																	pyretholds analysis if
																	toxicity is a beaved
														<u> </u>			
														<u> </u>			subsamples to be collected
				<u> </u>							$\left \right $			-			for Caltast
																	Tor PI = 1 h
							-										TOC RL = I my /L
						\rightarrow					$\left \right $						
							4.										
Relinquish	Ta	M		Date [0,	/17/	16	Time 14	: Ч5	_			H	m	Sel	va	je	C Date: 11/10 Time: 1445
Relinquish	elinguished By: (Signature)				18/	6	10	10		Rece	eived E	3y: (S 1/O	ignati	E	is	, he	10 100 Fee 1-1
Mat		WW Baste Water	Hazardous Waste (Water)		Soil/So	olid		orm W	Vater ₉	GW /21	Groun			Pres	servati	ive	CL 3 NaOH 4 $Na_2S_2O_3$ 5 HNO ₃ 6 H_2SO_4 Other
		Original - Send					Y	ellow	/ - Fil	e							Pink - Log Book

Appendix B

Test Data and Summary of Statistics for the Evaluation of the Toxicity of the Stockton Stormwater Program Sediment Samples to *Hyalella azteca*

CETIS Summary Report

Report Date: Test Code:

03 Nov-16 10:25 (p 1 of 1) CE_1016HA_C1 | 04-1779-0769

						-			
nd Growth Sedir	nent Tes	t						Pacif	ic EcoRisk
)539 Tes	t Type:	Survival-Growt	h (10 day)		A	nalyst: Si	min Delijani		
14:25 Pro	tocol:	EPA/600/R-99/	/064 (2000)				•		
6 13:33 Spe									
Sou	irce:	Chesapeake C	ultures, Inc.						
mple ID	Sample	e Date Rec	eive Date	Sample	Age C	lient Name		Project	
3668-4358	22 Oct-	16 14:25 22 0	Oct-16 14:25			ondor Earth 1	rechnologies		
1807-4609	17 Oct-	16 10:55 18 0	Oct-16 10:10	5d 4h (3	3.1 °C)		· ·		
6588-2200	17 Oct-	16 11:15 18 0	Oct-16 10:10	5d 3h (0).1 °C)				
terial Type	Sample	e Source		Station	Location		Latitude	Lon	gitude
				LABQA					
shwater Sedime	n Condor	Earth Technol	logies	CR-46RI	эр				
shwater Sedime	n Condor	Earth Technol	logies	FD					
mmary									
Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
8	0.231	0.223	0.239	0.21	0.242	0.00349	0.00987	4.27%	0.0%
8	0.18	-0.11	0.469	0.044	1.03	0.122	0.346	193.0%	22.2%
8	0.129	0.0586	0.199	0.0489	0.27	0.0297	0.0841	65.2%	44.2%
Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
8	0.963	0.9	1	0.8	1	0.0263	0.0744	7.73%	0.0%
8	0.388	0.23	0.545	0.1	0.7	0.0666	0.189		59.7%
8	0.475	0.176	0.774	0.1	0.9	0.126	0.358	75.3%	50.6%
ail									
Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8		
0.21	0.239	0.236	0.242	0.233	0.226			······································	
0.055	0.0575	0.044	0.0443	0.0533	0.048				
0.0489	0.0662	0.0688	0.27	0.163	0.23	0.0643	0.12		
Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8		
1	1	0.9	1	1	0.8	1	1		····
0.4	0.4	0.5	0.7	0.3	0.5	0.1	0.2		
0.9	0.8	0.8	0.1	0.3	0.1	0.7	0.1		
			····		<u></u>	<u></u>			
Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8		
Rep 1 10/10	Rep 2	Rep 3 9/10	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8		
	Rep 2 10/10 4/10	Rep 3 9/10 5/10	Rep 4 10/10 7/10	Rep 5 10/10 3/10	Rep 6 8/10 5/10	Rep 7 10/10 1/10	Rep 8 10/10 2/10		<u> </u>
	9539 Tes 914:25 Pro 914:25 Pro 914:25 Pro 914:25 Pro 914:25 Pro 913:33 Spectromagnetic Sector 3668-4358	2539 Test Type: 3 14:25 Protocol: 5 13:33 Species: Source: Source: mple ID Sample -3668-4358 22 Oct. -1807-4609 17 Oct. -6588-2200 17 Oct. terial Type Sample ntrol Sediment Condor shwater Sedimen Condor Sold 0.129 Count Mean 8 0.129 Count Mean 8 0.388 8 0.475 tail Rep 1 Rep 2 0.21 0.239 0.055 0.0489 0.0662 Rep 1 Rep 1 Rep 2 1 1 1 0.4	Protocol: EPA/600/R-99/ 513:33 Species: Hyalella azteca Source: Chesapeake C mple ID Sample Date Rec 3668-4358 22 Oct-16 14:25 22 Oct- 1807-4609 17 Oct-16 10:55 18 Oct 46588-2200 17 Oct-16 11:15 18 Oct Example Source Introl Sediment Condor Earth Techno Earth Techno Introl Sediment Condor Earth Techno Earth Techno Introl Sediment Condor Earth Techno Introl Sediment Condor Earth Techno Introl Sediment Condor Earth Techno Introl Sedimen Condor Earth Techno Introl Sediment Condor Earth Techno Introl Sedimen Ondor Earth Techno Introl Sediment Condor Earth Techno Introl Sedimen Ondor Earth Techno Introl Sediment Condor Earth Techno Introl Sedimen Introl Sedimen Count Mean 95% LCL Introl Sedimen Introl Sedimen Mass 0.129 0.0586 Introl Sedimen Introl Sedimen Count Mean 95% LCL Introl Sedimen Introl Sedimen Sedim One	2539 Test Type: Survival-Growth (10 day) 5 14:25 Protocol: EPA/600/R-99/064 (2000) 5 13:33 Species: Hyalella azteca Source: Chesapeake Cultures, Inc. mple ID Sample Date Receive Date 3668-4358 22 Oct-16 14:25 22 Oct-16 14:25 3668-4358 22 Oct-16 14:25 22 Oct-16 14:25 3807-4609 17 Oct-16 10:55 18 Oct-16 10:10 6588-2200 17 Oct-16 11:15 18 Oct-16 10:10 6588-2200 17 Oct-16 11:15 18 Oct-16 10:10 iterial Type Sample Source Introl Sediment Condor Earth Technologies shwater Sedimen Condor Earth Technologies Introl Sediment Condor Earth Technologies ishwater Sedimen Condor Earth Technologies Introl Sediment O.231 0.223 0.239 8 0.18 -0.11 0.469 Introl Sediment Source Introl Sediment Introl Sediment Introl Sediment Introl Sediment Introl Sediment Introl Sediment Source Introl Sediment Introl Sediment	2539 Test Type: Survival-Growth (10 day) 6 14:25 Protocol: EPA/600/R-99/064 (2000) 5 13:33 Species: Hyalella azteca Source: Chesapeake Cultures, Inc. mple ID Sample Date Receive Date Sample -3668-4358 22 Oct-16 14:25 22 Oct-16 14:25 NA (22.2 -1807-4609 17 Oct-16 10:55 18 Oct-16 10:10 5d 4h (3 -6588-2200 17 Oct-16 11:15 18 Oct-16 10:10 5d 3h (0 terial Type Sample Source Station ntrol Sediment Condor Earth Technologies LABQA eshwater Sedimen Condor Earth Technologies FD mmary Count Mean 95% LCL 95% UCL Min 8 0.231 0.223 0.239 0.21 8 0.18 -0.11 0.469 0.044 8 0.129 0.0586 0.199 0.0489 Experimentation Source Source Source Source Sound 0.9	2539 Test Type: Survival-Growth (10 day) A 614:25 Protocol: EPA/600/R-99/064 (2000) D 513:33 Species: Hyalella azteca B Source: Chesapeake Cultures, Inc. A mple ID Sample Date Receive Date Sample Age C -3668-4358 22 Oct-16 14:25 22 Oct-16 14:25 NA (22.2 °C) C -1807-4609 17 Oct-16 10:55 18 Oct-16 10:10 5d 4h (3.1 °C) 6588-2200 -17 Oct-16 11:15 18 Oct-16 10:10 5d 3h (0.1 °C) 18 terial Type Sample Source Station Location ntrol Sediment Condor Earth Technologies LABQA rshwater Sedimen Condor Earth Technologies FD mmary Count Mean 95% LCL 95% UCL Min Max 8 0.231 0.223 0.239 0.21 0.242 8 0.18 -0.11 0.469 0.044 1.03 8 0.231 0.236 0.199 <t< td=""><td>Bit Protocol: EPA/600/R-99/064 (2000) Analyst: Si 5 13:33 Species: Hyalella azteca Brine: Na Source: Chesapeake Cultures, Inc. Age: 11 mple ID Sample Date Receive Date Sample Age Client Name 3668-4358 22 Oct-16 14:25 22 Oct-16 14:25 NA (22.2 °C) Condor Earth Tabor.46 10:55 18 Oct-16 10:10 5d 4h (3.1 °C) Tot-16 10:15 18 Oct-16 10:10 5d 4h (3.1 °C) Tot-16 10:15 18 Oct-16 10:10 5d 4h (3.1 °C) Tot-16 10:15 18 Oct-16 10:10 5d 4h (3.1 °C) Tot-16 10:15 18 Oct-16 10:10 5d 4h (3.1 °C) Tot-16 10:10 5d 3h (0.1 °C) Tot-16 10:10 5</td><td>Ind Growth Sediment Test 2539 Test Type: Survival-Growth (10 day) Analyst: Simin Delijani 2513:33 Species: Hyalella azteca Brine: Not Applicable 313:33 Species: Hyalella azteca Brine: Not Applicable Source: Chesapeake Cultures, Inc. Age: 11 mple ID Sample Date Receive Date Sample Age Client Name 3668-4358 22 Oct-16 14:25 VA (22.2 °C) Condor Earth Technologies 1 17 Oct-16 11:15 18 Oct-16 10:0 5d 4h (3.1 °C) Station Location Latitude 6588-2200 17 Oct-16 11:15 18 Oct-16 10:0 5d 3h (0.1 °C) Latitude ttrol Sediment Condor Earth Technologies CR-46RPP Latitude rshwater Sedimen Condor Earth Technologies FD .00349 0.00987 8 0.129 0.0586 0.199 0.0489 0.27 0.0297 0.0841 Count Mean 95% LCL 95% UCL Min Max Std Err<!--</td--><td>2639 Test Type: Survival-Growth (10 day) Analyst: Simin Delijani 14:25 Protocol: EPA/600/R-99/064 (2000) Diluent: Not Applicable 313:33 Species: Hyalella azteca Brine: Not Applicable Source: Chesapeake Cultures, Inc. Age: 11 mple ID Sample Date Receive Date Sample Age Client Name Project 3668-4358 22 Oct-16 14:25 22 Oct-16 14:25 NA (22.2 °C) Condor Earth Technologies 26442 170ct-16 10:55 18 Oct-16 10:10 5d 4h (3.1 °C) 5688-2200 17 Oct-16 11:15 18 Oct-16 10:10 5d 3h (0.1 °C) terial Type Sample Source Station Location Latitude Lon ntroi Sediment Condor Earth Technologies FD FD FD mmary Count Mean 95% LCL 95% UCL Min Max Std Err Std Dev CV% 8 0.18 -0.11 0.469 0.044 1.03 0.122 0.346 193.0%</td></td></t<>	Bit Protocol: EPA/600/R-99/064 (2000) Analyst: Si 5 13:33 Species: Hyalella azteca Brine: Na Source: Chesapeake Cultures, Inc. Age: 11 mple ID Sample Date Receive Date Sample Age Client Name 3668-4358 22 Oct-16 14:25 22 Oct-16 14:25 NA (22.2 °C) Condor Earth Tabor.46 10:55 18 Oct-16 10:10 5d 4h (3.1 °C) Tot-16 10:15 18 Oct-16 10:10 5d 4h (3.1 °C) Tot-16 10:15 18 Oct-16 10:10 5d 4h (3.1 °C) Tot-16 10:15 18 Oct-16 10:10 5d 4h (3.1 °C) Tot-16 10:15 18 Oct-16 10:10 5d 4h (3.1 °C) Tot-16 10:10 5d 3h (0.1 °C) Tot-16 10:10 5	Ind Growth Sediment Test 2539 Test Type: Survival-Growth (10 day) Analyst: Simin Delijani 2513:33 Species: Hyalella azteca Brine: Not Applicable 313:33 Species: Hyalella azteca Brine: Not Applicable Source: Chesapeake Cultures, Inc. Age: 11 mple ID Sample Date Receive Date Sample Age Client Name 3668-4358 22 Oct-16 14:25 VA (22.2 °C) Condor Earth Technologies 1 17 Oct-16 11:15 18 Oct-16 10:0 5d 4h (3.1 °C) Station Location Latitude 6588-2200 17 Oct-16 11:15 18 Oct-16 10:0 5d 3h (0.1 °C) Latitude ttrol Sediment Condor Earth Technologies CR-46RPP Latitude rshwater Sedimen Condor Earth Technologies FD .00349 0.00987 8 0.129 0.0586 0.199 0.0489 0.27 0.0297 0.0841 Count Mean 95% LCL 95% UCL Min Max Std Err </td <td>2639 Test Type: Survival-Growth (10 day) Analyst: Simin Delijani 14:25 Protocol: EPA/600/R-99/064 (2000) Diluent: Not Applicable 313:33 Species: Hyalella azteca Brine: Not Applicable Source: Chesapeake Cultures, Inc. Age: 11 mple ID Sample Date Receive Date Sample Age Client Name Project 3668-4358 22 Oct-16 14:25 22 Oct-16 14:25 NA (22.2 °C) Condor Earth Technologies 26442 170ct-16 10:55 18 Oct-16 10:10 5d 4h (3.1 °C) 5688-2200 17 Oct-16 11:15 18 Oct-16 10:10 5d 3h (0.1 °C) terial Type Sample Source Station Location Latitude Lon ntroi Sediment Condor Earth Technologies FD FD FD mmary Count Mean 95% LCL 95% UCL Min Max Std Err Std Dev CV% 8 0.18 -0.11 0.469 0.044 1.03 0.122 0.346 193.0%</td>	2639 Test Type: Survival-Growth (10 day) Analyst: Simin Delijani 14:25 Protocol: EPA/600/R-99/064 (2000) Diluent: Not Applicable 313:33 Species: Hyalella azteca Brine: Not Applicable Source: Chesapeake Cultures, Inc. Age: 11 mple ID Sample Date Receive Date Sample Age Client Name Project 3668-4358 22 Oct-16 14:25 22 Oct-16 14:25 NA (22.2 °C) Condor Earth Technologies 26442 170ct-16 10:55 18 Oct-16 10:10 5d 4h (3.1 °C) 5688-2200 17 Oct-16 11:15 18 Oct-16 10:10 5d 3h (0.1 °C) terial Type Sample Source Station Location Latitude Lon ntroi Sediment Condor Earth Technologies FD FD FD mmary Count Mean 95% LCL 95% UCL Min Max Std Err Std Dev CV% 8 0.18 -0.11 0.469 0.044 1.03 0.122 0.346 193.0%

CETIS Analytical I	Report					-	ort Date: Code:			25 (p 3 of 4))4-1779-0769
Hyalella 10-d Survival a	nd Growth Sedi	ment Test							Pac	ific EcoRisk
Analysis ID: 18-5164- Analyzed: 03 Nov-1		•	vival Rate ametric-Two	o Sample			IS Version: cial Results:	CETISv Yes	1.8.7	
Data Transform	Zeta	Alt Hyp	Trials	Seed		PMSD	Test Resu	ılt		
Angular (Corrected)	NA	C > T	NA	NA		9.34%				
Equal Variance t Two-Sa	ample Test									
Sample Code vs Sar	nple Code	Test Stat	Critical	MSD DF	P-Value	P-Type	Decision(α:5%)		
CE_1016HA_C1 CR	46RPP	8.25	1.76	0.148 14	<0.0001	CDF	Significant			
ANOVA Table										
Source Sum	Squares	Mean Squ	lare	DF	F Stat	P-Value	Decision(a:5%)		
	2593	1.912593		1	68	< 0.0001	Significant	· · · · · · · · · · · · · · · · · · ·		
Error 0.39	38716	0.0281336	68	14			•			
Total 2.30	6465			15						
Distributional Tests	-									
Attribute Tes	t		Test Stat	Critical	P-Value	Decision(α:1%)			
	ance Ratio F		3.27	8.89	0.1403	Equal Var	iances			
Distribution Sha	piro-Wilk W Norr	mality	0.911	0.841	0.1191	Normal Di	stribution			
Survival Rate Summary										
Sample Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
CE_1016HA_C1	8	0.962	0.9	1	1	0.8	1	0.0263	7.73%	0.0%
CR-46RPP	8	0.388	0.23	0.545	0.4	0.1	0.7	0.0666	48.6%	59.7%
Angular (Corrected) Tran	nsformed Summ	nary								
Sample Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
CE_1016HA_C1	8	1.35	1.26	1.45	1.41	1.11	1.41	0.0406	8.48%	0.0%
CR-46RPP	8	0.662	0.488	0.836	0.685	0.322	0.991	0.0734	31.4%	51.1%
Graphics			Reject Null	Centered	0.35 0.30 0.25 0.20 0.15 0.05 0.00 0.00 0.00 0.00 0.00 0.0	•	0.5 0.0	05 11	0 15	2.0
CE_1016HA		CR-46RPP			-2.0	-1.9 -1.9	-0.5 0.0 Rankits	u.s 1.	, 1.5	2.0

Analyst: SD QA: MM

CETIS Analy	tical Report						-	ort Date: Code:			25 (p 1 of 4) 4-1779-0769
Hyalella 10-d Su	rvival and Growth	Sediment Test						-		Paci	fic EcoRisk
	0-8900-2725 3 Nov-16 10:25		lean Dry Weig onp <mark>a</mark> rametric		ple			IS Version: cial Results		1.8.7	
Data Transform	Zeta			Seed			PMSD	Test Res	ult		
Untransformed	NA	C > T	NA	NA			93.3%		<u></u>		
Wilcoxon Rank	Sum Two-Sample 1	ſest									
Sample Code		Test Sta				P-Value	P-Type	Decision			
CE_1016HA_C1	CR-46RPP	44	NA	0	14	0.0052	Exact	Significan	t Effect		
ANOVA Table											
Source	Sum Squares	Mean Se		DF	_	F Stat	P-Value	Decision			
Between Error	0.01054155 0.8391194	0.01054		1		0.176	0.6813	Non-Sign	ificant Effec	t	14
Total	0.849661	0.05993	/1	14 15							
Distributional Te	sts					<u> </u>					
Attribute	Test		Test Stat	Critical		P-Value	Decision	(a·1%)			
Variances	Variance Ratio	F	1230	8.89		< 0.0001	Unequal				
Distribution	Shapiro-Wilk W	Normality	0.497	0.841		<0.0001		al Distributi	on		
Mean Dry Weigh	t-mg Summary										
Sample Code	Cou	nt Mean	95% LCL	95% UC	L	Median	Min	Max	Std Err	CV%	%Effect
CE_1016HA_C1	8	0.231	0.223	0.239		0.233	0.21	0.242	0.00349	4.27%	0.0%
CR-46RPP	8	0.18	-0.11	0.469		0.0542	0.044	1.03	0.122	193.0%	22.2%
Graphics											
1.2						0.9					
2						0.B				•	
1.0						0.7					
-						0.6					
6.0					Centered Untransformed	0.5	2.	1			
tht-mg					Cent	0.4		1			
Dry Weight-mg			b.		5	0.3					/ .
Mean D						0.2		1			
Z 0.4						0.1					
-						0.0			D- 0 -0 - 0 - 0	······	
0.2		171	111			-0.1			51 F F F F		
		1///	///			-0.2		00	I		
0.0	CE_1016HA_C1	CR-46	RPP			-2.0	-1.5 -1.0	-0.5 0.0	0.5 1.6	0 1.5	2.0
			· -···					Rankits			

CETIS 73/24.8.7.16

Analyst: <u>SD</u> QA: <u>JUU</u>

			Test	Material		Water Qu	ality Measure	ments	
Day	Date		Co	ntrol		Parameter	Value	Meter ID	Sign-off:
	· · · ·		# Live	Organisms		pH	7.73	PHIG	AM Change: JAu
0	10/22/14	A 10	BIO	C10	DID	D.O. (mg/L)	8.1	RDIU	WQ: Spin
		E 10	F 10	GO	н Ю	Conductivity (µS/cm)	490	ECU9	Initiation Time: 1425
						Alkalinity (mg/L)	V 65.2		Initiation Counts:
						Hardness (mg/L)	v 129		Confirmation Counts
						Ammonia (mg/L)	41.00	DR380U	PM Feed:
						Temp. (°C)	22.2	48A	
			# of M	ortalities		Old D.O. (mg/L)	6.0	RDII	AM Change: R WQ: TA
1	10/23/16	^ D	B D	° D	^D O	New D.O. (mg/L)	7.1	RDII	Mortality Counts: TA
	- (· · (·	E D	FO	° D	^H O	Temp. (°C)	22.8	48A	PM Change: DJ PM Feed: DJ
	1. 10.0 1.0		# of M	ortalities	-,	Old D.O. (mg/L)	B,D	RDIO	AM Change: HR WQ: HR Mortality Counts: HR
2	10/24/16	<u> </u>	B 0	° O	° Û	New D.O. (mg/L)	6.6	RDID	N/N
		<u> </u>	<u> 0 </u>	GO	H D	Temp. (^e C)	23.3	48A	PM Change: MR PM Feed: MR
	10/25/10		1-	ortalities	10	Old D.O. (mg/L)	6,3	RDIO	AM Change: RB WQ:RB
3	1 / 11		0	GO	D 0	New D.O. (mg/L)	7.4	Rpio	Mortality Counts:
		E Ø	r 0	G O	H P	Temp. (°C)	23,2	48A	PM Change: RB PM Feed: AB
4	151.14	A	1_	ortalities		Old D.O. (mg/L)	8,3	RDIO	AM Change: RB WQ: RS
4	10/26/16	^ O	B O	C O	Н	New D.O. (mg/L)	8.4	RDIO	Mortality Counts: RB
			F Q	0	<u> </u>	Temp. (°C)	23.4	48A	PM Change: RB PM Feed: RB
5	10/27/10	A	b .	ortalities	D	Old D.O. (mg/L)	8.3	R D04	AM Change: JFWQ: JF
5	10/2/1/6	A 0	Б <u>О</u>		нО	New D.O. (mg/L)	8.4, "	AD09	Mortality Counts:
		0		0	. 0	Temp. (°C)	23.4	48A	PM Change: JFPM Feed: J
6		A ()	В	ortalities	D	Old D.O. (mg/L)	238.5	RD 69	AM Change: WQ: Jon
0	10/28/10	а <u>О</u> ЕО	F D	G D	U	New D.O. (mg/L)	8.7		Mortality Counts: JAr-
	· · · ·				" <i>O</i>	Temp. (°C)	23.5	48A	PM Change: M PM Fcot
7	10/29/16	A O	B O	c o	D 0	Old D.O. (mg/L)	8.4		AM Change: RB WQ: RB
,	10/21/16	E 0	FØ	G O	н	New D.O. (mg/L)	8.6	RDOG	Mortality Counts: RB PM Change: RB PM Feed RB
			# of M		<i>" 0</i>	Temp. (°C) Old D.O. (mg/L)	23.6		AM Change: 02 WQ: 02
8	Introlic	A ()	B O	c 0	^D O	New D.O. (mg/L)	8.6 .8.7	RDIO	Mortality Counts:
	10/00/16	E O	FO	° 0	нО		23.8,23.7	NUIO	
				ortalities		Old D.O. (mg/L)	8.4	TUI	AM Change: 1/2 PM Feed: 9/2 AM Change: 1/6 WQ: 1/6
9	10/51/16	^ <i>0</i>	в	C O	D O	New D.O. (mg/L)		RDO9	Mortality Counts:
	01010	E D	FO	G 🖉	нO	Temp. (°C)	8.5 23.8	RD07 48/1	PM Change: R PM Feed:
			# A	live		pH	7.64		WQ: JAN
10	Mille	^ 10	^B 10	c 9	D 10	D.O. (mg/L)	8.4	11.15	Termination Counts: WC
	3 [1	EIO	FS	GIO		Conductivity (µS/cm)	444		Termination Time: 1335
			Ĭ			Alkalinity (mg/L)	166.8		
						Hardness (mg/L)	126		
						Ammonia (mg/L)		Dr1.3800	
						Temp. (°C)	23.7	48A	

Organism Supplier:

Project#: 26442

Test ID#: 70087,88

Client: Condor Earth: Stockton Stormwater Species: <u>Hyalella azteca</u>

Age: _] |

11

Organism Log #: _____9864 **Chesapeake** Cultures

10-Day Hyalella azteca Sediment Toxicity Test Data

Client: <u>Condor Earth: Stockton Stormwater</u> Species: <u>Hyalella azteca</u> Project#: 26442 Test ID#: 70087

Organism Supplier:

Organism Log #: 9864

Chesapeake Cultures

Age: 11d

Day	Date		Test !	Material		Water Qu	ality Measure	ments	Sign offi		
Day	Date		CR-	46RPP		Parameter	Value	Meter ID	- Sign-off:		
				Organisms		рН	7.64	PHIG	AM Change: JAN		
0	10/22/14	A 10	B 10	c 10	D 10	D.O. (mg/L)	8.0	RDIU	WQ: SAM		
0000000		e io	FID	G 10	н (О	Conductivity (µS/cm)	425	EL09	Initiation Time: 1425		
						Alkalinity (mg/L)	65.2		Initiation Counts: BV		
						Hardness (mg/L)	V 127		Confirmation Counts:		
						Ammonia (mg/L)	<1.00	D&3800	PM Feed:		
						Temp. (°C)	22.2	48A			
	1 1 1	A	1-	ortalities		Old D.O. (mg/L)	4.0	RDII	AM Change: R WQ: TA-		
1	10/23/16	<u> </u>	B O		D O	New D.O. (mg/L)	7.0	RDII	Mortality Counts: TA		
		E D	F O	G O	н Ó	Temp. (°C)	22.8	48A	PM Change: OF PM Feed: DF		
	John like		# of M	ortalities		Old D.O. (mg/L)	4.6	RDID	AM Change: JR WQ: HR		
2	10/24/16	$\hat{}$ 0	<u> </u>		р н ()	New D.O. (mg/L)	7.0	RPIO	Mortality Counts:		
	<u> </u>	<u> </u>	<u> </u>	0	н ()	Temp. (°C)	23.3	48A	PM Change: JR PM Feed: 1		
	(0/25/16	а. 	# of M	ortalities	D	Old D.O. (mg/L)	4.7	RDIO	AM Change: RB WQ: PB		
3	10/27/16	° O	0	6	U	New D.O. (mg/L)	7.0	Rpio	Mortality Counts: RB		
	[^E 0	F Ø	G	н О	Temp. (°C)	23,2	48A	PM Change: RB PM Feed: RB		
	614	A	B	ortalities	D	Old D.O. (mg/L)	8.4	RPIO	AM Change: RB WQ: RB		
4	10/26/16	^ O	0	GG	H O	New D.O. (mg/L)	8,3	RP10	Mortality Counts: RB		
I		e O	r 0	^G Ó		Temp. (°C)	23,4	48.4	PM Change: RB PM Feed: RB		
5	1015 511.	A ()	# of Mo	ortalities	D O	Old D.O. (mg/L)	8.4	<u>R009</u>	AM Change: JJWQ: JJ		
5	10/27/16	E O	0		н О	New D.O. (mg/L)	8.4	RD 09	Mortality Counts: 77		
		- 0	0	° U	··· 0	Temp. (°C)	23,4	48 A	PM Change: JPM Feet		
6	1.100	A 0	B	ortalities	D	Old D.O. (mg/L)	8.6	RD09	AM Change: JAC WQ: JAC		
0	10/28/10		F ()	G ()	Р О Н О	New D.O. (mg/L)	8.6	RDOG	Mortality Counts: Jon		
		E U		^G U		Temp. (°C)	23.5	48A	PM Change: JAM PM Feed: JAM		
7	10/29/16	A 0	# of Mo B	ortalities	DA	Old D.O. (mg/L)	8.5		AM Change: RB WQ: RB		
	10/2//18	C	FØ	GO	D O	New D.O. (mg/L)	8.6		Mortality Counts: RB		
		0			н О	Temp. (°C)	23.6		PM Change: AB PM Feed: AB		
8	12/201	A O	# of Mo	c C	Þ O	Old D.O. (mg/L) New D.O. (mg/L)	8.6	1010	AM Change: 1 WQ: 92 Mortality Counts:		
	10/30/16	E O	F C	° 0	н О			NUIV			
		<u> </u>	F 0		0	Temp. (°C) Old D.O. (mg/L)	23.7	48A			
9	10/31/16	^	# of Mc	C	D A	New D.O. (mg/L)	7.8	R009	AM Change R WQ. JF Mortality Counts: BR		
_	195110	E O	F ()	<u> </u>	H D		77	RDO9	PM Chapter No		
			# A		H D	Temp. (°C)	a3.8		PM Change: JF PM Feed: JF WQ: CAA		
10	vill.	1 24	,	^c 5	D 7	pH D.O. (mg/L)	7.58	rnis I	WQ: SAM		
	11/14	E 2	F 5	<u> </u>	H Z	Conductivity (µS/cm)	7.6		Termination Time: 7335		
				/ 		Alkalinity (mg/L)	470	ECU	2227		
						Hardness (mg/L)	< 75.6 / 147				
						Ammonia (mg/L)		Darda			
						Temp. (°C)		DR380			
						remp. (C)	23.7	48A			

