

MUNICIPAL UTILITIES • 2500 Navy Drive • Stockton, CA 95206 • 209-937-8700 www.stocktongov.com

October 1, 2018

Ms. Elizabeth Lee, Unit Chief Municipal Storm Water Permitting Unit Central Valley Regional Water Quality Control Board 11020 Sun Center Drive, Suite 200 Rancho Cordova, CA 95670-6114

CITY OF STOCKTON AND COUNTY OF SAN JOAQUIN STORM WATER MANAGEMENT PROGRAMS 2017-2018 ANNUAL REPORT (ORDER NO. R5-2016-0040, NPDES PERMIT NO. CAS0085324)

Dear Ms. Lee:

For your review and consideration, the City of Stockton (City) and County of San Joaquin (County) are jointly submitting this 2017-2018 Annual Report, in accordance with the National Pollutant Discharge Elimination System Permit (NPDES) and Waste Discharge Requirements (WDR) General Permit for Discharges from Municipal Separate Storm Sewer Systems (MS4) (General Permit), Part V.F.4. The report reflects all storm water activities conducted during Fiscal Year 2017-2018.

A copy has been submitted to centralvalleysacramento@waterboards.ca.gov.

If you have any questions, please contact Jason Farnsworth of City of Stockton at (209) 937-8155 or Jason.Farnsworth@stocktonca.gov or Brandon Nakagawa of San Joaquin County at (209) 468-3089 or BNakagawa@sigov.org.

Sincerely,

CITY OF STOCKTON JASON FARNSWORTH

STORMWATER PROGRAM MANAGER III

COUNTY OF SAN JOAQUIN BRANDON W. NAKAGAWA, P.E.

WATER RESOURCES COORDINATOR

Attachments: 2017-2018 Annual Report

Cc: Karen Ashby, Larry Walker Associates

CITY OF STOCKTON & COUNTY OF SAN JOAQUIN

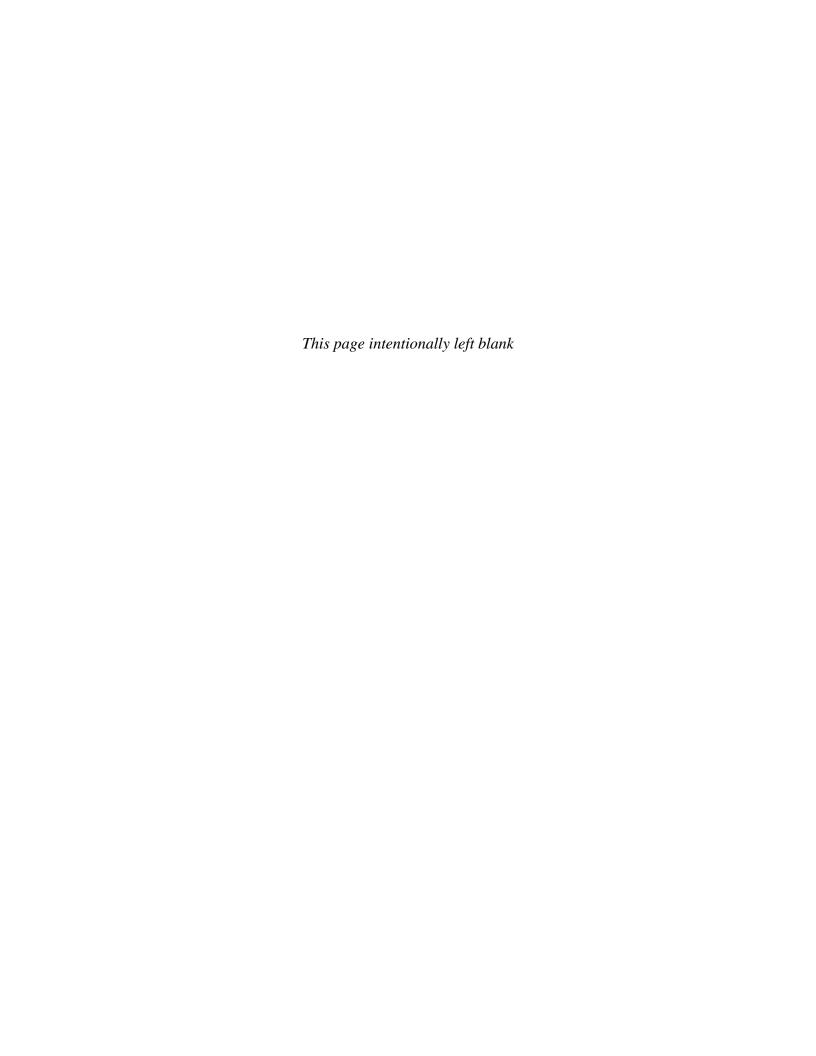
National Pollutant Discharge Elimination System (Order Nos. R5-2016-0040-002 and R5-2016-0040-003) Municipal Stormwater Program 2017-2018 Annual Report

prepared by

LARRY WALKER ASSOCIATES

CERTIFICATION

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted.


Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of a fine and imprisonment for knowing violations.

Executed on the 28th day of September 2018, at the City of Stockton.

John Abrew

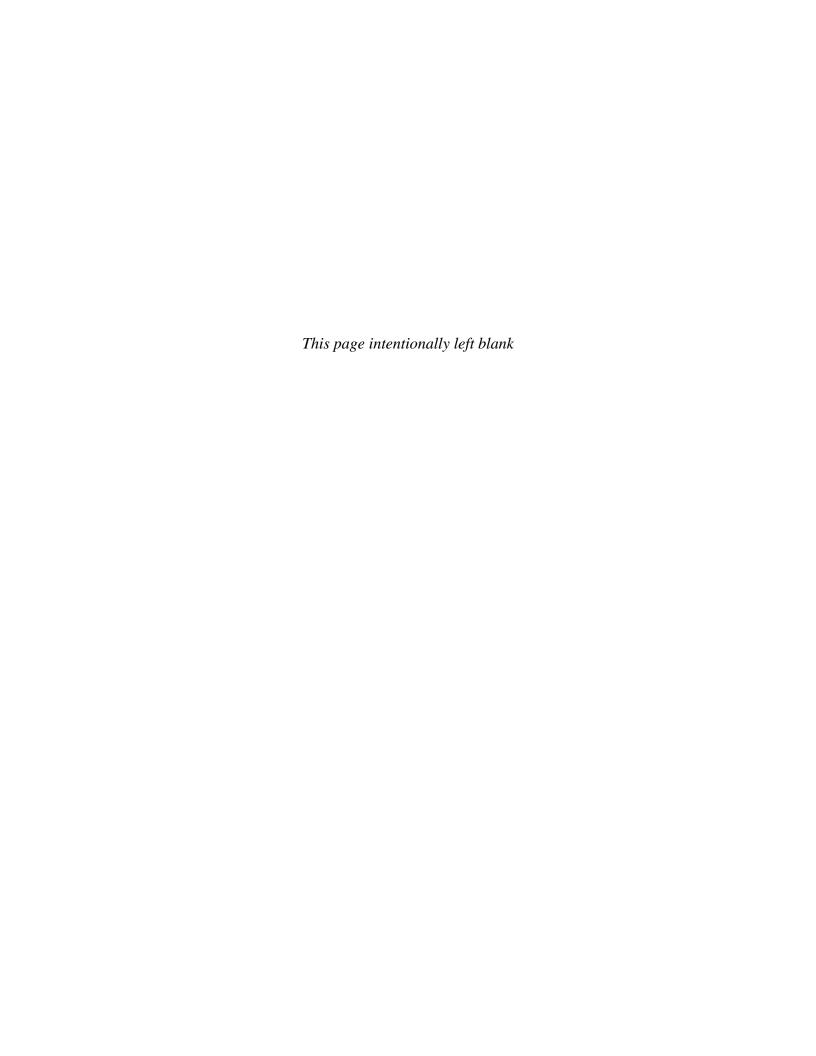
City of Stockton

Director of Municipal Utilities

CERTIFICATION

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted.

Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of a fine and imprisonment for knowing violations. [40 CFR 122.22(d)]


Executed on the 28th day of September, 2018, at the County of San Joaquin.

Brandon Nakagawa, P.E.

BlW. fr

County of San Joaquin

Water Resources Manager

Table of Contents

1.	Introdu	uction1
2.	Implen	nentation Statement3
3.	Annua	Expenditures and Projected Budget5
4.	Stormy	vater Quality Monitoring Program and Analysis of Monitoring Results7
	4.1 V	Vaterbody and Drainageshed Monitoring
	4.1.1	Storm Tracking and Selection
	4.1.2	Outfall and Receiving Water Monitoring
	4.1.3	Rainwater/Atmospheric Deposition Monitoring
	4.1.4	Sediment Toxicity and Sediment Chemistry
	4.1.5	Water Column Toxicity Monitoring
	4.2 D	Oata Quality Evaluation
	4.3 E	Pelta Regional Monitoring Program
	4.4 T	Total Maximum Daily Loads
	4.4.1	Sacramento-San Joaquin Delta Diazinon and Chlorpyrifos TMDL (Resolution R5-2006-0061)
	4.4.2	Central Valley Pesticide TMDLs
	4.4.3	Stockton Urban Water Bodies Pathogen TMDL (Resolution No. R5-2009-0030) 40
	4.4.4	Delta Methylmercury TMDL (Resolution No. R5-2010-0043)
	4.4.4	Lower San Joaquin River, Stockton Deep Water Ship Channel Organic Enrichment and Low Dissolved Oxygen TMDL (Resolution No. R5-2005-0005)
5.	Progra	mmatic Activities and Data
	5.1	Overview of Inspections, Enforcement Actions, and Public Education Programs 49
	5.1.1	Inspections
	5.1.2	Enforcement Actions
	5.1.3	Public Education Programs
6	Propos	ad Madifications 50

List of Tables

Table 1. Annual Reporting Schedule (Due Oct 1)
Table 2. Annual Report Requirements
Table 3. 2017-2018 Fiscal Analysis, City of Stockton
Table 4. 2017-2018 Fiscal Analysis, County of San Joaquin
Table 5. 2017-2018 Funding Sources, County of San Joaquin
Table 6. Staggered Waterbody Monitoring
Table 7. Duck Creek Monitoring Sites and Constituents Monitored
Table 8. 2017-2018 Monitoring Program Accomplishments
Table 9. Details of 2017-2018 Wet Weather Monitoring Events
Table 10. 2017-2018 Outfall and Receiving Water Monitoring Sites on Duck Creek
Table 11. Sites Sampled and Type of Sample Collected in 2017-2018
Table 12. Constituent Analysis for Outfall and Receiving Water Monitoring at Historical Sites 20
Table 13. Sediment Chemistry Constituents to be Monitored
Table 14. 2017-2018 Sediment Toxicity Results at Duck Creek
Table 15. Definitions of Commonly Used QA/QC Qualifiers and Instances of Application 38
Table 16. Methylmercury Control Study Schedule
Table 17. Data and Information Tracked Annually for Each Program Element

ii

Table of Figures

Figure 1. Duck Creek Monitoring Sites and Discharge Site Drainagesheds	. 9
Figure 2. 2017-2018 Precipitation at Stockton Metropolitan Airport and Captured Monitoring Events	
Figure 3. Duck Creek 2017-2018 E. coli and Fecal Coliform Concentrations (MPN/100 mL)	25
Figure 4. Duck Creek 2017-2018 Chlorpyrifos Concentrations (ng/L)	26
Figure 5. Duck Creek 2017-2018 Pyrethroid Concentrations (ng/L)	27
Figure 6. Duck Creek 2017-2018 Total Mercury and Total Methylmercury Concentrations (ng/	-
Figure 7. Duck Creek 2017-2018 Dissolved Oxygen Concentrations (mg/L)	29
Figure 8. Rainwater/Atmospheric Deposition Monitoring Locations	31
Figure 9. 2017-2018 Rainwater/Atmospheric Deposition Monitoring Results	33

iii

List of Appendices

Appendix A. Work Plan as submitted November 1, 2016

Appendix B. 2017-2018 Monitoring Results

Appendix C. 2017-2018 Data Summary Tables

Appendix D. 2017-2018 Sediment Toxicity Results

Appendix E. 2017-2018 Water Column Toxicity Results

1. Introduction

A Stormwater Management Plan (SWMP) was developed for and is being implemented within the jurisdictional limits of the City of Stockton (City) and the urbanized areas of San Joaquin County (County)¹ covered by the Phase I National Pollutant Discharge Elimination System (NPDES) permit (Order Nos. R5-2016-0040-002 City and R5-2016-0040-003 County) area.² The SWMP represents the City and County strategy for controlling the discharge of pollutants from the municipal storm drain system to the Maximum Extent Practicable (MEP) and includes a wide range of Best Management Practices (BMPs).³

In accordance with Provision II of the NPDES Permit's Monitoring and Reporting Program (MRP), the City and County submitted a request to the Central Valley Regional Water Quality Control Board (Regional Water Board) for approval of an Alternative Monitoring Program (AMP). The City and County also requested to participate in the Delta Regional Monitoring Program (Delta RMP) in lieu of conducting some of the otherwise required local water quality monitoring. In 2015, the Regional Water Board Executive Officer approved both requests. As a result, the revised monitoring program was initiated during the 2015-2016 reporting period.