Client:	Condor Earth: Stockt	Condor Earth: Stockton Stormwater		26442	Balance ID:Balo Y
	CR-46 R				Sign-Off:
Test ID #:	70087		Final Wt Date:	11/2/16	Sign-Off: <u>p</u>
r					·
Pan	Concentration Replicate	Initial Weight. (mg)	Final Weight. (mg)	# organisms	Ave Weight (mg)
1	Control A	69.21	71.31	10	0.210
2	Sediment B	62.36	64,75	Ю	0,239
3	C	70.82	72,94	11/3-409	0.212
4	D	63.63	66,05	lo	0.242
5	E	64.32	66.65	16	0.233
6	F	66.48	68.29	S at all	0,181
7	G	70,73	73.06	(0	0.233
8	Н	67.56	69.85	(0	0.229
9	100% A	65.44	65.66	13-10-4	0.022
10	CR-46RPP B	62.50	62.73	13-6-4	0.023
11	С	68.14	68.36	1 + 5	0.022
12	D	75.87	76.18	13 + 7	0.031
13	E	61.02	61.18	13 +0-3	0.016
14	F	82.57	82,81	1/3 +0 5	0.024
15	G	66.48	66.58	13 to 1	0.010
16	H	64.81	66 88	13-40-2	0.207
QA1		65.83	65.83		

Hyalella azteca Weight Data Sheets

CETIS Analytical R	Report					-	ort Date: Code:			:25 (p 4 of 4)4-1779-076
Hyalella 10-d Survival an	nd Growth Sedi	ment Test							Paci	ific EcoRis
Analysis ID: 05-2368-3 Analyzed: 03 Nov-16		dpoint: Sui alysis: Pai	rvival Rate rametric-Two	Sample			IS Version: cial Results:	CETISv1 Yes	1.8.7	
Data Transform	Zeta	Alt Hyp	Trials	Seed		PMSD	Test Resu	it		
Angular (Corrected)	NA	C > T	NA	NA		19.4%				
Unequal Variance t Two-	Sample Test									
Sample Code vs Sam	nple Code	Test Stat	Critical	MSD DF	P-Value	P-Type	Decision(α:5%)		
CE_1016HA_C1 Field	d Duplicate	4.07	1.86	0.276 8	0.0018	CDF	Significant	Effect		
ANOVA Table							· · · · · · · · · · · · · · · · · · ·			
Source Sum	Squares	Mean Squ	Jare	DF	F Stat	P-Value	Decision(a:5%)		
Between 1.457		1.457392		1	16.5	0.0012	Significant			
Error 1.233	3673	0.0881195	53	14			·			
Total 2.691	1066			15						
Distributional Tests										
Attribute Test			Test Stat	Critical	P-Value	Decision	(α:1%)			
	ance Ratio F		12.4	8.89	0.0037	Unequal \	/ariances			
Distribution Shap	piro-Wilk W Nor	mality	0.927	0.841	0.2149	Normal D	istribution			
Survival Rate Summary										
Sample Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
CE_1016HA_C1	8	0.962	0.9	1	1	0.8	1	0.0263	7.73%	0.0%
Field Duplicate	8	0.475	0.176	0.774	0.5	0.1	0.9	0.126	75.3%	50.6%
Angular (Corrected) Tran	sformed Sumr	nary								
Sample Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
CE_1016HA_C1	8	1.35	1.26	1.45	1.41	1.11	1.41	0.0406	8.48%	0.0%
Field Duplicate	8	0.75	0.412	1.09	0.785	0.322	1.25	0.143	53.8%	44.6%
Braphics	222	7773	Reject Null	, Cantered	0.5 0.4 0.3 0.2 0.1 -0.1 -0.2 -0.3 -0.4		•••		•	
0.0 CE_1016HA	_C1	Field Duplic	ate	J	-0.5	-1.5 -1.0	-0.5 0.0 Rankits	0.5 Li	1.5	20

CETIS Analyti						Test	Code:	CE_1016	6HA_C1 C	4-1779-076
Hyalelia 10-d Surv	vival and Growth Sed	liment Test							Paci	fic EcoRis
			ean Dry Weig trametric-Two				IS Version: ial Results		.8.7	
Data Transform	Zeta	Alt Hyp	Trials	Seed		PMSD	Test Res	ult		
Untransformed	NA	C > T	NA	NA	· · · · · · · · · · · · · · · · · · ·	24.6%				
Unequal Variance	t Two-Sample Test			1.10						
Sample Code vs	Sample Code	Test Stat	Critical	MSD DF	P-Value	Р-Туре	Decision	(a:5%)		
CE_1016HA_C1	Field Duplicate	3.41	1.89	0.057 7	0.0057	CDF	Significar			
ANOVA Table										
Source	Sum Squares	Mean Sq	uare	DF	F Stat	P-Value	Decision	(α:5%)		
Between	0.04164698	0.041646	98	1	11.6	0.0042	Significan			
Error	0.05019464	0.003585	331	14						
Total	0.09184162			15						
Distributional Test	s				· · · · · · · · · · · · · · · · · · ·					
Attribute	Test		Test Stat	Critical	P-Value	Decision	α:1%)			
Variances	Variance Ratio F		72.7	8.89	< 0.0001	Unequal \				1
Distribution	Shapiro-Wilk W No	rmality	0.884	0.841	0.0447	Normal Di				
Mean Dry Weight-r	ng Summary									
Sample Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
CE_1016HA_C1	8	0.231	0.223	0.239	0.233	0.21	0.242	0.00349	4.27%	0.0%
Field Duplicate	8	0.129	0.0586	0.199	0.0944	0.0489	0.27	0.0297	65.2%	44.2%
Graphics										
0.30					0.16					
					0.14		i L		•	
0.25					0.12		() ()			
									•	
					0.10		1			
					-		1		/	
0.20		13		thered	-					
0.20]		Reject Null -	Centered	-					
0.20 600			Reject Null -	Centerod	-					
0.20 600			Reject Null	Centered	0.08 0.06 0.06					
0.20			Reject Nul	Centered	0.08 0.06 0.04		••••			
48m Dry 200			Reject Null	Centered	0.08 0.06 0.04 0.02		•			
4em Dry 200			Reject Null	Centered	0.08 0.06 0.04 0.02 -0.02		••••			,
0.20 64 24 24 20 0.15 0.15 0.15			Reject Null -	. Centered	0.06 0.02 0.00 0.00 0.02 -0.02		•••			
0.10 0.10			Reježt Null -	Centered	0.06	-15 -10	0.5 0.0			2.0

000-034-187-1

Analyst:______ QA:______

Ammonia (mg/L)

Temp. (°C)

4100

23.7

DR3607

UBA

Hyalella azteca

Species:

Age: 11 d

10-Day Hyalella azteca Sediment Toxicity Test Data

Day	Date		Test	Material		Water Qu	ality Measure	ments	Sign offi	
Duy	Date	FD			Parameter	Value	Meter ID	Sign-off:		
				Organisms		рН	7.60	PH19	AM Change: JAM	
0	10/22/10	A IO	B (D	c /0	D 10	D.O. (mg/L)	8.1	RDIU	WQ: JAK	
		E 10	F 10	G 10	н (О	Conductivity (µS/cm)	1.0	EL DY	Initiation Time: 1425	~
						Alkalinity (mg/L)	1 57.6		Initiation Counts: 8	/
						Hardness (mg/L)	125		Confirmation Counts	
						Ammonia (mg/L)	<1.00	DR 360	PM Feed: BV	
						Temp. (°C)	22.2	48A		
			# of M	lortalities		Old D.O. (mg/L)	4.9	RDII	AM Change: WQ:	TA
1	10/23/16	^ D	° ⊅	° J	° ₽	New D.O. (mg/L)	7.3	RDII	Mortality Counts: TA-	******
	10111110	^Е б	FD	G D	ы d	Temp. (°C)	22.8	USA	PM Change: DJ PM Fe	:ed: Dj
			# of M	ortalities		Old D.O. (mg/L)	5.5	RDID	AM Change: JR WQ:)	JR I
2	10/224/16	^ D	в О	° 0	D O	New D.O. (mg/L)	7.3	RDID	Mortality Counts: Mb	
		e ()	f O	° Û	н ()	Temp. (°C)	23.3	48A	PM Change: PM Fe	ed:)R
			# of M	ortalities	10	Old D.O. (mg/L)	5.1	ROVA	AM Change: RB WQ:2	
3	10/25/16	^ O	вО	c a	DO	New D.O. (mg/L)	6.9-	RDID	Mortality Counts:	
		^E D	F O	G O	H O	Temp. (°C)	23,2	48A	PM Change: RB PM Fe	ed: RR
			# of M	ortalities		Old D.O. (mg/L)	8.3	RDIO	AM Change: RB WQ:	RR
4	10/26/16	^ <i>O</i>	вО	° O	° O	New D.O. (mg/L)	8,2	RPIO	Mortality Counts: RB	
	. of Defice	E CJ	FO	G Ø	н О	Temp. (°C)	23,4	48A	PM Change: RB PM Fe	cd:RB
	,		# of M	ortalities		Old D.O. (mg/L)	8.3	RUUQ	AM Change: J JWQ:	
5	10/27/16	^ U	вО	c ()	D ()	New D.O. (mg/L)	8.4	RDU9	Mortality Counts:	<u> </u>
	10 11.0	E ()	F	G ()	н О	Temp. (°C)	23,4	48A	PM Change: SPM Fe	co JE
			# of M	ortalities		Old D.O. (mg/L)	8.6	RDU9	AM Change WQ:	Ac
6	10/28/10	A O	вО	C U	D 0	New D.O. (mg/L)	8.6		Mortality Counts: JAC	
	1010010	εO	FÙ	GU	нU	Temp. (°C)	23.5	48A	PM Change: AN PM Fe	cds
			# of M	ortalities		Old D.O. (mg/L)	8.4		AM Change: RB WQ:	-
7	19/29/16	A O	в О	C O	D Ø	New D.O. (mg/L)	8.7		Mortality Counts: RB	
	14	е О	FØ	G O	н О	Temp. (°C)	23.6	48A	PM Change: RB PM Fee	ed:DR
	1		# of M	ortalities		Old D.O. (mg/L)	8.6 8.4	RDIO	AM Change: 92 WQ:	
8	10/20/10	^ ()	вО	C O	D O	New D.O. (mg/L)	8.6	RDIO	Mortality Counts: 12	
	10/20/10	E O	FO	GO	н О	Temp. (°C)	23.7	484	PM Change: PM Fee	
			# of Me	ortalities		Old D.O. (mg/L)	3++ -7.8 10/3 dic	RD09	AM Change: Hp WQ: H	
9	10/31/16	A D	в О	C D	D D		8.3 7.7 AB114		Mortality Counts:	<u></u>
		ĒÔ	FO	GO	н О	Temp. (°C)	23.8	484	PM Change: JR PM Fee	ed: No
				live		рН	7.58	PHIS	WQ: JALL	- HK
10	11/1/1	^	в	° P	D	D.O. (mg/L)	7.9	RIDUG	Termination Counts:	
	1.1(<u></u>	F	G	н	Conductivity (µS/cm)	450	ECII	Termination Time: 123	7
						Alkalinity (mg/L)	130			>
						Hardness (mg/L)	~ 141			
						(- 171	011400		

Client: Condor Earth: Stockton Stormwater Project#: ____

Test ID#:

70088

26442

Organism Log #: 9864

Organism Supplier:

Chesapeake Cultures

Client:	Condor Earth: Stock	Condor Earth: Stockton Stormwater		26442	Balance ID: <u>Baloy</u>
	FD				Sign-Off:
Test ID #:	70088				Sign-Off: <u>92</u>
Pan	Concentration Replicate	Initial Weight. (mg)	Final Weight. (mg)	# organisms	Ave Weight (mg)
1	Control A	69.21	71.31	10	0.210
2	Sediment B	62.36	64.75	10	0,239
3	C	70,82	72.94	N3 to 9	0.212
4	D	63.63	66.05	10	0.242
5	E	64.32	66,65	10	0.233
6	F	66.48	68.29	13108	0,181
7	G	70.73	73.06	· 10	0,233
8	Н	67.56	69.85	10	0.229
17	100% A	67.23	67.67	113 40 9	0 044
18	FD B	59.93	60,46	15 10 8	0.053
19	С	70.42	70.97	13 10 8	0.055
20	D	68.91	69.18	10 +0 1	0.027
21	E	69.25	69.74	1/3 10 3	0.049
22	F	71.41		The to 1	0.023
. 23	G	68.48	68,93	115 to 7	0.045
24	Н	58.37	58,49	1/1310-1	0.012
QA1		65.83	65,83		

Hyalella azteca Weight Data Sheets

Hyalella azteca Weight Data Sheets

Client:	Condor Earth: Stockton Stormwater	Test Init Date: 10/22/16	Balance ID: <u>Rafoy</u>
Sample ID:	<u>T0</u>	Tare Wt Date: 10/22/16	Sign-Off:
Test ID:	70087, 88	Final Wt Date: 10/27/10	Sign-Off: JAn
Project #:	26442	· · ·	

Pan	Concentration Replicate	Initial Weight. (mg)	Final Weight. (mg)	# organisms	Ave Weight (mg)
1	А	72.45	73.07	10	0,062
2	В	70.96	71.66	10	0.070
3	С	69,98	70.65	(0)	0.067
4	D	67.47	68.12	10	0.065
5	E	10/22/110 69.40	69.98	10	0.058
6	F	65.10	65.70	10	0.060
7	G	74.74	75.40	10	0.066
8	Н	64.41	64.97	10	0.056
QA 1		65.25	65.20		

 $\bar{x} = 0.003$

Sediment Toxicity Lab Report March 14, 2017 at CR-46R Dry Weather Event

April 12, 2017

Micheline Kipf Condor Earth Technologies, Inc. 188 Frank West Circle, Suite I Stockton, CA 95206

Dear Micheline:

I have enclosed a copy of our report "An Evaluation of the Toxicity of City of Stockton Stormwater Program Sediment Sample" for the sample that was collected March 14, 2017. The results of this testing are summarized below:

Summary of Stockton Stormwater Program sediment effects on Hyalella azteca.						
Sample Station	Toxicity Present Relative to Lab Control?					
Sample Station	Survival	Growth				
CR-46RPP	No	YES				
CR-46RPP-LD YES YES						

If you have any questions regarding the performance and interpretation of this testing, please contact my colleague Stephen Clark or myself at (707) 207-7760.

Sincerely,

Michael McElroy Project Manager

Pacific EcoRisk is accredited in accordance with NELAP (ORELAP ID 4043). Pacific EcoRisk certifies that the test results reported herein conform to the most current NELAP requirements for parameters for which accreditation is required and available. Any exceptions to NELAP requirements are noted, where applicable, in the body of the report. This report shall not be reproduced, except in full, without the written consent of Pacific EcoRisk. This testing was performed under Lab Order 27085.

An Evaluation of the Toxicity of City of Stockton Stormwater Program Sediment Samples

Sample collected March 14, 2017

Prepared For:

Condor Earth Technologies, Inc. 188 Frank West Circle, Suite I Stockton, CA 95206

Prepared By:

Pacific EcoRisk 2250 Cordelia Rd. Fairfield, CA 94534 (707) 207-7760

April 2017

An Evaluation of the Toxicity of City of Stockton Stormwater Program Sediment Samples

Sample collected March 14, 2017

Table of Contents

	Page
1. INTRODUCTION	1
2. SEDIMENT TOXICITY TEST PROCEDURES	1
2.1 Receipt and Handling of the Sediment Samples	1
2.2 Solid-Phase Sediment Toxicity Testing with Hyalella azteca	1
3. RESULTS	3
3.1 Effects of the Stockton Stormwater Program Sediments on Hyalella azteca	3
4. SUMMARY AND CONCLUSIONS	4
4.1 QA/QC Summary	4

Appendices

- Appendix A Chain-of-Custody Record for the Collection and Delivery of the Stockton Stormwater Program Sediment Sample
- Appendix BTest Data and Summary of Statistics for the Evaluation of the Toxicity of
Stockton Stormwater Program Sediment Samples to Hyalella azteca

1. INTRODUCTION

In compliance with the City of Stockton Stormwater Program NPDES permit monitoring requirements, Condor Earth Technologies, Inc., has contracted Pacific EcoRisk (PER) to perform evaluations of the toxicity of selected ambient water and sediment samples. The current testing event was designed to meet the sediment monitoring requirements using a sediment sample that were collected on March 14, 2017. This evaluation consisted of performing the US EPA 10-day survival and growth test with the amphipod *Hyalella azteca*. This report describes the performance and results of this testing.

2. SEDIMENT TOXICITY TEST PROCEDURES

This testing followed the guidelines established by the EPA manual "Methods for Measuring the Toxicity and Bioaccumulation of Sediment-associated Contaminants with Freshwater Invertebrates, Second Edition" (EPA/600/R-99/064).

2.1 Receipt and Handling of the Sediment Samples

On October 17, a sediment sample was collected into an appropriately cleaned sample container. This sample was transported on ice and under chain-of-custody, to the PER laboratory in Fairfield, CA (Table 1). The sample was then stored at $\leq 6^{\circ}$ C until being used to initiate toxicity tests within 14 days of collection. The chain-of-custody record for the collection and delivery of these samples is presented in Appendix A.

Table 1. Sampling stations and date of sediment collection for theStockton Stormwater Program monitoring.						
Sample Station						
CR-46RPP 3/14/17 3/15/17						

2.2 Solid-Phase Sediment Toxicity Testing with Hyalella azteca

The sediment toxicity test with *H. azteca* consists of exposing the amphipods to the sediment for 10 days, after which effects on survival and growth are evaluated. The specific procedures used in this testing are described below.

The *H. azteca* used in this testing were obtained from a commercial supplier (Chesapeake Cultures Inc, Hayes, VA). Upon receipt at the laboratory, the amphipods were maintained in tanks containing Lab Water Control medium at 23°C, and were fed a commercial Yeast-Cerophyll[®]-Trout chow (YCT) food amended with freeze-dried *Spirulina*.

The Control treatment sediment for this testing consisted of a composite of reference site sediments that have been maintained under culture at the PER lab for >3 months. The sediment sample was tested at the 100% concentration only. Additionally, a laboratory duplicate (designated CR-46RPP-LD) was also performed on the sediment sample. There were eight replicates for each test treatment, each replicate container consisting of a 300-mL tall-form glass beaker with a 3-cm ribbon of 540 μ m mesh NITEX attached to the top of the beaker with silicone sealant. Each sediment sample was homogenized prior to loading of sediment into the test replicates. For each sediment, approximately 100 mL of sediment was then loaded into each of the test replicate containers. Each test replicate was then carefully filled with clean Lab Water Control medium (= Standard Artificial Medium [SAM-5S] water [Borgmann 1996]). The test replicates with sediments and clean overlying water were established ~24 hrs prior to the introduction of the amphipods, and were placed in a temperature-controlled room at 23°C during this pre-test period.

After this initial 24 hr period, the overlying water in each replicate was flushed with one volume (approximately 150 mL) of fresh overlying water. For each test treatment, a small aliquot of the renewed overlying water was then collected from each of the eight replicates and composited for measurement of "initial" water quality characteristics (pH, dissolved oxygen [D.O.], conductivity, alkalinity, hardness, and total ammonia). The testing was then initiated with the random allocation of ten 11-12 day-old amphipods into each replicate, followed by the addition of 1.0 mL of *Spirulina*-amended YCT food. The test replicates were then placed in a temperature-controlled room at 23°C. At the time of test initiation, eight replicates of 10 randomly-selected organisms were collected, dried, and weighed (described below) to determine the mean dry weight of the test organisms at test initiation (T_0).

Each day, for the following nine days, each test replicate was examined and any dead amphipods were removed via pipette and the mortality recorded. A small aliquot of the overlying water in each of the eight replicates for each test treatment was then collected and composited as before for measurement of "old" D.O., after which each replicate was flushed with one volume of fresh water. Another small aliquot of the overlying water in each of the eight replicates was then collected and composited as before for measurement of "new" D.O., after which each replicate was fed 1.0 mL of *Spirulina*-amended YCT.

After 10 days exposure, testing was terminated. An aliquot of overlying water was collected from each replicate and composited for analysis of the "final" water quality characteristics. The sediments in each replicate container were then carefully sorted and sieved and the number of surviving amphipods determined. The surviving organisms were euthanized in methanol, rinsed in de-ionized water, and transferred to small pre-tared weighing pans, which were placed into a drying oven at 100°C. After drying for ~24 hrs, the pans were transferred to a desiccator to cool, and then weighed to the nearest 0.01 mg to determine the mean dry weight per surviving organism for each replicate. The resulting survival and growth (mean dry weight) data were then analyzed to evaluate any impairment due to the sediments; all statistical analyses were performed using the CETIS[®] statistical software (TidePool Scientific, McKinleyville, CA).

5/1>

3. RESULTS

3.1 Effects of the Stockton Stormwater Program Sediments on Hyalella azteca

The results of this testing are summarized below in Table 2. There was no significant reduction in survival in the CR-46RPP sediment sample, but there was in the associated laboratory duplicate sample. There were significant reductions in growth in both sediment samples. The test data and summary of statistical analyses for this testing are presented in Appendix B.

Table 2. I	Table 2. Data summary for the Stockton Stormwater Program sediment samples.						
Test Treatment	%	% of	Toxic?	Mean dry	% of	Toxic?	
Test Treatment	Survival	Control	(Y/N)	weight (mg)	Control	(Y/N)	
Control	97.5	N/A	N/A	0.24	N/A	N/A	
CR-46RPP	96.3	98.7	N	0.15*	63.3	Y	
CR-46RPP-LD	86.2*	88.5	Y	0.18*	72.4	Y	

* The response at this test treatment was significantly less than the Control sediment response (at p<0.05).

4. SUMMARY AND CONCLUSIONS

The results of this testing are summarized below. There was no significant reduction in survival in the CR-46RPP sediment sample, but there was in the associated laboratory duplicate sample. There were significant reductions in growth in both sediment samples.

Summary of Stockton Stormwater Program sediment effects on Hyalella azteca.						
Sample Station	Toxicity Present Relative to Lab Control?					
Sample Station	Survival	Growth				
CR-46RPP	No	YES				
CR-46RPP-LD	YES	YES				

4.1 QA/QC Summary

Test Conditions – All test conditions (pH, D.O., temperature, etc.) were within acceptable limits. All analyses were performed according to laboratory Standard Operating Procedures.

Negative Control – The biological responses for the test organisms at the Lab Control treatment were within acceptable limits.

Appendix A

Chain-of-Custody Record for the Collection and Delivery of the Stockton Stormwater Program Sediment Samples

						1 Farst			Condor Earth Technologies, Inc								s Inc	
Sample I	Result	s TAT: 🔲 Rush 🗸	Standard) Box 3905	/21663 Bria		18	8 Frank West	Circle, Suite I	2941 Sunrise Blvd, Suite	50173	9 Ashby Road, Suite B
SHIPPED TO: CONE						OND	OR	L 20	209.532.0361 209.532.0773 fax			<u>ین</u> 20	Stockton, CA 95206 209.234.0518 209.234.0538 fax		Rancho Cordova, CA 95 916.783.2060 916.783.2464 fax	209	2 Merced, CA 95348 209.388.9601 209.388.1778 fax	
Pacific	EcoF	Risk								<u>SEND</u>		LTS T	<u>'0:</u>	Misha	line De			
2250 C	ordel	ia Road							•		NAN	ME: AIL:			_	yle Kipf prearth.com		
Fairfield	d, CA	94534 (707) 207-7	7760									AIL:			goonac			
											2		Тргг		Y/EMA	IL RESULTS TO ADI	DESCMA	
PROJEC	TNA	ME/LOCATION: CO	OS Urban Disch	arg	e	EDF RE	ESULT	SRE	QUIR		ES 🗸	NO		.ASL I /	SITE	GLOBAL ID:	JKESS MA	KKED ABOVE
PROJEC	T NO	^{.:} 6066J-04-01																
SAMPLE	EDBY	T: (Signature)				6			azteca		size							
				ix	ainers	Preservatives (see below)	ANALYSIS /METHOD:	Field Filtered					in a start and a start					
			Sample ID	Matrix	of containers	serv:	IAL YETH	ld Fi	Hyalella	10C	Grain							
Date T	ime	Sample Site Name	(if different)		io #	Pre (s	A Á	Fie	Нy	Ĕ	Ũ					REMARKS		LAB ID#
3-14-171	435	1617-DW29-	CR-46RPP	S		1		Ν	\checkmark	\checkmark	\checkmark					*chronic freshwater (EP	V600/4-91/003)	
		1 617-DW29-	- FD-	8		4		Å	\checkmark	4	4					Hyalella azteca surv	ival & growth	
																Conduct additional	pyrethroids	
																analysis if toxicity	s observed.	
													-			Sub sample	s to be	
																collected for	Caltest	
																		ASE RUN LAB
																		H SAMPLE ROMAIN
Relinquishe	d By: ()	Signature)		Date			Time:		~7	Receiv	ed By: (9	Signature				TOC RL=	•	
Relinquished By: (Signature) Date: Time: 09 Relinquished By: (Signature)							57	Received By: (Signature) Received By: (Signature)				Date: 3/15/1 7 Time: 09				// 7 ^{Time:} 0957		
Matrix		Waste Water			S :	Soil/Solid				G		nd Water		eservative				
DW Drinkin			Hazardous Waste (Wate				SI	Sto	orm Wate		0.00				HCL 3	NaOH 4 Na ₂ S ₂ O ₃ 5	HNO ₃ 6	H2SO4 7 Other
			Original – Send		-			Yel	low-	File 9/23						Pink – Log H		

Appendix B

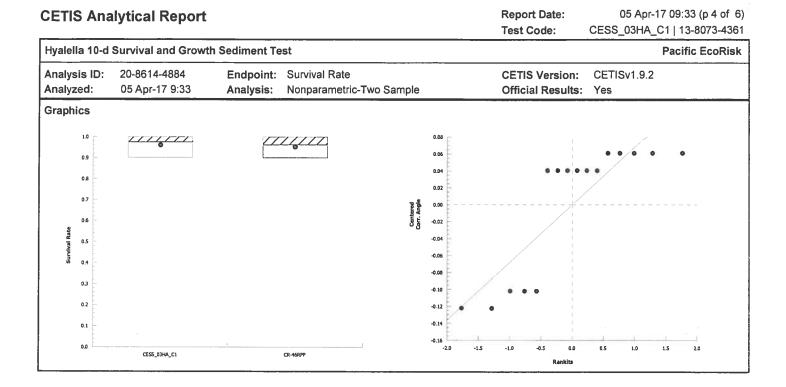
Test Data and Summary of Statistics for the Evaluation of the Toxicity of the Stockton Stormwater Program Sediment Samples to *Hyalella azteca*

CE IIS Summa	ary кер	JEL						Test C	ode:		•	3-8073-4361
Hyalella 10-d Surv	vival and G	rowth S	Sediment Test							_		ic EcoRisk
Start Date: 201 Ending Date: 301	9812-6130 Mar-17 14:1 Mar-17 12:3 22h		Species: Hy	rvival-Growtl PA/600/R-99/ valella azteca iesapeake C	064 (2000)			Analys Diluer Brine: Age:	nt: Not	enia Jarami Applicable Applicable	llo	
Sample Code	Sample I	D	Sample Date	Receip	t Date	Sample	Aae	Client	Name	Pr	oject	
CESS_03HA_C1	02-9346-		20 Mar-17 14:1		17 14:10	n/a (23.3				chnologi 27		
CR-46RPP	14-8507-9	9985	14 Mar-17 14:3	5 15 Mar-	17 09:57	6d (0 °C)				3		
CR-46RPP-LD	02-3287-9	9522	14 Mar-17 14:3		17 09:57	6d (0 °C)						
Sample Code	Material	Туре	Sa	mple Sourc	e		Station L	ocatio	n	Lat/Long		
CESS_03HA_C1	Control S	edimen	t Co	ndor Earth T	echnologie		LABQA					
CR-46RPP	Sediment			ndor Earth T	_		1617-DW	29:CR-	46RPP			
CR-46RPP-LD	Sediment			ndor Earth T	•				46RPP-LE	þ		
Single Compariso	on Summar	y							· · · · · · · · · · · · · · · · · · ·			
Analysis ID End	lpoint		Compari	son Method			P-Va	alue	Comparis	son Result		
18-0966-8023 Mea	an Dry Weig	ht-mg	Equal Va	riance t Two-	Sample Te	st	<1.0	E-37	CR-46RP	P failed mea	an dry weigl	nt-mg
16-2557-2861 Mea	an Dry Weig	ht-mg	Equal Va	riance t Two-	Sample Te	st	5.9E	-04	CR-46RP	P-LD failed	mean dry w	eight-mg
20-8614-4884 Sun	vival Rate		Wilcoxon	Rank Sum T	wo-Sample	Test	0.50	00	CR-46RP	P passed su	rvival rate	
08-8272-0059 Sun	vival Rate		Equal Va	riance t Two-	Sample Te	st	0.01	49	CR-46RP	P-LD failed	survival rate	e
Mean Dry Weight-	mg Summa	ary										·····
Sample	Code	Cour	nt Mean	95% LCL	95% UCL	Min	Max		Std Err	Std Dev	CV%	%Effect
CESS_03HA_C1	CS	8	0.242	0.223	0.26	0.191	0.26		0.00785	0.0222	9.18%	0.00%
CR-46RPP		8	0.153	0.142	0.164	0.133	0.17	1	0.00476	0.0135	8.79%	36.70%
CR-46RPP-LD		8	0.175	0.141	0.209	0.0883	0.22	1	0.0144	0.0408	23.30%	27.55%
Survival Rate Sum	nmary											
Sample	Code	Cour	it Mean	95% LCL	95% UCL	Min	Мах		Std Err	Std Dev	CV%	%Effect
CESS_03HA_C1	CS	8	0.975	0.936	1.000	0.900	1.00	0	0.016	0.046	4.75%	0.00%
CR-46RPP		8	0.963	0.919	1.000	0.900	1.000	0	0.018	0.052	5.38%	1.28%
CR-46RPP-LD		8	0.862	0.754	0.971	0.600	1.000	0	0.046	0.130	15.10%	11.54%
Mean Dry Weight-	m g Detail											I
Sample	Code	Rep 1	I Rep 2	Rep 3	Rep 4	Rep 5	Rep	6	Rep 7	Rep 8		
CESS_03HA_C1	CS	0.237	0.26	0.25	0.253	0.253	0.191	1	0.236	0.254		
CR-46RPP		0.133	0.163	0.139	0.167	0.149	0.171	1	0.148	0.154		
CR-46RPP-LD		0.175	0.216	0.221	0.17	0.191	0.168	3	0.0883	0.172		
Survival Rate Deta	ail											
Sample	Code	Rep 1		Rep 3	Rep 4	Rep 5	Rep	6	Rep 7	Rep 8		
CESS_03HA_C1	CS	1.000	0.900	1.000	1.000	1.000	1.000)	1.000	0.900		
CR-46RPP		1.000	0.900	1.000	1.000	1.000	1.000)	0.900	0.900		
CR-46RPP-LD		0.800	1.000	0.900	0.800	1.000	0.900)	0.600	0.900		
Survival Rate Bino	mials											
Sample	Code	Rep 1		Rep 3	Rep 4	Rep 5	Rep	6	Rep 7	Rep 8		
CESS_03HA_C1	CS	10/10		10/10	10/10	10/10	10/10)	10/10	9/10		
CR-46RPP		10/10		10/10	10/10	10/10	10/10) !	9/10	9/10		
CR-46RPP-LD		8/10	10/10	9/10	8/10	10/10	9/10		6/10	9/10		