The fourth term, region-wide NPDES and Waste Discharge Requirements (WDR) General Permit for Discharges from Municipal Separate Storm Sewer Systems (MS4) (Region-wide Permit) was adopted June 23, 2016. The City and County submitted a Notice of Intent (NOI) application package in accordance with Part V.B.1 on November 1, 2016 and received the Notice of Applicability (NOA) from the Regional Water Board on November 30, 2016. The NOI package included the applicable forms, a preliminary prioritization approach, and a Work Plan that outlines how the current SWMP and modifications thereto will be implemented until such time as a new SWMP is approved by the Regional Water Board.

In addition, on May 30, 2017, the City and County submitted their Assessment and Prioritization of Water Quality Constituents in the Stockton Urbanized Area as well as the Preliminary Reasonable Assurance Analysis Outline. The City and County met with Regional Water Board staff in June 2017 and received written comments on July 2, 2018. The City and County will submit a revised document/addendum to the Regional Water Board by October 2, 2018.

The Region-wide Permit requires Annual Reports (Provision V.F.4), Mid-Term Reports, and End-Term Reports (Provision V.F.5). The Mid-Term and End-Term Reports serve as the Annual Report for the years submitted. Effectiveness assessments (Provision V.E.5) will be conducted as part of the Mid-Term and End-Term Reports. A summary of the annual reporting schedule is provided in **Table 1**.

¹ This jurisdictional area is also referred to as the Stockton Urbanized Area (SUA).

² The SWMP was approved by the Central Valley Regional Water Quality Control Board on October 9, 2009 (Resolution R5-2009-0105).

³ The primary objective of the AMP is to focus on Pollutants of Concern (POCs) and implement an intensive monitoring approach to determine the source(s) of pollutants in urban discharges.

⁴ City of Stockton under Order No. R5-2016-0040-002; County of San Joaquin Order under No. R5-2016-0040-003.

Table 1. Annual Reporting Schedule (Due Oct 1)

Permit/Fiscal Year	Report Type & Reporting Period
Year 1 (2016-2017)	Annual Report (2016-2017) Complete
Year 2 (2017-2018)	Annual Report (2017-2018)
Year 3 (2018-2019)	Mid-Term Report (2016-2019)
Year 4 (2019-2020)	Annual Report (2019-2020)
Year 5 (2020-2021)	End-Term Report (2016-2021)

The 2017-2018 Annual Report is being submitted in accordance with Region-wide Permit Provision V.F.4 and includes the items listed in **Table 2**.

Table 2. Annual Report Requirements

Report Requirement	Location in Annual Report
(a.i) A statement certifying that the Storm Water Management Program and Work Plan were implemented as approved.	Section 2
(a.ii) A summary of activities and tasks scheduled to be implemented in the upcoming year. If the Work Plan is still being implemented as described from the previous year, the Permittee may refer to the Work Plan.	Section 2
(a.iii) Any proposed minor modifications to the Storm Water Management Program; or any proposed Work Plan Modification.	Section 6
(a.iv) A completed certification statement, in accordance with the signatory requirements in Attachment H (Standard Permit Provisions and General Provisions).	Certification Statements
(c) Provision of water quality data collected.	Appendix C
(d) Additional requirements described in 40 CFR 122.42(c) (Attachment H, Standard Permit Provisions and General Provisions)	Certification Statements Section 3 Section 4 & Appendix B, D Section 5

2. Implementation Statement

The City and County have developed a comprehensive approach for managing the implementation of the stormwater program within the SUA and continue to implement the program consistent with the intent of the 2009 SWMP (and modifications thereto) and as described by the Work Plan submitted to (and as approved by) the Regional Water Board as a part of the NOI application package.

During 2017-2018, the City and County implemented the stormwater program within the SUA consistent with the intent of the SWMP and as outlined by the Work Plan submitted with the NOI package in November 2016 and included as **Appendix A**. In 2018-2019, the City and County will continue to implement the stormwater program with the SUA as outlined by the Work Plan.

3. Annual Expenditures and Projected Budget

The City and County assessed the current NPDES expenditures, as well as the projected expenditures for the next fiscal year. The City's fiscal analysis is provided in **Table 3**; the County's fiscal analysis is provided in **Table 4**.

Table 3. 2017-2018 Fiscal Analysis, City of Stockton

Program Element	Expenditures During Fiscal Year 2017-2018	Estimated Budget for Fiscal Year 2018-2019 ^[a]
Program Management: Staff salaries, utility billing, phone charges, computer software/rentals, memberships, permit fees, indirect cost allocations, training, consultant contracts	\$1,478,952	\$2,579,818
Public Outreach : Staff salaries, industrial, commercial, and residential programs, including media and community events	\$4,008	\$18,858
Municipal Operations: Staff salaries, CIPs, and Storm Drain System Cleaning and Maintenance (includes Illicit Discharges, illegal connections mitigation, and clean-up) ^[b]	\$2,948,593	\$3,961,545
Industrial and Commercial: Staff salaries, inspections, and follow-up inspections ^[c]	\$3,281	\$10,500
Construction: Staff salaries, outreach ^[d]	\$3,281	\$10,500
Planning and Land Development: Staff salaries	\$73,639	\$51,544
Water Quality Monitoring Programs: Includes Baseline Monitoring Program, Bioassessment Analysis, Dry Weather Field Screening, Smith Canal Bathymetry Study, Detention Basin Monitoring, BMP Effectiveness Study, Sediment Toxicity, Smith Canal/Mosher Slough Low DO13267 Letter Monitoring	\$257,441	\$340,725
Water Quality Based Programs: Includes Pesticide, Pathogen, Mercury, and DO Work Plans and Implementation	\$54,998	\$75,096
TOTAL	\$4,824,191	\$7,048,586

[[]a] Annually, the City breaks the overall budget down into individual Program Element expenditures. The City has developed and is implementing a consistent methodology for tracking stormwater program expenditures.

The City's stormwater program is funded primarily by a storm drain maintenance or user fee. The fee is \$2.10/month per Equivalent Residential Unit.

[[]b] Facility Pollution Prevention Plans (FPPPs) are paid for out of Public Works budget and are not a Stormwater Expense.

[[]c] The Industrial and Commercial Inspection Program is conducted in-house by Stormwater and Environmental Control Staff. During the 2017-2018 reporting year, the City reorganized staffing positions to better align with permit objectives. During this process, the staff positions for inspector and project manager were vacant; therefore, there was no salary expenditure.

[[]d] During the 2017-2018 reporting year, the City reorganized staffing positions to better align with permit objectives. During this process, the staff position for construction site inspector was vacant; therefore, there was no salary expenditure.

Table 4. 2017-2018 Fiscal Analysis, County of San Joaquin

Program Element	Expenditures During Fiscal Year 2017-2018 ^[a]	Estimated Budget for Fiscal Year 2018-2019 ^[b]
Program Management	\$ 87,437	\$ 296,504
Illicit Discharges	\$ 10,670	\$ 36,181
Public Outreach	\$ 11,076	\$ 37,559
Municipal Operations ^[c]	\$ 53,184	\$ 180,347
Industrial and Commercial	\$ 34,213	\$ 116,019
Construction ^[d]	\$ 7,676	\$ 26,030
Planning and Land Development	\$ 12,344	\$ 41,859
Water Quality Monitoring Program	\$ 22,847	\$ 77,475
Water Quality Based Programs	\$ 1,987	\$ 6,737
Program Implementation, Assessment, and Reporting	\$ 149,549	\$ 507,128
TOTAL	\$ 390,983	\$ 1,325,839

[[]a] Actual expenditures for fiscal year 2017-2018 do not reflect the County's shared costs of co-permitee expenditures with the City of Stockton, therefore County expenditures in several program elements are understated.

The County's funding sources are summarized in **Table 5**.

Table 5. 2017-2018 Funding Sources, County of San Joaquin

Source	Funding for Fiscal Year 2017-2018, by Percentage	Estimated Funding for Fiscal Year 2018-2019, by Percentage
Assessment Fee/Special District Fund (Fee \$35/parcel)	76.41%	87.07%
Inspection/plan check fees	10.34%	6.98%
Miscellaneous Revenue – Interest Income		
Operating Transfers	9.56%	3.05%

The County's stormwater program is funded primarily by a storm drain maintenance or user fee assessed at \$35/year per Equivalent Residential Unit.

[[]b] Estimated budget for fiscal year 2018-2019 includes assumption of the payment of co-permittee costs to the City for current and past years.

[[]c] Expenditures for use of a second, new VacCon Truck for storm drain cleaning, a Stormwater expense, have been included in 2017-2018 reporting and are paid from the Road Maintenance budget.

[[]d] Responsibility for reviewing and implementing Storm Water Pollution Prevention Plan (SWPPP) Inspections for the San Joaquin County Road Projects were transferred to the Field Engineering division, which is responsible for construction activities for the department. Expenditures for reviewing and implementing SWPPPs were absorbed in the Field Engineering Division budget and were not available to report along with Stormwater expenses.

4. Stormwater Quality Monitoring Program and Analysis of Monitoring Results

The Region-wide Permit requires monitoring of urban runoff and receiving waters per Provision V.E. In accordance with Provision II of the MRP, the City and County received approval from the Regional Water Board in 2015 for conducting an Alternative Monitoring Program (AMP).⁵ The AMP is consistent with the proposed monitoring program from the Report of Waste Discharge,⁶ meets the objectives of the MRP, directs resources to the most critical water quality issues, and collects data to support management decisions to address those issues.

The primary objective of the AMP is to focus on Pollutants of Concern (POCs) and implement an intensive monitoring approach to determine the source(s) of pollutants in urban discharges. In addition to the AMP, the City and County were approved to participate in the Delta Regional Monitoring Program (Delta RMP) in lieu of conducting some of the local water quality monitoring.⁷

As a result, the revised monitoring program was initiated during the 2015-2016 reporting period. In addition, the AMP will continue to be implemented and will form the basis of the monitoring program that will be submitted as a part of the SWMP required by Order Nos. R5-2016-0040-002 and R5-2016-0040-003.

The monitoring program is a focused effort conducted within six (6) key water bodies on a rotating basis. The schedule for the staggered waterbody monitoring is shown in **Table 6**. Monitoring during 2015-2016 occurred on Mosher Slough and was reported in the 2015-2016 Stormwater Management Program Annual Report. During 2016-2017, monitoring occurred on the Calaveras River and was reported on in the 2016-2017 Stormwater Management Program Annual Report. During 2017-2018, monitoring occurred on Duck Creek and is reported in this Annual Report.