CETIS Summary Report

 Report Date:
 05 Apr-17 09:33 (p 1 of 1)

 Test Code:
 CESS 03HA C1 | 13-8073-4361


10-Day Hyalella azteca Sediment Toxicity Test Data

Client:	Condor E	arth-Stockton Stormwater		Org	. Supplier:	Chusapeake EP3p. 10147
Project#:		27085		0	Org. Log #:	10147
Test ID#:		- 71987-7-1988				11-12 days
Day	Date	Test Material	Water Quality	y Measurei	nents	Sign-off:
Day	Date	Lab Control	Parameter	Value	Meter ID	Sign-on.
		# Live Organisms	pН	7,52	PHZI	AM Change: 1/=
0	3120117	A 10 B 10 C 10 D 10	D.O. (mg/L)	6.4	RD11	WQ: TF
		E (OF (OG (OH)O	Conductivity (µS/cm)	542	E(04	Initiation Time: 1410
			Alkalinity (mg/L)	184.4	PHISTIS	Initiation Counts: EP
			Hardness (mg/L)	127	DTYO	Confirmation Counts: Le PM Feed: EP
			Ammonia (mg/L)	11.00	DR3800	PM Feed: EP
			Temp. (°C)	23.3	32 A	
		# of Mortalities	Old D.O. (mg/L)	7.3	ROIZ	AM Change: An WQ: An
1	3121117		New D.O. (mg/L)	8.5	ROZ	Mortality Counts: JAm
	5.		Temp. (℃)	23.0	32A	PM Change: JA PM Feed: JA-
		# of Mortalities	Old D.O. (mg/L)	7.2		AM Change: TC WQ: TC
2	3/22/17		New D.O. (mg/L)	7.8	RD12	Mortality Counts:
	144/1+	E O F O G O H O	Temp. (°C)	22.2	324	PM Change: STB PM Feed STP
		# of Mortalities	Old D.O. (mg/L)	5.3		AM Change: TF WQ: TF
3	3/23/17	A O B O C O D O	New D.O. (mg/L)	9.0	RD /I	Mortality Counts: TE
	// -///	EOFOGOHO	Temp. (°C)	22.8	32A	PM Change: RB PM Feed: RB
		# of Mortalities	Old D.O. (mg/L)	6.5		AM Change: A WQ: An
4	212112	A O B O C O D G	New D.O. (mg/L)	8.1	12017	Mortality Counts: Ve~
	3/24/17		Temp. (°C)	23.5	32A-	PM Change Yle PM Feed: Yu
		# of Mortalities	Old D.O. (mg/L)	6.3	ROID	AM Changeyon WQ: An
5	3/25/17	A O B O C O D O	New D.O. (mg/L)	8.2		Mortality Counts:
	5100 11	$E \bigcirc F \bigcirc G \bigcirc H \bigcirc$	Temp. (°C)	22.3		PM Change: ML PM Feed
		# of Mortalities	Old D.O. (mg/L)	6.7	P012	AM Change: No WQ: HO
6	3/26/17	A O B O C O D O	New D.O. (mg/L)	7.5	0012	Mortality Counts: 4 p
	shali	E A F A G A H A	Temp. (°C)	23.1	ASE	PM Change: R PM Feed:
		# of Mortalities	Old D.O. (mg/L)	6.967	RD12	AM Change: JS WQ: JS
7	2. 12		New D.O. (mg/L)	7.8	RD12	Mortality Counts:
	3/27/17		Temp. (° <u>C</u>)	22.2	32.A	PM Change: JS PM Feed: JS
		# of Mortalities	Old D.O. (mg/L)	6.0		AM Change: TC WQ: TC
8	3/20/17		New D.O. (mg/L)	17.5	2010	Mortality Counts:
	3/28/17	E O FO GO HO	Temp. (°C)	23.4	32A	PM Change: RB PM Feed: RB
		# of Mortalities	Old D.O. (mg/L)	5.0		AM Change: 5713 WQ: 5713
9	2/2010		New D.O. (mg/L)	6.1		Mortality Counts: 5773
	2/24/14		Temp. (°C)	22.5	32A	PM Change: TF PM Feed: TF
		# Alive	pH	7.47		WQ: TF
10	3/30/11		D.O. (mg/L)			Termination Counts: WC
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Conductivity (µS/cm)		11.1.1	Termination Time: 12.35
			Alkalinity (mg/L)	1.5 7	EC09 PH1524	
			Hardness (mg/L)	129	DT30	
			Ammonia (mg/L)			
					0R3800 32 A	
	86896888888		Temp. (°C)	23.0	94 M	

J

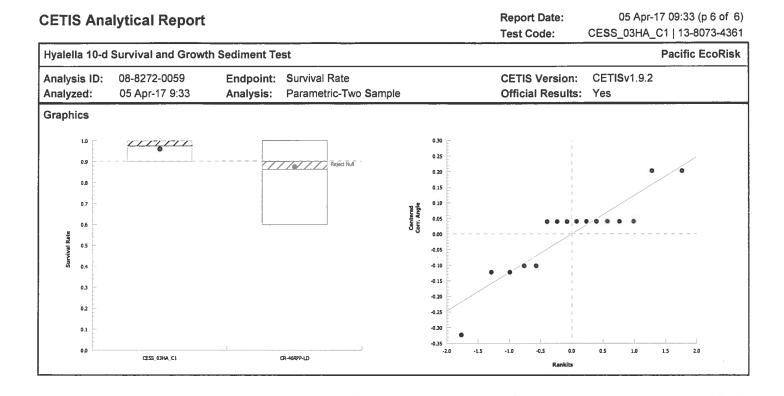
CETIS Analytical Report								ort Date: Code:		•	33 (p 3 of 6) 3-8073-4361
Hyalella 10-d Sur	vival and G	Frowth Sedi	ment Test							Paci	fic EcoRisk
	-8614-4884 Apr-17 9:3			urvival Rate	-Two Sam	ole		IS Version cial Results		1.9.2	
Data Transform		Alt Hyp					Comparis	son Result			PMSD
Angular (Corrected	i)	C > T					CR-46RP	P passed s	urvival rate		4.73%
Wilcoxon Rank S	um Two-Sa	ample Test									
Sample I vs	Sample	11	Test Stat	t Critical	Ties D	F P-Type	P-Value	Decisior	ı(α:5%)		
Control Sed	CR-46R		64	n/a		4 Exact	0.5000		ificant Effec	t	
ANOVA Table							<u></u>				
Source	Sum Sq	uares	Mean Sq	uare	DF	F Stat	P-Value	Decision	ı(α:5%)		
Between	0.00166		0.00166		1	0.259	0.6186	Non-Sign	ificant Effec	t	
Error	0.08963	77	0.006402	.7	14						
Total	0.09129	77			15						
Distributional Tes	its										
Attribute	Test				Test Sta	t Critical	P-Value	Decision	ι(α:1%)		
Variances	Variance	Ratio F Tes	st		1.25	8.89	0.7760	Equal Va	Equal Variances		
Distribution	Shapiro-	Wilk W Norr	nality Test		0.693	0.841	1.4E-04	Non-Norr	nal Distribut	ion	
Survival Rate Sun	nmary										
Sample	Code	Count	Mean	95% LCL	95% UC	_ Median	Min	Мах	Std Err	CV%	%Effect
CESS_03HA_C1	CS	8	0.975	0.936	1.000	1.000	0.900	1.000	0.016	4.75%	0.00%
CR-46RPP		8	0.962	0.919	1.000	1.000	0.900	1.000	0.018	5.38%	1.28%
Angular (Correcte	d) Transfo	rmed Sumr	nary						·	-	
Sample	Code	Count	Mean	95% LCL	95% UCI	Median	Min	Max	Std Err	CV%	%Effect
CESS_03HA_C1	CS	8	1.37	1.31	1.43	1.41	1.25	1.41	0.0267	5.50%	0.00%
CR-46RPP		8	1.35	1.28	1.42	1.41	1.25	1.41	0.0298	6.24%	1.49%
Survival Rate Deta	ail										
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8		
CESS_03HA_C1	CS	1.000	0.900	1.000	1.000	1.000	1.000	1.000	0.900		· · · · ·
CR-46RPP		1.000	0.900	1.000	1.000	1.000	1.000	0.900	0.900		
Angular (Correcte	d) Transfo	rmed Detai]								······································
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8		
CESS_03HA_C1	CS	1.41	1.25	1.41	1.41	1.41	1.41	1.41	1.25		
CR-46RPP		1.41	1.25	1.41	1.41	1.41	1.41	1.25	1.25		
Survival Rate Bind	omials										·····
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8		
CESS_03HA_C1	CS	10/10	9/10	10/10	10/10	10/10	10/10	10/10	9/10		
CR-46RPP		10/10	9/10	10/10	10/10	10/10	10/10	9/10	9/10		

Analyst: _____ QA:

	ical Rep	011				ort Date: Code:	CESS_03	•	33 (p 2 of 6 3-8073-436		
Hyalella 10-d Sur	vival and G	rowth Sed	liment Test							Paci	fic EcoRisl
	-0966-8023 Apr-17 9:33		n <mark>dpoint:</mark> Me nalysis: Pa	ean Dry Weig rametric-Two				S Version: ial Results		.9.2	
Data Transform		Alt Hyp)				Comparis	on Result			PMSD
Untransformed		C > T					CR-46RP	P failed me	an dry weigh	nt-mg	6.68%
Equal Variance t	Two-Sample	e Test									
Sample I vs	Sample II		Test Stat	Critical	MSD DF	P-Type	P-Value	Decision	(α:5%)		
Control Sed	CR-46RP	P*	9.67	1.76	0.016 14	CDF	<1.0E-37	Significar	nt Effect		
ANOVA Table											
Source	Sum Squ	ares	Mean Sq	uare	DF	F Stat	P-Value	Decision	(a:5%)		
Between	0.031496		0.031496		1	93.5	1.4E-07	Significar			
Error	0.0047147	7	0.000336	8	14			-			
Total	0.036211	1			15						
Distributional Tes	ts										
Attribute	Test				Test Stat	Critical	P-Value	Decision	(α:1%)		
Variances	Variance I	Ratio F Te	st		2.72	8.89	0.2105	Equal Va	riances		
Distribution	Shapiro-V	/ilk W Nor	mality Test		0.842	0.841	0.0104	Normal D	istribution		
Mean Dry Weight-	mg Summa	ry									
Sample	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
CESS_03HA_C1	CS	8	0.242	0.223	0.26	0.251	0.191	0.26	0.00785	9.18%	0.00%
CR-46RPP		8	0.153	0.142	0.164	0.152	0.133	0.171	0.00476	8.79%	36.70%
Mean Dry Weight-	mg Detail										
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8		
CESS_03HA_C1	CS	0.237	0.26	0.25	0.253	0.253	0.191	0.236	0.254		
CR-46RPP		0.133	0.163	0.139	0.167	0.149	0.171	0.148	0.154		
Graphics						0.02					
-						-				•	
0.25	[[]]	2				0.01		•			
				Reject Null		0.00					
0.20					ered	9 -0.01	•	• • •			
ht-mg					Centered		•	1			
Burnan and Angeler and Angele						-0.02	•	1			
red ma						-0.03	/				
S.10						E					
-						-0.04					
0.05						-0.05					
- 											
0.00	CESS_03HA_C1		CR-46R		_	-0.06 -2.0	-1.5 -1.0	-0.5 0.0	0.5 1.0	1.5	2.0

Analyst:_____ QA:___

10-Day Hyalella azteca Sediment Toxicity Test Data


					•	Clubs Deake 21
Client:	Condor Ea	arth-Stockton Stormwater				Chesi pegke 3/2
Project#:		27085		C)rg. Log #:	10147
Test ID#:		- <u>78917</u>		Org	Age/Size:	11-12 days
Day	Date	Test Material	Water Quality	y Measurer	nents	Sign-off:
Day	Date	1617-DW29-CR-46RPP	Parameter	Value	Meter ID	Sign-off:
		# Live Organisms	pН	7.47	PHZ	AM Change: TF
0	3/20/17	A 10 B 10 C 10 D 10	D.O. (mg/L)	6.6	RD 11	WQ: T/F
	J May 1	E / () F / () G / () H / ()	Conductivity (µS/cm)	438	E(04	Initiation Time: 1410
			Alkalinity (mg/L)		PHISTIN	Initiation Counts:
			Hardness (mg/L)	1	DT 30	Confirmation Counts:
			Ammonia (mg/L)	L1.00		PM Feed:
			Temp. (°C)	23.3	32 A	
		# of Mortalities	Old D.O. (mg/L)	7.3		AM Change: JAc WQ: JAC
1	3/21/17	A O B O C O D O	New D.O. (mg/L)	8.6	10 Min 1	Mortality Counts: \
	51		Temp. (°C)	23.0	3ZA	PM Change: Jan PM Feed: Jan
		# of Mortalities	Old D.O. (mg/L)	7.1		AM Change: TC WQ: TC
2	3/2/10		New D.O. (mg/L)	7.9	RPIZ	Mortality Counts:
	3/22/17	E D F D G D H O	Temp. (°C)	22.2		PM Change: STB PM Feed: ST
		# of Mortalities	Old D.O. (mg/L)	5.9	RPII	AM Change: TEWQ: TE
3	3/23/17	A O B O C O D O	New D.O. (mg/L)	8.5	RDIV	Mortality Counts:
	1/25/11	E U F U G O H O	Temp. (°C)	22.8		PM Change: RB PM Feed: RB
		# of Mortalities	Old D.O. (mg/L)	6.5		AM Change: you WQ: you
4	2 Jaul	A B C D	New D.O. (mg/L)	8.1	RUIZ	Mortality Counts: JAc
	3/24/17		Temp. (°C)	23.5	32A	PM Change: WPM Feed!
		# of Mortalities	Old D.O. (mg/L)	6.7	ROU	AM Change: MAN WO: LAN
5	1100/00	A B C C ID	New D.O. (mg/L)	8.2	ROIU	Mortality Counts:
2	3/15/17			22.3	32A	PM Change: An PM Feed: Ar
		# of Mortalities	Temp. (°C) Old D.O. (mg/L)	7.6	RPIZ	AM Change: HR WQ: HR
6	3/26/17	A O B O C O D O	New D.O. (mg/L)	7.8	ROIZ	Mortality Counts:
Ŭ	Joolit			23.1	32A	PM Change: HR PM Feed
		# of Mortalities	<u>Temp. (°C)</u> Old D.O. (mg/L)		1211	AM Change:
7	alata		New D.O. (mg/L)	7.2	RD12	AM Change: JS WQ: JS Mortality Counts: JS
<i>'</i>	3 27 17			7.9		PM Change: JS PM Feed: JJ
		# of Mortalities	Temp. (°C) Old D.O. (mg/L)	22.2	32A RD10	AM Change: T(WQ: TC
8	Plant		New D.O. (mg/L)	6.4		Mortality Counts:
Ŭ	3/28/17			23.4	17410 1	PM Change: RB PM Feed; RB
		# of Mortalities	Temp. (°C) Old D.O. (mg/L)	5,2		AM Change: 977 WQ: 5775
9	1 110		New D.O. (mg/L)	6.3		Mortality Counts: 577
	3/29/17			22.5		PM Change: TF PM Feed: TF
		# Alino	Temp. (°C)		and the second se	WQ: TF
10	3/30/17	* 10 B 9 C 10 D 10	pH D.O. (mg/L)	7,37		Towning the Country
	~130/17		Conductivity (µS/cm)		RD11 E(09	ر بر Termination Time: 1235
		<u>5 16 [10 9 9 9 10 10 10 10 10</u>		44 1		
			Alkalinity (mg/L)	171	P# 15 UT 2 4	
			Hardness (mg/L)	131	PT30	
			Ammonia (mg/L)	21,00	DR3800	
			Temp. (°C)	23,0	32A	

Hyalella azteca Weight Data Sheets

Client:	Condor Earth: Stockt	on Stormwater	Project #:	27085	Balance ID: BALOY
Sample ID:	1617-DW29-CF	R-46-RPP	Tare Wt Date:	3/21/17	Sign-Off: Jan
Test ID #:	71987	<u>.</u>	Final Wt Date	3/17-	Sign-Off: <u>Kuc</u>
Pan	Concentration Replicate	Initial Weight. (mg)	Final Weight. (mg)	# organisms	Ave Weight (mg)
1	Control A	70.61	72.98	10	0.237
2	Sediment B	59.82	62.16	wc 3/30/17→ 9	0.260
3	С	66.78	69.28	jo	0.250
4	D	61.42	63.95	10	0.253
5	E	56.23	58.76	10	0.253
6	F	45.30	67.21	10	0.191
7	G	70.52	72.88	10	0.236
8	Н	68.40	70.69	9	0.254
9	100% A	60.77	62.10	10	0.133
10	В	65.35	66.82	9	0.163
11	C	75.41	76.80	10	0.139
12	D	60.82	62.49	10	0.167
13	E	60.45	61.94	10	0.149,151.7
14	F	72.84	74.55	10	01420.171
15	G	68.33	69.66	9	0.148
16	Н	le1.56	62.95	9	0.154
QA1		68.50	68-50		

CETIS Analyt	ical Rep	oort		-	ort Date: Code:		•	33 (p 5 of 6 3-8073-436			
Hyalella 10-d Sur	vival and G	Frowth Sed	iment Test							Pacif	ic EcoRisk
	-8272-0059 Apr-17 9:3		•	urvival Rate arametric-Two	o Sample			IS Version: cial Results		.9.2	
Data Transform		Alt Hyp					Comparis	son Result			PMSD
Angular (Corrected	i)	C > T					·····	P-LD failed	survival rate	;	7.44%
Equal Variance t	Two-Samp	le Test									
Sample I vs	Sample		Test Sta	t Critical	MSD DF	P-Type	P-Value	Decision((a:5%)		
Control Sed	CR-46RF		2.42	1.76	0.118 14		0.0149	Significan	· · ·		
ANOVA Table											<u></u>
Source	Sum Sq	uares	Mean So	luare	DF	F Stat	P-Value	Decision((α:5%)		
Between	0.105405	5	0.10540	5	1	5.85	0.0297	Significan	t Effect		
Error	0.252108	3	0.018007	77	14						
Total	0.357512	2		<u></u>	15						·····
Distributional Tes	its										
Attribute	Test				Test Stat	Critical	P-Value	Decision((α:1%)		
Variances	Variance	Ratio F Te	st		5.33	8.89	0.0422	Equal Variances			
Distribution	Shapiro-	Wilk W Nor	mality Test		0.848	0.841	0.0129	Normal Di	istribution		
Survival Rate Sun	nmary										
Sample	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
CESS_03HA_C1	CS	8	0.975	0.936	1.000	1.000	0.900	1.000	0.016	4.75%	0.00%
CR-46RPP-LD	······································	8	0.862	0.754	0.971	0.900	0.600	1.000	0.046	15.10%	11.54%
Angular (Correcte	d) Transfo	rmed Sum	mary								
Sample	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
CESS_03HA_C1	CS	8	1.37	1.31	1.43	1.41	1.25	1.41	0.0267	5.50%	0.00%
CR-46RPP-LD		8	1.21	1.06	1.35	1.25	0.886	1.41	0.0616	14.40%	11.84%
Survival Rate Deta	ail										
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8		
CESS_03HA_C1	CS	1.000	0.900	1.000	1.000	1.000	1.000	1.000	0.900		
CR-46RPP-LD		0.800	1.000	0.900	0.800	1.000	0.900	0.600	0.900		
Angular (Correcte	d) Transfo	rmed Detai	 il								
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8		
CESS_03HA_C1	CS	1.41	1.25	1.41	1.41	1.41	1.41	1.41	1.25		
CR-46RPP-LD		1.11	1.41	1.25	1.11	1.41	1.25	0.886	1.25		
Survival Rate Bind	omials						· · - · · · · · · · · · · · · · · · · ·				
our main nate binn					Den 4	Rep 5	Rep 6	Rep 7	Rep 8		
	Code	Rep 1	Rep 2	Rep 3	Rep 4	rep 🤉	Keh o	veh i	rep o		
Sample CESS_03HA_C1	Code CS	Rep 1 10/10	9/10	10/10	10/10	10/10	10/10	10/10	9/10		

Analyst: U QA:

CETIS Analyti	cal Repo	ort				ort Date: Code:		-	33 (p 1 of 6 3-8073-436		
Hyalella 10-d Surv	vival and Gr	rowth Se	diment Tes	t							ic EcoRisk
•	2557-2861 Apr-17 9:33		-	Mean Dry Weig Parametric-Tw				IS Versior		1.9.2	
Data Transform		Alt Hy	р				Comparie	son Resul	t	-	PMSD
Untransformed		C > T					CR-46RP	P-LD failed	d mean dry w	eight-mg	11.96%
Equal Variance t 1	wo-Sample	e Test						· · · · · · · · · · · · · · · · · · ·			
Sample I vs	Sample II		Test S	tat Critical	MSD DF	P-Type	P-Value	Decisio	n(a:5%)		
Control Sed	CR-46RP		4.06	1.76	0.029 14		5.9E-04		nt Effect		
ANOVA Table	······										
Source	Sum Squ	ares	Mean S	Square	DF	F Stat	P-Value	Decisio	o(a:5%)		
Between	0.0177556		0.0177		1	16.5	0.0012		int Effect		
Error	0.0151056		0.0010		14		0.0012	orginited			
Total	0.0328612				15	_					
Distributional Test	s										
Attribute	Test				Test Stat	Critical	P-Value	Decisio	n(a:1%)		
Variances	Variance I	Ratio F T	est		3.38	8.89	0.1303	Equal Va			
Distribution			ormality Test		0.847	0.841	0.0125	•	Distribution		
Mean Dry Weight-	mg Summa	ry									
Sample	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
CESS_03HA_C1	CS	8	0.242	0.223	0.26	0.251	0.191	0.26	0.00785	9.18%	0.00%
CR-46RPP-LD		8	0.175	0.141	0.209	0.174	0.0883	0.221	0.0144	23.30%	27.55%
Mean Dry Weight-r	ng Detail										
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8		
CESS_03HA_C1	CS	0.237	0.26	0.25	0.253	0.253	0.191	0.236	0.254		
CR-46RPP-LD		0.175	0.216	0.221	0.17	0.191	0.168	0.0883	0.172		
Graphics											
0.30						0.075 -					
						-		a 80			
0.25	11811]				0.050					
-	<u> </u>	G									
0.20				Reject Null	8	0.025		1		•	
· · · ·		1			Centrared	0 2 5 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7					
Mean Dr.5					0	5	0				
h the the test of						-0.025				,	
Mean								1			
0.10						-0.050	•	I			
								1			
0.05						-0.075		i I			
						-0.100		I		1	
0.00	CESS_03HA_C1		CR-4	6RPP-LD	_]	-2.0	-1.5 -1.0	-0.5 0.0	0.5 1.	0 1.5	2.0
		_						Rankits			

A A Analyst:

i.

10-Day Hyalella azteca Sediment Toxicity Test Data

Client:	Condor Ea	arth-Stockton	Stormwate	r		Or	g. Supplier:	Chesa peake 3/2
Project#:		27085				(Org. Log #:	10147 11-12 days
Test ID#:			1988			0	A co/Sizor	IL-D Jave
10st 1D#.		- /	1100				. Age/312e.	11-12 0445
Deri	Data	Test	Material		Water Quality	y Measure	G: 00	
Day	Date	1617-DW2	9-CR-46RI	PP-LD	Parameter	Value	Meter ID	Sign-off:
		# Live	Organism	s	pH	7.41	PHZI	AM Change: TF
0	3/20/17	A 10 B 10	2610	D10	D.O. (mg/L)	6.4	RDII	WQ: TF Initiation Time: 1/////
	<i>y</i> ² ///	E 10 F 1) 0 10	н 10	Conductivity (µS/cm)	440	E(04	Initiation Time: 1410
					Alkalinity (mg/L)		AHISIN	Initiation Counts: EP
					Hardness (mg/L)	130	DT30	Confirmation Counts: L
					Ammonia (mg/L)	4.00		PM Feed: ED
					Temp. (°C)	23.3	32 A	
		# of	Mortalities		Old D.O. (mg/L)	7.2	KO12	AM Change: JAN WQ: JAN
1	3/21/17		CO	D ()	New D.O. (mg/L)	8.5		Mortality Counts: JAc
	<u> </u>	EUFO		H O	Temp. (°C)	23,0	32A-	PM Change: A PM Feed: JM
		# of	Mortalities		Old D.O. (mg/L)	7.2	RDII	AM Change: TC WQ: TC
2	21-11	A D B O	C D	DO	New D.O. (mg/L)	8.0	RD12	Mortality Counts:
	3/22/17	EOFO	GD	нŎ	Temp. (°C)	22.2	32.4	PM Change: STB PM Feed: StD
		# of	Mortalities		Old D.O. (mg/L)	5.9	RDIT	AM Change: TF WQ: TF
3	3hzi	A A B O	C O	D ()	New D.O. (mg/L)	8.5	RDII	Mortality Counts: TE
	3/23/17		GD	HO	Temp. (°C)	22.8	32A	PM Change RB PM Feed: RB
		# of	Mortalities	-1	Old D.O. (mg/L)	6.5		AM Change: Jok WQ: Jac
4	2hilly	A O B O	c 6	DO	New D.O. (mg/L)	8.1	RAIT	Mortality Counts: A
	3/24/17	DFO		нO	Temp. (°C)	23.5	32A	PM Change: UL PM Feed: UL
		# of	Mortalities	<u> </u>	Old D.O. (mg/L)	6.6	201.	AM Change: VAL WQ: AL
5	3/25/17	A O B D	C O	D 6	New D.O. (mg/L)	8.1	ROIN	Mortality Counts: JAC
	510517		GÖ	H	Temp. (°C)	22.3	32A	PM Change: JA PM Feed JA-
		# of	Mortalities		Old D.O. (mg/L)	6.7	RDA	AM Change:
6	3/26/17	A O B O	C D	D D	New D.O. (mg/L)	7.7	RDIZ	Mortality Counts: 🖌
	· · ·		GO	н О	Temp. (°C)	231	32A	PM Change: He PM Feed: HR
			Mortalities		Old D.O. (mg/L)	7.6	RDIZ	AM Change: JS WQ: JS
7	2		CO	D 0	New D.O. (mg/L)	7.8		
	3 27/17		G O	H O	Temp. (°C)	22.2	32A	PM Change: JS PM Feed: JS
			Mortalities	V	Old D.O. (mg/L)	6.4	RDIO	AM Change: T WQ: T
8	2/24	O BO		D	New D.O. (mg/L)	7.8	RDID	Mortality Counts:
	-1/48/17	OFO	GO	H D	Temp. (°C)	23.4	32A	PM Change: RB PM Feed: RB
			Mortalițies	· · · ·	Old D.O. (mg/L)	53		AM Change: 573 WQ: 577
9	, i		C Û	P O	New D.O. (mg/L)	6.3	RDOS	Mortality Counts: 5-72
	3/24/12		G ()	н О	Temp. (°C)	22,5	324	PM Change: TF PM Feed: TF
		<u>V</u>	Alive	· · · · · ·	pH	7.32	PH 19	WQ: TF
10	3/30/17	B 10	C G	°₿	D.O. (mg/L)	7.1	RDII	ر مربا Termination Counts:
	120111	10 59	GG	нq	Conductivity (µS/cm)	428	E(09	Termination Time: 12.35
			Ť		Alkalinity (mg/L)		PH1524	
					Hardness (mg/L)	131	DT 30	
					Ammonia (mg/L)	41.00	DR 3800	
					Temp. (°C)	23.0	32 A	

Hyalella azteca Weight Data Sheets

Client:	Condor Earth: Stock	ton Stormwa	ter Project #:	27085	Balance ID: <u>BALOU</u>
Sample ID:	1617-DW29-CR	-46RPP-LE	Tare Wt Date:	3121/17	Sign-Off: Jrn
Test ID #:	71988		Final Wt Date:	4/3/17	Sign-Off: 44
P		·····			
Pan	Concentration Replicate	Initial Wei (mg)	ght. Final Weight. (mg)	# organisms	Ave Weight (mg)
1	Control A	70.61	72.98	10	0.237
2	Sediment B	1	62.16	9	5.240
3	C	6.6.78	69-28	10	0150
4	E	61.42	63.95	10	0,253
5	E	56.23	58,76	10	2.253
6	F	65.30	67.21	10	0,191
7	0	70.52	72.88	10	0.736
8	H	68,40	70.69	٩	0,254
17	100% A	56.35	57.75	8	0.175
18	LD E	67.29	69.45	10	0.210
19	0	69.48	71.47	g	0,221
20	E	69.16	70.52	8	0.170
21	E	70.64	72.55	10	0,191
22	F	67.11	68,62	9	0,169
23	C	46.17	66.70	6	0.0896 Anofis 117
24	ŀ	62.30	63.85	9	0.12
QA		70,96	71.02		

Hyalella azteca Weight Data Sheets

Client:	Condor Earth: Stockton Stormwater	Test Init Date:	3/20/17	Balance ID: Bal 04
Sample ID:	ТО	Tare Wt Date:	3/19/17	Sign-Off:
Test ID:	71987-71988	Final Wt Date:	3 22 17	Sign-Off: JS
Project #:	27085			

Pan	Concentration Replicate	Initial Weight. (mg)	Final Weight. (mg)	# Organisms	Ave Weight (mg)
1	T0 A	61.78	62.49	10	0.071
2	В	62.54	63.26	10	0.072
3	С	61.98	62,85	10	0.087
4	D	67.06	67.81	10	0.075
5	E	67.33	68,09	10	0.076
6	F	69.25	70.00	10	0.075
7	G	66.47	67.18	10	0.071
8	Н	62.86	63.63	10	0.077
QA		64.42	64.45		

BALOY

x = 0.076

Sediment Toxicity Lab Report June 1, 2017 at CR-46R Dry Weather Event

Micheline Kipf Condor Earth Technologies, Inc. 188 Frank West Circle, Suite I Stockton, CA 95206 July 3, 2017

Dear Micheline:

I have enclosed a copy of our report "An Evaluation of the Toxicity of a City of Stockton Stormwater Program Sediment Sample" for the sample that was collected June 1, 2017. The results of this testing are summarized below:

Summary of Stockton Stormwater Program sediment effects on Hyalella azteca.							
Sample Station	Toxicity Present Rel	ative to Lab Control?					
Sample Station	Survival	Growth					
CR-46RPP	Yes	No					

If you have any questions regarding the performance and interpretation of this testing, please contact my colleague Michael McElroy or myself at (707) 207-7760.