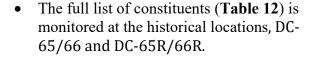
⁵ See City of Stockton and County of San Joaquin. Submittal of Alternative Stormwater Monitoring Program (Order No. R5-2015-0024). June 10, 2015; Central Valley Regional Water Quality Control Board. Approval of City of Stockton and County of San Joaquin's 27 October Alternative Monitoring Program. 4 November 2015.

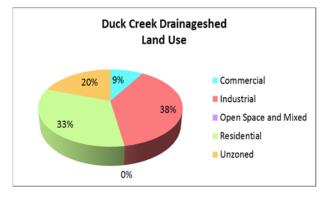
⁶ National Pollutant Discharge Elimination System Municipal Stormwater Program – *Report of Waste Discharge & Proposed Stormwater Management Plan*, June 2012 (Section 2.7; Tables 2-42, 2-43, 2-44, 2-45, 2-46, and 2-47).

⁷ Central Valley Regional Water Quality Control Board. Approval to Allow the City of Stockton and County of San Joaquin to Reduce Local Water Quality Monitoring and Participate in the Delta Regional Monitoring Program. 4 November 2015.

Table 6. Staggered Waterbody Monitoring

Waterbody	2015-2016	2016-2017	2017-2018	2018-2019	2019-2020	2020-2021
Mosher Slough ^[a]						
Calaveras River ^[a]						
Duck Creek ^[a]						
Smith Canal ^[a]						
Mormon Slough						
Five-Mile Slough						


[[]a] Historical monitoring location


4.1 WATERBODY AND DRAINAGESHED MONITORING

Duck Creek/Walker Slough (Duck Creek) is located in the southern portion of the SUA. Duck Creek originates in Stanislaus County and meanders westward before ending just south/southwest of downtown Stockton. East of the SUA, Duck Creek flows through predominantly open space and agricultural land use areas. Between El Dorado Street and I-5, Duck Creek drains into Walker Slough, which continues approximately 700 feet west to its confluence with French Camp Slough. From this convergence point, Walker Slough extends approximately 600 feet west to its confluence with the San Joaquin River.

Duck Creek is a mixed-use watershed with residential, commercial, and industrial land uses. Duck Creek receives inputs from groundwater, tidal exchange, urban runoff, and agricultural runoff and return flows (tailwater).

Monitoring sites are shown in **Figure 1**. The constituents monitored at each site are identified in **Table 7**.

- Monitoring at other locations is focused on the POCs within the Duck Creek drainageshed, which include:
 - o Indicator bacteria (E. coli and fecal coliform);
 - o Pesticides (chlorpyrifos and pyrethroids);
 - Mercury and methylmercury; and
 - Dissolved oxygen (DO).

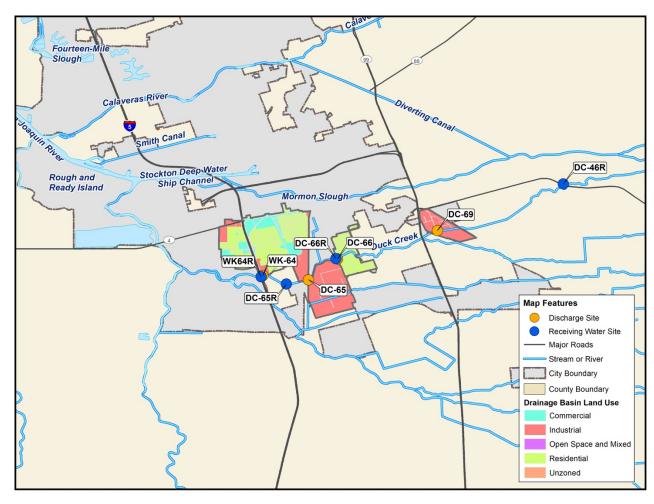


Figure 1. Duck Creek Monitoring Sites and Discharge Site Drainagesheds

Table 7. Duck Creek Monitoring Sites and Constituents Monitored

Constituents Manitoned	Monitoring Type	Sites Monitored							
Constituents Monitored		DC-46R	DC-69	DC-66ª	DC-66Rª	DC-65 ^{b,c}	DC-65Rb,c	WK-64	WK-64R
Full suite of constituents (Table 12)	Water quality					С	G		
E. coli & fecal coliform	Water quality	G	G	G	G			G	G
Chlorpyrifos and pyrethroids	Water quality	G	G	G	G			G	G
Mercury (and methylmercury)	Water quality	G	G	G	G			G	G
DO & biological oxygen demand (BOD)	Water quality	G	G	G	G			G	G
Sediment toxicity & sediment chemistry ^[d]	Sediment								Sed
Water column toxicity	Water column				G		G		

G = Grab

C = Composite

Sed = Sediment

S = Sonde

- [a] These sites are monitored during dry weather only
- [b] Historical Monitoring Site
- [c] These sites are monitored during wet weather only
- [d] Follow-up testing of sediment chemistry will be performed if toxicity is determined to be statistically significant and a greater than or equal to 50% increase in Hyalella azteca mortality is observed.

Monitoring activities completed during 2017-2018 are summarized in **Table 8**. Monitoring efforts and results for these POCs are presented in the following sections.

Table 8. 2017-2018 Monitoring Program Accomplishments

Monitoring Program Activity	Status					
Waterbody/Drainageshed Monitoring (Section 4.1)						
	 3 wet weather events monitored at 3 urban discharge^[a] and 2 receiving water sites 					
Outfall and Receiving Water Monitoring (Section 4.1.2)	 4 dry weather events monitored at 3 urban discharge^[b] and 2 receiving water sites 					
	3 wet weather event and 4 dry weather events monitored at 1 upstream site					
Rainwater/Atmospheric Deposition Monitoring (Section 4.1.3)	Rainwater monitored at 3 locations during 3 wet weather events					
Sediment Toxicity and Sediment Chemistry (Section 4.1.4)	1 wet weather event and 2 dry weather events monitored for sediment toxicity (WK-64R)					
Water Column Toxicity (Section 4.1.5)	 1 wet weather event monitored at the historical monitoring location (DC-65R) Historical monitoring location (DC-66R) was dry 					
(0000011 4.1.0)	during the targeted dry weather event					

Note:

4.1.1 Storm Tracking and Selection

Monitoring of stormwater runoff is a key component of the monitoring program⁸ and requires a high level of coordination of equipment and field crews. Incoming storms are tracked and assessed against storm selection criteria (e.g., amount of precipitation, days since last rain event, duration of event) and the forecasted reliability that the storm will occur in the SUA. Wet weather monitoring is particularly challenging in the SUA, as rainfall forecasts are often unreliable due to the convective nature of incoming storms. In addition, because storms normally intersect Stockton traveling from the west to the east, it is not unusual for northern Stockton to receive substantial rainfall, while southern Stockton remains dry, or vice versa.

Wet weather events are timed to capture urban runoff impacts with the highest possible representation of the targeted storm event (i.e., high percent capture), using flow-based composite samplers at urban discharge stations when possible. Grab sampling techniques, which are, when feasible, conducted near the peak of storm event hydrographs, are used at all receiving water stations. Due to standard method requirements, grab sampling is used for the following constituents when monitored:

- Oil and grease;
- Indicator bacteria:

a. Sites DC-65 and DC-65R are only monitored during wet weather

b. Sites DC-66 and DC-66R are only monitored during dry weather

⁸ The Regional Permit defines the "monitoring year" as October 1 – September 30. Monitoring events are reported for the fiscal year, due to the time needed for data reporting and processing.

- Pesticides; and
- Mercury/methylmercury.

The daily total rainfall at the Stockton Metropolitan Airport⁹ during the 2017-2018 monitoring year is shown in **Figure 2**. The total cumulative seasonal rainfall (relative to the historical average¹⁰) and monitoring event timing are also shown. Historical average annual rainfall at the Stockton Metropolitan Airport is 14 inches. The 2017-2018 monitoring year had below-average precipitation with 9.22 inches of rain, which is 66% of historical annual rainfall. Although the 2017-2018 wet season was drier than average, the California Department of Water Resources classified the 2017 water year (ending September 30, 2017) as "wet" for the San Joaquin Valley.¹¹ The 2018 water year classification is yet to be determined.

⁹ https://cdec.water.ca.gov/cgi-progs/queryCSV?station_id=SOC&sensor_num=45&dur_code=D&start_date=7%2F1%2F2016&end_date=6%2F3 0%2F2017&data_wish=View+CSV+Data

¹⁰ Based on 1981-2010 data. http://www.cnrfc.noaa.gov/awipsProducts/RNOWRKCLI.php

¹¹ http://cdec.water.ca.gov/cgi-progs/iodir/WSIHIST

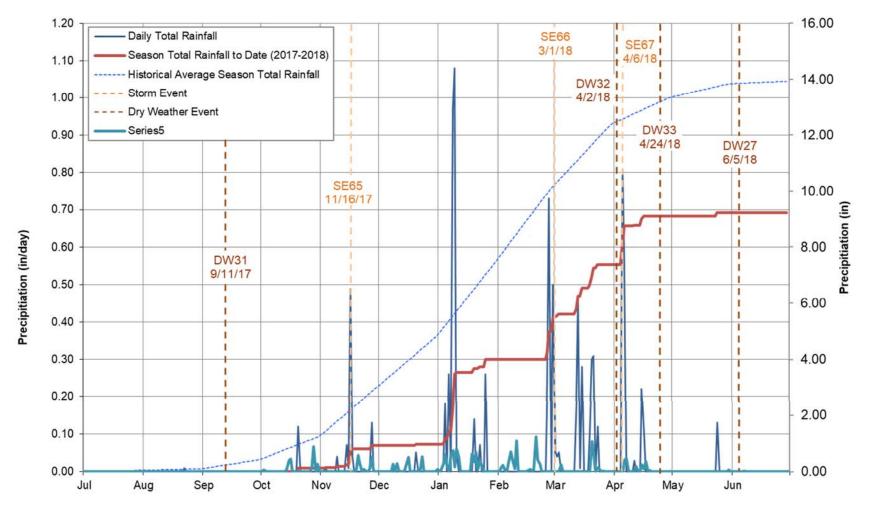


Figure 2. 2017-2018 Precipitation at Stockton Metropolitan Airport and Captured Monitoring Events

4.1.1.1 Details of 2017-2018 Wet Weather Monitoring Events

Each monitoring event is unique in terms of the antecedent weather conditions, flow in the receiving waterbody, field conditions, etc. Runoff quality is particularly influenced by the amount and intensity of rainfall and time of sampling with respect to the rainfall hydrograph. The conditions for wet weather events conducted during 2017-2018 are summarized in **Table 9**.

Table 9. Details of 2017-2018 Wet Weather Monitoring Events

Storm Events ^[a, b]	SE65 11/16/17	SE66 03/01/18	SE67 04/06/18
Time of first rain	11/15/2017 23:00	3/1/2018 2:00	4/6/2018 3:00
Time of last rain	11/16/2017 20:00	3/1/2018 15:00	4/7/2018 7:00
Total rain (in)	0.76	0.72	1.68
Antecedent Conditions			
Date of last precipitation	11/13/2017	2/26/2018	3/24/2018
Date of last storm > 0.1	10/20/2017	2/26/2018	3/22/2018
Days since last storm	3	3	13
Date of last storm > 0.25	4/16/2017	2/26/2018	3/22/2018
Days since last storm	214	3	15
Cumulative rainfall to date (in)	1.08	6.24	10

[[]a] Precipitation data are collected at the Stockton Metropolitan Airport, available at: http://mesowest.utah.edu/cgi-bin/droman/download ndb.cgi?stn=KSCK&year1=2014&day1=19&month1=6&hour1=&timetype=LOCAL&unit=0

[[]b] Per the AMP approved by the Regional Water Board, rainfall events of 0.15" - 0.25" are targeted for the monitoring program.