Sincerely,

Stephen L. Clark Vice President/Special Projects Director

Pacific EcoRisk is accredited in accordance with NELAP (ORELAP ID 4043). Pacific EcoRisk certifies that the test results reported herein conform to the most current NELAP requirements for parameters for which accreditation is required and available. Any exceptions to NELAP requirements are noted, where applicable, in the body of the report. This report shall not be reproduced, except in full, without the written consent of Pacific EcoRisk. This testing was performed under Lab Order 27494.

An Evaluation of the Toxicity of City of a Stockton Stormwater Program Sediment Sample

Sample collected June 1, 2017

Prepared For:

Condor Earth Technologies, Inc. 188 Frank West Circle, Suite I Stockton, CA 95206

Prepared By:

Pacific EcoRisk 2250 Cordelia Rd. Fairfield, CA 94534 (707) 207-7760

July 2017

An Evaluation of the Toxicity of a City of Stockton Stormwater Program Sediment Sample

Sample collected June 1, 2017

Table of Contents

	Page
1. INTRODUCTION	1
2. SEDIMENT TOXICITY TEST PROCEDURES	1
2.1 Receipt and Handling of the Sediment Samples	1
2.2 Solid-Phase Sediment Toxicity Testing with Hyalella azteca	
3. RESULTS	
4. SUMMARY AND CONCLUSIONS	3
4.1 QA/QC Summary	3

Appendices

- Appendix A Chain-of-Custody Record for the Collection and Delivery of the Stockton Stormwater Program Sediment Sample
- Appendix BTest Data and Summary of Statistics for the Evaluation of the Toxicity of
Stockton Stormwater Program Sediment Sample to Hyalella azteca

1. INTRODUCTION

In compliance with the City of Stockton Stormwater Program NPDES permit monitoring requirements, Condor Earth Technologies, Inc., has contracted Pacific EcoRisk (PER) to perform evaluations of the toxicity of selected ambient water and sediment samples. The current testing event was designed to meet the sediment monitoring requirements using a sediment sample that was collected on June 1, 2017. This evaluation consisted of performing the US EPA 10-day survival and growth test with the amphipod *Hyalella azteca*. This report describes the performance and results of this testing.

2. SEDIMENT TOXICITY TEST PROCEDURES

This testing followed the guidelines established by the EPA manual "Methods for Measuring the Toxicity and Bioaccumulation of Sediment-associated Contaminants with Freshwater Invertebrates, Second Edition" (EPA/600/R-99/064).

2.1 Receipt and Handling of the Sediment Samples

On June 1, a sediment sample was collected into an appropriately cleaned sample container. This sample was transported on ice and under chain-of-custody, to the PER laboratory in Fairfield, CA (Table 1). The sample was then stored at $\leq 6^{\circ}$ C until being used to initiate toxicity test within 14 days of collection. The chain-of-custody record for the collection and delivery of the sample is presented in Appendix A.

Table 1. Sampling station and date of sediment collection for theStockton Stormwater Program monitoring.								
Sample Station	Sample Station Date Collected Date Received							
CR-46RPP	6/1/17	6/2/17						

2.2 Solid-Phase Sediment Toxicity Testing with Hyalella azteca

The sediment toxicity test with *H. azteca* consists of exposing the amphipods to the sediment for 10 days, after which effects on survival and growth are evaluated. The specific procedures used in this testing are described below.

The *H. azteca* used in this testing were obtained from a commercial supplier (Chesapeake Cultures Inc, Hayes, VA). Upon receipt at the laboratory, the amphipods were maintained in tanks containing Lab Water Control medium at 23°C, and were fed a commercial Yeast-Cerophyll[®]-Trout chow (YCT) food amended with freeze-dried *Spirulina*.

4/15

The Control treatment sediment for this testing consisted of a composite of reference site sediments that have been maintained under culture at the PER lab for >3 months. The sediment sample was tested at the 100% concentration only. There were eight replicates for each test treatment, each replicate container consisting of a 300-mL tall-form glass beaker with a 3-cm ribbon of 540 μ m mesh NITEX attached to the top of the beaker with silicone sealant. Each sediment sample was homogenized prior to loading of sediment into the test replicates. For each sediment, approximately 100 mL of sediment was then loaded into each of the test replicate containers. Each test replicate was then carefully filled with clean Lab Water Control medium (Standard Artificial Medium [SAM-5S] water [Borgmann 1996]). The test replicates with sediments and clean overlying water were established ~24 hrs prior to the introduction of the amphipods, and were placed in a temperature-controlled room at 23°C during this pre-test period.

After this initial 24 hr period, the overlying water in each replicate was flushed with one volume (approximately 150 mL) of fresh overlying water. For each test treatment, a small aliquot of the renewed overlying water was then collected from each of the eight replicates and composited for measurement of "initial" water quality characteristics (pH, dissolved oxygen [D.O.], conductivity, alkalinity, hardness, and total ammonia). The testing was then initiated with the random allocation of ten 10 day-old amphipods into each replicate, followed by the addition of 1.0 mL of *Spirulina*-amended YCT food. The test replicates were then placed in a temperature-controlled room at 23°C. At the time of test initiation, eight replicates of 10 randomly-selected organisms were collected, dried, and weighed (described below) to determine the mean dry weight of the test organisms at test initiation (T_0).

Each day, for the following nine days, each test replicate was examined and any dead amphipods were removed via pipette and the mortality recorded. A small aliquot of the overlying water in each of the eight replicates for each test treatment was then collected and composited as before for measurement of "old" D.O., after which each replicate was flushed with one volume of fresh water. Another small aliquot of the overlying water in each of the eight replicates was then collected and composited as before for measurement of "new" D.O., after which each replicate was fed 1.0 mL of *Spirulina*-amended YCT.

After 10 days exposure, testing was terminated. An aliquot of overlying water was collected from each replicate and composited for analysis of the "final" water quality characteristics. The sediments in each replicate container were then carefully sorted and sieved and the number of surviving amphipods determined. The surviving organisms were euthanized in methanol, rinsed in de-ionized water, and transferred to small pre-tared weighing pans, which were placed into a drying oven at 100°C. After drying for ~24 hrs, the pans were transferred to a desiccator to cool, and then weighed to the nearest 0.01 mg to determine the mean dry weight per surviving organism for each replicate. The resulting survival and growth (mean dry weight) data were then analyzed to evaluate any impairment due to the sediments; all statistical analyses were performed using the CETIS[®] statistical software (TidePool Scientific, McKinleyville, CA).

5/15

3. RESULTS

Test results are summarized in Table 2. There was a significant reduction in survival in the CR-46RPP sediment sample. There was no significant reduction in growth in the sediment sample. The test data and summary of statistical analyses for this testing are presented in Appendix B.

Table 2. I	Table 2. Data summary for the Stockton Stormwater Program sediment samples.									
Test Treatment	% Survival	% Reduction	Toxic? (Y/N)	Mean dry weight (mg)	% Reduction	Toxic? (Y/N)				
Control	100	N/A	N/A	0.204	N/A	N/A				
CR-46RPP	48.8*	51.2%	Y	0.188	8.1%	Ν				

* The response at this test treatment was significantly less than the Control sediment response (at p<0.05).

4. SUMMARY AND CONCLUSIONS

The results of this testing are summarized below. There was a significant reduction in survival in the CR-46RPP sediment sample. There was <u>no</u> significant reduction in growth in the sediment sample.

Summary of Stockton Stormwater Program sediment effects on Hyalella azteca.							
Sample Station	Toxicity Present Relative to Lab Control?						
Sample Station	Survival Growth						
CR-46RPP	YES	No					

4.1 QA/QC Summary

Test Conditions – All test conditions (pH, D.O., temperature, etc.) were within acceptable limits. All analyses were performed according to laboratory Standard Operating Procedures.

Negative Control – The biological responses for the test organisms at the Lab Control treatment were within acceptable limits.

Appendix A

Chain-of-Custody Record for the Collection and Delivery of the Stockton Stormwater Program Sediment Sample

						1777				С	on	do	or F	Ear	th	Τe	echnolo	ogies	Inc
Samp	le Result	s TAT: 🔤 Rush 🗸	Standard				×				/21663 Bria		188	Frank West	Circle, Su		2941 Sunrise Blvd, Suite I	50 _ 1739	Ashby Road, Suite B
<u>SHIP</u>	PED TC	<u>):</u>				CC	OND	OR	20	9.532.0361 9.532.0773			209	9.234.0518 9.234.0538 f		L	Rancho Cordova, CA 957 916.783.2060 916.783.2464 fax	209.	ced, CA 95348 388.9601 388.1778 fax
Pacif	ic EcoF	Risk								<u>SEND</u>	RESU		<u>:0:</u>	Micho	lino F)oyle ł	linf		
2250	Cordel	ia Road									NAN E-M						rth.com		
Fairfi	eld, CA	94534 (707) 207-	7760								E-M				-		earth.com		
													PLE	ASEE	AX/EN	/AIL R	ESULTS TO ADE	RESS MAR	RKED ABOVE
PROJ	ECTNA	ME/LOCATION: C	OS Urban Disch	narg	e	EDF RE	SULT	'S RE	QUIRI	ED	ES 🗸	NO			SIT	E GLC	BAL ID:	NCLOS MIN	
PROJ	ECT NO	^{.:} 6066J-04-01				ſ			sa*									8	
SAME	PLED BY	Y: (Signature) LM/	KD			ss (g	azteca*		size								
				Matrix	# of containers	Preservatives (see below)	ANALYSIS METHOD:	Field Filtered	lla a										
			Sample ID	Ma	of con	reser see b	NAL	ield F	Hyalella	TOC	Grain	-							
Date		Sample Site Name	(if different)	-	**	₽ ₽	4 <	E	Í		1		(con		C.		REMARKS		LAB ID#
6/1/17	1445	1617-DW30-	CR-46RPP	S		1		N	\checkmark	\checkmark	\checkmark	_	BAC		Γ	IPIÈ	*chronic freshwater (EP/	\$/600/4-91/003)	
												-	1	COMI UN A		E	Hyalella azteca surv	ival & growth	
													mpy	1					
																	Conduct additional	pyrethroids	
																	analysis if toxicity i	s observed.	1.12
																	Sub sample	es to be	
				-			-												
			· · · · · · · · · · · · · · · · · · ·	-													collected for	Callest	
				_															
																	TOC RL=	1 mg/L	
		Signature)		Dat	: 2-2	017	Time:	095	6	Receiv	ved By: C	Signatur	Sow	4150	Li.	Pe	R	Date:	Time: 095(p
Relinque Matrix	ished By: (Signature))		-					Receiv	/ed By: (Signatur	e)						
		WWW Waste Water	Hazardous Waste (Wat		S	Soil/Solid	SW		orm Wate		Grou	nd Water		eservative			AOH 4 Na2S2O3 5	HNO.	HISOI Cother
Dn	nking Water		Original – Send	,			C		llow-								Pink – Log E		011ct

Appendix B

Test Data and Summary of Statistics for the Evaluation of the Toxicity of the Stockton Stormwater Program Sediment Sample to *Hyalella azteca*

CETIS Summary Report

Report Date: Test Code:

16 Jun-17 09:25 (p 1 of 1) CESS_0617HA | 13-1288-3413

							Te	st Code.	0200_0		5-1200-541
Hyalella 10-d Sur	vival and Gr	owth Se	diment Test							Pacif	ic EcoRisk
	1037-8178			urvival-Growth					senia Jarami	llo	
Start Date: 04	Jun-17 12:00) P	rotocol: El	PA/600/R-99/	064 (2000)		Dil	uent: Not	Applicable		
Ending Date: 14	Jun-17 13:20) s	pecies: H	yalella azteca			Br	ine: Not	Applicable		
Duration: 100	d 1h	S	ource: C	hesapeake Ci	ultures, Inc.		Ag	e: 10			
Sample Code	Sample II	o s	ample Date	Receipt	t Date	Sample A	ge Cli	ent Name	Pi	roject	
CESS_0617HA	03-1664-0	605 0	4 Jun-17 12:0	00 04 Jun-	17 12:00	n/a (22.6 °	C) Co	ndor Earth Te	echnologi 27	'494	
CR-46RPP	02-3879-7	097 0	1 Jun-17 14:4	15 02 Jun-	17 09:56	69h					
Sample Code	Material 1	Гуре	Sa	ample Sourc	e	St	ation Loca	ation	Lat/Long		
CESS_0617HA	Control Se	ediment	C	ondor Earth T	echnologies	s LA	ABQA				
CR-46RPP	Sediment		C	ondor Earth T	echnologies	s Cl	R-46RPP				
Single Compariso	on Summary	1									
Analysis ID End	dpoint		Compar	ison Method			P-Value		son Result		
19-0868-7986 Me		ht-mg	Equal Va	ariance t Two-	Sample Te	st	0.1862	CR-46RF	P passed m	ean dry we	ight-mg
12-5408-5685 Sur	vival Rate		Wilcoxor	n Rank Sum T	wo-Sample	Test	7.8E-05	CR-46RF	P failed surv	vival rate	
Mean Dry Weight	-mg Summa	ıry									
Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
CESS_0617HA	CS	8	0.204	0.186	0.223	0.182	0.244	0.00789	0.0223	10.93%	0.00%
CR-46RPP		8	0.188	0.15	0.226	0.122	0.257	0.016	0.0454	24.17%	8.07%
Survival Rate Sur	nmary										
Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
CESS_0617HA	CS	8	1.000	1.000	1.000	1.000	1.000	0.000	0.000	0.00%	0.00%
CR-46RPP		8	0.488	0.336	0.639	0.300	0.800	0.064	0.181	37.08%	51.25%
Mean Dry Weight	-mg Detail										
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8		
CESS_0617HA	CS	0.189	0.182	0.197	0.188	0.19	0.244	0.218	0.226		
CR-46RPP		0.174	0.177	0.257	0.222	0.205	0.122	0.133	0.212		
Survival Rate Det	ail										
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8		
CESS_0617HA	CS	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
CR-46RPP		0.500	0.300	0.300	0.500	0.400	0.800	0.700	0.400		
Survival Rate Bin	omials										
					Den 4	Den C	Den 6	Rep 7	Rep 8		
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	iveh i	Kep o		
	Code CS	Rep 1 10/10	Rep 2 10/10	10/10	10/10	10/10	10/10	10/10	10/10		

Analyst: 1 QA: R6

CETIS Analyt	ical Rep	ort						ort Date: Code:		Jun-17 09:2 0617HA 13	
Hyalella 10-d Sur	vival and G	irowth Sed	iment Test							Pacif	ic EcoRis
	2-5408-5685 6 Jun-17 9:2		•	rvival Rate nparametric	-Two Sample	e		S Version: ial Results:	CETISv1 Yes	.9.2	
Data Transform		Alt Hyp			-		Comparis	on Result			PMSD
Angular (Corrected	d)	C > T					CR-46RP	P failed surv	ival rate	/	7.45%
Wilcoxon Rank S	um Two-Sa	ample Test									
Sample I vs	Sample	11	Test Stat	Critical	Ties DF	P-Type	P-Value	Decision(a:5%)		
Control Sed	CR-46RF		36	n/a		Exact	7.8E-05	Significant	· · · ·		
ANOVA Table						· · · · · · · · · · · · · · · · · · ·					
Source	Sum Squ	Jares	Mean Sq	Jare	DF	F Stat	P-Value	Decision(a:5%)		
Between	1.62455		1.62455		1	91	1.7E-07	Significant			
Error	0.249895	5	0.017849	5	14						
Total	1.87444				15						
Distributional Tes	sts						<u></u>				
Attribute	Test				Test Stat	Critical	P-Value	Decision(a:1%)		
Variances	Variance	Ratio F Tes	st		1.41E+14	8.89	<1.0E-37	Unequal V			
Distribution	Shapiro-V	Nilk W Nori	nality Test		0.8	0.841	0.0027	Non-Norm	al Distribut	ion	
Survival Rate Sur	mmary										
Sample	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
CESS_0617HA	CS	8	1.000	1.000	1.000	1.000	1.000	1.000	0.000	0.00%	0.00%
CR-46RPP		8	0.488	0.336	0.639	0.450	0.300	0.800	0.064	37.08%	51.25%
Angular (Correcte	ed) Transfo	rmed Sum	mary								
Sample	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
CESS_0617HA	CS	8	1.41	1.41	1.41	1.41	1.41	1.41	0	0.00%	0.00%
CR-46RPP		8	0.775	0.617	0.933	0.735	0.58	1.11	0.0668	24.39%	45.13%
Graphics											
1.0 (***						0.35					
	٥					0.30				•	
0.9						0.25					
8.0						0.20		1		• >	
0.7								1			
0.6					Centered	6 0.15 F					
۵.5 چ					3	-					
province Pro			1119			0.05					
5 0.4						0.00			v v o	·	
0.3						-0.05					
						-0.10	1	· !			
0.2						-0.15					
0.1 -						-0.20	0				
0.0						-0.25	-1.5 -1.0	-0.5 0.0	0.5 1	.0 1.5	2.0
	CE55_0617HA		CR-46R/	P							

Analyst: 1 QA:

							Test	Code:	CESS_0	0617HA 13	-1288-3413
Hyalella 10-d Surv	vival and Gr	owth Sedir	nent Test				· · · · ·			Pacif	ic EcoRisk
	-0868-7986 Jun-17 9:25		•	an Dry Weig ametric-Two	•			S Version: ial Results		.9.2	
Data Transform		Alt Hyp					Comparis	on Result			PMSD
Untransformed		C > T					CR-46RPI	^o passed m	nean dry wei	ght-mg	15.42%
Equal Variance t 1	wo-Sample	e Test									
Sample I vs	Sample II		Test Stat	Critical	MSD DF	P-Type	P-Value	Decision	(a:5%)		
Control Sed	CR-46RP	P	0.921	1.76	0.032 14	CDF	0.1862	Non-Sign	ificant Effect	t	
ANOVA Table											
Source	Sum Squ	ares	Mean Squ	are	DF	F Stat	P-Value	Decision	(α:5%)		
Between	0.0010859		0.0010859		1	0.849	0.3724		ificant Effect	t	
Error	0.0179049	9	0.0012789	}	14						
Total	0.0189907	7			15						
Distributional Tes	ts										
Attribute	Test				Test Stat	Critical	P-Value	Decision	(α:1%)		
Variances	Variance I	Ratio F Test			4.13	8.89	0.0810	Equal Va			
Distribution	Shapiro-W	vilk W Norm	ality Test		0.964	0.841	0.7417	Normal D	istribution		
Mean Dry Weight-	mg Summa	iry							<u> </u>		
Sample	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
CESS_0617HA	CS	8	0.204	0.186	0.223	0.194	0.182	0.244	0.00789	10.93%	0.00%
CR-46RPP		8	0.188	0.15	0.226	0.191	0.122	0.257	0.016	24.17%	8.07%
0 30 0 25]				0.07 0.06 0.05 0.04				0	к. -
0.0 Wear Do' Mean Do' Mean Do Do Do' Me	%	- 2 -		Reject Null	Centered	0.03 0.02 0.01 0.00 -0.01 -0.02 -0.03 -0.04 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05	-1.5 -1.0		0.5 14	0 15	2.0

Analyst: 1 QA: 16

Age: 10 102 Organism Log #: 10336 Project#: 27494 Client: Condor Earth: Stockton Stormwater Hyalella azteca Test ID#: 73187-88 **Chesapeake Cultures** Organism Supplier: Species: Ic 4/2/17 **Test Material** Water Quality Measurements Sign-off: Day Date Control Parameter Value Meter ID AM Change: 7.75 PH23 pН <u>_a</u>[# Live Organisms VQ: 0 D.O. (mg/L) TA 12 7-5 5 10 RDD9 6/4/17 nitiation Time: 432 506 5 10 Conductivity (µS/cm) ELON $(\Box$.DV Initiation Counts: Alkalinity (mg/L) 64 >H Confirmation Counts: Hardness (mg/L) 130.8 Ammonia (mg/L) PM Feed: T 21.00 6R3800 22.6 34F Temp. (°C) AM Change: TJ = WQ: TJ= RI) 10 Old D.O. (mg/L) 7.0 # of Mortalities Mortality Counts: 6/5/17 1 \mathcal{O} Ο New D.O. (mg/L) 8.1 RDIO Ó 0 PM Change: RB PM Feed:RB д ()35F Temp. (°C) 22.6 AM Change: MB WQ: NB Old D.O. (mg/L) 5.8 # of Mortalities RD11 Mortality Counts: 0 2 6/6/17 7.7 0 New D.O. (mg/L) \mathcal{O} ROII Ο PM Change: NB PM Feed: NB 0 υ 0 3SF 23.4 0 Temp. (°C) AM Change: MB WQ: MB Old D.O. (mg/L) 529 RDII # of Mortalities 10/7/17 0 3 ð Mortality Counts: 0 0 7.5 New D.O. (mg/L) MB RDII η PM Change PM Feed θ 0 0 23.2 35 F Temp. (°C) AM Change: WQ: Old D.O. (mg/L) RDII 6.6 # of Mortalities Mortality Counts: TF 6/8/17 4 Ó Ó Û 0 New D.O. (mg/L) 25 RDII PM Change: MB PM Feed: MF \mathcal{O} 35 F 0 0 22,4 \cap Temp. (°C) AM Change: WP: Old D.O. (mg/L) 4.6 RU09 # of Mortalities Mortality Counts: 5 7.7 ROOG 69917 ь 0 Ο 0 New D.O. (mg/L) 48A PM Change: / C PM Feed: U(0 ()()22.0 Temp. (°C) AM Change: NS WQ:NB 6.4 RDOJ Old D.O. (mg/L) # of Mortalities 6/10/17 Mortality Counts: 6 D RDUG 0 Ο D New D.O. (mg/L) 7.8 MB PM Change: NB PM Feed: NR 0 0 D 48A 5 Temp. (°C) 120 AM Change: RB WQ: 6.1 IRP17 Old D.O. (mg/L) # of Mortalities Mortality Counts: R& 7 Ò 7.7 RDIZ 6/11/17 Ő Ó New D.O. (mg/L) Γ PM Change: SH PM Feed: 0 0 \mathcal{D} 0 78.A 22.2 Temp. (°C) AM Change: Old D.O. (mg/L) 3.6 ROII # of Mortalities UĽ Mortality Counts: \mathcal{O} 8 \odot \oslash New D.O. (mg/L) U POIL О 1211 PM Changer M PM Feed: U 0 \mathcal{O} \mathcal{O} 22. YRA \sim Temp. (°C) AM Change:SB WQ:SB Old D.O. (mg/L) RUII 5.4 # of Mortalities Mortality Counts: 5B 0 9 C New D.O. (mg/L) 6/13/17 0 C 7.6 RDI PM Change: 0 C 0 22.2 48A \bigcirc PM Feed Temp. (°C) WQ: UL # Alive 735 Mh2 pН **Fermination Counts** 10 4.6 10 10 10 D.O. (mg/L) 10 ND1 DM 6/14/17 Termination Time: 10 Conductivity (µS/cm) 451 ECO'8 10 10 10 1320 Alkalinity (mg/L) 169 133 Hardness (mg/L) ×1.00 Ammonia (mg/L) 023800 2<u>2</u>. Temp. (°C) 48A

10-Day Hyalella azteca Sediment Toxicity Test Data

10-Day Hyalella azteca Sediment Toxicity Test Data

Client	Condor Earth: S	ockton Stormwate	r Project#	27494		Organism Log #:	10331	a	Age: 10 d.
Species:	Hyalel	la azteca	Test ID#	73187	_	Organism Supplier:		Chesapea	ke Cultures
_									
Day	Date	L		I aterial			ality Measure	1	Sign-off:
	<u> </u>		1617-DW3)-CR-46RP	Υ <u>Υ</u>	Parameter	Value	Meter ID	
		L	· · · · · · · · · · · · · · · · · · ·	Organisms		рН	7.58		AM Change: 1115
0	6/4/17	<u>^ 10</u>	<u>" 10</u>	C U	▷ (い)	D.O. (mg/L)	7,1	Roa	WQ: TA
		<u>е 10</u>	1º 10	G (O	H [O	Conductivity (µS/cm)	122	ECOY	Initiation Time: 12-00
						Alkalinity (mg/L)	62		Initiation Counts: SH Confirmation Counts;
						Hardness (mg/L)	133.2		11
						Ammonia (mg/L)	21.00		PM Feed: TK
						Temp. (°C)	22.6	34F	
			# of M	ortalities	10 -	Old D.O. (mg/L)	6.6	RDIU	AM Change: TF WQ: TF
1	615/17	0	0	0	0	New D.O. (mg/L)	7.9	RDIU	Mortality Counts: $\top / =$
	L	е <u></u>	r O	° O	н	Temp. (°C)	22.6	35F-	PM Change: RB PM Feed: RB
	,		# of M	ortalities	12	Old D.O. (mg/L)	5.4	PPII	AM Change: B WQ: NB
2	6/10/17	Λ D	вО	CO	D	New D.O. (mg/L)	7,9	RDII	Mortality Counts:
	/ */1 `	E フ	F J	G D	H O	Temp. (°C)	23.4	35F	PM Change: NB PM Feed: NB
	10/2/17		# of Me	ortalities		Old D.O. (mg/L)	5.3	RDII	AM Change: MB WQ: MB
3	19717	^ 0	B 0	c 0	0	New D.O. (mg/L)	7.0	RDII	Mortality Counts: MB
		e ()	ь. О	G D	н ()	Temp. (°C)	23.2	35 F	PM Change PM Feed
			# of Mo	ortalities		Old D.O. (mg/L)	5.4		AM Change: TF WQ: TF
4	618/17	л О	В	с О	DO	New D.O. (mg/L)	7.3	RP//	Mortality Counts: TF
	0, 011 /	e O	F O	^G 0	" 0	Temp. (°C)	22.4		PM Change: MB PM Feeding
			# of Mo	ortalities		Old D.O. (mg/L)	6.0	ROUS	AM Change; WQ: Jul
5	Waliz	$^{\Lambda} \mathcal{O}$	BO	$^{\circ}$ O	DO	New D.O. (mg/L)	7.4		Mortality Counts:
		e ()	FO	GO		Temp. (°C)	22.0	48A	PM Change: Yke PM Feed: Yke
			# of Mo	ortalities	·	Old D.O. (mg/L)	6.8	2209	AM Change: B WQ: NB
6	6/10/17	۸ D	BD	c D	D D	New D.O. (mg/L)	8,0	RR09	Mortality Counts: MB
		e V	F D	G D	н ()	Temp. (°C)	22.0	48A	PM Change: PM Feed:
			# of Mo	ortalities	×	Old D.O. (mg/L)	5.6	RPIZ	AM Change: RB WQ: CB
7	6/11/17	A O	вО	с <i>О</i>	D O	New D.O. (mg/L)	8.1	RDIZ	Mortality Counts: RB
	92 27	E Ø	F O	G Ø	II O	Temp. (°C)	22.2		PM Changer H PM Feed:
		-	# of Mo	ortalities		Old D.O. (mg/L)	3.8	RDII	AM Change: WQ: 4/
8	1 6	A O	B O	° 0	D O	New D.O. (mg/L)	8.6		Mortality Counts:
	6/12/17	EO	F D	G	Н	Temp. (°C)	22.2		PM Change: PM Feed:
			# of Mc	ortalities		Old D.O. (mg/L)	5-2	RIDII	AM Changes B WQ:SB
9	6/12/17	A C	B O	° 🗸	D O	New D.O. (mg/L)	7-8		Mortality Counts: 5B
	41311/	E 🔿	F C	G C	" C	Temp. (°C)	27.7		PM Change: U PM Feed: U
			# A	live		pH	7:39		WQ: We
10		<u>л</u> 5	в 3	° 3	^D 5	D.O. (mg/L)	4.3	RDII	Tormination Country
	6)14/17	E H	1: 8	⁶ 7	" ч	Conductivity (µS/cm)	459	1= 7 7 1	Girling om 1340 DM
						Alkalinity (mg/L)	×74		
						Hardness (mg/L)	V159		
						Ammonia (mg/L)	21.00	$D_{P > Q < C}$	
							22.2	<u>DR 3800</u> 48 A	
						Temp. (°C)	001.0	IDA	

Client:	Condor Earth: Stockt	on Stormwater	Project #:	27494	Balance ID: <u>04</u>
Sample ID:	CR-46RI	PP	Tare Wt Date:	6-917	Sign-Off: <u>44</u>
Test ID #:	73187		Final Wt Date:	6/15/17	Sign-Off: <u>RB</u>
Pan	Concentration	Initial Weight.	Final Weight.	# organisms	Ave Weight
	Replicate	(mg)	(mg)		(mg)
1	Control A	60.59	62.48	10 -5 UNHA	0,189
2	Sediment B	60.88	62.70	10 3 UMIA	0.182
3	С	59.77	61.74	10 5 GHIA	0.197
4	D	57.65	59.53	10 5 UMIA	0.188
5	E	58.30	60.70	10	0-190
6	F	60.66	63.10	10	0,244
7	G	60.84	63.02	10	0,218
8	Н	59.65	61.91	10	0-226
9	CR-46RPP A	60.84	61.71	5	0.174
10	В	60.26	60.79	3	0.1767
11	С	54.89	55.66	3	0-2567
12	D	56.75	57.86	5	0.222
13	E	56.50	57.32	ч	0,205
14	F	57.57	58.55	8	0.1225
15	G	60-62	61.55	7	0.1329
16	Н	56.95	57.80	Ч	0.2125
QA1		Baloy 60.3	, 60.32		

Hyalella azteca Weight Data Sheets

Appendix E 2016-2017 Water Column Toxicity Results

This page intentionally left blank

Water Column Toxicity Lab Report October 14, 2016 at CR-46R During Storm Event

Micheline Kipf Condor Earth Technologies, Inc. 188 Frank West Circle, Suite I Stockton, CA 95206 November 17, 2016

Micheline:

I have enclosed our report "An Evaluation of the Chronic Toxicity of City of Stockton Stormwater Program Ambient Water Samples" for testing performed on the ambient water samples collected on October 14, 2016. The results of this testing are summarized below:

Toxicity summary for Stockton Stormwater Program ambient water sample.								
	Toxi	Toxicity relative to the Lab Control treatment?						
Sample ID	Ceriod	aphnia dubia	Fathead Minnow					
	Survival	Reproduction	Survival	Growth				
CR-46R	no	YES	no	no				
FD	no	YES	no	no				

Chronic Toxicity of Urban Ambient Waters to Ceriodaphnia dubia

There were no significant reductions in *C. dubia* survival in any of the ambient water samples. There were significant reductions in reproduction in the CR-46R and FD samples.