4.1.2 Outfall and Receiving Water Monitoring

The monitoring program includes urban discharge outfall and receiving water monitoring. Urban discharge outfall monitoring characterizes the quality of urban runoff discharged from four storm drain outfalls along Duck Creek. In addition, receiving water monitoring characterizes the quality of the receiving waters within the SUA. Three receiving water sites were sampled downstream of the urban discharge sites. The co-located sites are used to help determine if the urban discharge is causing or contributing to in-stream exceedances of applicable water quality objectives.

One additional upstream site (upstream of the SUA boundary) was sampled in order to characterize the quality of water entering the SUA. The upstream receiving water site is intended to be as close to the boundary of the SUA as possible.

Monitoring sites sampled in 2017-2018 are shown in **Table 7**.

- Urban discharge sites are labeled with a station and number code (e.g., DC-65).
- Receiving water sites are labeled with an "R" for receiving water (e.g., DC-65R).

The outfall and receiving water monitoring sites and predominant land uses are summarized in **Table 10.**

Table 10. 2017-2018 Outfall and Receiving Water Monitoring Sites on Duck Creek

Site Type	Station ID	Monitoring Site Description	Predominant Land Use	Drainage Area (acres)
Urban Outfall	DC-69	Duck Creek/Stagecoach Road Bridge - NW side	Industrial	259
	DC-66 ^[a]	Duck Creek/Airport Way Bridge - SE side	Mixed-use	316
	DC-65 ^[b]	Composite Sampler, Corner of Zephyr Street and Producers Drive	Industrial	597
	WK-64	Manthey/Turnpike Road Pump Station	Mixed-use	1491
Receiving Water	DC-66R ^[a]	Downstream of DC-66 Discharge Outfall - west side of Airport Way Bridge	Mixed-use	NA
	DC-65R ^[b]	Duck Creek/Odell Avenue Overcrossing	Industrial	NA
	WK-64R	Downstream of WK-64 Discharge Outfall - west of I-5; samples generally collected from north side of undercrossing	Mixed-use	NA
Upstream Receiving Water	DC-46R ^[c]	Duck Creek/Farmington Road Bridge	Agricultural	NA

NA = not applicable

[[]a] These sites are monitored during dry weather only.

[[]b] These sites are monitored during wet weather only.

[c] DC-46R replaced DC-65RUS as the upstream sampling location for Duck Creek starting during 2017/2018, as it is more representative of upstream influence.

Monitoring is generally conducted during three wet weather events and four dry weather events each year. During 2017-2018, monitoring was completed at each urban discharge and receiving water site three times during the wet season and four times during the dry season. The timeline of the events is shown in **Figure 2**. The sites that were sampled during each event are listed in **Table 11**. Wet weather events (labeled "SE" for storm event) and dry weather events (labeled "DW" for dry weather) are numbered sequentially from the initiation of monitoring wet weather and dry weather events (in 1992 and 2004, respectively).

Table 11. Sites Sampled and Type of Sample Collected in 2017-2018

Site Type	Station ID	DW31	SE65	SE66	DW32	SE67	DW33	DW34
		09/11/17	11/16/17	03/01/18	04/02/18	04/06/18	04/24/18	06/05/18
Urban Discharge	DC-69	G	G	G	G	G	G	G
	DC-66 ^[a]	G	NS ^[a]	NS ^[a]	G	NS ^[a]	G	G
	DC-65 ^[b]	NS ^[b]	G ^[c]	$G^{[c]}$	NS ^[b]	С	NS ^[b]	NS ^[b]
	WK-64	G	G	G	G	G	G	G
Receiving Water	DC-66R ^[a]	NS ^[d]	NS ^[a]	NS ^[a]	NS ^[d]	NS ^[a]	NS ^[d]	NS ^[d]
	DC-65R ^[b]	NS ^[b]	G	G	NS ^[b]	G	NS ^[b]	NS ^[b]
	WK-64R	G	G	G	G	G	G	G
Upstream Receiving Water	DC-46R	G	NS ^[d]	G				

C = Composite

4.1.2.1 Monitored Constituents and Analytical Methods

The constituents and corresponding analytical methods for urban discharge and receiving water monitoring comply with the Method Detection Limits (MDLs) specified in the monitoring program. During the 2017-2018 events, samples at the historical sites (DC-65/DC-66 and DC-65R/DC-66R) were analyzed for the constituents shown in **Table 12**. Samples at all other sampling locations on Duck Creek were analyzed for a targeted set of constituents, based on POCs identified in the 2012 ROWD, as shown in **Table 7**.

G = Grab

S = Sonde

NS = Not sampled

[[]a] This location is only sampled during dry weather.

[[]b] This location is only sampled during wet weather.

[[]c] Insufficient flow at composite intake. Sample collected as grab.

[[]d] Lack of representative upstream flow / dry channel.

Table 12. Constituent Analysis for Outfall and Receiving Water Monitoring at Historical Sites

Constituents	Method Detection Limits (MDLs)	WQO(s) ¹²	WQO Source
Conventional Pollutants	mg/L		
Oil and Grease	5	Narrative ^[a]	Basin Plan ^[b]
pH	0-14	6.5-8.5	Basin Plan
Dissolved Oxygen	Sensitivity to 5 mg/L	>5-6 ^[c]	Basin Plan
Field Measurements			
Date	mm/dd/yyyy		
Sample Time	hr:min (regular time)		
Weather	degrees F		
Water Temperature	degrees C		
Bacteria	MPN/100 mL		
Fecal coliform	<20	400	Basin Plan
E. coli	<20	235 ^[d]	Basin Plan
General	mg/L		
Turbidity	0.1 NTU		
Total Suspended Solids	2		
Total Dissolved Solids	2	1,000 – 1,500	Secondary MCL (Basin Plan)
Total Organic Carbon	1		
Biochemical Oxygen Demand	2		
Chemical Oxygen Demand	20-900		
Total Kjeldahl Nitrogen	0.1		
Alkalinity	2		
Total Ammonia-Nitrogen	0.1		
Specific Conductance	1 μmhos/cm	700/1,000 ^[e] 1,600-2,200	Bay-Delta WQ Plan ^[f] Secondary MCL (Basin Plan)
Total Hardness	2		
Metals	μg/L		
Aluminum, Dissolved	50	750	EPA Criteria Guidance ^[g]
Aluminum, Total	50	200	Secondary MCL ^[h] (Basin Plan)
Copper, Dissolved	0.5	Hardness-dependent	CTR ^[i]
Iron, Total	100	300	Secondary MCL (Basin Plan)
Lead, Dissolved	0.5	Hardness-dependent	CTR
Mercury, Total	0.5 ng/L	0.050	CTR ^[I]

-

¹² It should be noted that there is some question as to the applicability of these water quality objectives and criteria to stormwater discharges. It is not clear that a proper Water Code section 13241 analysis was performed on the state water quality objectives used herein. In addition, the State Water Resources Control Board (SWRCB) has determined that the federal water quality criteria, such as are contained in the CTR, do "not apply to regulation of storm water discharges." *See* SWRCB Policy for Implementation of Toxics Standards for the Inland Surface Waters, Enclosed Bays, and Estuaries of California at pg. 1, fn 1; *see also* CTR Preamble, 65 Fed. Reg. 31682 (5/18/00), which does not identify municipal stormwater as a potentially affected entity. Moreover, there is no indication that these objectives and criteria were ever intended to be applied to stormwater discharges at the end of pipe. Nevertheless, these objectives and criteria are utilized herein for the purposes of this report.

Constituents	Method Detection Limits (MDLs)	WQO(s) ¹²	WQO Source
Methylmercury, Total	0.05 ng/L		Basin Plan ^[j]
Zinc, Dissolved	1	Hardness-dependent	CTR
Pesticides	ng/L		
Chlorpyrifos	10	15	Basin Plan
Diazinon ^[K]	50	100	Basin Plan
Pyrethroids	5		

- [a] Oil and grease have a narrative WQO that states "Waters shall not contain oils, greases, waxes, or other materials in concentrations that cause nuisance, result in a visible film or coating on the surface of the water or on objects in the water, or otherwise adversely affect beneficial uses." For the purposes of the exceedance assessments, a value of 0 is used as a conservative comparison.
- [b] Water Quality Control Plan for the Sacramento River and San Joaquin River Basins.
- [c] The WQO is >6 mg/L September 1 November 30.
- [d] Stockton Urban Waterbodies Pathogen TMDL single sample maximum water quality target.
- [e] The WQO is a maximum 30-day average of 700 µmhos/cm April August, and 1,000 µmhos/cm September March.
- [f] The San Francisco Bay/Sacramento-San Joaquin Delta Estuary contains the WQO for the areas within the Delta Legal Boundary (which may be revised). The Basin Plan contains the WQO for the areas outside of the Delta Legal Boundary.
- [g] United States Environmental Protection Agency Recommended Ambient Water Quality Criteria.
- [h] United States Environmental Protection Agency Secondary Maximum Contaminant Level.
- [i] 40 C.F.R. Section 138.38(b) California Toxics Rule.
- [j] The methylmercury objective is a tissue-based objective. For the Sacramento-San Joaquin Delta and Yolo Bypass waterways listed in Appendix 43 (including waterways in the Stockton Urbanized Area), the average methylmercury concentrations shall not exceed 0.08 and 0.24 mg methylmercury/kg, wet weight, in muscle tissue of trophic level 3 and 4 fish, respectively (150-500 mm total length). The average methylmercury concentrations shall not exceed 0.03 mg methylmercury/kg, wet weight, in whole fish less than 50 mm in length.
 - It should also be noted that the State Water Resources Control Board recently adopted Part 2 of the Water Quality Control Plan for Inland Surface Waters, Enclosed Bays, and Estuaries of California—Tribal and Subsistence Fishing Beneficial Uses and Mercury Provisions, which establishes five mercury fish tissue water quality objectives, based on the designated beneficial uses for the waterbodies. While these objectives do not supersede any site-specific numeric mercury WQOs established in a Basin Plan, they may be applicable to other waterways within the SUA in the future.
- [k] Diazinon is monitored only at Rainwater/Atmospheric Deposition stations.
- [I] Although CTR has criteria for total mercury, the basis of the criteria is inconsistent with current mercury/methylmercury WQOs in California.

The Region-wide Permit requires the submittal of water quality monitoring to the Regional Water Board. As such, all water quality monitoring data are submitted as **Appendix B**. The Region-wide Permit also requires that the water quality monitoring data be uploaded to the California Environmental Data Exchange Network (CEDEN) or the Storm Water Multi Application Reporting and Tracking System (SMARTS) database, when available (both databases are not currently able to accept the formatted data, which requires Regional Water Board coordination with the and the Surface Water Ambient Monitoring Program (SWAMP) at the State Water Resources Control Board). It is anticipated that when the databases are capable of receiving the water quality monitoring data that the receiving water and urban discharge data may be uploaded to the SMARTS database, while only the receiving water data would be uploaded to CEDEN. However, in order to prepare the data, the Permittees have been working with the three analytical laboratories (Fruit Growers Laboratory, Caltest, and Pacific EcoRisk) to format the data to be compatible with the requirements for the electronic upload. Due to time needed to coordinate with the analytical laboratories, the water quality monitoring data from 2016-2017 and 2017-2018 will be submitted to the Regional Water Board in CEDEN-compatible format by the end of 2018.

The waterbody/drainage-shed monitoring results included in **Appendix B** contain the following information:

- Sample location
- Station type (urban discharge [UD] or receiving water [RW])
- Sampling method (composite or grab)
- Sample date and time
- Sample result
- MDLs
- Reporting Limits (RLs)
- Data qualifiers
- Comparison to the lowest applicable water quality objective (WQO)
- The name of the analyzing laboratory

For analyses that were non-detect (ND), the value is reported as less than the MDL, where the MDL is provided by the lab; otherwise, the value is reported as less than the RL.

Monitoring results for the constituents identified as water quality POCs for Duck Creek are presented graphically to provide an overview of the characterization of Duck Creek:

- *E. coli* and fecal coliform (**Figure 3**);
- Chlorpyrifos (Figure 4) and pyrethroids (Figure 5)
- Total Mercury and Total Methylmercury (Figure 6); and
- Dissolved oxygen (Figure 7).

Data for the POCs are summarized in tables in **Appendix C**. A complete assessment of monitoring results from Duck Creek within the context of all monitored waterbodies, including data from the historical monitoring locations and an assessment of trends, will be provided in the End-Term Report. For this report, general observations are provided below:

• E. coli are a more appropriate indicator than fecal coliform to evaluate risk to human health, as noted in the 2012 United States Environmental Protection Agency Recreational Water Quality Criteria, and the State Water Board's 2018 Bacteria Provisions. Let Coli concentrations in receiving water sites are below the WQO in most receiving water samples, but frequent exceedances occurred at discharge sites, primarily during storm events. As is typical, indicator bacteria concentrations are generally higher during storm events than during dry weather events.

¹³ United States Environmental Protection Agency. 2012. Recreational Water Quality Criteria. Office of Water, 820-F-12-058.

 $^{^{14}} https://www.waterboards.ca.gov/bacterialobjectives/docs/bdmtg_aug7_bacteria_2nd_iswebe_bacteria_provisions_2nd_rev_proposed.pdf$

• Chlorpyrifos concentrations were below the WQO in all discharge and receiving water samples. There was a single exceedance of the WQO in the NE-rain location during SE65 (rainwater monitoring is described in **Section 4.1.3**).

• Pyrethroids (total)

- o Pyrethroids were rarely detected in the upstream monitoring location. Bifenthrin was the only pyrethroid detected at the upstream location, during DW31.
- o All pesticides were more frequently detected during storm events than during dry weather events.
- o A higher number of individual pyrethroid compounds, and higher concentrations of pyrethroids, were detected in discharge samples than receiving water samples.
 - Samples at location WK-64 had the greatest number of individual pyrethroids and most consistent detections.
- O Bifenthrin and permethrin were detected most frequently and at the highest concentrations. Discharge site WK-64 had the highest concentrations of both compounds.
- Methylmercury concentrations at the upstream location were higher than most samples
 from the receiving water locations within the SUA, while total mercury concentrations
 were lower at the upstream location than the receiving water locations within the SUA.
 Concentrations at all sites were similar between storm events and dry weather events.

• Dissolved oxygen (DO)

- O DO concentrations were below the minimum WQO in all samples during the first dry weather event, DW31, with the lowest concentration observed in the upstream location (DC-46R).
- o Concentrations at discharge site DC-66 were below the minimum WQO in all dry weather samples.
- o In general, concentrations were higher during storm events than during wet weather events.
- O Concentrations below the minimum WQO were also observed during the first dry weather event at DC-69, WK-64, and WK-64R and at the upstream location DC-46R. Concentrations below the minimum WQO were also observed during the first storm event, SE65, in the receiving water station DC-65R, and both the discharge station WK-64 and receiving water station WK-64R.

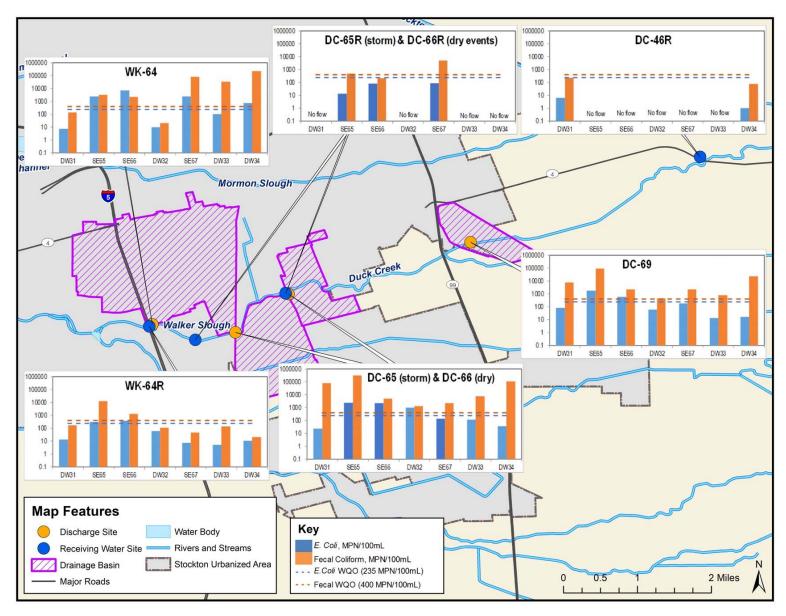


Figure 3. Duck Creek 2017-2018 E. coli and Fecal Coliform Concentrations (MPN/100 mL)

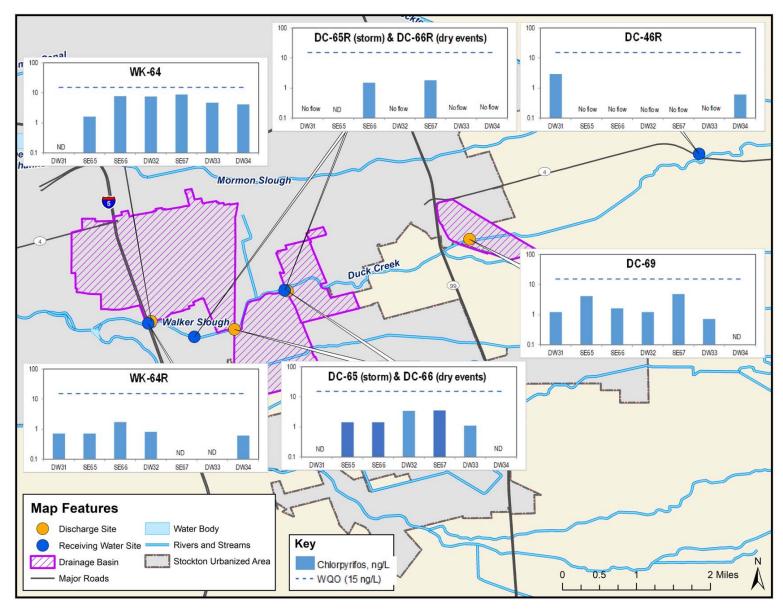


Figure 4. Duck Creek 2017-2018 Chlorpyrifos Concentrations (ng/L)

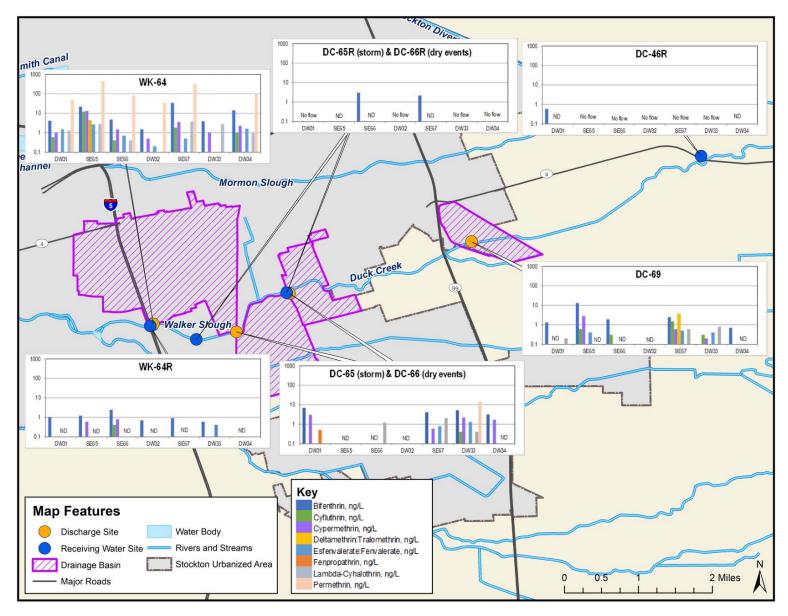


Figure 5. Duck Creek 2017-2018 Pyrethroid Concentrations (ng/L)

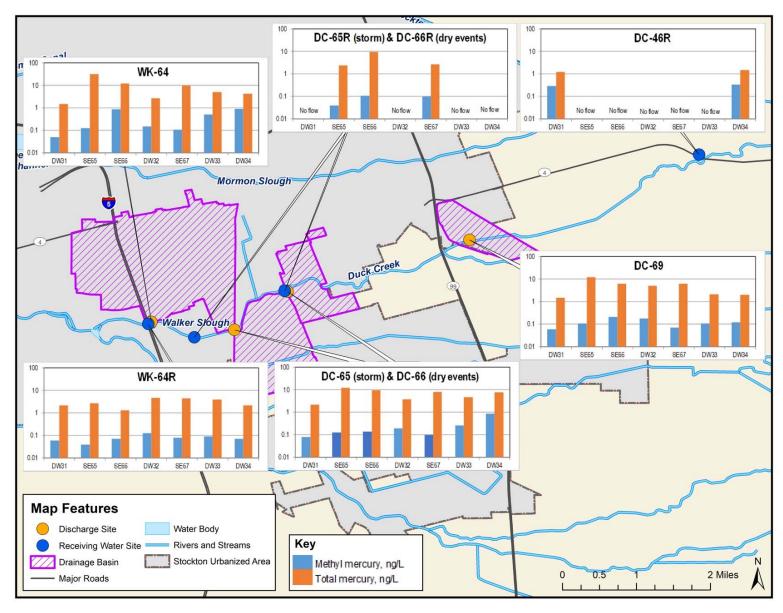


Figure 6. Duck Creek 2017-2018 Total Mercury and Total Methylmercury Concentrations (ng/L)

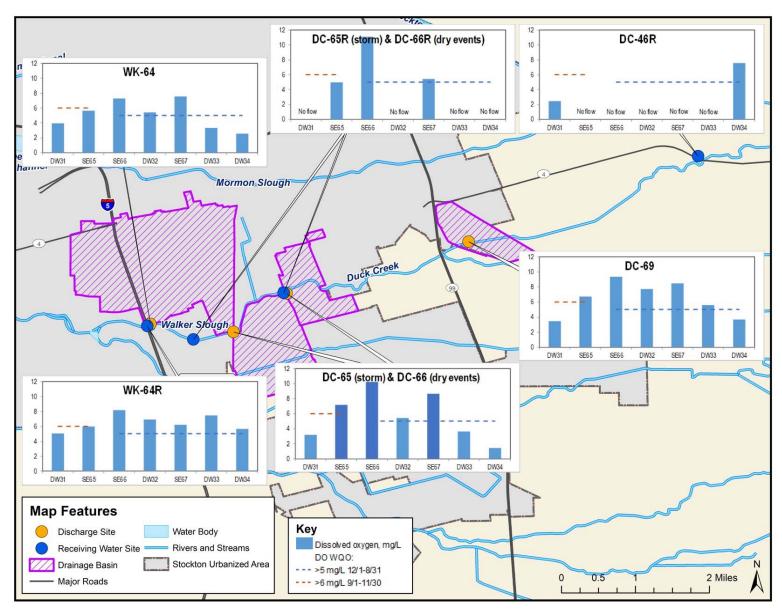


Figure 7. Duck Creek 2017-2018 Dissolved Oxygen Concentrations (mg/L)

4.1.3 Rainwater/Atmospheric Deposition Monitoring

During 2017-2018, rainwater/atmospheric deposition was monitored for mercury (total mercury and total methylmercury) and pesticides (chlorpyrifos and pyrethroids) at three representative locations in the SUA. In addition to chlorpyrifos and pyrethroids, diazinon was monitored at the NW-Rain location. These three locations are shown in **Figure 8**.