Chronic Toxicity of Urban Ambient Waters to Fathead Minnows

There were no significant reductions in fathead minnow survival or growth in any of the ambient water samples.

If you have any questions regarding the performance and interpretation of these tests, please contact my colleague Stephen Clark or myself at (707) 207-7760.

Sincerely,

Michael McElroy Senior Aquatic Ecotoxicologist

Pacific EcoRisk is accredited in accordance with NELAP (ORELAP ID 4043). Pacific EcoRisk certifies that the test results reported herein conform to the most current NELAP requirements for parameters for which accreditation is required and available. Any exceptions to NELAP requirements are noted, where applicable, in the body of the report. This report shall not be reproduced, except in full, without the written consent of Pacific EcoRisk. This testing was performed under Lab Order 26442.

An Evaluation of the Chronic Toxicity of City of Stockton Stormwater Program Ambient Water Samples

Samples collected October 14, 2016

Prepared For

Condor Earth Technologies, Inc. 188 Frank West Circle, Suite I Stockton, CA 95206

Prepared By

Pacific EcoRisk 2250 Cordelia Rd. Fairfield, CA 94534 (707) 207-7760

November 2016

Page

An Evaluation of the Chronic Toxicity of City of Stockton Stormwater Program Ambient Water Samples

Samples collected October 14, 2016

Table of Contents

INTRODUCTION	.1
CHRONIC TOXICITY TEST PROCEDURES	
2.1 Receipt and Handling of the Ambient Water Samples	.1
2.2 Survival and Reproduction Toxicity Testing with Ceriodaphnia dubia	.1
2.3 Survival and Growth Toxicity Testing with Larval Fathead Minnows	.2
RESULTS	.4
3.1 Effects of Stockton Stormwater Samples on Ceriodaphnia dubia	.4
3.2 Effects of Stockton Stormwater Samples on Fathead Minnows	.4
SUMMARY AND CONCLUSIONS	.5
4.1 QA/QC Summary	.5

Appendices

Appendix A	Chain-of-Custody Record for the Collection and Delivery of the Stockton
	Stormwater Program Ambient Water Samples

- Appendix BTest Data and Summary of Statistics for the Evaluation of the Chronic Toxicity
of Stockton Stormwater Program Ambient Water Samples to Ceriodaphnia
dubia
- Appendix CTest Data and Summary of Statistics for the Evaluation of the Chronic Toxicity
of Stockton Stormwater Program Ambient Water Samples to Fathead Minnows

i

1. INTRODUCTION

In compliance with City of Stockton Stormwater Program NPDES permit monitoring requirements, Condor Earth Technologies, Inc., has contracted Pacific EcoRisk (PER) to evaluate the chronic toxicity of selected ambient water samples. These evaluations consist of performing the following US EPA freshwater chronic toxicity tests:

• 3-brood (6-8 day) survival and reproduction test with the crustacean Ceriodaphnia dubia; and

• 7-day survival and growth test with larval fathead minnows (Pimephales promelas).

The current evaluation was performed using ambient water samples collected on October 14, 2016. This report describes the performance and results of these tests.

2. CHRONIC TOXICITY TEST PROCEDURES

This testing followed the guidelines established by the EPA manual "Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms, Fourth Edition" (EPA-821-R-02-013).

2.1 Receipt and Handling of the Ambient Water Sample

On October 14, an ambient water sample was collected into appropriately cleaned sample containers; a field duplicate sample was collected at this same time. The samples were transported and delivered the following day, on ice and under chain-of-custody, to the PER laboratory in Fairfield, CA. Upon receipt at the testing laboratory, an aliquot of each sample was collected for analysis of initial water quality characteristics (Table 1). The samples were then stored at $\leq 6^{\circ}$ C, except when being used to prepare test solutions. The chain-of-custody record for the collection and delivery of these samples is presented in Appendix A.

Table 1. In	Cable 1. Initial water quality characteristics of the Stockton Stormwater Program ambient water samples.												
Sample Receipt Date	Sample ID	Temp. (°C)	рН	D.O. (mg/L)	Alkalinity (mg/L)	Hardness (mg/L)	Conductivity (µS/cm)	Total Ammonia (mg/L N)					
10/15/16	CR-46R	1.6	7.69	9.5	58	133	233	1.84					
10/15/16	FD	6.2*	7.62	9.2	50	130	213	1.58					

* Sample was shipped on ice and arrived at PER <24 hrs from sample collection.

2.2 Survival and Reproduction Toxicity Testing with Ceriodaphnia dubia

The chronic toxicity test with *C. dubia* consists of exposing neonate organisms to the ambient water for the length of time it takes for the Control treatment females to produce three broods (typically 6-8 days), after which effects on survival and reproduction are evaluated. The specific procedures used in this test are described below.

The Lab Water Control medium for this testing consisted of synthetic reconstituted freshwater (SRW adjusted to EPA moderately-hard hardness), prepared by addition of reagent-grade chemicals to Type 1 lab water. The ambient water sample and field duplicate were tested at the 100% concentration only. For each test treatment, a 200 mL aliquot of test solution was amended with the alga *S. capricornutum* and Yeast-Cerophyll[®]-Trout Food (YCT) to provide food for the test organisms. "New" water quality characteristics (pH, D.O., and conductivity) were measured on these food-amended test solutions prior to use in this testing.

There were 10 replicates for each test treatment, each replicate consisting of 15 mL of test solution in a 30-mL plastic cup. The tests were initiated by allocating one neonate (<24 hours old, and within 8-hours of age) *C. dubia*, obtained from in-house laboratory cultures, into each replicate cup. The test replicate cups were placed into a temperature-controlled room at 25°C, under cool white fluorescent lighting on a 16L:8D photoperiod.

Each day of the test, fresh test solutions were prepared and characterized as before, and a new set of replicate cups were prepared. The test replicates containing the test organisms were examined, with surviving organisms being transferred to the corresponding new replicate cup. The contents of each of the remaining old replicate cups was carefully examined and the number of neonate offspring produced by each parent organism was determined, after which the "old" water quality characteristics (pH, D.O., and conductivity) were measured for the old test solution from one randomly-selected replicate at each treatment.

After it was determined that $\geq 60\%$ of the *C. dubia* in the Lab Water Control treatment had produced their third brood of offspring, the tests were terminated. The resulting survival and reproduction data were analyzed to evaluate any impairment caused by the ambient waters. All statistical analyses were performed using the CETIS statistical software (TidePool Scientific, McKinleyville, CA).

2.3 Survival and Growth Toxicity Testing with Larval Fathead Minnows

The chronic toxicity test with fathead minnows consists of exposing larval fish to the ambient water for seven days, after which effects on survival and growth are evaluated. The specific procedures used in this test are described below.

Pathogen-related mortality (PRM) in chronic fathead minnow toxicity tests of ambient or ponded waters is a common confounding problem that must be controlled in order to determine the toxicity of sample waters. The US EPA has recognized this problem, and has recommended a variety of potential modifications to the testing approach that can be implemented to minimize PRM interference. The approach used in this study, described below, has the advantage of minimizing the PRM interference without affecting the water sample matrix.

The larval fathead minnows used in this testing were obtained from a commercial supplier (Aquatox, Hot Springs, AR); upon receipt at the lab, the fish were held in aerated tanks containing Lab Water Control medium, and were fed brine shrimp nauplii *ad libitum* during this pre-test holding period.

The Lab Water Control medium for this testing consisted of EPA synthetic moderately-hard water. The ambient water samples were tested at the 100% concentration only. "New" water quality characteristics (pH, D.O., and conductivity) were measured on these test solutions prior to use in the tests.

There were 10 replicates for each test treatment, each replicate consisting of 20 mL of test solution in a 30-mL test replicate container. The tests were initiated by randomly allocating two larval fathead minnows (<48 hrs old) into each replicate. The replicate containers were then placed in a temperature-controlled room at 25°C, under fluorescent lighting on a 16L:8D photoperiod. The test fish were fed brine shrimp nauplii twice daily.

Each day of the tests, fresh test solutions were prepared and characterized as before. The test replicate containers were examined, with any dead animals, uneaten food, wastes, and other detritus being removed. The number of live fish in each replicate was determined and then approximately 80% of the old test solution in each beaker was carefully poured out and replaced with fresh test solution. "Old" water quality characteristics (pH, D.O., and conductivity) were measured on the old test solution that had been discarded from one randomly-selected replicate at each treatment.

After seven days exposure, the tests were terminated and the number of live fish in each replicate was recorded. The fish from each replicate were carefully euthanized in methanol, rinsed in deionized water, and transferred to a pre-dried and pre-tared weighing pan; replicates were paired to obtain five composite replicates for each test treatment. The fish were then dried at 100°C for \geq 24 hrs and re-weighed to determine the total dry weight of fish in each replicate; the total dry weight was then divided by the initial number of fish per composited replicate (n=4) to determine the "biomass value." The resulting survival and growth (biomass value) data were analyzed to evaluate any impairments caused by the ambient waters; all statistical analyses were performed using the CETIS[®] statistical software.

6/29

3. RESULTS

3.1 Effects of Stockton Stormwater Samples on Ceriodaphnia dubia

The results of these tests are summarized below in Table 2. There were no significant reductions in *C. dubia* survival in any of the ambient water samples. There were significant reductions in reproduction in the CR-46R and FD samples. The test data and summary of statistical analyses for this testing are presented in Appendix B.

Table 2. Effects of Sto	ockton stormwater sample on <i>Ce</i> and reproduction.	riodaphnia dubia survival
Treatment/Sample ID	Mean % Survival	Mean Reproduction (# neonates/female)
Lab Control	100	33.8
CR-46R	100	14.6*
FD	100	19.5*

* The response at this test treatment was significantly less than the Lab Water Control treatment response (p < 0.05).

3.2 Effects of Stockton Stormwater Samples on Fathead Minnows

The results of these tests are summarized below in Table 3. There were no significant reductions in survival or growth in any of the ambient water samples. The test data and summary of statistical analyses for this testing are presented in Appendix C.

Table 3. Effects of Stockton stormwater sample on fathead minnow survival and growth.										
Treatment/Sample ID	Mean % Survival	Mean Biomass Value (mg)								
Lab Control	95	0.32								
CR-46R	95	0.36								
FD	70	0.25								

4. SUMMARY AND CONCLUSIONS

Chronic Toxicity of Urban Ambient Waters to Ceriodaphnia dubia

There were no significant reductions in *C. dubia* survival in any of the ambient water samples. There were significant reductions in reproduction in the CR-46R and FD samples.

Chronic Toxicity of Urban Ambient Waters to Fathead Minnows

There were no significant reductions in fathead minnow survival or growth in any of the ambient water samples.

4.1 QA/QC Summary

Test Conditions – All test conditions (pH, D.O., temperature, etc.) were within acceptable limits for this testing. All test analyses were performed according to laboratory Standard Operating Procedures.

Negative Control –The biological responses at the Lab Control treatments were within acceptable limits.

8/29

Appendix A

Chain-of-Custody Record for the Collection and Delivery of the Stockton Stormwater Program Ambient Water Samples

CHAIN-OF-CUSTODY Sample Results TAT: Rush Standard 10 Day (discount)	169			Condor P.O. Box 3905/21 Sonora, CA 9537 209.532.0361	0 Stockton, CA 95206 209.234.0518	NC. 1739 Ashby Road, Suite B Merced, CA 95348 209388,5601
SHIPPED TO:			ONDOR	209.532.0773 (fa condor.sonora@c		209.388.1778 (fax) condor.merced@condorearth.com
Pacific Eco Risk (707)207-7760		<u>SE</u>	END RESULT			
Pacific Eco Risk (707)207-7760 2250 Cordelia Rd, Farfield CA 94534				: M Kipf	live kipf. Conder enth.cor	
		EDE DESU	JLTS REQUIRE	*****	(preferred) / OR FAX RESULTS TO AD	DRESS MARKED ABOVE
PROJECT NAME/LOCATION: Cos Unban Discharge						
PROJECT NO .: 60663 - 04-01	belov		// 2-			
SAMPLED BY: (Signature) Date Time Sample Site Name Sample ID (if different) If different)	# of containers Preservatives (see below)	ANALYSIS, METHOD: Field E.,	The second secon		REMARKS	LAB ID #
10/14/10/645 CR-46R 50	121		ĂĂ T		Chronic ceriodalMni	~
10/11/6 1930 FD 50		N	AA		toxicity	
					chronic Eithead min	ew l
					follow-up dilution s	erres
					as necessary (100%	martality
					lin 24 hrs)	I
					Chranic toxicity (Pu	lase I
					(targetel) TIE as no	resson
					Contact PM prior	
					marta ity / reprodu	chwi)
					This COC replaces inc	rrect
					(JC Nº 16613 previous	<u> </u>
					flelat	
L	e: 115/16	Time: 10:00	Received By: Received By:	(PER	Date: Time: 1.0/15/16 10:00
Relinquished By: (Signature)			Received By:	(orginature)		
Matrix DW Drinking Water Waste Water Mazardous Waste (Water)	Soil/Solid	Storm Wat	Groundw	vater Preserve 4ºC	ative BHCL NaOH Na ₂ S ₂ O ₃ SHNO ₃	H ₂ SO ₄ Other

Appendix B

Test Data and Summary of Statistics for the Evaluation of the Chronic Toxicity of Stockton Stormwater Program Ambient Water Samples to *Ceriodaphnia dubia*

CETIS Summary Report

							Test Code:	CE_1016	SCD_C1 0	2-3033-7367
Ceriodaphnia	Survival and Reprod	luction Test							Pacif	ic EcoRisk
Batch ID: Start Date: Ending Date: Duration:	07-0331-2755 15 Oct-16 16:00 21 Oct-16 15:05 5d 23h	Test Type: Protocol: Species: Source:					Analyst: Diluent: Brine: Age:	Robert Gee Not Applicable Not Applicable 1		
Sample Code	Sample ID	Samp	ole Date	Receive Da	ate Sam	ole Age	Client Nam	e	Project	
CE_1016CD_C CR-46R Field Duplicate	1 09-0712-7458 18-8541-8335 07-8261-4773	14 Oc	ct-16 16:45	15 Oct-16 1 15 Oct-16 1 15 Oct-16 1	0:00 23h (1.6 °C)	Condor Eart	h Technologies	26442	
Sample Code	Material Type	e Samp	le Source		Stati	on Locatio	n	Latitude	Lor	ngitude
CE_1016CD_C CR-46R Field Duplicate	1 Ambient Wate Ambient Wate Ambient Wate	er Cond		chnologies chnologies chnologies	LABC CR-4 Field					
Reproduction	Summary									
Sample Code	Cou			LCL 95%		Max	Std E		CV%	%Effect
CE_1016CD_C		33.8	30.9	36.7	27	39	1.29	4.08	12.1%	0.0%
CR-46R	10	14.6	11.2		9	22	1.51	4.79	32.8%	56.8%
Field Duplicate	10	19.5	15.8	23.2	12	27	1.63	5.17	26.5%	42.3%
Survival Sumr	-									
Sample Code	<u></u>			LCL 95%		Max	Std E		CV%	%Effect
CE_1016CD_C		1	1	1	1	1	0	0	0.0%	0.0%
CR-46R	10	1	1	1	1	1	0	0	0.0%	0.0%
Field Duplicate	10	1	1	1	1	1	0	0	0.0%	0.0%
Reproduction	Detail									
Sample Code	Rep	1 Rep 2	2 Rep	3 Rep 4	4 Rep			7 Rep 8	Rep 9	Rep 10
CE_1016CD_C		27	38	32	35	29	35	39	37	30
CR-46R	13	22	19	9	13	22	10	12	11	15
Field Duplicate	23	22	14	21	20	24	20	12	27	12
Survival Detai	I									
Sample Code	Rep	1 Rep 2	2 Rep	3 Rep 4	4 Rep	5 Rep	6 Rep	7 Rep 8	Rep 9	Rep 10
CE_1016CD_C	1 1	1	1	1	1	1	1	1	1	1
CR-46R	1	1	1	1	1	1	1	1	1	1
Field Duplicate	1	1	1	1	1	1	1	1	1	1
Survival Binor	nials	WWW-BLD (7)								
Sample Code	Rep				<u> </u>				Rep 9	Rep 10
CE_1016CD_C		1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1
CR-46R	1/1	1/1	1/1	1/1	1/1	1/1 1/1	1/1 1/1	1/1	1/1 1/1	1/1
Field Duplicate	1/1	1/1	1/1	1/1	1/1			1/1		1/1

Analyst: RC QA: SD

CETIS Analytical Report

Report Date:	26 Oct-16 11:41 (p 1 of 2)
Test Code:	CE_1016CD_C1 02-3033-7367

					Test Code:	CE_1010CD_C1 02-3033-736
Ceriodaphnia Survival and Re	production Test					Pacific EcoRisk
Analysis ID: 18-0110-9979 Analyzed: 25 Oct-16 9:22	Endpoint: Analysis:	Survival Single 2x2 Con	tingency Ta	ble	CETIS Version: Official Results:	CETISv1.8.7 Yes
Data Transform	Zeta Alt H	lyp Trials	Seed		Test Resul	t
Untransformed	C > T	NA	NA			
Fisher Exact Test						
Sample vs Sample	Test	Stat P-Value	P-Type	Decision(α:5%)	
CE_1016CD_C1 CR-46R	1	1.0000	Exact		ficant Effect	
Data Summary						
Sample Code	NR R	NR + R	Prop NR	Prop R	%Effect	
CE_1016CD_Clab Water Cont		10	1	0	0.0%	
CR-46 R	10 0	10	1	0	0.0%	
Graphics						
1.0 🖵 🚳		\$				
0.9						
0.8						
0.7						
0.6						
2010 S						
ที 0.4						
0.3						
0,2						
0.1						
	5		1			
0.0 CE_1016CD_C1		CR-46R				

Analyst: <u>(6</u> QA: <u>SD</u>

CETIS Ana	lytical	Report
------------------	---------	--------

and the second se							Test	coue.		CD_C1 0	
Ceriodaphnia Su	urvival and Re	production	Test							Paci	ic EcoRisk
-	0-3306-8436 5 Oct-16 9:22	•		production ametric-Two	Sample			S Version: ial Results:	CETISv1 Yes	.8.7	
Data Transform		Zeta	Alt Hyp	Trials	Seed		PMSD	Test Resu	lt		
Untransformed		NA	C > T	NA	NA		10.2%				
Equal Variance t	t Two-Sample	Test				<u></u>					
Sample Code	vs Sample C	ode	Test Stat	Critical	MSD DF	P-Value	P-Type	Decision(α:5%)		
CE_1016CD_C1	CR-46R		9.65	1.73	3.45 18	<0.0001	CDF	Significant			
ANOVA Table											
Source	Sum Squa	res	Mean Squ	are	DF	F Stat	P-Value	Decision(a:5%)		
Between	1843.2		1843.2		1	93.2	<0.0001	Significant	Effect		
Error	356		19.77778	-	18						
Total	2199.2				19				•		
Distributional Te	ests										
Attribute	Test			Test Stat	Critical	P-Value	Decision(α:1%)			
Variances	Variance F			1.38	6.54	0.6394	Equal Vari	ances			
Distribution	Shapiro-W	ilk W Norm	ality	0.955	0.866	0.4535	Normal Di	stribution			
Reproduction Su	ummary										
Sample Code		Count	Mean	95% LCL		Median	Min	Max	Std Err	CV%	%Effect
CE_1016CD_C1	******	10	33.8	30.9	36.7	35	27	39	1.29	12.1%	0.0%
		10 10	33.8 14.6	30.9 11.2	36.7 18	35 13	27 9	39 22	1.29 1.51	12.1% 32.8%	0.0% 56.8%
CE_1016CD_C1 CR-46R Graphics											
CR-46R											
CR-46R Graphics						13					
CR-46R Graphics	1.1.6.1.1					13					
CR-46R Graphics	17.1.57.17				18	8 the second sec					
CR-46R Graphics 30 30 40 40 40 40 40 40 40 40 40 40 40 40 40	7774777			11.2	18	8 the second sec					
CR-46R Graphics 30 25 22				11.2	18	8 the second sec					
40 35 30 25				11.2		8 the second sec					
40 35 30 25	1.7.1.6.7.1.7			11.2	18	8 the second sec					
CR-46R Graphics			14.6	11.2 Reject Null	18	8 the second sec					
CR-46R Graphics 30 25 25 25 20 20 20				11.2 Reject Null	18	13 8 11 7 11 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
CR-46R Graphics 30 25 25 50 25 25 15			14.6	11.2 Reject Null	18	13 8 7 6 5 1 1 1 1 1 1 1 1 1 1 1 1 1					
CR-46R Graphics 30 25 25 50 25 25 15			14.6	11.2 Reject Null	18	13 8 11 7 11 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
CR-46R Graphics 30 25 15 10			14.6	11.2 Reject Null	18	13 8 7 6 5 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1				32.8%	

Analyst: <u>N6</u> QA: <u>SD</u>

(Client:		Со	ndor Ear	th - Stock	ton		N	laterial:			CR	-46R			Tes	st Date:	10/15/16
Pro	ject #:	26-	442		Test ID:	700	27		Randon	nization		10.5	9			Control	Water:	SRW
	Day	pH New	Old	D.O. New	Old	Cond. (µS/cm)	Temp (°C)	A	В	С	Su D	rvival / F E	teproduct	tion G	Н	1	.,	SIGN-OFF
	0	7.68		8.2		312	25.6	$\hat{0}$	0	0	0	0	0	0	0	\odot	0	Date: 10/15/16 New WQ: Test Init. BV Sol'n Prep: EP SD Time [[CCD
	I	8.16	7.74	8.0	7.0	339	25.7	C	0	0	0	0	0	0	0	0	0	Date: 10/16/12New WQ: TA Counts DV Sol'n Prep: BN Old WQ: TA Time D35 Date: 16/17/16 New WQ: DD Counts 54
	2	7.63	8.60	8,5	7:3	328	255	0	0	0	0	0	0	0	0	0	6	Date: 10/11/14 New WQ: 77 Counts 51 Sol'n Prep: 71 Old WQ: 77 Time 1 2 2 0 Date: 10/11/11/New WQ: 537B Counts 76
rol	3	7.81	7.56	8.6	6.2	323	24.9	0	\bigcirc	0	- Cote	0	0	0	0	\odot	0	Sol'n Prep: MAN Old WQ: STB Time: 330
r Cont	4	7.59	8.00	8.8	7.4	319	25.0	7	5	7	2	8	7	7	8	8	6	Date: 16/19/16 New WQ:5773 Counts. By Sol'n Prep: DH Old WO? Time: 345
Lab Water Control	5	7.87	7.58	7.9	6.9	325	25.0	14	10	IS	13	13	10	12	13	12	10	Date: 10/00/16 New WQ: SH Counts. SH Sol'n Prep: AC Old WQ: JH Time: 250
Lat	6		7.63	,	8.0	10	24.8		12	110	16		12	16	18	17	14	Date: 1012114 New WQ: - Counts. 50 Sol'n Prep: - Old WQ: SD Time: 1505
	7						<u>ar 1. ()</u>			<u> </u>	1.4		1 Sameric				- ¥ - T	Date: New WQ: Counts: Sol'n Prep. Old WQ: Time:
	8																	Date: Old WQ: Counts: Time:
							Total=	310	27	38	32	35	29	35	39	31	30	Mean Neonates/Female = 33.8
	Day	p	H	D	.O.	Cond.			<i>1</i>		190-	I / Repro	Ann. 1		<u> </u>		<i></i>	SAMPLE ID
		New	Old	New	Old	(µS/cm) 277		Α	В	С	D	E	F	G	Н	1]	1/1/2 00 1 EP 16/15/16
	0	779		9.7		Filter		0	0	0	0	0	0	0	0	\bigcirc	0	443221
	1	8.00	7,73	810	4.5	253		0	Ô	0	\circ	0	6	0	6	0	٥	10/10/10 443221 44321
	2	7.66	7.99	8.6	7.0	252		σ	0	D	0	0	0	0	0	0	C	44321
	3	7.89	7.61	8.6	41	245		0	0	0	0	0	0	0	0	0	0	4434
%	4	7.53		7.0		255		0	3	4	4	5	3	4	4	ÿ	2	44321
100%	5	7.34		8.1	5,6	257		5	10	9	5	0	9	0	0	6	6	44321
	6	<u> </u>	7.56	1	7.0	259		00	9	6	5	8	10	6	8	7	7	
	7									<u> </u>		$-\circ$				I		
	8																	
							Total=	13	22	19	9	13	22	10	12	11	15	Mean Neonates/Female = 14.6

Short-Term Chronic 3-Brood Ceriodaphnia dubia Survival & Reproduction Test Data

CETIS Analytical Rep	ort					Report Date: Test Code:		16 11:41 (p 2 of 2) C1 02-3033-7367
Ceriodaphnia Survival and	Reproduc	ction Test						Pacific EcoRisk
Analysis ID: 11-1845-2396 Analyzed: 25 Oct-16 9:2		Endpoint: Sun Analysis: Sing		ntingency Ta	ble	CETIS Version: Official Results:	CETI S v1.8.7 Yes	
Data Transform Untransformed	Zeta	Alt Hyp C > T	Trials NA	Seed NA		Test Resu	ilt	
Fisher Exact Test Sample vs Sample		Test Stat	P-Value	P-Type	Decision(α:5%)		
CE_1016CD_C1 Field Du	olicate	1	1.0000	Exact	-	ficant Effect		
Data Summary								
Sample Code	NR	R	NR + R	Prop NR	Prop R	%Effect		
CE_1016CD_Cl1ab Water Cor		0	10	1	0	0.0%		
Field Duplicate	10	0	10	1	0	0.0%		
Graphics								
1.0 m 🚳		0						
0.9								
0.8								
0.7								
0.6								
Surv								
0.4								
0.3								
0.2								
0.1								
0.0 CE_1016CD_C1		Field Duplic	ate					

Analyst <u>R6</u> QA: <u>SD</u>

CETIS Analy	tical Report						ort Date: Code:		Oct-16 11: CD_C1 0	2-3033-7367
Ceriodaphnia S	urvival and Reproc	duction Test							Paci	fic EcoRisk
	08-5090-5279 25 Oct-16 9:22	•	eproduction arametric-Two	o Sample			S Version:	CETISv1 Yes	.8.7	
Data Transform	Zet	a Alt Hyp	Trials	Seed		PMSD	Test Resu	ult		
Untransformed	NA	C > T	NA	NA		10.7%				
Equal Variance	t Two-Sample Test	t								
Sample Code	vs Sample Code	Test Sta	t Critical	MSD DF	P-Value	P-Type	Decision(α:5%)		
CE_1016CD_C1	Field Duplicate	e 6.87	1.73	3.61 18	<0.0001	CDF	Significan	t Effect		
ANOVA Table					********					
Source	Sum Squares	Mean Sc	uare	DF	F Stat	P-Value	Decision(α:5%)		
Between	1022.45	1022.45		1	47.2	<0.0001	Significan	Effect		
Error	390.1	21.67222	?	18						
Total	1412.55			19						
Distributional Te	ests									
Attribute	Test		Test Stat	Critical	P-Value	Decision	(α:1%)			
Variances	Variance Ratio	F	1.61	6.54	0.4905	Equal Var	iances			
Distribution	Shapiro-Wilk V	V Normality	0.928	0.866	0.1439	Normal Distribution				
Reproduction S	ummary									
Sample Code	Сон	unt Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
CE_1016CD_C1	10	33.8	30.9	36.7	35	27	39	1.29	12.1%	0.0%
Field Duplicate	10	19.5	15.8	23.2	20.5	12	27	1.63	26.5%	42.3%
Graphics										
40					8					۵
					6 ~		-			
	1111111				•		1			
35	1116111				E.		1		/ •	
30		99 999 999 910 Are data same same same same same	Reject Nul	-	4 ~~				`	
30		70 400 970 1.1 An an an an an an an an	Reject Null	- ered	4				<u> </u>	
30 =		0. 40. 40. 13. An an an an an an an	Reject Null	Centered	transformed				•	
30 =			-	Centered	4 Lange Current 2 	w we are no we are no			•	. we
30 =			-	- Centered	D		•••			
30 =			-	Centared	4	a an an iso an an an iso	•••		•	-
300			-	- Centred	D				•	-
30			-	Centered	-4		9	, , , , , , , , , ,	•	- ur
30			-	Centered	D	•	•	, , , , , , , , , , , , , , , , , , , 	•	
30 =			-	Centered	-4	• • • •	• • • • • • • • • • • • • • • • • • •		• • •	