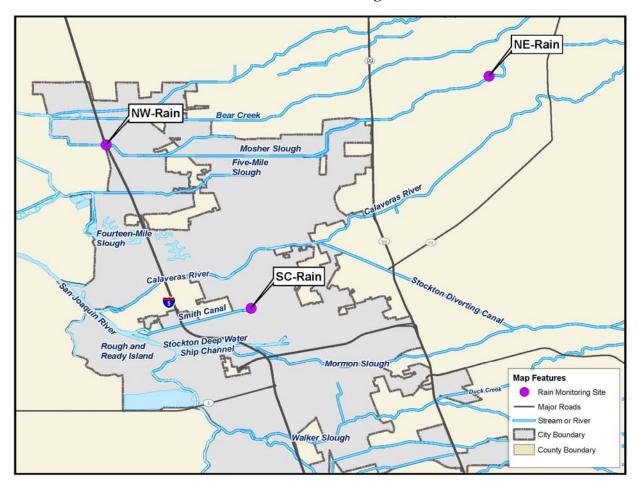


Figure 8. Rainwater/Atmospheric Deposition Monitoring Locations

The monitoring sites include the following:

- NW-Rain Located along Mosher Slough in the northwest corner of the SUA. This site has been historically monitored for the Pesticide Plan. The site is representative of atmospheric deposition generated within and outside of the SUA.
- NE-Rain Located along Mosher Slough outside of the SUA, to the northeast. This site has been historically monitored for the Pesticide Plan. The site is representative of atmospheric deposition generated outside of the SUA.
- SC-Rain Located at the Legion Park Pump Station, in the center of the SUA. This site is representative of atmospheric deposition that is generated within the SUA.

During 2017-2018, rainwater was monitored at all three sites during all three storm events sampled for outfall and receiving water monitoring. Rainwater monitoring results are shown in **Figure 9**.

General observations are summarized below:

- Total mercury and methylmercury concentrations in rainwater were similar at all three locations; these concentrations were also similar in magnitude to those observed in urban runoff and receiving water samples.
- Pesticides:
 - Organophosphate (OP) pesticides were detected in most samples, and chlorpyrifos was detected at a concentration above the WQO during the first storm event in the NE rainwater location.
 - o Pyrethroids were most frequently detected at the NE rainwater location, with the most individual compounds detected at this site.

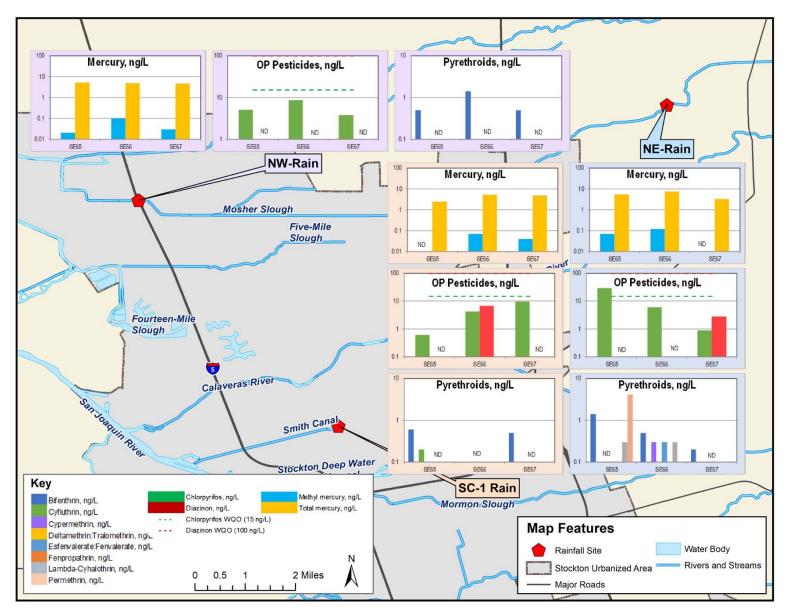


Figure 9. 2017-2018 Rainwater/Atmospheric Deposition Monitoring Results

4.1.4 Sediment Toxicity and Sediment Chemistry

The MRP specifies that sediment toxicity be monitored for receiving water sites on each historical waterbody. Monitoring is performed 2-4 days following one storm event and during two dry weather events. Sediment samples are analyzed using the USEPA standardized ten-day sediment toxicity testing method¹⁵ for freshwaters using *Hyalella azteca*, and sediment total organic carbon (TOC) and grain size are reported. If toxicity is determined to be statistically significant, and a greater than or equal to 50% increase in *Hyalella azteca* mortality¹⁶ is observed, follow-up testing of sediment chemistry is performed for the parameters specified in **Table 13**.

Table 13. Sediment Chemistry Constituents to be Monitored

Pesticides in Sediment ^[a]	Target Reporting Limit
Organophosphate Pesticides	μg/kg
Chlorpyrifos	0.01
Diazinon	0.05
Pyrethroid Pesticides ^[b]	ng/g
Bifenthrin	1
Cyfluthrin-1	3
Cyfluthrin-2	3
Cyfluthrin-3	3
Cyfluthrin-4	3
Cypermethrin-1	3
Cypermethrin-2	3
Cypermethrin-3	3
Cypermethrin-4	3
Deltamethrin	2
Esfenvalerate/Fenvalerate-1	2
Esfenvalerate/Fenvalerate-2	1
Lambda-cyhalothrin-1	1
Lambda-cyhalothrin-2	4
Permethrin-1	4
Permethrin-2	1

Notes:

[[]a] Follow-up testing of sediment chemistry will be performed if toxicity is determined to be statistically significant and a greater than or equal to 50% increase in *Hyalella azteca* mortality is observed.

[[]b] Pyrethroid isomers are typically reported as totals instead of the individual isomers, except where individual isomers may be obtained.

¹⁵ USEPA 2000. Methods for measuring the toxicity and bioaccumulation of sediment-associated contaminants with freshwater invertebrates. EPA 600/R-99/064. Office of Research and Development. Washington, DC.

¹⁶ City of Stockton and County of San Joaquin. Sediment Toxicity Work Plan. March 27, 2009, revised June 2009.

During 2017-2018, monitoring was completed at WK-64R during three events:

- One day following SE65, 11/17/2018
- DW32, 04/02/2018
- DW34, 06/05/2018

Sediment toxicity results are summarized in Table 14 and included in Appendix D.

Samples from the first dry weather event (DW32) showed significant toxicity in *H. azteca* survival; however, follow up testing of sediment chemistry was not triggered because the reduction in mortality was less than 50%. Samples from all events showed significant reductions in *H. azteca* growth.

Table 14. 2017-2018 Sediment Toxicity Results at Duck Creek

			Present ab Control?		Reduction	
Sample ID	Date	H. azteca Survival	H. azteca Growth	Mean % Survival	in Survival (%)	Mean Growth (mg)
SE65						
Control	-	-	-	97.5	-	0.103
WK-64R	11/17/18	No	No	98.8	-1.28	0.085
WK-64R FD	11/17/18	No	Yes ^[a]	86.2	11.5	0.086
DW32						
Control	-	-	-	100	-	0.049
WK-64R	04/02/18	Yes	Yes	92.5	7.5	0.040
WK-64R FD	04/02/18	Yes	No	92.5	7.5	0.043
DW34						
Control	-	-	-	98.8	-	0.142
WK-64R	06/05/18	No	Yes	97.5	1.3	0.127
WK-64R FD	06/05/18	No	Yes	93.8	5.1	0.120

LD = Lab Duplicate

FD = Field Duplicate

Bold indicates that toxicity observed was statistically significant.

[[]a] Growth reduction was statistically toxic due to low inter-replicate variability observed for the sample.

4.1.5 Water Column Toxicity Monitoring

The monitoring program specifies that water column toxicity be monitored during one storm event and one dry weather event when the historical monitoring location is sampled (i.e., DC-65 during wet weather and DC-66 during dry weather). Water column toxicity is conducted in accordance with USEPA methods¹⁷ using short-term chronic toxicity tests based on two freshwater species: 1) Three-brood (6-8 day) survival and reproduction test with water fleas (the crustacean *Ceriodaphnia dubia*); and 2) Seven-day survival and growth test with larval fathead minnows (*Pimephales promelas*). If 100% mortality of either species is detected in a receiving water sample within 24 hours of test initiation, dilution series testing (from 6.25% to 100% receiving water) is initiated to determine if toxicity was persistent. If statistically significant toxicity is detected, and a greater than or equal to 50% increase in fathead minnow or *Ceriodaphnia dubia* mortality or reduction in *Ceriodaphnia dubia* mortality compared to the laboratory control is observed, a Toxicity Identification Evaluation (TIE) is conducted.

During 2017-2018, water column toxicity was monitored at site DC-65R during one storm event and at site DC-66R during one dry weather event:

- SE65, 11/16/2017
- DW34, 06/05/2018

During SE65, no significant reductions in *Ceriodaphnia dubia* survival or growth were observed. Similarly, there were no significant reductions in fathead minnow survival or growth in any of the water samples. During DW34, the receiving water location DC-66R was dry, so no water column toxicity samples were collected. The water column toxicity results are included in **Appendix E**.

¹⁷ USEPA 2002. Short-term methods for estimating the chronic toxicity of effluents and receiving waters to freshwater organisms, 4th Edition. EPA-821-R-02-013. Office of Water. Washington, DC.

4.2 DATA QUALITY EVALUATION

Quality Assurance/Quality Control (QA/QC) refers to the process of reviewing lab and "field" initiated checks on the sampling and analytical process. These checks, which include field blanks, method blanks, field duplicates, lab duplicates and matrix spike/matrix spike duplicates (MS/MSD), and data review are used to confirm that data are of high quality. Lab reports are initially screened by the field monitoring contractor for missing analytical data (both environmental and QA/QC), holding time exceedances, discrepancies in analytical methods or detection limits, and any apparent out-of-range environmental results. If the analytical work appears to be missing any requested analyses, the lab is asked to complete the missing analyses, if possible to do so within the specified holding time. Periodically, data analyses are requested even if samples exceed the specified hold time. Data qualifiers are appended to the environmental data points where appropriate by applying the data quality objectives provided by the laboratories. The QA/QC process allows for the identification of isolated incidents of out-of-range lab and sampling performance, but, more importantly, the process allows for the identification of potential long-term trends in lab and sampling performance. An important and ongoing component of the QA/QC program is to report and correct any identified problems.

Overall, no significant problems with data quality were identified during 2017-2018. Isolated instances of constituents detected in field blanks, field duplicates not meeting relative percent difference standards (RPD), and lab QA/QC issues occurred. However, when conducting such a large monitoring and reporting program, field, lab, and/or analytical issues occasionally arise. In general, the data collected and reported are considered of high quality and suitable for data analysis with the qualifications noted in the **Appendix B** data report. The main qualifiers used are summarized in **Table 15**.

Table 15. Definitions of Commonly Used QA/QC Qualifiers and Instances of Application

Qualifier	Definition of Qualifier	Qualifier Description/Applicability, 2017-2018
FB	The concentration of a given constituent was detected in the field blank. The associated environmental sample taken at the same site is considered an estimate.	 A field blank was taken at one site for all constituents during each monitoring event. There were no constituents detected in field blank samples, and the FB qualifier was not used.
FD	The Relative Percent Difference (RPD) between the concentrations of a given constituent in the field duplicate and the associated environmental sample was outside the acceptable limit. This indicates that the duplicability and precision of the results for this constituent may be low.	 A field duplicate was taken at one site for all constituents during each monitoring event. RPDs were within acceptable limits, and the FD qualifier was not used.
J	The concentration of a given constituents is between the MDL and the RL and is therefore an estimate. The J qualifier does not indicate poor data quality because all the RLs used meet permit requirements.	 The J-flag qualifier is common in all data in the monitoring program, and was frequently applied.
ND	A given constituent was not detected and is given as < MDL. The ND qualifier does not indicate poor data quality but rather indicates that a constituent was simply not detected.	 The ND qualifier is common in all data in the monitoring program, and was frequently applied.