Analyst: KC QA: SD

(Client:		Co	ndor Ear	th - Stocl	ton		N	laterial:			Field D	uplicate	e		Te	st Date:	10/15/16
Pro	ject #:	26	442	-	Test ID:	700	28	-	Randon	nization	1 Elger	10/	15/10	10-3	5.9	Control	Water:	
	Day	pH New	Old	D.O. New	Old	Cond. (µS/cm)	Temp (°C)	A	В	С			leproduct		H			SIGN-OFF
********	0	7.68		8.Z		312	25.6			0	0	0	0	0	M	\circ	0	Date: 10/13/16New WQ: Test Init. BV Sol'n Prep: EP SD Time 1600
	I	8.16	7174	8.0	7.0	330	25.7	6	0	0	6	0	0	0	0	0	0	Date: 10/10/Brew WQ: TA Counts. AV Sol'n Prep: BV Old WQ: TA Time 1335
	2	7.63	8.00	8.5	7.3		25.5	0	0	O	0	0	0	0	0	0	0	Date: 10/17/16 New WQ: 39 Country SH Softn Prep: T1 (Old WQ: TA Time: 12Z)
trol	3	7.81	7.56	8.6	6.2	323	24.9	0	0	0	1 De Tombit	0	0	0	0	0	6	Date: 10/16/16 New WQ:STB Counts: Jo Sol'n Prep: NDM Old WQ:STD Time. 1330
er Con	4	7.59	8.00	8.8	7.4	319	25.D	7	5	7	2	8	7	7	8	8	6	Date: 10/19/16 New WQ: 2075 Counts: BV Sol'n Prep: DM Old WQ: DN Time: 1345
Lab Water Control	5	7.87	7.58	7.9	6.9	325	25. O	14	10	15	13	13	10	12	13	12	10	Dave: 10/20/14 New WQ: SH Counts: SH Sol'n Prep: TK Old WQ: SH Time: 1350
Г	6		7.63		8.0	343	24.8	15	12	16	16	14	12	16	18	<u>רו</u>	14	Date: 10/211194cw WQ: Counts. Jo Sol'n Prep. Old WQ: SD Time: 1505 Date: New WO: Counts:
	7																	Sain Prep: Old WQ: Time:
	8																	Date: Old WQ: Counts: Time:
							Tom!=	34	27	38	32	35	29	35	3 <u>A</u>	37	30	Mean Neonates/Female = 33.8
	Day	p New	H Old	D. New	.O. Old	Cond. (µS/cm)		A	В	C	Surviva D	I / Repro	duction F	G	Н	N N	J	SAMPLE ID
	0	7.78		9.4		220		0	0	0	0	0	0	0	0	6	6	44322
	I	8.01	7.59	6.2	5.1	220		0	0	0	0	0	0	0	0	0	0	44322
	2	7.58	7.91	6.9	6.8	25		0	0	0	0	0	0	0	D	0	১	44322
	3	7.77	7.60	6.8	4.6	216		0	0	0	0	0	0	0	0	0	0	44322
100 <u>%</u>	4	7.41		5.4	6.2	219		5	4	3	4	2	5	3	3	4	5	44322
10	5	7.25	7,44	7.8	5,0	212		9	8	6	9	9	10	B	9	11	7	44322
	6	sectores)	7.54	- 	7.0	244		9	io	5	8	9	9	9	0	12	0	• • • • •
	7																	
	8																	
							Total=	23	22	14	21	20	24	20	12	27	12	Mean Neonates/Female = 19,5

Short-Term Chronic 3-Brood Ceriodaphnia dubia Survival & Reproduction Test Data

Appendix C

Test Data and Summary of Statistics for the Evaluation of the Chronic Toxicity of Stockton Stormwater Program Ambient Water Samples to Fathead Minnows

CETIS Summary Report

Report Date: Test Code:

26 Oct-16 11:36 (p 1 of 1) CE_1016PP_C1 | 17-8193-4964

Chronic Larval Fis	sh Survival and G	rowth Test									Pacif	ic EcoRisk
Batch ID: 12-	6989-5835	Test Type:	Growth-St	urvival	l (7d)			Analyst:	Ro	bert Gee		
Start Date: 15	Oct-16 16:35	Protocol:	EPA-821-	R-02-0	013 (2002)			Diluent:	No	t Applicable		
Ending Date: 22	Oct-16 08:20	Species:	Pimephale	es pro	melas			Brine:	No	t Applicable		
Duration: 6d	16h	Source:	Aquatox, A	٩R				Age:	1			
Sample Code	Sample ID	Samp	le Date	Rece	eive Date	Sample	Age	Client N	ame		Project	
CE_1016PP_C1	15-6405-0007	15 Oc	t-16 16:35	15 O	ct-16 16:35	NA (25.8	3°C)	Condor E	Earth T	echnologies	26442	
CR-46R	18-8541-8335	14 Oc	t-16 16:45	15 O	ct-16 10:00	24h (1.6	°C)					
Field Duplicate	07-8261-4773	14 Oc	t-16 17:30	15 O	ct-16 10:00	23h (6.2	°C)					
Sample Code	Material Type	Samp	le Source			Station	Locatio	n		Latitude	Lon	gitude
CE_1016PP_C1	Ambient Water	Condo	or Earth Te	chnolo	ogies	LABQA						
CR-46R	Ambient Water	Condo	or Earth Te	chnolo	ogies	CR-46R						
Field Duplicate	Ambient Water	Condo	or Earth Te	chnolo	ogies	Field Du	plicate					
7d Survival Rate S	Summary											
Sample Code	Cou	nt Mean	95%	LCL	95% UCL	Min	Max	St	d Err	Std Dev	CV%	%Effect
CE_1016PP_C1	10	0.95	0.837	7	1	0.5	1	0.	05	0.158	16.6%	0.0%
CR-46R	10	0.95	0.837	7	1	0.5	1	0.	05	0.158	16.6%	0.0%
Field Duplicate	10	0.7	0.398	3	1	0	1	0.	133	0.422	60.2%	26.3%
7d Survival Rate	Detail											
Sample Code	Rep	1 Rep 2	Rep	3	Rep 4	Rep 5	Rep	6 R	∋p 7	Rep 8	Rep 9	Rep 10
CE_1016PP_C1	1	1	1		1	1	1	1		1	1	0.5
CR-46R	1	1	1		1	1	0.5	1		1	1	1
Field Duplicate	1	0.5	0		1	1	1	1		0	1	0.5
7d Survival Rate E	Binomials											
Sample Code	Rep	1 Rep 2	Rep	3	Rep 4	Rep 5	Rep	6 Re	ep 7	Rep 8	Rep 9	Rep 10
CE_1016PP_C1	2/2	2/2	2/2		2/2	2/2	2/2	2/2	2	2/2	2/2	1/2
CR-46R	2/2	2/2	2/2		2/2	2/2	1/2	2/:	2	2/2	2/2	2/2
Field Duplicate	2/2	1/2	0/2		2/2	2/2	2/2	2/:	2	0/2	2/2	1/2

Analyst: $\frac{R6}{QA: CD}$

CETIS Summary Report

Report Date: Test Code:

26 Oct-16 11:36 (p 1 of 1) CE_1016PP_C1w | 15-5075-9418

Chronic Larva	l Fish S	Survival and G	rowth Test								Pacif	ic EcoRisk
Batch ID: Start Date: Ending Date: Duration:	15 Oct	73-5594 1-16 16:35 1-16 08:20 h	Test Type: Protocol: Species: Source:	Growth-Si EPA-821- Pimephale Aquatox, /	R-02-01 es prom	13 (2002)			Analyst: Diluent: Brine: Age:	Robert Gee Not Applicable Not Applicable 1		
Sample Code CE_1016PP_C CR-46R Field Duplicate	1w	Sample ID 16-2431-9820 18-8541-8335 07-8261-4773	15 Oc 14 Oc	t-16 16:45	15 Oc 15 Oc		Sample Ag NA (25.8 ° 24h (1.6 °C 23h (6.2 °C	C) C)	Client Nan Condor Ea	ne rth Technologies	Project 26442	
Sample Code CE_1016PP_C CR-46R Field Duplicate	1w	Material Type Ambient Water Ambient Water Ambient Water	Condo Condo	le Source or Earth Te or Earth Te or Earth Te	chnolog	gies	Station Lo LABQA CR-46R Field Dupli		n	Latitude	Lor	gitude
Mean Dry Bion	nass-m					*****						
Sample Code CE_1016PP_C CR-46R Field Duplicate	1w	Cour 5 5 5 5	nt Mean 0.324 0.362 0.249	95% 0.244 0.309 0.113) (95% UCL 0.404 0.415 0.384	Min 0.235 0.29 0.1	Max 0.408 0.405 0.34		890.0646920.0428	CV% 19.9% 11.8% 43.8%	%Effect 0.0% -11.7% 23.3%
Mean Dry Bion	nass-m	g Detail										
Sample Code CE_1016PP_C CR-46R Field Duplicate	1w	Rep 0.35 0.368 0.34	0.408	Rep 0.292 0.29 0.313	2 (Rep 4 0.335 0.405 0.1	Rep 5 0.235 0.372 0.325					

R6 QA:___SD Analyst:____

CETIS Analytical	Report					-	ort Date: Code:			36 (p 1 of 2 7-8193-4964
Chronic Larval Fish Su	rvival and Grow	vth Test							Paci	fic EcoRisk
Analysis ID: 06-9096- Analyzed: 25 Oct-1		ndpoint: 7d nalysis: No	Survival Rat nparametric-		e		IS Version: cial Results		1.8.7	
Data Transform	Zeta	Alt Hyp	Trials	Seed		PMSD	Test Res	ult		
Angular (Corrected)	NA	C > T	NA	NA		19.6%				
Wilcoxon Rank Sum Tw	/o-Sample Test									
	mple Code	Test Stat	Critical	Ties DF	P-Value	P-Type	Decision	(α:5%)		
CE_1016PP_C1 CR	-46R	105	NA	2 18	0.7632	Exact	Non-Sign	ificant Effec	t	
ANOVA Table										
Source Sun	n Squares	Mean Squ	Jare	DF	F Stat	P-Value	Decision	(a:5%)		
	2714E-15	3.552714		1	1.98E-13	1.0000		ificant Effec	t	
Error 0.32	36442	0.0179802	23	18			Ŭ			
Total 0.32	36442			19						
Distributional Tests										
Attribute Tes	st		Test Stat	Critical	P-Value	Decision	(a:1%)			
Variances Var	iance Ratio F		1	6.54	1.0000	Equal Var				·····
Distribution Sha	apiro-Wilk W Nor	rmality	0.351	0.866	<0.0001	Non-norm	al Distributi	on		
7d Survival Rate Summ	ary									
Sample Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
CE_1016PP_C1	10	0.95	0.837	1	1	0.5	1	0.05	16.6%	0.0%
CR-46R	10	0.95	0.837	1	1	0.5	1	0.05	16.6%	0.0%
Angular (Corrected) Tra	nsformed Sum	mary								
Sample Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
CE_1016PP_C1	10	1.17	1.07	1.26	1.21	0.785	1.21	0.0424	11.5%	0.0%
CR-46R	10	1.17	1.07	1.26	1.21	0.785	1.21	0.0424	11.5%	0.0%
Graphics	772		772		0.05	Ð 9	e e e e e e e		0 0	ė
0.8		۵		Centered	0.00				90 900 000 991 800 901 98	
0.6 9 0.5 9 0.4 0.4 0.3				Ğ	-0.25 -0.25					
0.2					-0,30 -0.35 -0.40	e			1	
0.0			and the second		-2.0	-1.5 -1.0	-0.5 0.0	0.5 1	0 1.5	2.0

Analyst: RG QA: SD

Organism Log#: 9855 Age: <48hrs Condor Earth - Stockton Client: Test Material **CR-46** R Organism Supplier: <u>Cauatox</u> 70029 26442 Test ID#: Project #: Control/Diluent: EPAMH Test Date: 10/13 1925 Control Water Batch: D.O. (mg/L) # Live Organisms pН Conductivity Treatment (%) Temp (°C) $(\mu S/cm)$ С New Old Old А В D Е F G New Н I J Control 7.85 298 2 25.8 2 7 2 2 8.2 2 2 2 7 2 100 7.93 9.7 213 Z 2 2 2 2 2 2S. 8 2 2 7 2 0 Day Meter ID RDII EC09 31A PH23 Vew WQ: ample ID: Ep u Date: IL Test Solution Prep Initiation Time: Initiation Sign-off: ĒP 10/15/16 44322 SD 1635 TV 298 25.7 Control 8.11 8.5 Z.O 2 2 2 2 2 2 2 2 2 25.7 2.8 100 8.0 219 2 2 2 2 2 2 2 785 1.60 2 2 Day Meter ID 31A PH23 2009 D0 PH23 ECOG Date: ample ID: Test Solution Prep; New WQ, OL W Renewal Time: Renewal Sign-off BV FP 10/16/11 1530 44321 51 Control 83 8.8 25.8 7.76 7.9 317 2 2 2 22 2 2 2 100 255 7.78 9.0 2 25.8 7.77 6.8 2 2 2 ١ 2 2 2 2 2 Day Meter ID PH 23 E(04 RDOG RDID SIA PHIS Test Solution Prep: New WQ: JJ Date: Old WQ: ample ID: Renewal Time: Renewal Sign-off: SH 10/17/16 1025 44321 π TA 7.55 Control 25.1 7.67 8.3 2 2 2 2 $\mathbf{\nabla}$ 2 5.5 300 2 2 2 5.6 2 100 2 2 2 25.1 7.71 7.57 9,1 246 2 2 2 2 7 ŝ Day Meter ID JIA PHZ PHZZ RDIÓ RAM ECII Test Solution Prep: New WQ: Date: ample ID Renewal Time: Renewal Sign-off: R6 10/18/11 44321 SAL 1319 mon 37B 7.54 7.43 8.4 Control 8.1 304 25.3 2 2 2 2 2 2 2 6. 7.39 MM 251 2 2 2 2 100 7 1 25.3 NMM 2 2 7 Day Meter ID 3)A PH ZI PH23 E(09 RDI RDÍO Date: Test Solution Prep: mple ID: Renewal Time: Sign-off: Renewai SAD 10/19/16 44321 1240 DM 7.64 Control 24.7 7.25 8.7 らこ 304 2 2 2 2 2 2 2 2 ١ 2 it 58.5 53 100 7.23 7.40 243 2 2 7 2 7. 2 2 7 7 24.7 in RDOG Day Meter ID PH RDIO ECIO 25 31 A PHN Date: ample ID: Test Solution Prep: New WQ: OLI W Renewal Time: Renewal Sign-off: 41 10/20/16 14321 τt STA 1540 DM Control 24.9 7.79 7.75 7.1 294 2 Z 2 2 8.9 2 2 7 Z 2 l 100 7.3 2 ファレ 2 24.9 7.9 248 7 2 2 7.69 7 7 2. 7 9 Day Meter ID PH 19 RDID RD09 31A PH23 ECOY Date: Test solution Prep mpte ID: New WQ: Ôld WQ: Renewal Time; Renewal Sign-off: 44321 DM Sm 10/21/16 1340 DH DM Control 7.46 320 2 2 25.4 8.2 7 7 2 2 2 2 2 -100 2 7.71 8.0 253 2 2 2 Z 2 2 25.4 ١ 2 2 1~ Day Meter ID PH19 RDIO 31 A EC09 ale: Old WQ: Termination Time: Termination Sign off: 10/22/16 SP 0820 DM

7 Day Chronic Fathead Minnow Toxicity Test Data

					Test	Code:	CE_1016F	P_C1w 1	5-5075-941
h Survival and Gro	wth Test							Paci	fic EcoRisk
	-	-	-					1.8.7	
Zeta NA	Alt Hyp C > T	Trials NA	Seed NA		PMSD 19.9%	Test Res	sult		*****
wo-Sample Test									
Sample Code	Test Sta	t Critical	MSD DF	P-Value	P-Type	Decisior	n(α:5%)		
CR-46R	-1.1	1.86	0.065 8	0.8476	CDF	Non-Sigr	nificant Effec	t	
							<u></u>		
Sum Squares			DF	F Stat	P-Value				
			1	1.2	0.3048	Non-Sigr	nificant Effec	t	
0.02402542	0.003003	3177	8 9						
S			<u></u>						
Test		Test Stat	Critical	P-Value	Decision	(a:1%)			
Variance Ratio F		2.27	23.2	0.4462					***
Shapiro-Wilk W N	ormality	0.937	0.741	0.5236	Normal D	istribution			
-mg Summary									
Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
		0.244	0.404	0.335	0.235	0.408	0.0289	19.9%	0.0%
5	0.362	0.309	0.415	0.372	0.29	0.405	0.0192	11.8%	-11.7%
				1 -					
				0.084		1			
				0.063				and the second sec	
handan di kanalan dan di kanalan di			par	0.042				0	
		Raiset Mult		0.021		1			
		Reject Non		5 0.000			Z		-
				-0.021					
				-0.042					
				-0.063					
				-0.084		1			
								L	
I.			J	-0.105 -2.0	-1.5 -1.0	-0.5 0.1	0.5 1	.0 1.5	2.0
	2843-4105 E Oct-16 10:10 A Zeta NA wo-Sample Test Sample Code CR-46R CR-46R Sum Squares 0.003610093 0.02402542 0.02763551 s Test Variance Ratio F Shapiro-Wilk W N s-mg Summary Commany	Oct-16 10:10 Analysis: Pa Zeta Alt Hyp NA C > T wo-Sample Test Sample Code Test Sta CR-46R -1.1 Sum Squares Mean Sc 0.003610093 0.003610 0.02402542 0.003003 0.02763551 s Test Variance Ratio F Shapiro-Wilk W Normality s Count Mean 5 0.324 5 0.362	2843-4105Endpoint:Mean Dry Biom Doct-16 10:10ZetaAlt HypTrials NANAC > TNAwo-Sample TestEndpoint:Mean SquareSample CodeTest StatCritical 1.1CR-46R-1.11.86Sum SquaresMean Square0.0036100930.0036100930.024025420.0030031770.02763551 $rest$ sTestTestTest StatVariance Ratio F2.27Shapiro-Wilk W Normality0.937-mg SummaryCount 5 0.324 5 0.324 0.362 0.309	2843-4105 Endpoint: Mean Dry Biomass-mg Oct-16 10:10 Analysis: Parametric-Two Sample Zeta Alt Hyp Trials Seed NA C > T NA NA wo-Sample Test Sample Code Test Stat Critical MSD DF CR-46R -1.1 1.86 0.065 8 Sum Squares Mean Square DF 0.003610093 0.003610093 1 0.02402542 0.003003177 8 0.02763551 9 S Test Test Stat Critical Variance Ratio F 2.27 23.2 Shapiro-Wilk W Normality 0.937 0.741 mg Summary Count Mean 95% LCL 95% UCL 5 0.362 0.309 0.415	2843-4105Endpoint: Mean Dry Biomass-mg Parametric-Two SampleZetaAlt HypTrialsSeedNAC > TNANAwo-Sample TestSample CodeTest StatCriticalMSDDFP-ValueCR-46R-1.11.860.06580.8476Sum SquaresMean SquareDFF Stat0.0036100930.00361009311.20.024025420.00300317781.20.0276355199STestTest StatCriticalP-ValueVariance Ratio F2.2723.20.4462Shapiro-Wilk W Normality0.9370.7410.5236-mg SummaryCountMean95% LCL95% UCLMedian50.3620.3090.4150.372reget Nareget Na	h Survival and Growth Test CET 10 CET Zeta Alt Hyp Trials CET Zeta Alt Hyp Trials Seed PMSD Xeta Alt Hyp Trials Seed PMSD Xeta Alt Hyp Trials Seed PMSD Sample Code Test Stat Critical MSD P-Value P-Value ODE F Stat P-Value 0.0303610093 0.03048 0.02763551 9 S Test Test Stat Critical P-Value Decision Variance Ratio F 2.27 23.2 0.4462 Equal Va S Test Test Stat Critical Main Variance Ratio F 0.324 0.244 0.404 <td>h Survival and Growth Test 2843-4105 Endpoint: Mean Dry Biomass-mg Official Result 2843-4105 Analysis: Parametric-Two Sample Official Result 285 285 285 285 285 285 285 285 285 285</td> <td>h Survival and Growth Test 2843-4105 Endpoint: Mean Dry Biomass-mg CETIS Version: CETISV 20c1-16 10:10 Analysis: Parametric-Two Sample Official Results: Yes Zeta Alt Hyp Trials Seed PMSD Test Result NA C > T NA NA 19.9% wo-Sample Test Sample Code Test Stat Critical MSD DF P-Value P-Type Decision(α:5%) CR-46R -1.1 1.86 0.065 0.8476 CDF Non-Significant Effec Sum Squares Mean Square DF F Stat P-Value Decision(α:5%) 0.003610093 0.0030610093 1 1.2 0.3048 Non-Significant Effec 0.02402542 0.003003177 8 0.02763551 9 S Test Test Stat Critical P-Value Decision(α:1%) Variance Ratio F 2.27 23.2 0.4462 Equal Variances Shapiro-Wilk W Normality 0.937 0.741 0.5236 Normal Distribution -mg Summary Count Mean 9</td> <td>h Survival and Growth Test Paci 2843-4105 Endpoint: Mean Dry Biomass-mg CETIS Version: CETISV1.8.7 2ct-16 10:10 Analysis: Parametric-Two Sample Official Results: Yes Zeta Alt Hyp Trials Seed PMSD Test Result NA C > T NA NA 19.9% wo-Sample Test Sample Code Test Stat Critical MSD DF P-Yalue P-Type Decision(a:5%) CR-46R -1.1 1.86 0.065 8 0.8476 CDF Non-Significant Effect Sum Squares Mean Square DF F Stat P-Value Decision(a:1%) 0.003610093 0.003010093 1 1.2 0.3048 Non-Significant Effect 0.02402542 0.003003177 8 0.02402542 0.003003177 8 0.0260 S Test Test Stat Critical P-Value Decision(a:1%) Variances Shapiro-Wilk W Normality 0.937 0.741 0.5236 Normal Distribution -mg Summary Count Mean 9</td>	h Survival and Growth Test 2843-4105 Endpoint: Mean Dry Biomass-mg Official Result 2843-4105 Analysis: Parametric-Two Sample Official Result 285 285 285 285 285 285 285 285 285 285	h Survival and Growth Test 2843-4105 Endpoint: Mean Dry Biomass-mg CETIS Version: CETISV 20c1-16 10:10 Analysis: Parametric-Two Sample Official Results: Yes Zeta Alt Hyp Trials Seed PMSD Test Result NA C > T NA NA 19.9% wo-Sample Test Sample Code Test Stat Critical MSD DF P-Value P-Type Decision(α:5%) CR-46R -1.1 1.86 0.065 0.8476 CDF Non-Significant Effec Sum Squares Mean Square DF F Stat P-Value Decision(α:5%) 0.003610093 0.0030610093 1 1.2 0.3048 Non-Significant Effec 0.02402542 0.003003177 8 0.02763551 9 S Test Test Stat Critical P-Value Decision(α:1%) Variance Ratio F 2.27 23.2 0.4462 Equal Variances Shapiro-Wilk W Normality 0.937 0.741 0.5236 Normal Distribution -mg Summary Count Mean 9	h Survival and Growth Test Paci 2843-4105 Endpoint: Mean Dry Biomass-mg CETIS Version: CETISV1.8.7 2ct-16 10:10 Analysis: Parametric-Two Sample Official Results: Yes Zeta Alt Hyp Trials Seed PMSD Test Result NA C > T NA NA 19.9% wo-Sample Test Sample Code Test Stat Critical MSD DF P-Yalue P-Type Decision(a:5%) CR-46R -1.1 1.86 0.065 8 0.8476 CDF Non-Significant Effect Sum Squares Mean Square DF F Stat P-Value Decision(a:1%) 0.003610093 0.003010093 1 1.2 0.3048 Non-Significant Effect 0.02402542 0.003003177 8 0.02402542 0.003003177 8 0.0260 S Test Test Stat Critical P-Value Decision(a:1%) Variances Shapiro-Wilk W Normality 0.937 0.741 0.5236 Normal Distribution -mg Summary Count Mean 9

Report Date: 26 Oct-16 11:36 (p 1 of 2)

Analyst: _____ QA: ____

Client:	Condor Earth - Stockton			Test ID #:	700)29	Project #:	26442		
Sample:	C	R-46 R		Tare V	Veight Date:	10113	116	Sign-off:	DT	
Test Date:	10/15/16				•;•;;;	10/23	116	Sign-off:		
Pan	Concentration	Replicate	Initial Pan We	eight (mg)	Final Pan We	ight (mg)	Initial # of	Organisms	Biomass Value (mg)	
I	Control	A+B	166.	03	167	. 43	Ĺ		0.350	
2		C+D	154.	33		96	Ч		0.408	
3		E+F	130.	95	132.1	2	L		0.292	
4		G+H	148.	05	149.3		L		0.335	
5		I+J	144.		145.4	all and the second s	Ĺ	4	0.235	
6	100%	A+B	150.0	2	152.	อๆ	ι	4	0.368	
7		C+D	158.0		160.	47	Ĺ	1	0.375	
8		E+F	150.6	And a set of the part of the second set of the second second second second second second second second second s	151.8		L	١	0,290	
9		G+H	153.8	contraction and an end of the second second second	155.4	3	L	1	0.405	
10		1+J	165.	والمراجع المتقصير ويتحر المحار المراجع والمراجع	166.70	Contraction of the second strength of	L	(0.372	
QA I			and the second second second second second second	-15	152.					
QA2			157	90	157.	Particular and the second second				2010-14
Balance ID			Bal	1001000 100000000000000000000000000000	Bali	a destruction of the second second				

Fathead Minnow Dry Weight Data Sheet

CETIS Analytica	I Report						ort Date: Code:			36 (p 2 of 2) 7-8193-4964
Chronic Larval Fish §	Survival and Grow	th Test							Paci	fic EcoRisk
•		dpoint: 7d : alysis: Nor		e Two Sample	9		IS Version: ial Results:	CETISv Yes	1.8.7	
Data Transform	Zeta	Alt Hyp	Trials	Seed		PMSD	Test Resu	ılt		
Angular (Corrected)	NA	C > T	NA	NA		29.6%				
Wilcoxon Rank Sum	Two-Sample Test									
Sample Code vs	Sample Code	Test Stat	Critical	Ties DF	P-Value	P-Type	Decision(α:5%)		
CE_1016PP_C1 F	Field Duplicate	89	NA		0.0975	Exact	Non-Signit	ficant Effec	t	
ANOVA Table										
Source S	um Squares	Mean Squ	lare	DF	F Stat	P-Value	Decision(a:5%)		
	.2247529	0.2247529		1	3.08	0.0962		ficant Effec	t	
Error 1	.312557	0.0729198	3	18			Ū.			
Total 1	.53731			19						
Distributional Tests										
Attribute	ſest		Test Stat	Critical	P-Value	Decision	(α:1%)			
Variances \	/ariance Ratio F		7.11	6.54	0.0074	Unequal \	/ariances			
Distribution S	Shapiro-Wilk W Nor	mality	0.801	0.866	0.0009	Non-norm	al Distributio	n		
7d Survival Rate Sur	imary									
Sample Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
CE_1016PP_C1	10	0.95	0.837	1	1	0.5	1	0.05	16.6%	0.0%
Field Duplicate	10	0.7	0.398	1	1	0	1	0.133	60.2%	26.3%
Angular (Corrected) 1	ransformed Sumr	nary								
Sample Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
CE_1016PP_C1	10	1.17	1.07	1.26	1.21	0.785	1.21	0.0424	11.5%	0.0%
Field Duplicate	10	0.955	0.699	1.21	1.21	0.361	1.21	0.113	37.4%	18.2%
Graphics	•			Centered	0.4 transformed to the second			•••	•••	•
0.4 0.3 0.2 0.1 0.0 0.0				Can	-0.1 -0.2 -0.3 -0.4 -0.5 -0.6 € -0.6	•	-0.5 0.0	0.5 1	a 1.5	2.0
CE	1016PP_C1	Field Duplic	ate				2.5	•		

Analyst: RE QA: SD

	Client:		Condor	Earth - St	ockton		Org	ganism	Log#:	985	5	Age:	24	8hrs			
	Test Material Field Duplicate Test ID#: 70030 Project #: 26442						Organi										
						142	Cor	ntrol/D	iluent:		1		EPA	.MH			
		10/1					Control	Water	Batch:			192.	5				
		1.01															
	reatment (%)	Temp (°C)	pl	Н	D.O. (mg/L)	Conductivity				# 1	Live O	rganisr	ns			
	Teatment (70)	remp (c)	New	Old	New	Old	(µS/cm)	A	В	С	D	Е	F	G	н	1	J
	Control	25.8	7.85		8.2		298	2	2	2	2	2	2	2	2	2	2
0	100	25.8	7.86		9.5		219	2	2	Z	2	Z	Z	2	2	Z	2
Day 0	Meter ID	31A	PH23		RDII		ECOG										
	Date: 10/15/16	Sample ID: 44372	Test Solution EP	Prep:	New WQ: SD					*********	Initiation 63			Initiatio	n Sign-oj TV	<u>//:</u>	
	Control	25.7	8.11	7.78	8.5	7.0	298	2	2	7	2	2 Z	7,	2	2	2	2
	100	25.7	7.77	7.55	9,1	1.0	239	2	2	2	2	2	2	2	2	2	2
Day 1	Meter ID	314	rH23	DH-22	RD09	2509	£009				Ŭ						
	Date:	Sample ID:	Test Solution	Prep;	New WQ:	Old WQ:						Time:			l Sign-of	(:	
	10/16/16	44322	BV		JL_	EP	710			<u> </u>	153			1	3√		-
	Control	25.8	7.83	7.76	8.8	718	317	2	2	2	2	2	2	2	2	2	2
y 2	100	25.8	7.59	7.75	6,7	618	224 F/ M4	2	2	Z	2	2	Z	2	2 112101	2	2
Day	Meter ID Date:	31A Sample ID:	PH 23 Test Solution	P++15 Prep:	RD 09 New WQ:	RDID Old WQ:	E(04				Renewal	l Time :		Renewa	l Sign-of		
	10/17/16	44322	TK	•••••••••••••••	II-	TA			****		ΟZ			**********	SH	*********	
	Control	25.1	7.67	7,55	8.3	5.5	300	2	2	2	2	2	2	2	2	2	j
3	100	25.1	7.72	7.59	6.\	5.9	215	2	2	2	2	2	2	2	2	2	2
Day	Meter ID	310	PH23	PHal	RDIO	RDII	ECII										
	Date: \0[(\6] 6	Sample ID:	Test Solution		New WQ: FM)	oid WQ: SATB					Renewai	l Time: G		•••••	1 Sign-oj M	ſ:	
$ \models $	Control	25.3	<u>msm</u> 7.54	7.43	8.4	8.1	304	2	2	2	2	2	Z	Γ	2	2	1
	100	25.3	7.25	7.44	3.3	7.5	216	12	2	0	2	2	2	12	0	7	12
Day 4	Meter ID	31A	0H21	PH23	AD (1	ROO	E(09										
	Date:	Sample ID:		Prep:	New WQ:						Renewa	l Time:		Renewa	l Sígn-of	(; }	
	10/19/16	44322	DM		<u>77</u>	OM WO		Ļ		1	240			<u></u>	<u>50</u>		
	Control	24.7	7.25	7.64	8.7	6.7	304	2	2	2	Z	2	2	2	2	2	1
y 5	100	24.7	7.19	7.37	WH H-68.5	A	216	2				2	2 1111111	2		2	
Day	Meter ID Date:	31Α Sample ID:	PH21 Test Solution	PHZS	RD10 New WQ:	RDOY	ECIO				Renewa	I Time :		Renewa	d Sign-of		
	10/20/14	44322	TK		SAB	ond WO:				•••••	151			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	M		
	Control	24.9	7.79	7.75	8.9	7.1	299	2	2	2	2	2	Z	2	Z	Z	1
9	100	24.9	7.63	7.75	7.0	7.5	216	2	1		2	2	2	2	-	2	1
Day	Meter ID	31A	PH23	Pet 19	RDIO	R009	EC04										
	Date:	Sample ID:	Test Solution	Prep:	New WQ:	Old WQ:		[**********		Renewa			Renewa	l Sign-of	/:	
	10/21/16	44322	DM		DM I	Jan-	220				134	T	<u> </u>	T	<u>DM</u>		Τ.
	Control 100	25.4		7.46		8.2	320	2	2	2	22	2	2	7	2	2	
Day 7	Meter ID	25.4		7.67		7,9	226	2				2	2	Z		2	
ä	Date:	3\ A		PHI9		PDID Old WQ:	<u> </u>				Termino	nion Tim		Termina	ution Sigi	1-off:	
	10/22/16					SD						20			ЭM		

7 Day Chronic Fathead Minnow Toxicity Test Data

CETIS Analytical Report

Chronic Larval Fis	h Survival and Grow	/th Test					Code:			fic EcoRisk
•		•	an Dry Biom rametric-Two	-			S Version		.8.7	
Data Transform	Zeta	Alt Hyp	Trials	Seed		PMSD	Test Res	ult		
Untransformed	NA	C > T	NA	NA		32.5%				
Equal Variance t T	wo-Sample Test									
Sample Code vs	Sample Code	Test Stat	Critical	MSD DF	P-Value	P-Type	Decisior	ı(α:5%)		
CE_1016PP_C1w	Field Duplicate	1.33	1.86	0.105 8	0.1094	CDF	Non-Sigr	ificant Effec	t	
ANOVA Table										
Source	Sum Squares	Mean Sq	uare	DF	F Stat	P-Value	Decisior	ı(α:5%)		
Between	0.01425023	0.014250	23	1	1.78	0.2188	Non-Sigr	ificant Effec	t	
Error	0.06402865	0.008003	581	8						
Total	0.07827888			9						
Distributional Test	ŝ	*****								
Attribute	Test		Test Stat	Critical	P-Value	Decision((α:1%)			
Variances	Variance Ratio F		2.84	23.2	0.3366	Equal Var	iances			
Distribution	Shapiro-Wilk W No	rmality	0.908	0.741	0.2649	Normal Di	istribution			
Mean Dry Biomass	s-mg Summary									
Sample Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
CE_1016PP_C1w	5	0.324	0.244	0.404	0.335	0.235	0.408	0.0289	19.9%	0.0%
Field Duplicate	5	0.249	0.113	0.384	0.313	0.1	0.34	0.0487	43.8%	23.3%
Graphics										
0.45					0.10 ;~				~	
r 	a da tanana a sa ana a sa				0.08			• /	6 . O	
0.40					D.06			• /		
0.35					0.04					
0.30	1.1.6/17	7777	777	Centered	0.02		0	•		
				enter	0.00 ~~~	••• ••• ••• ••• •• ••	e e e e e e e		~ ~ ~ ~ ~ ~ ~	
S 0.25				0	⁴ -0.02					
2 2⊂ 0.20		1.00 AV AN AN AN AN AN AN	Reject Null		-0.04					
2025 2000 2000 2000 2000 2000 2000 2000					-0.06					
× 0.15					-0.08		¢			
0.10					-0.10		l.			
					-0.12					
					-0.14		i			
0.05					E Z		, I			
0.05	CE_1016PP_C1w	Field Dup	P	.l	-0.16	•1.5 •1.0	i +0.5 0.0	0.5 1	.0 1.5	2.0

Analyst: <u>NG</u> QA: <u>SD</u>

Client:	Condor Ea	rth - S	tockton		Test ID #:	70	030	Project #:	26442
Sample:	Field	Duplic	ate	Tare V	Veight Date:	1011	7/16	Sign-off:	PT
Test Date:	iolislib		·	Final V	Weight Date:	10/2	3/16	Sign-off:	D
Pan	Concentration R	eplicate	Initial Pan Weig	ght (mg)	Final Pan Weig	ght (mg)	Initial # of	Organisms	Biomass Value (mg)
1	Control	A+B	166.0	3	167.4	3	4		0.350
2		C+D	15413		155.90		4		0.408
3		E+F	130.		132.1		4		0.292
4		G+H	148.0	5	149.3		Ч		0.335
5		l+J	144.6	16	145.4		L	1	0.235
11	100%	A+B	/37.3	3	138.6	9		ч	0.340
12		C+D	144.2	2 2	144.89	1	(4	0.165
13		E+F	151.9	· · · · · · · · · · · · · · · · · · ·	153.2			ч	0.313
14		G+H	147.7		148.1			4	0.100
15		[+.]	141.61		142.9	1		ц	0.325
QA I			152.13		152.13	With Concerts Concerts Concerts		and the second	
QA2			157.9	0	157.9	0			
Balance ID			Balou	1	Bilo	Ч			

Fathead Minnow Dry Weight Data Sheet

Water Column Toxicity Lab Report May 24, 2017 at CR-46R Dry Weather Event

Micheline Kipf Condor Earth Technologies, Inc. 188 Frank West Circle, Suite I Stockton, CA 95206 June 20, 2017

Micheline:

I have enclosed our report "An Evaluation of the Chronic Toxicity of the City of Stockton Stormwater Program Ambient Water Sample" for testing performed on the ambient water sample collected on May 24, 2017. The results of this testing are summarized below:

Toxicity summary for th	ne Stockton Stor	mwater Program	ambient water sa	ample.
	Toxicit	y relative to the I	Lab Control treat	ment?
Sample ID	Ceriodapl	hnia dubia	Fathead N	Ainnow
	Survival	Reproduction	Survival	Growth
CR-46R	no	YES	no	no

Chronic Toxicity of an Urban Ambient Water to Ceriodaphnia dubia

There was no significant reduction in *C. dubia* survival in the CR-46R sample. There was a significant reduction in reproduction in the CR-46R sample.

Chronic Toxicity of an Urban Ambient Water to Fathead Minnows

There was no significant reduction in fathead minnow survival or growth in the CR-46R sample.

If you have any questions regarding the performance and interpretation of these tests, please contact my colleague Stephen Clark or myself at (707) 207-7760.

Sincerely,

Michael McElroy Project Manager

Pacific EcoRisk is accredited in accordance with NELAP (ORELAP ID 4043). Pacific EcoRisk certifies that the test results reported herein conform to the most current NELAP requirements for parameters for which accreditation is required and available. Any exceptions to NELAP requirements are noted, where applicable, in the body of the report. This report shall not be reproduced, except in full, without the written consent of Pacific EcoRisk. This testing was performed under Lab Order 27493.

An Evaluation of the Chronic Toxicity of the City of Stockton Stormwater Program Ambient Water Sample

Sample collected May 24, 2017

Prepared For

Condor Earth Technologies, Inc. 188 Frank West Circle, Suite I Stockton, CA 95206

Prepared By

Pacific EcoRisk 2250 Cordelia Rd. Fairfield, CA 94534 (707) 207-7760

June 2017

An Evaluation of the Chronic Toxicity of the City of Stockton Stormwater Program Ambient Water Sample

Sample collected May 24, 2017

Table of Contents

Appendices

Appendix A	Chain-of-Custody Record for the Collection and Delivery of the Sample
Appendix B	Test Data and Summary of Statistics for the Evaluation of the Chronic Toxicity of the Ambient Water Sample to <i>Ceriodaphnia dubia:</i> Analysis Excluding Outliers
Appendix C	Summary of Statistics for the Evaluation of the Chronic Toxicity of the Ambient Water Sample to <i>Ceriodaphnia dubia:</i> Analysis Including Outliers
Appendix D	Test Data and Summary of Statistics for the Evaluation of the Chronic Toxicity of the Ambient Water Sample to Fathead Minnows

1. INTRODUCTION

Condor Earth Technologies, Inc., has contracted Pacific EcoRisk (PER) to evaluate the chronic toxicity of an ambient water sample. This evaluation consisted of performing the following US EPA freshwater chronic toxicity tests:

- 3-brood survival and reproduction test with Ceriodaphnia dubia; and
- 7-day survival and growth test with larval fathead minnows (Pimephales promelas).

The current evaluation was performed using an ambient water sample collected on May 24, 2017 and designated CR-46R. This report describes the performance and results of these tests.

2. CHRONIC TOXICITY TEST PROCEDURES

This testing followed the guidelines established by the EPA manual "Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms, Fourth Edition" (EPA-821-R-02-013).

2.1 Sample Receipt and Handling

On May 24, an ambient water sample was collected into appropriately cleaned sample containers. The sample was transported and delivered on ice and under chain-of-custody to the PER laboratory in Fairfield, CA. Upon receipt at the laboratory, an aliquot of the sample was collected for analysis of initial water quality characteristics (Table 1). The sample was then stored at $\leq 6^{\circ}$ C, except when being used to prepare test solutions. The chain-of-custody record for the collection and delivery of this sample is presented in Appendix A.

Table 1. Initial water quality characteristics of the sample.									
Sample Receipt Date	Sample ID	Temp. (°C)	рН	D.O. (mg/L)	Alkalinity (mg/L)	Hardness (mg/L)	Conductivity (µS/cm)	Total Ammonia (mg/L N)	
5/25/17	CR-46R	2.6	7.50	10.5	73	66	169	<1.0	

2.2 Survival and Reproduction Toxicity Testing with Ceriodaphnia dubia

The chronic toxicity test with *C. dubia* consists of exposing neonate organisms to the ambient water for the length of time it takes for the Control treatment females to produce three broods (typically 6-8 days), after which effects on survival and reproduction are evaluated. The specific procedures used in this test are described below.

The Lab Water Control medium for this test consisted of a moderately hard synthetic reconstituted freshwater, prepared by addition of reagent grade chemicals to Type 1 lab water. The ambient water sample was tested at the 100% concentration only. For each test treatment, a

200 mL aliquot of test solution was amended with the alga *S. capricornutum* and Yeast-Cerophyll[®]-Trout Food (YCT) to provide food for the test organisms. "New" water quality characteristics (pH, D.O., and conductivity) were measured on these food-amended test solutions prior to use in this testing.

There were 10 replicates for each test treatment, each replicate consisting of 15 mL of test solution in a 30-mL plastic cup. The tests were initiated by allocating one neonate (<24 hours old, and within 8-hours of age) *C. dubia*, obtained from in-house laboratory cultures, into each replicate cup. The test replicate cups were placed into a temperature-controlled room at 25°C, under cool white fluorescent lighting on a 16L:8D photoperiod.

Each day of the test, fresh test solutions were prepared and characterized as before, and a new set of replicate cups were prepared. The test replicates containing the test organisms were examined, with surviving organisms being transferred to the corresponding new replicate cup. The contents of each of the remaining old replicate cups was carefully examined and the number of neonate offspring produced by each parent organism was determined, after which the "old" water quality characteristics (pH, D.O., and conductivity) were measured for the old test solution from one randomly-selected replicate at each treatment.

After it was determined that $\geq 60\%$ of the *C. dubia* in the Lab Water Control treatment had produced their third brood of offspring, the tests were terminated. The resulting survival and reproduction data were analyzed to evaluate any impairment caused by the ambient waters. All statistical analyses were performed using the CETIS[®] statistical software (TidePool Scientific, McKinleyville, CA).

2.3 Survival and Growth Toxicity Testing with Larval Fathead Minnows

The chronic toxicity test with fathead minnows consists of exposing larval fish to the ambient water for seven days, after which effects on survival and growth are evaluated. The specific procedures used in this test are described below.

Pathogen-related mortality (PRM) in chronic fathead minnow toxicity tests of ambient or ponded waters is a common confounding problem that must be controlled in order to determine the toxicity of sample waters. The US EPA has recognized this problem, and has recommended a variety of potential modifications to the testing approach that can be implemented to minimize PRM interference. The approach used in this study, described below, has the advantage of minimizing the PRM interference without affecting the water sample matrix.

The larval fathead minnows used in this testing were obtained from a commercial supplier (Aquatox, Hot Springs, AR). Upon receipt at the lab, the fish were held in aerated tanks containing Lab Water Control medium, and were fed brine shrimp nauplii *ad libitum* during this pre-test holding period.

The Lab Water Control medium for this testing consisted of EPA moderately-hard synthetic freshwater. The ambient water sample was tested at the 100% concentration only. "New" water quality characteristics (pH, D.O., and conductivity) were measured on these test solutions prior to use in the tests.

There were 10 replicates for each test treatment, each replicate consisting of 20 mL of test solution in a 30-mL test replicate container. The tests were initiated by randomly allocating two larval fathead minnows (<48 hours old) into each replicate. The replicate containers were then placed in a temperature-controlled room at 25°C, under fluorescent lighting on a 16L:8D photoperiod. The test fish were fed brine shrimp nauplii twice daily.

Each day of the tests, fresh test solutions were prepared and characterized as before. The test replicate containers were examined, with any dead animals, uneaten food, wastes, and other detritus being removed. The number of live fish in each replicate was determined and then approximately 80% of the old test solution in each beaker was carefully poured out and replaced with fresh test solution. "Old" water quality characteristics (pH, D.O., and conductivity) were measured on the old test solution that had been discarded from one randomly-selected replicate at each treatment.

After seven days exposure, the tests were terminated and the number of live fish in each replicate was recorded. The fish from each replicate were carefully euthanized in methanol, rinsed in deionized water, and transferred to a pre-dried and pre-tared weighing pan. Replicates were paired to obtain five composite replicates for each test treatment. The fish were then dried at 100°C for \geq 24 hours and re-weighed to determine the total dry weight of fish in each replicate. The total dry weight was then divided by the initial number of fish per composited replicate to determine the "biomass value." The resulting survival and biomass value data were analyzed to evaluate any impairments caused by the ambient waters. All statistical analyses were performed using the CETIS statistical software.

3. RESULTS

3.1 Chronic Effects of the Ambient Water Sample on Ceriodaphnia dubia

The results of this test are summarized in Table 2. There was no significant reduction in *C. dubia* survival in the CR-46R sample. There was a significant reduction in reproduction in the CR-46R sample. The test data and summary of statistical analyses excluding outliers are presented in Appendix B; the summary of statistics including outliers is presented in Appendix C.

Table 2. Chronic effects of the Ambient Water sample on Ceriodaphnia dubia.						
Treatment/Sample ID	Mean % Survival	Mean Reproduction (# neonates/female)				
Lab Water Control	80	39.6 ^a				
CR-46R	90	26.1*				

* The response at this test treatment was significantly less than the Lab Water Control treatment response (p < 0.05).

 a – Analysis of the data indicated the presence of an outlier in this treatment, and the results reported above are for the analyses of the test data excluding this outlier. As per EPA guidelines, the test data were analyzed both with and without the outlier, and the results of both sets of analyses are reported in the appendices.

3.2 Chronic Effects of the Ambient Water Sample on Fathead Minnows

The results of this test are summarized in Table 3. There was no significant reduction in fathead minnow survival or growth in the CR-46R sample. The test data and summary of statistical analyses for this testing are presented in Appendix D.

Table 3. Chronic effects of the ambient water sample on fathead minnow.						
Treatment/Sample ID	Mean % Survival	Mean Biomass Value (mg)				
Lab Water Control	100	0.54				
CR-46R	95	0.55				

4. SUMMARY AND CONCLUSIONS

Chronic Toxicity of an Urban Ambient Water to Ceriodaphnia dubia

There was no significant reduction in *C. dubia* survival in the CR-46R sample. There was a significant reduction in reproduction in the CR-46R sample.

Chronic Toxicity of an Urban Ambient Water to Fathead Minnows

There was no significant reduction in fathead minnow survival or growth in the CR-46R sample.

4.1 QA/QC Summary

Test Conditions – All test conditions (pH, D.O., temperature, etc.) were within acceptable limits. All test analyses were performed according to laboratory Standard Operating Procedures.

Negative Control –The biological responses at the Lab Control treatments were within acceptable limits.

Appendix A

Chain-of-Custody Record for the Collection and Delivery of the Sample

						1110				C	on	do	r I	Ear	th	Τe	echnolc	ogies	, Inc.
Sampl	e Result	s TAT: 🔲 Rush 🖌	Standard				X		PC So	Box 3905/ nora, CA 9	21663 Bria 5370	n Lane	√ 188 Sto	Frank West ockton, CA 9	Circle, Suite 5206	[,] Γ	2941 Sunrise Blvd, Suite 15 Rancho Cordova, CA 9574		Ashby Road, Suite B d, CA 95348
<u>SHIP</u>	PED TO	<u>):</u>				CC	ND	OR		9 532 0361 9 532 0773	fax	-		9 234 0518 9 234 0538 fa	x	-	916.783 2060 916.783 2464 fax		8.960] 8.1778 fax
Pacif	ic EcoR	lisk								SEND		LTS TO	<u>0:</u>	Miche	line D	ovle k	Giof		
2250	Cordel	ia Road									NAN F-M	AIL:					th.com		
Fairfi	eld, CA	94534 (707) 207-7	7760						u e			AIL:			-		earth.com		
												\checkmark	PLE	EASE FA	X/EM	AIL R	ESULTS TO ADD	RESSMAR	KED ABOVE
PROJ	ECTNA	ME/LOCATION: CO	OS Urban Disch	narg	e	EDF RE	SULT	S RE	QUIR	ED	ES 🗸	NO			SITE	E GLO	BAL ID:		
PROJ	ECT NO	^{.:} 6066J-04-01							nia	Mon					1000				
SAMF	LED BY	(Signature)				s		q.	daph	d min									
				i.	ainers	Preservatives (see below)	ANALYSIS /METHOD:	Field Filtered	Chronic Ceriodaphnia	Chronic flathead minnow									
			Sample ID	Matrix	# of containers	ee be	ANALYSIS /METHOD:	eld F	onic	onic fl									
Date	Time	Sample Site Name	(if different)		°#	Pro (s	ξÝ	Fie	-Chr	Chr							REMARKS		LAB ID#
5/24/17	1520		CR-46R	S	2	1		Ν	\checkmark	\checkmark	\checkmark						chronic Ceriodaphnia	dubia toxicity	
																	chrionic flathead mir	now toxicity	
				\vdash															
				\vdash										+			follow up dilution		
				-	-												follow up dilution		
																	necessary (100% mo	ortality/24hrs)	
		441555																-	
				-	-														
				⊢			-												
Relinqu	ished By: (Signature)	4-	Dat	ie: 2C -	2017	Time:	093	<u> </u>	Recei	yed By: (Signature	23,	e Aon	I			Date: 5/25/17	Time: 0920
Relinqu	ished By: (Signature		2^	63			012		Receiv	ved By: (Signature	:)	- muz	-			51 311/	0170
Matrix		Waste Water		<u> </u>	S	Soil/Solid				G	W Gro	und Water		eservative		_			
DW Dri	inking Wate	r HWV		ater)			sw		torm Wat					0 4℃	HCL	3 Na	AOH A Na ₂ S ₂ O ₁ 5		LSO4 7 Other
			Original – Send					Ye	llow –	File 10/2	5						Pink – Log B	look	

Appendix B

Test Data and Summary of Statistics for the Evaluation of the Chronic Toxicity of the Ambient Water Sample to *Ceriodaphnia dubia:* Analysis Excluding Outliers

CETIS Summary Report

Carladar hais 0	mittal and t	Dennadore	tion Toot								D:6	
Ceriodaphnia Su	rvival and	Reproduc	tion lest								Pacif	ic EcoRisk
	3007-2198		Test Type: R					Analy		senia Jarami	llo	
	May-17 14:			PA-821- R -02-				Dilue		Applicable		
Ending Date: 31			•	eriodaphnia d				Brine	: Not	Applicable		
Duration: 6d	2h	5	Source: In	-House Cultur	re			Age:	1			
Comments:									÷			
Excluding reproduce	ctive outlier	C-D.										
Sample Code	Sample		Sample Date	Receipt		Sample			t Name		oject	
CE_0517CD_C1	05-7484	-1572 2	25 May-17 14:	00 25 May-	-17 14:00	n/a (25.4	‡ °C)	Cond	or Earth Te	echnologi 27	493	
CR-46R	08-9972	-5305 2	24 May-17 15:	20 25 May-	17 09:30	23h (2.6	°C)					
Sample Code	Material	Туре	S	ample Source	e		Station L	ocatio	on	Lat/Long		
CE_0517CD_C1	Ambient	Water	C	ondor Earth T	echnologies	5	LABQA					
CR-46R	Ambient	Water	C	ondor Earth T	echnologies	5	C R- 46R					
Single Compariso	on Summa	ry			-							
Analysis ID End	dpoint		Compar	ison Method			P-Va	alue	Compari	son Result		
08-0870-1735 Rep	production		Equal Va	ariance t Two-	Sample Tes	st	0.00	28	CR-46R f	ailed reprod	uction	
16-1382-0480 Sur	vival		Fisher E	xact Test			0.89	47	CR-46R (bassed survi	val	
Reproduction Su	mmary											
Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max		Std Err	Std Dev	CV%	%Effect
CE_0517CD_C1	LW	9	39.6	34.2	44.9	27	48		2.3	6.91	17.47%	0.00%
CR-46R		10	26.1	18.3	33.9	4	39		3.44	10.9	41.64%	34.02%
Survival Summar	У											
Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Мах		Std Err	Std Dev	CV%	%Effect
CE_0517CD_C1	LW	10	0.800	0.498	1.000	0.000	1.00	0	0.133	0.422	52.70%	0.00%
CR-46R		10	0.900	0.674	1.000	0.000	1.00	0	0.100	0.316	35.14%	-12.50%
Reproduction Det	tail											
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep	6	Rep 7	Rep 8	Rep 9	Rep 10
CE_0517CD_C1	LW	27	44	42		41	38		41	30	45	48
CR-46R		29	30	13	21	24	4		35	35	31	39
Survival Detail												
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep	6	Rep 7	Rep 8	Rep 9	Rep 10
CE_0517CD_C1	LW	0.000	1.000	1.000	0.000	1.000	1.00		1.000	1.000	1.000	1.000
CR-46R		1.000	1.000	1.000	1.000	1.000	0.00	0	1.000	1.000	1.000	1.000
Survival Binomial	S											
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep	6	Rep 7	Rep 8	Rep 9	Rep 10
CE_0517CD_C1	LW	0/1	1/1	1/1	0/1	1/1	1/1		1/1	1/1	1/1	1/1

CETIS Analytical Repo	ort				Report Date: Test Code:		17 09:57 (p 1 of 1) C1 09-8725-5568
Ceriodaphnia Survival and R	eproduction Test				<u> </u>		Pacific EcoRisk
Analysis ID: 16-1382-0480 Analyzed: 06 Jun-17 9:54	Endpoint: Analysis:	Survival Single 2x2 Cor	ntingency Ta	ble	CETIS Version: Official Results:	CETISv1.9.2 Yes	
Fisher Exact Test							
Sample IvsSample ILab Water ControlCR-46R	Test 0.895	Stat P-Type 5 Exact	P-Value 0.8947	Decision Non-Signi	(α:5%) ificant Effect		
Data Summary							
Sample Code	NR R	NR + R	Prop NR	Prop R	%Effect		
CE_0517CD_C1 LW CR-46R	8 2 9 1	10 10	0.8 0.9	0.2 0.1	0.0% -12.5%		
Graphics			<u> </u>				
0.5 0.8 0.7 0.6 0.5 0.5 0.4 0.4 0.3 0.2 0.1	•	9					
0.0 CE_0\$17CD_C1	CR-46R	CR-46R					

001-771-848-3

CETIS^{1,3/}₽.9.2.6

Analyst: QA: SVV

Analyzed:06 Jun-17 9:57Analysis:Parametric Parametric Pa	1.74 7.37 1 nre DF 1 17 18	DF P-Type 17 CDF F Stat 10.1 Stat Critical 7.34	Offici Comparis CR-46R fa P-Value 0.0028 P-Value 0.0055	al Results: Yes	FISv1.9.2	PMSD 18.63%
Analyzed:06 Jun-17 9:57Analysis:PararData TransformAltHypUntransformedC > TEqual Variance t Two-Sample TestSample IvsSample IILab Water ControlCR-46R*3.18ANOVA TableSourceSum SquaresMean SquaBetween857.615857.615Error1445.1285.0072Total2302.74Distributional TestsXariance Ratio F TestAttributeTestVariancesVariance Ratio F TestDistributionShapiro-Wilk W Normality TestReproduction SummarySampleCodeCountMeanCE_0517CD_C1LW939.610CR-46R101026.1	Critical MSD E 1.74 7.37 1 ire DF 1 17 18 Test Sta 2.47	DF P-Type 17 CDF F Stat 10.1 Stat Critical 7.34	Offici Comparis CR-46R fa P-Value 0.0028 P-Value 0.0055 P-Value 0.2170	al Results: Yes on Result iled reproduction Decision(α:5%) Significant Effect Decision(α:5%) Significant Effect Decision(α:1%) Equal Variances		
Untransformed C > T Equal Variance t Two-Sample Test Sample I vs Sample II Test Stat Lab Water Control CR-46R* 3.18 ANOVA Table Source Sum Squares Mean Squa Between 857.615 857.615 Error 1445.12 85.0072 Total 2302.74 2302.74 Distributional Tests Attribute Test Variances Variance Ratio F Test Distribution Distribution Shapiro-Wilk W Normality Test Reproduction Summary Sample Code CE_0517CD_C1 LW 9 39.6 CR-46R 10 26.1	1.74 7.37 1 ire DF 1 17 18 Test Sta 2.47	17 CDF F Stat 10.1 Stat Critical 7.34	CR-46R fa P-Value 0.0028 P-Value 0.0055 P-Value 0.2170	Decision(α:5%) Significant Effect Decision(α:5%) Significant Effect Decision(α:1%) Equal Variances		
Equal Variance t Two-Sample Test Sample I vs Sample II Test Stat Lab Water Control CR-46R* 3.18 ANOVA Table Source Sum Squares Mean Squa Between 857.615 857.615 Error 1445.12 85.0072 Total 2302.74 2302.74 Distributional Tests Attribute Test Variances Variance Ratio F Test Distribution Shapiro-Wilk W Normality Test Reproduction Summary Sample Code Count Mean Mean CE_0517CD_C1 LW 9 39.6<	1.74 7.37 1 ire DF 1 17 18 Test Sta 2.47	17 CDF F Stat 10.1 Stat Critical 7.34	P-Value 0.0028 P-Value 0.0055 P-Value 0.2170	Decision(α:5%) Significant Effect Decision(α:5%) Significant Effect Decision(α:1%) Equal Variances		18.63%
Sample I vs Sample II Test Stat Lab Water Control CR-46R* 3.18 ANOVA Table Source Sum Squares Mean Squa Between 857.615 857.615 Error 1445.12 85.0072 Total 2302.74 2302.74 Distributional Tests Attribute Test Variances Variance Ratio F Test Distribution Distribution Shapiro-Wilk W Normality Test Reproduction Summary Sample Code Count Mean 9 CE_0517CD_C1 LW 9 39.6 30.6 30.6	1.74 7.37 1 ire DF 1 17 18 Test Sta 2.47	17 CDF F Stat 10.1 Stat Critical 7.34	0.0028 P-Value 0.0055 P-Value 0.2170	Significant Effect Decision(α:5%) Significant Effect Decision(α:1%) Equal Variances		
Lab Water Control CR-46R* 3.18 ANOVA Table Source Sum Squares Mean Squa Between 857.615 857.615 Error 1445.12 85.0072 Total 2302.74 2302.74 Distributional Tests Attribute Test Variances Variance Ratio F Test Distribution Shapiro-Wilk W Normality Test Reproduction Summary Sample Code Count Mean CE_0517CD_C1 LW 9 39.6 39.6 Graphics 59	1.74 7.37 1 ire DF 1 17 18 Test Sta 2.47	17 CDF F Stat 10.1 Stat Critical 7.34	0.0028 P-Value 0.0055 P-Value 0.2170	Significant Effect Decision(α:5%) Significant Effect Decision(α:1%) Equal Variances		
SourceSum SquaresMean SquaBetween857.615857.615Error1445.1285.0072Total2302.742302.74Distributional TestsAttributeTestVariancesVariance Ratio F TestDistributionShapiro-Wilk W Normality TestReproduction SummarySampleCodeCe_0517CD_C1LW9Graphics39	re DF 1 17 18 Test Sta 2.47	F Stat 10.1 Stat Critical 7.34	P-Value 0.0055 P-Value 0.2170	Decision(α:5%) Significant Effect Decision(α:1%) Equal Variances	:	
SourceSum SquaresMean SquaBetween857.615857.615Error1445.1285.0072Total2302.742302.74Distributional TestsAttributeTestVariancesVariance Ratio F TestDistributionShapiro-Wilk W Normality TestReproduction SummarySampleCodeCountCE_0517CD_C1LW939.6CR-46R1026.1	1 17 18 Test Sta 2.47	10.1 Stat Critical 7.34	0.0055 P-Value 0.2170	Significant Effect Decision(α:1%) Equal Variances		
Between 857.615 857.615 Error 1445.12 85.0072 Total 2302.74 Distributional Tests Attribute Variances Variance Ratio F Test Distribution Shapiro-Wilk W Normality Test Reproduction Summary Sample Code Count Mean CE_0517CD_C1 LW 9 39.6 39.6 Graphics 59	1 17 18 Test Sta 2.47	10.1 Stat Critical 7.34	0.0055 P-Value 0.2170	Significant Effect Decision(α:1%) Equal Variances		
Error1445.1285.0072Total2302.74Distributional TestsAttributeTestVariancesVariance Ratio F TestDistributionShapiro-Wilk W Normality TestReproduction SummarySampleCodeCountCE_0517CD_C1LW9Saphics1026.1	17 18 Test Sta 2.47	Stat Critical 7.34	P-Value 0.2170	Decision(α:1%) Equal Variances		
Total 2302.74 Distributional Tests Attribute Test Variances Variance Ratio F Test Distribution Shapiro-Wilk W Normality Test Reproduction Summary Sample Code Count CE_0517CD_C1 LW 9 39.6 CR-46R 10 26.1	18 Test Sta 2.47	7.34	0.2170	Equal Variances		
Distributional Tests Attribute Test Variances Variance Ratio F Test Distribution Shapiro-Wilk W Normality Test Reproduction Summary Sample Code Count Mean CE_0517CD_C1 LW 9 39.6 CR-46R 10 26.1	Test Sta 2.47	7.34	0.2170	Equal Variances		
Attribute Test Variances Variance Ratio F Test Distribution Shapiro-Wilk W Normality Test Reproduction Summary Sample Code CE_0517CD_C1 LW P 39.6 CR-46R 10 26.1	2.47	7.34	0.2170	Equal Variances		
Variances Variance Ratio F Test Distribution Shapiro-Wilk W Normality Test Reproduction Summary Sample Code Count Mean CE_0517CD_C1 LW 9 39.6 CR-46R 10 26.1	2.47	7.34	0.2170	Equal Variances		
Distribution Shapiro-Wilk W Normality Test Reproduction Summary Sample Code Count Mean 9 CE_0517CD_C1 LW 9 39.6 CR-46R 10 26.1 Graphics						
Reproduction Summary Sample Code Count Mean <	0.922	0.861	0.1244	Normal Distribution	on	
Sample Code Count Mean						
CE_0517CD_C1 LW 9 39.6 CR-46R 10 26.1 Graphics						
CR-46R 10 26.1	95% LCL 95% UC	UCL Median	Min	Max Std E	Err CV%	%Effect
Graphics	34.2 44.9	41	27	48 2.3	17.47%	0.00%
50	18.3 33.9	29.5	4	39 3.44	41.64%	34.02%
	Reject Null	Centered Centered Intransformed 2 -10 -10 -12	0	•••		-