4.3 DELTA REGIONAL MONITORING PROGRAM

The Delta RMP is a stakeholder-directed project formed to develop a regional water quality monitoring program to improve understanding of water quality issues in the Sacramento-San Joaquin Delta. The goal of this effort is to better coordinate and design current and future monitoring activities in and around the Delta to create a cost effective approach for providing critically needed water quality information to better inform policy and regulatory decisions of the Regional Water Board and other Federal, State and local agencies and organizations. The RMP is focusing the initial monitoring efforts on mercury, pesticides, nutrients, and pathogens. The City and County are contributing members of the RMP, which commenced monitoring in 2015. As the data are collected and results reported, the City and County will reference them within the annual reports and mid-term and end-term reports, as needed.

4.4 TOTAL MAXIMUM DAILY LOADS

The Region-wide Permit requires the City and County to continue implementation of the stormwater monitoring program, which includes implementation actions and assessments related to applicable TMDLs. Efforts to fulfill TMDL monitoring requirements (included in Attachment G of the Region-wide Permit) are summarized in the following sections.

4.4.1 Sacramento-San Joaquin Delta Diazinon and Chlorpyrifos TMDL (Resolution R5-2006-0061)

The organophosphate (OP) Pesticide TMDL establishes wasteload allocations (WLAs) for the sum of diazinon and chlorpyrifos concentrations relative to their respective WQOs. Attachment G of the Region-wide Permit requires that, within one year of the receipt of the notice of applicability (NOA) under the Region-wide Permit, the City and County (Permittees) must submit an assessment to determine the diazinon and chlorpyrifos levels and attainment of WLAs in urban discharge and WQOs in the receiving water. The Permittees performed this assessment during 2016-2017, and submitted the information with the Assessment and Prioritization of Water Quality Constituents in the Stockton Urbanized Area. The assessment indicated that, with the exception of Duck Creek, the targets and allocations for the TMDL are largely being met. In addition, Calaveras River, Mosher Slough, and Smith Canal all meet the 303(d) delisting criteria.

4.4.2 Central Valley Pesticide TMDLs

4.4.2.1 Central Valley Diazinon and Chlorpyrifos TMDL (Resolution No. R5-2014-0041)

The Regional Water Board adopted the Diazinon and Chlorpyrifos TMDL on March 28, 2014. This TMDL was approved by the State Water Resources Control Board on June 16, 2015, and approved by the USEPA on August 16, 2017, at which time the TMDL became fully effective. The Diazinon and Chlorpyrifos TMDL includes WQOs for diazinon and chlorpyrifos based on

 $^{{}^{18}\}underline{http://www.waterboards.ca.gov/centralvalley/water_issues/delta_water_quality/delta_regional_monitoring/index.s} \\ html$

¹⁹ City of Stockton and County of San Joaquin. Assessment and Prioritization of Water Quality Constituents in the Stockton Urbanized Area. Prepared by Larry Walker Associates. May 30, 2017.

the California Department of Fish and Game criteria, which are the existing Basin Plan WQOs applicable to the SUA. The TMDL does not change the existing WLAs for point source dischargers.

4.4.2.2 Central Valley Pyrethroid Pesticides TMDL (Resolution R5-2017-0057)

The Regional Water Board adopted the Pyrethroid TMDL on June 8, 2017, but this TMDL has not yet been approved by the State Water Resources Control Board or USEPA. Once effective, the TMDL will establish concentration goals for pyrethroids.

4.4.3 Stockton Urban Water Bodies Pathogen TMDL (Resolution No. R5-2009-0030)

The Pathogen TMDL includes WLAs for fecal coliform and *E. coli*. The Permittees are required to continue monitoring and implementation activities consistent with the Stockton Urban Waterbodies Pathogen Control Program, and document in Mid-Term and End-Term Reports under the Region-wide Permit, the implementation of BMPs to control the discharge of pathogens (indicator bacteria) in their urban discharge, as well as submit effectiveness assessments of implemented BMPs. During 2017-2018, the Permittees monitored for indicator bacteria at Duck Creek, as described in **Section 4.1.2**.

4.4.4 Delta Methylmercury TMDL (Resolution No. R5-2010-0043)

As a part of Phase I of the Sacramento-San Joaquin Delta Methylmercury TMDL,²⁰ the City and the County must conduct a Methylmercury Control Study (Control Study) and participate in the Mercury Exposure Reduction Program (MERP). Progress for the Control Study and MERP participation are reported in the following sections.

4.4.4.1 Methylmercury Control Study

The Permittees submitted a Control Study Workplan to the Regional Water Board on April 22, 2013, and received feedback from the technical advisory committee and Regional Water Board staff during August 2013. The Permittees submitted a revised Control Study Workplan in October 2013 to address the comments received.

The Control Study focuses on evaluating the mercury and methylmercury removal performance of the Airport Business Center detention basin within the SUA, along with examining the potential for methylmercury production in the basin. The Permittees are implementing the Control Study according to the schedule in **Table 16**.

²⁰ Central Valley Regional Water Quality Control Board. 2012. Amendments to the Water Quality Control Plan for the Sacramento River and San Joaquin River Basins for the Control of Methylmercury and Total Mercury in the Sacramento-San Joaquin River Delta Estuary. Rancho Cordova, CA. Available online: www.waterboards.ca.gov/rwqcb5/water_issues/tmdl/central_valley_projects/delta_hg/2011oct20/bpa_20oct2011_final.pdf

Table 16. Methylmercury Control Study Schedule

Task	Estimated Completion	Completed
Submit Control Study Work Plan to Regional Water Board	April 19, 2013	✓
Regional Water Board and TAC Work Plan Review	May-July 2013	✓
Finalize Work Plan	October 21, 2013	✓
Initiate Control Study Sampling	October 2013 Oct 2013 – Sep 2014 Oct 2014 – Sep 2015 Oct 2015 – Sep 2016	✓
Submit Control Study Progress Report	October 2015	✓
Complete Control Study Sampling	September 2016	✓
Submit Annual Progress Report	October 2016 (submitted as part of Annual Report)	✓
Submit Annual Progress Report	October 2018 (submitted as part of Annual Report)	✓
Submit Control Study Final Report to Regional Water Board	October 20, 2018	

The Control Study includes monitoring for mercury and methylmercury using grab samples; along with ancillary constituents (i.e., suspended sediment, TSS, TDS, turbidity, phosphorus, sulfate, and iron) using composite samples, and field readings. Samples are collected at the detention basin inlets and outlet. During dry weather events, sediment samples are collected for mercury and methylmercury. Sampling occurs during three wet weather events and one dry weather event for three years.

Monitoring was completed during 2015-2016. The Control Study Progress Report was submitted in October 2015. An annual progress report, per TMDL requirements, was submitted in October 2016 and 2017. The final report will be submitted by October 20, 2018.

4.4.4.2 Delta Mercury Exposure Reduction Program Participation

The Delta Mercury Control Program requires the entities identified in the Basin Plan to develop and implement a mercury exposure reduction program. The Delta Mercury Exposure Reduction Program (MERP) Participants include those entities and agencies that have formally submitted a letter describing their intent to participate in the collective exposure reduction program. The Permittees submitted their letter during 2013-2014, and are participating in the Delta MERP.

The Delta MERP is designed to increase understanding of contaminants in fish and reduce exposure to mercury among people who eat fish from the Delta. The Delta MERP is producing educational materials based on fish consumption guidelines, and is also focusing on presenting a balanced message, including communicating the health risks associated with exposure to mercury in fish, ways to reduce exposure, and health benefits of eating fish generally, as well as identifying low-mercury fish species and areas. The Delta MERP is also focusing efforts on

training opportunities for entities involved in the Delta MERP, including county agencies, tribal organizations, community-based organizations, and health care providers.

During 2017-2018, the Permittees contributed funding to the MERP and have been actively tracking its progress.

4.4.4 Lower San Joaquin River, Stockton Deep Water Ship Channel Organic Enrichment and Low Dissolved Oxygen TMDL (Resolution No. R5-2005-0005)

The Organic Enrichment and Low Dissolved Oxygen TMDL requires that responsible parties implement BMPs to control and abate the discharge of oxygen-demanding substances. Attachment G of the Region-wide Permit requires covered Permittees to continue implementation of BMPs identified in their SWMP to control oxygen demanding substances in their stormwater discharges. These implementation efforts will be documented in the Mid-Term and End-Term Reports required under the Region-wide Permit. During 2017-2018, the Permittees monitored for dissolved oxygen at Duck Creek using grab samples, as described in **Section 4.1.2**.

5. Programmatic Activities and Data

This section provides a summary of the status of the implementation of the stormwater program, as well as the inspections conducted, number and nature of enforcement actions taken, and public education programs implemented during 2017-2018.

As described in **Section 1** and **Section 6**, the City and County submitted a Work Plan as part of their NOI application package (**Appendix A**). During 2017-2018, the City and County implemented the activities as outlined in the Work Plan.

In addition, throughout each reporting period, the City and County are tracking the data and information necessary to conduct short-term and long-term program effectiveness assessments, which will be completed as part of the Mid-Term and End-Term Reports, respectively. Although this may change from year to year, a summary of the programmatic data and information generally tracked for each stormwater program element is provided in **Table 17**.

Table 17. Data and Information Tracked Annually for Each Program Element

	Polluta	ants of Con	cern Addre	ssed ^[a]
Data/Information Tracked Annually (by Program Element)	Dissolved Oxygen	Mercury	Pathogen Indicators	Pesticides
Program Management				
Fiscal Analysis (i.e., current NPDES expenditures, projected expenditures for the next fiscal year)	-	-	-	-
Illicit Discharges (ID)				
Number of water pollution complaints received/verified and source of complaints	✓	✓	✓	✓
Number of water pollution issues observed/verified by field staff	✓	✓	✓	✓
Number of illegal connections reported/verified/eliminated	✓	-	✓	-
Types of materials involved in the verified incidents	✓	✓	✓	✓
Location of illicit discharges (Illicit Discharges Location Map)	✓	✓	✓	✓
Number/types enforcement actions taken for illicit discharges and illegal connections	-	-	-	-
Training sessions held; pre- and post-training survey results	✓	✓	✓	✓
Public Outreach (PO)				
Summary of stream cleanup events, volunteer organizations, and number of volunteers	✓	✓	✓	✓
Amount used oil and household hazardous waste collected	✓	✓	-	✓
Number hotline calls received/verified	✓	✓	✓	✓
Number educational materials distributed	✓	✓	✓	✓
Summary of installation of pet waste bag dispensing stations	-	-	✓	-
Number/types mixed media campaigns conducted	✓	✓	✓	✓
Summary of community-wide events	✓	✓	✓	/
Summary of events held for school-age children	✓	✓	✓	✓

	Polluta	ants of Con	cern Addre	ssed ^[a]
Data/Information Tracked Annually (by Program Element)	Dissolved Oxygen	Mercury	Pathogen Indicators	Pesticides
Municipal Operations (MO)				
Summary of sanitary sewer overflows	✓	-	✓	-
Information about municipal Capital Improvement Projects (CIPs)/Priority Project status	✓	✓	-	-
Number acres treated with fertilizers; amount applied	✓	-	-	-
Number acres treated with pesticides	-	-	-	✓
Number acres under IPM program	-	-	-	✓
Total pesticide use (by active ingredient, when available) at parks/golf courses/detention basins	-	-	-	✓
Information regarding catch basin prioritization/inspection/cleaning; overall storm drain system maintenance activities	√	✓	✓	✓
Information regarding pump station inspection/cleaning; overall pump station maintenance activities	✓	✓	✓	✓
Number of catch basins stenciled	✓	✓	✓	✓
Number events required to obtain special use permits and address trash and debris removal	✓	✓	✓	-
Total street miles swept, amount debris removed, and amount green waste collected	✓	✓	✓	✓
Training sessions held; pre- and post-training survey results	✓	✓	✓	✓
Industrial and Commercial (IC)				
Number industrial facilities	✓	✓	✓	✓
Number commercial facilities (significant sources) by category	✓	✓	✓	✓
Number/results industrial facility inspections conducted	✓	✓	✓	✓
Number/results commercial facility inspections conducted	✓	✓	✓	✓
Number/results follow-up inspections conducted	✓	✓	✓	✓
Mobile business Self-Certifications mailed/received	✓	✓	✓	✓
Number BMP Fact Sheets distributed during inspections	✓	✓	✓	✓