CETIS14/25.9.2.6

Pacific EcoRisk

C	lient:		Cor	idor Ear	th - Stock	ton		M	laterial:				46R			Te	st Date:	5125117-
Proj	ject #:	274	493		Test ID:	731	85	. 1	Random	nization		10	.3.	3		Control	Water:	Mod EPAMH
	Day	pH New	Oid	D.O. New	Oid	Cond. (µS/cm)	Temp (°C)	A	В	С	Su D	rvival / R E	eproduc F	tion G	Н	1	1	SIGN-OFF
9000000	0	8.09		C.1			1.5.4	0	0	0	Õ	Ď	つ	0	0	0	0	Date: S/21/1, New WQ: A Test Init: 4) Sol'n Preput Time 1400
	1	7.96	8.03	8.4	8.2	356	25.L	- 0	0	0	0	0	0	0	0	0	0	Date: 6-26-/7New WQ:CO Counts EP Sol'n Prep By Old WQ: #R Time: / DOC
	2	7.86	7.85	6.7	8.4	331	25.1	0	0	0	0	\bigcirc	<u></u> ට	0	0	U	\odot	Date: 3/27/17 New WQ: MB Counts: 76 Sol'n Prep: TK Old WQ: PP Time: 1113
rol	3	7.91	7.95	8.6	8.3	336	25.5	6	6	6	15	5	.7	6	6	7	8	Date:5 / 23 117New WQ: Counts: 32 Sol'n Prep: 55 Old WQ: P Time: 13 10
Lab Water Control	4	55,5	7.84	8,3	8.4	345	25.4	0	0	0	×/o	0	0	0	10	0	0	Date: 5/29/17 New WQ: 5 Counts (uc Sol'n Prep: 5F Old WQ: 5F Time; 255
Water	5	7.95	7.81	8.2	8.2	345	25.1	14	15	14	1	14	13	15	1	16	18	Date: 5/30/17 New WQ: 7 F Counts: Jo Sol'n Prep: JL Old WQ: MS Time: [457]
Lab	6		7.73		8.1	380	25.4	×/-7	23	22	_	22	18	20	14	22	22	Date:5/31/17 New WQ: Countstuc
	7		1.12				23.1	_			-		10			24		Date: New WQ: Counts
								-										Sol'n Prep: Old WQ: Time Date: Old WQ: Counts
	8							<u> </u>			X							Time
				_			Total≖	×/27	44	42	\times_{5}	4	38	41	30	45	48	Mean Neonates/Female = 36.1
	Day	P New	H Old	D. New	.O. Oid	Cond. (µS/cm)		A	В	С	D	/ Repro	duction F	G	Н	I	1	SAMPLE ID
	0	8.11		8.7		151		0	C	0	Ö	D	0	0	δ	0	0	46589
	ł	8.04	8,06	10.0	8.1	171		D	0	0	0	0	0	0	0	0	0	46589
	2	7.87	7.88	8.7	8.4	160		O	\mathcal{O}	\bigcirc	0	\bigcirc	\bigcirc	Ø	\bigcirc	\bigcirc	O	465 89
	3	7.84	7.92	9.8	8.0	169		5	5	O	3	Ч	4	4	0	6	5	46589
%001	4	דקר	7.86	9,4	8.1	171		0	0	0	15	6	0	8	0	0	0	46539
10	5	285	7.81	9.9	7.8	169		6	8	10	0	D	*/	0	12	8	11	46589
	6		7.90		8.0	190		18	17	3	3	14	-	23	23	17	23	
	7																	
	9.												-					
							Total=	29	30	13	21	24	×/4	35	35	31	39	Mean Neonates/Female = 26.1

Short-Term Chronic 3-Brood Ceriodaphnia dubia Survival & Reproduction Test Data

Appendix C

Summary of Statistics for the Evaluation of the Chronic Toxicity of the Ambient Water Sample to *Ceriodaphnia dubia*: Analysis Including Outliers

CETIS Summa	ary Repo	rt					•	ort Date: Code:		Jun-17 09:5 'CD_C1 09	
Ceriodaphnia Sur	vival and Re	eproducti	on Test							Pacifi	c EcoRisk
	-) Pr) Sp	otocol: E ecies: (Reproduction-S EPA-821-R-02- Ceriodaphnia d n-House Cultu	013 (2002) ubia		Ana Dilu Brin Age	ent: Not e: Not	enia Jarami Applicable Applicable	llo	
Comments: Including reproduct	ive outlier C	-D.									
Sample Code CE_0517CD_C1 CR-46R	Sample IE 05-7484-1 08-9972-5	572 25	mple Date May-17 14 May-17 15	:00 25 May-	-17 14:00	Sample Ag n/a (25.4 °C 23h (2.6 °C	C) Con	n t Name dor Earth Te	Pr echnologi 27	roject 7493	
Sample Code CE_0517CD_C1 CR-46R	Material T Ambient V Ambient V	Vater	(Sample Source Condor Earth T Condor Earth T	echnologies	s LA	ition Locat BQA 2-46R	ion	Lat/Long		
Single Compariso Analysis ID End 17-5993-4047 Rep 16-1382-0480 Surv	point roduction		Wilcoxo	rison Method on Rank Sum T Exact Tes t		Test	P-Value 0.0122 0.8947	CR-46R f	son Result ailed reprod	uction	
Reproduction Sun	nmary										
Sample CE_0517CD_C1 CR-46R	Code LW	Count 10 10	Mean 36.1 26.1	95% LCL 27 18.3	95% UCL 45.2 33.9	Min 5 4	Max 48 39	Std Err 4.02 3.44	Std Dev 12.7 10.9	CV% 35.24% 41.64%	%Effect 0.00% 27.70%
Survival Summary	,										
Sample CE_0517CD_C1 CR-46R	Code LW	Count 10 10	Mean 0.800 0.900	95% LCL 0.498 0.674	95% UCL 1.000 1.000	Min 0.000 0.000	Max 1.000 1.000	Std Err 0.133 0.100	Std Dev 0.422 0.316	CV% 52.70% 35.14%	%Effect 0.00% -12.50%
Reproduction Deta	ail										
Sample CE_0517CD_C1 CR-46R	Code LW	Rep 1 27 29	Rep 2 44 30	Rep 3 42 13	Rep 4 5 21	Rep 5 41 24	Rep 6 38 4	Rep 7 41 35	Rep 8 30 35	Rep 9 45 31	Rep 10 48 39
Survival Detail											
Sample CE_0517CD_C1 CR-46R	Code LW	Rep 1 0.000 1.000	Rep 2 1.000 1.000	Rep 3 1.000 1.000	Rep 4 0.000 1.000	Rep 5 1.000 1.000	Rep 6 1.000 0.000	Rep 7 1.000 1.000	Rep 8 1.000 1.000	Rep 9 1.000 1.000	Rep 10 1.000 1.000
Survival Binomials	3										
Sample CE_0517CD_C1 CR-46R	Code LW	Rep 1 0/1 1/1	Rep 2 1/1 1/1	Rep 3 1/1 1/1	Rep 4 0/1 1/1	Rep 5	Rep 6 1/1 0/1	Rep 7 1/1 1/1	Rep 8 1/1 1/1	Rep 9 1/1 1/1	Rep 10 1/1 1/1

Analyst: <u>V</u> QA:<u>SUV</u>

CETIS Analyti	cal Repo	ort						-	ort Date: Code:		Jun-17 09:5 CD_C1 09	
Ceriodaphnia Surv	vival and Re	productio	n Test								Pacif	ic EcoRisk
Analysis ID: 17-	5993-4047	End	Ipoint: Rep	production				CET	S Version:	CETISv1	.9.2	
Analyzed: 06	Jun-17 9:55	Ana	ilysis: Nor	nparametric-	Two San	nple	•	Offic	ial Results:	Yes		
Data Transform		Alt Hyp						Comparis	son Result			PMSD
Untransformed		C > T						CR-46R fa	ailed reprodu	uction		25.42%
Wilcoxon Rank Su	m Two-San	nple Test										
Sample I vs	Sample II		Test Stat	Critical	Ties	DF	P-Type	P-Value	Decision(α:5%)		
Lab Water Control	CR-46R*		75.5	n/a	1	18	Exact	0.0122	Significant	Effect		
ANOVA Table												
Source	Sum Squa	res	Mean Squ	are	DF		F Stat	P-Value	Decision(α:5%)		
Between	500		500		1		3.57	0.0750		ficant Effect		
Error	2519.8		139.989		18							
Total	3019.8				19							
Distributional Test	S											
Attribute	Test				Test St	at	Critical	P-Value	Decision(α:1%)		
Variances	Variance R	atio F Tes	1		1.37		6.54	0.6462	Equal Vari	-		
Distribution	Shapiro-W	ilk W Norm	ality Test		0.859		0.866	0.0077	Non-Norm	al Distributi	on	
Reproduction Sum	mary						<u></u>					
Sample	Code	Count	Mean	95% LCL	95% UG	CL	Median	Min	Max	Std Err	CV%	%Effect
CE_0517CD_C1	LW	10	36.1	27	45.2		41	5	48	4.02	35.24%	0.00%
CR-46R		10	26.1	18.3	33.9		29.5	4	39	3.44	41.64%	27.70%
Sraphics 40 30 uopponeta 20 10			777762			Centered	-10 -15 -20 -25 -30	•			•	D
0	CE_0517CD_C1		CR-46R				-35 -2.0	-1.5 -1.0	-0.5 0.0 Rankits	0.5 1.0	1.5	2.0

Appendix D

Test Data and Summary of Statistics for the Evaluation of the Chronic Toxicity of the Ambient Water Sample to Fathead Minnows

CETIS Summary Report

 Report Date:
 06 Jun-17 10:36 (p 1 of 1)

 Test Code:
 CE_0517PP_C1 | 16-2518-2307

Chronic Larva	I Fish Surviva	I and Gro	wth Test			-				Pacifi	c EcoRisk
Start Date: Ending Date:	06-2272-0671 25 May-17 14:4 01 Jun-17 14:3 7d	45 P 0 S	rotocol: pecies:	Growth-Surviva EPA-821-R-02- Pimephales pro Aquatox, AR	013 (2002)		Anal Diluc Brin Age:	ent: No e: No	senia Jarami t Applicable t Applicable	llo	
Sample Code	Sample I	D S	ample Dat	e Receipt	t Date	Sample Ag	e Clier	nt Name	Pr	oject	
CE_0517PP_C CR-46R	01-7 7 48-		5 May-17 1 4 May-17 1		-17 14:45 -17 09:30	n/a (25 °C) 23h (2.6 °C)		lor Earth T	echnologi 27	493	
Sample Code	Material	Туре		Sample Sourc	e	Sta	tion Locati	on	Lat/Long		
CE_0517PP_C CR-46R	Ambient			Condor Earth T Condor Earth T	-		3QA -46R				
Single Compa Analysis ID 18-5513-3536	Endpoint			arison Method on Rank Sum T		e Test	P-Value 0.5000	<u> </u>	ison Result passed 7d su	ırvival rate	
7d Survival Ra Sample	ite Summary Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
CE_0517PP_C CR-46R		10 10	1.000 0.950	1.000 0.837	1.000 1.000	1.000 0.500	1.000 1.000	0.000 0.050	0.000 0.158	0.00%	0.00% 5.00%
7d Survival Ra	ite Detail										
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
CE_0517PP_C CR-46R	1 LW	1.000 1.000	1.000 1.000	1.000 1.000	1.000 1.000	1.000 1.000	1.000 1.000	1.000 1.000	1.000 0.500	1.000 1.000	1.000 1.000
7d Survival Ra	te Binomials										
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
CE_0517PP_C CR-46R	1 LW	2/2 2/2	2/2 2/2	2/2 2/2	2/2 2/2	2/2 2/2	2/2 2/2	2/2 2/2	2/2 1/2	2/2 2/2	2/2 2/2

CETIS Summary Report

Report Date: Test Code:

06 Jun-17 10:32 (p 1 of 1) 73186 | 10-3408-1661

Chronic Larval Fis	sh Survival a	and Gro	owth Test								Pacifi	c EcoRisk
Start Date: 25 M	7366-4774 May-17 14:45 Jun-17 14:30	5 F	Test Type: Protocol: Species:	EPA-821-6	rvival (7d) R-02-013 (2002 s promelas)		Analyst: Diluent: Brine:	Not	senia Jarami t Applicable t Applicable	llo	
Duration: 7d		S	Source:	Aquatox, A	AR			Age:	1			
Sample Code	Sample ID) 5	Sample Dat	te Re	ceipt Date	Sample	Age	Client N	ame	Pr	oject	
CE_0517PP_C1w CR-46R	19-2610-90 08-9972-53		25 May-17 1 24 May-17 1		May-17 14:45 May-17 09:30	n/a (25 ° 23h (2.6	,	Condor I	Earth Te	echnologi 27	493	
Sample Code	Material T	уре		Sample S	ource		Station L	ocation		Lat/Long		
							LABQA					
CE_0517PP_C1w	Ambient W				irth Technologi							
CE_0517PP_C1w CR-46R	Ambient W Ambient W				irth Technologi irth Technologi		CR-46R				10 LU	
	Ambient W				0			·····				
CR-46R Single Compariso	Ambient W		Comp		rth Technologi		CR-46R	alue C	ompari	son Result		
CR-46R Single Compariso	Ambient W n Summary point	/ater		Condor Ea	rth Technologi	es (CR-46R			son Result		ss-mg
CR-46R SIngle Compariso Analysis ID End 02-1797-2449 Mea	Ambient W n Summary point n Dry Bioma	/ater ss-mg		Condor Ea	thod	es (CR-46R					ss-mg
CR-46R Single Compariso Analysis ID End 02-1797-2449 Mea Mean Dry Biomas	Ambient W n Summary point n Dry Bioma	/ater ss-mg	Equal	Condor Ea parison Me Variance t	rth Technologi thod Two-Sample T	es (CR-46R	99 C				ss-mg %Effect
CR-46R SIngle Compariso Analysis ID End 02-1797-2449 Mea Mean Dry Biomas Sample	Ambient W n Summary point In Dry Bioma s-mg Summ	/ater ss-mg ary	Equal	Condor Ea parison Me Variance t	rth Technologi thod Two-Sample T	es (CR-46R P-V 0.51	99 C	R-46R	passed mean	n dry biomas	
CR-46R SIngle Compariso Analysis ID End 02-1797-2449 Mea Mean Dry Biomas Sample	Ambient W n Summary point n Dry Bioma s-mg Summ Code	/ater ss-mg ary Count	Equal Mean	Condor Ea parison Me Variance t 95%	Ith Technologi Two-Sample T LCL 95% UC 0.615	es (est L Min	CR-46R P-V 0.51 Max	99 C	R-46R	passed mear Std Dev	dry biomas	%Effect
CR-46R Single Compariso Analysis ID End 02-1797-2449 Mea Mean Dry Biomass Sample CE_0517PP_C1w	Ambient W n Summary point n Dry Bioma s-mg Summ Code LW	/ater ss-mg ary Count 5	Equal Mean 0.544	Condor Ea parison Mer Variance t 95% 0.472	Ith Technologi Two-Sample T LCL 95% UC 0.615	es (est <u>L Min</u> 0.473	CR-46R P-V 0.51 Max 0.59	99 C	R-46R td Err 0256	Std Dev	CV% 10.54%	%Effect 0.00%
CR-46R Single Compariso Analysis ID End 02-1797-2449 Mea Mean Dry Biomass Sample CE_0517PP_C1w CR-46R	Ambient W n Summary point n Dry Bioma s-mg Summ Code LW	/ater ss-mg ary Count 5	Equal Mean 0.544	Condor Ea parison Mer Variance t 95% 0.472 0.465	rth Technologi thod Two-Sample T _CL 95% UC 0.615 0.626	es (est <u>L Min</u> 0.473	CR-46R P-V 0.51 Max 0.59	99 C	R-46R td Err 0256	Std Dev	CV% 10.54%	%Effect 0.00%
CR-46R Single Compariso Analysis ID End 02-1797-2449 Mea Mean Dry Biomass Sample CE_0517PP_C1w CR-46R Mean Dry Biomass	Ambient W n Summary point n Dry Bioma s-mg Summ Code LW s-mg Detail	/ater ss-mg ary Count 5 5	Equal Mean 0.544 0.545	Condor Ea parison Mer Variance t 95% 0.472 0.465	rth Technologi thod Two-Sample T _CL 95% UC 0.615 0.626	est L Min 0.473 0.44	CR-46R P-V 0.51 Max 0.59	99 C	R-46R td Err 0256	Std Dev	CV% 10.54%	%Effect 0.00%

	h Survival	and Growt					rest	Code:	00011		6-2518-2307
Analyzed: 06 J			h Test							Pacif	fic EcoRisk
Data Transform	i513-3536 lun-17 10:3			Survival Rat	e Two Sample	9		S Version: ial Results		.9.2	
Sata manaronni		Alt Hyp					Comparis	on Result			PMSD
Angular (Corrected)		C > T					CR-46R p	assed 7d si	urvival rate		17.75%
Wilcoxon Rank Sur	m Two-Sar	nple Test									
Sample I vs	Sample II		Test Stat	Critical	Ties DF	P-Type	P-Value	Decision	(α:5%)		
Lab Water Control	CR-46R		100	n/a		Exact	0.5000		ificant Effect		
ANOVA Table											
Source	Sum Squ	ares	Mean Squ	aro	DF	F Stat	P-Value	Decision	(a·5%)		
Between	0.0089901		0.0089901		1	1	0.3306		ficant Effect		
Error	0.161822		0.0089901		18		0.0000				
Total	0.170812				19						
Distributional Tests	5	· · · · · · · · · · · · · · · · · · ·									<u> </u>
Attribute	Test				Test Stat	Critical	P-Value	Decision	(α:1%)		
Variances	Variance F	Ratio F Tes	t		3.8E+13	6.54	<1.0E-37	Unequal \			
Distribution	Shapiro-W	/ilk W Norm	nality Test		0.405	0.866	4.9E-08	•	nal Distributi	on	
7d Survival Rate Su	ummary										
Sample	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
CE_0517PP_C1	LW	10	1.000	1.000	1.000	1.000	1.000	1.000	0.000	0.00%	0.00%
CR-46R		10	0.950	0.837	1.000	1.000	0.500	1.000	0.050	16.64%	5.00%
Angular (Corrected)) Transfori	med Summ	nary								
Sample	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
CE_0517PP_C1	LW	10	1.21	1.21	1.21	1.21	1.21	1.21	0	0.00%	0.00%
CR-46R		10	1.17	1.07	1.26	1.21	0.785	1.21	0.0424	11.49%	3.51%
Graphics											
1.0			7////	777.		0.05					9
0.9	0					0.00	0-0-0				
0.8			•			-0.05					
0.7						_					
					Centered	-0.10					
0.6 2					ຮັ	6 -0.15					
atel D Sinvival Rate D S 0.4			L			-0.20					
ng 0.4						l.					
0.3						-0.25					
0.2						-0.30		1			
						-0.35		E a			
0.1											
0.0	CE_0517PP_C1	·l	CR-46R			-0.40 -2.0	-1.5 -1.0	-0.5 0.0	0.5 1.0	1.5	2.0

Analyst: D QA: SV V

CETIS Analyti	cal Repo	ort					-	ort Date: Code:	06		32 (p 1 of 1 0-3408-166
Chronic Larval Fi	sh Survival	and Grow	th Test							Pacif	ic EcoRisk
	1797-2449 Jun-17 10:3		•	an Dry Biom rametric-Two	-			IS Versior al Result		.9.2	
Data Transform		Alt Hyp					Comparis	son Resul	t		PMSD
Untransformed		C > T							an dry bioma	ss-mg	13.23%
Equal Variance t	wo-Sample	e Test									
Sample i vs	Sample II		Test Stat	Critical	MSD DF	P-Type	P-Value	Decisio	n(α:5%)		
Lab Water Control	CR-46R		-0.0516	1.86	0.072 8	CDF	0.5199		nificant Effec	t	
ANOVA Table		· · · · · ·									
Source	Sum Squa	ares	Mean Squ	uare	DF	F Stat	P-Value	Decisio	n(α:5%)		
Between	9.943E-06	;	9.943E-06	3	1	0.00266	0.9601	Non-Sig	nificant Effect	t	
Error	0.0299244	1	0.0037400	6	8						
Total	0.0299344	1			9						
Distributional Tes	ts										
Attribute	Test				Test Stat	Critical	P-Value	Decisio	n(a:1%)		
Variances	Variance F	Ratio F Tes	st		1.28	23.2	0.8162	Equal V			
Distribution	Shapiro-W	/ilk W Norn	nality Test		0.858	0.741	0.0723	Normal	Distribution		
Mean Dry Biomas	s-mg Summ	nary									
Sample	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
CE_0517PP_C1w	LW	5	0.544	0.472	0.615	0.58	0.473	0.59	0.0256	10.54%	0.00%
CR-46R		5	0.545	0.465	0.626	0.557	0.44	0.6	0.029	11.88%	-0.37%
Graphics											
6.0	1977 197 10 Articlescon Art	3				0.06					
		1	1.1.101			0.04					
0.5 -									•		
	n an ann an Anna an Ann			Reject Null		0.02					
0.4					Centered	0.00					
5 41-5					Centr	-0.02		•			
						5					
						-0.04					
AG 10 10 10 10 10 10						-0.06					
						0.05	•				
						- 80.0-					
0.1						-0.10	•				
0.0	4 400 - 140 - General and				_1	-0.12	-1.5 -1.0	-0.5 0.	0 0.5 1.	0 15	2.0
	CE_0517PP_C1w		CR-46F					0.			

•

Analyst: <u>V</u> QA: <u>SNV</u>,

	Client:		Condor	· Earth - St	ockton		Org	ganism	Log#:	103	19	Age:	2	-48	=hr	5	
	Test Material			CR-46R			Organi					· ^	ĩ.h.c				
		73		Project #:	27	493	-					/	EPA	MH			
	Test Date:	1. The second		5725	717-		- Control				T	988	9 7				
				- 1													
	Treatment (%)	Temp (°C)	р	н	D.O. ((mg/L)	Conductivity				# 1	Live O	rganisi	ns			
	reatment (10)	remp (C)	New	Old	New	Old	(µ\$/cm)	, A	В	С	D	Е	F	G	н	I	J
	Control	20.0	0.03		<i>д.</i> З		306	-2	2	2	2	2	2	2	Ζ	2	2
0	100	25.0	2.10		9.9		158	V	2	2	2	2	2	2	2	Z	2
Day	Meter ID	31A	0+121		POII		E104										
	Date: 5 25 7	Sample ID: 46589	Test Solution	Prep:	New WQ: IA	•••••			•••••••		1 4			Initiatio	n Sign-oj V	<i>[</i> :	
	Control	24.6	7.49	7.86	8.5	8.2	305	2	2	2	2	2	2	2	2	2	2
	100	24.8	7.67	7.72	9.9	4.2	16.3	2	2	2	2	2	2	2	2	2	2
Day	Meter ID	A18	PH19	PHIG	6012	POFEEtt	ECII			Ì							
	Date:	Sample ID:	Test Solution	Prep:	New WQ:	Old WQ:					Renewal	Time:		Renewa	l Sign-of	2	
	5-26-17	46589	BV	7 010	jw	ARÍ					400			11			
	Control 100	25.7	7.97 7.93	7.20	8.3	5.1	313	3	2	2	2	2	2	2	8	2	2
Day 2	Meter ID	26.0 72A		7.39	9.1	5.5	164 ECO4	2	2	2	2	2	2	\mathcal{L}	2	2	2
Ä	Date:	Sample ID:	1H23 Test Solution	0H23 Prep:	RD12 New WQ:	RD12 Old WQ:					Renewal	Time:		Renewal	Sign-of	6	
	5/27/17	46589	TK		МВ	MB		•••••	•••••		350			J			
	Control	25.6	8.2	7.39	8.5	5.4	314	2	2	2	2	2	2	2	2	2	2
3	100	25.8	808	7.43	10.7	5.6	167	2	2	2	2	2	2	2	i	2	2
Day	Meter ID	1004	PH23	PH19	RDIO	RDII	EC04										
	Date: 5 28 17	Sample ID:	Test Solution	Prep:	New WQ:	Old WQ:					Renewal	*********		Renewal		2	
	Control	<u>46589</u> 25.7	7.22	767	8.4	TA	210	2	2	2	<u>130</u> 7				K		1
	100	25.7	7.30	7.53	10.1	5.2	310 171	2	2	2	2	2	7	2	4	Z 7.	2
Day 4	Meter ID	1004	1421	01123	RDIO	RPII	ECIU	L		C		C			(
	Date:	Sample ID:	Test Solution	Prep:	New WQ:	Old WQ:					Renewal	Time:		Renewal	Sign-of	<u></u>	
	5/29/17	46539	8V-		JL	JL					130	>		. –	TK.		
	Control	25.1	7,90	7.49	8.4	1F5/10/17 5-61	305	2	2	2	2	2	2	2	2	2	Z
y 5	100	25.3	7.82	7.57	10.1	6.3	169	2	2	2	2	Z	2	2	1	2	2
Day	Meter ID Date:	98A Sample ID:	PH23 Test Solution	PH23	RD / I New WQ:	RDII	EC04										
	5/30/17	46589	Test solution	<i>1 rep.</i>	TF	old WQ: TF			•••••		Renewal	Time:		Renewal <	Sign-off		
F	Control	25.2	7.59	7.55	812	6.0	327	2	2	2	2	2	2	2	2	2	2
9	100	25.3	7.72	7.67	10,1	6.5	171	2	N	n	2	2	n	2	,	2	2
Day	Meter ID 53	465 100H	PHZI	PHIA	PDII	RDag	5011										
		Sample ID:	Test Solution	Prep:	New WQ: ARF-	Old WQ:					Renewal			Renewal	Sign-off	;	
┝─┤	Control	46589		7-660		6B	3235/31	2	2.	2	2	2	Z		PF 7	2	Z
	100	25.4		7-678		C. OSIA	177.884	5	<u>ر</u> ۱	2	2	2	2	2	2	22	2
Day 7	Meter ID	81A		PH-19(500		R 20131	LCORGISI							\sim	-		Ť
	Date:					old WQ: SB SB					Terminat	ion Time	<u>1999</u>	Terminal	ion Sign	off:	
	6/1/17					555 513			<u> </u>		143	0		T	<u> </u>		

7 Day Chronic Fathead Minnow Toxicity Test Data

53 5131

tample:	Condor Earth - S CR-46R	Tare V	Test ID #: 73 Weight Date: $5 - 29 - 1$	Sign-off:	27493 <u> </u>
lest Date:	<u>s/as/17</u>	Final V	Weight Date: <u>6/4/</u>	// Sign-off:	RB
Pan	Concentration Replicate	Initial Pan Weight (mg)	Final Pan Weight (mg)	Initial # of Organisms	Biomass Value (mg)
1	Control A+B	410.79	413.13	Ч	0.585
2	C+D	409.28	411.64	Ч	0.590
3	E+F	414.97	417.29	Ч	0.580
4	G+H	413.86	415.82	4	0.490
5	I+J	410.25	412.14	4	0.473
6	100% A+B	415.12	417.26	ч	0.535
7	C+D	412.60	414.83	ч	0.557
8	E+F	411.70	414.08	ч	0.595
9	G+H	413.17	414.93	4	0.440
10	I+J	410,63	413.03	2	0.600
QA 1		410.39	410.40	-	-
QA2		409.57	409.56	-	-
Balance ID		Baloy	BALOY		

Fathead Minnow Dry Weight Data Sheet

.