	Polluta	ants of Con	cern Addre	ssed ^[a]
Data/Information Tracked Annually (by Program Element)	Dissolved Oxygen	Mercury	Pathogen Indicators	Pesticides
Number/types enforcement actions taken during inspections/illicit discharge responses	→	✓	✓	✓
Number/causes referrals made to Regional Water Board due to illicit discharge violations	✓	✓	✓	✓
Number/types enforcement steps taken related to Self-Certification Forms	✓	✓	✓	✓
Number/types enforcement actions taken against carpet cleaners	✓	✓	✓	✓
Training sessions held; pre- and post-training survey results	✓	✓	✓	✓
Construction (CO)				
Number grading permits issued; number requiring SWPPPs and NOIs	✓	✓	-	-
Number private/public construction sites; number requiring SWPPP; number completed	✓	✓	-	-
Number/type outreach materials distributed during inspections	✓	✓	-	_
Number active construction sites; number regular/follow-up inspections conducted	✓	✓	-	-
Number/types of enforcement actions taken	✓	✓	-	-
Training sessions held; pre- and post-training survey results	✓	✓	-	-
Planning and Land Development (LD)				
Number project plans reviewed for stormwater BMPs	✓	✓	✓	✓
Number Priority Projects, by Category	✓	✓	✓	✓
Total acreage covered by approved Priority Projects	✓	✓	✓	✓
Number/Type approved Control Measures	✓	✓	✓	✓
Information for permanent post-construction stormwater treatment devices (Post-Construction BMP Treatment Devices Database)	✓	✓	✓	√
Completed priority projects/post-construction BMP maintenance oversight inspection results	✓	✓	✓	✓
Number stormwater treatment device access and maintenance agreements executed	✓	✓	✓	✓
Training sessions held; pre- and post-training survey results	✓	✓	✓	✓

[[]a] ✓ = addresses Pollutant of Concern, - = does not apply to Pollutant of Concern

48

5.1 OVERVIEW OF INSPECTIONS, ENFORCEMENT ACTIONS, AND PUBLIC EDUCATION PROGRAMS

A summary of the inspections conducted, number and nature of enforcement actions taken, and public education programs implemented during 2017-2018 is provided below.

5.1.1 Inspections

5.1.1.1 Industrial and Commercial Program Element (IC)

Industrial Facility Inspections

City

A summary of the City's industrial facility inspections is provided below:

Number of industrial facilities in current inventory	162
Number of facilities inspected in 2017-2018 ^[a]	64
Number of facilities with SWPPPs on site	60
Number of facilities in compliance with stormwater control requirements	51
Number of facilities requiring follow-up inspections	13
Number of facilities in compliance after follow-up inspections	13

[[]a] In 2017-2018, the City reorganized its efforts regarding industrial and commercial inspections and follow-up enforcement actions to better align its resources with the requirements of the Permit. The reorganization was intended to focus the City's efforts on one geographic grid location at a time, with full coverage of all industrial and commercial facilities within that grid. As such, the inventory may change from year to year as additional facilities are identified. This approach allows the City's inspectors to concentrate on geographic grids for inspections and response to violations, with the goals of increasing the number of inspections performed each year, providing better opportunities for outreach to facilities, and achieving full compliance of all facilities with stormwater control requirements.

County

A summary of the County's industrial facility inspections is provided below:

Number of industrial facilities in current inventory ^[a]	14
Number of facilities inspected in 2017-2018 ^[b]	7
Number of facilities with SWPPPs on site	7
Number of facilities in compliance with stormwater control requirements	7
Number of facilities requiring follow-up inspections	0
Number of facilities in compliance after follow-up inspections	N/A

[[]a] One site submitted a Notice of Termination (NOT) in 2016-2017 due to lack of exposure to stormwater and was approved. The site was removed from the industrial site inventory in 2017-2018. Two sites previously noted within the inventory were determined to discharge to the City's MS4; these facilities are now part of the City's industrial inventory and have been or will be inspected.

[[]b] The County maintains an annual presence in the field by inspecting a percentage of industrial sites annually, with the end result being that all sites are inspected at least twice during a five-year permit term.

Commercial Facility Inspections

City

A summary of the City's 2017-2018 commercial facility inspections is provided below:

Total number of commercial facilities in current inventory	359
Number of commercial facilities requiring inspection	359
Number of facilities inspected in 2017-2018 ^[a]	359
Number of facilities adequately implementing BMPs ^[b]	161
Number of facilities requiring follow-up inspections	25
Number of facilities in compliance after follow-up inspections	25

- [a] In 2017-2018, the City reorganized its efforts regarding industrial and commercial inspections and follow-up enforcement actions to better align its resources with the requirements of the Permit. The reorganization was intended to focus the City's efforts on one geographic grid location at a time, with full coverage of all industrial and commercial facilities within that grid. As such, the inventory may change from year to year as additional facilities are identified. This approach allows the City's inspectors to concentrate on geographic grids for inspections and response to violations, with the goals of increasing the number of inspections performed each year, providing better opportunities for outreach to facilities, and achieving full compliance of all facilities with stormwater control requirements.
- [b] Commercial facilities with multiple or egregious BMP implementation failures are re-inspected. Commercial facilities with minor BMP implementation failures are issued a Notice of Warning and documentation is required to show compliance in lieu of a follow-up inspection. A single enforcement action may be sent to the owner of multiple properties.

County

A summary of the County's 2017-2018 commercial facility inspections is provided below:

Total number of commercial facilities in current inventory	117
Number of commercial facilities requiring inspection ^[a]	62
Number of facilities inspected in 2017-2018 ^[b]	41
Number of facilities adequately implementing BMPs	41
Number of facilities in compliance with stormwater control requirements	41
Number of facilities requiring follow-up inspections	0
Number of facilities in compliance after follow-up inspections	N/A

[[]a] The total number of commercial facilities requiring inspection is estimated at about half of all the inventoried facilities each year, in order to project an annual presence in the field.

Mobile Business Self-Certification Forms

The Permittees have been mailing Self-Certification requests to mobile carpet cleaning businesses on an as-needed basis.

[[]b] The County maintains an annual presence in the field by inspecting a percentage of commercial sites annually, with the end result being that all sites are inspected at least twice during a five-year permit term.

5.1.1.2 Construction Program Element (CO)

Construction Site Inspections

City

A summary of the City's construction site inspections for 2017-2018 is provided below:

Number of active construction sites ≥1 acre in size	44
Number of regular inspections conducted at active construction sites ^[a]	71
Number of follow-up inspections conducted due to violations	48

[[]a] During the 2017-2018 reporting year, the City reorganized staffing positions to better align with permit objectives. During this process, the staff position for construction site inspector was vacant. The 2009 SWMP inspection frequency will resume in 2018-2019.

County

The County had no active construction sites greater than or equal to one acre in size. Because there were no active construction sites, no inspections were necessary.

Planning and Land Development Program Element (LD)

Post-Construction BMP Maintenance Oversight

City

The City has a total of nine completed priority projects with post-construction BMPs. During 2017-2018, staffing was increased to prepare for the 2018-2019 year, when inspections will be conducted.

County

During 2017-2018, one priority project with post-construction BMPs was completed, one inspection was conducted on completed priority projects, and no enforcement actions were issued to correct improper maintenance.

5.1.2 Enforcement Actions

5.1.2.1 Illicit Discharges Program Element (ID)

City

The City tracked enforcement actions in the Illicit Discharges Database. A total of five enforcement actions were taken by the Stormwater Division and Environmental Control Division in response to 34 reports of illicit discharge, 31 of which were verified. Two illegal connections were reported and verified via AskStockton.

The number and types of enforcement actions taken by the City during the reporting period are summarized below:

Type of Enforcement Action	Number of Actions ^[a]
Administrative	
Violation Warning Notice	1
Notice of Violation	2
Cease and Desist Order	1
Stop Work Order	0
Administrative Citation (Fine)	1
Criminal Enforcement ^[b]	
Misdemeanor	0
Infraction	0
Total	5

[[]a] The total number of enforcement actions taken may be smaller than the number of verified incidents due to enforcement actions that are issued to the owners of multiple properties.

Number of repeat offenders²¹ identified: $\underline{0}$

Total number of complaints/problems referred to the Regional Board: 0

County

The County tracked enforcement actions in the Illicit Discharges Database. A total of five enforcement actions were taken in response to 12 reports of illicit discharge. No illegal connections were identified.

The number and types of enforcement actions taken by the County during the reporting period are summarized below:

[[]b] This category presumes that an action turned over to the District Attorney resulted in a criminal prosecution within the year of the incident. However, data for this category can only be updated in subsequent years (i.e., after criminal prosecution has been successful).

²¹ Repeat offenders were identified by tracking responsible parties for multiple incidents at the same address on different dates.

Type of Enforcement Action	Number of Actions		
Verbal Warning	5		
Administrative Enforcement			
Correction Order	0		
Notice of Violation	0		
Notice to Clean	0		
Criminal Enforcement			
Misdemeanor	0		
Infraction	0		

Total number of complaints/problems referred to EHD: 3

Total number of complaints/problems referred to the Regional Water Board: <u>0</u>

Total number of complaints/problems referred to the City of Stockton: 2

Number of repeat offenders identified: 0

5.1.2.2 Industrial and Commercial Program Element (IC)

Industrial and Commercial Facility Enforcement Actions

City

The City took a total of 74 enforcement actions against all businesses during inspections and illicit discharge responses.

• One repeat offender was identified, and no complaints/problems were referred to the Regional Water Board.

The number and types of enforcement actions taken by the County during the reporting period are summarized below:

Type of Enforcement Action	Number of Actions ^[a]			
Administrative				
Violation Warning Notice	37			
Notice of Violation	33			
Cease and Desist Order	2			
Stop Work Order	0			
Administrative Citation (Fine)	2			
Criminal Enforcement ^[b]				
Misdemeanor	0			
Infraction	0			
Total	74			

[[]a] The total number of enforcement actions taken may be smaller than the number of facilities with inadequate BMPs due to enforcement actions that are issued to the owners of multiple properties.

[[]b] This category presumes that an action turned over to the District Attorney resulted in a criminal prosecution within the year of the incident. However, data for this section can only be updated in subsequent years (i.e., after criminal prosecution has been successful).

County

The County took no enforcement actions against any businesses during inspections and illicit discharge responses.

• No repeat offenders were identified, and no complaints/problems were referred to the Regional Water Board.

The number and types of enforcement actions taken by the County during the reporting period are summarized below:

	Administrative Remedies			Legal Action
	Verbal Warnings	Warning Notice or Notice to Clean	Notice of Violation	Type (Misdemeanor, Infraction. Etc.)
Total Number	0	0	0	0

Mobile Business Enforcement Actions

As needed, the Permittees continue to take enforcement action (in the form of "Second Notifications") against mobile businesses with regard to completion of Self-Certification forms.

5.1.2.3 Construction Program Element (CO)

Construction Site Enforcement Actions

City

The City took a total of 44 enforcement actions against construction sites during 71 regular inspections and 48 follow-up inspections. Seventeen (17) repeat offenders were identified (i.e., construction sites which failed the re-inspection).

The number and types of enforcement actions taken by the City during construction site inspections are shown below.

Type of Enforcement Action	Number of Actions
Administrative	
Violation Warning Notice	10
Notice of Violation	29
Cease and Desist Order	1
Stop Work Order	1
Administrative Citation (Fine)	3
Criminal Enforcement	
Misdemeanor	0
Infraction	0
Total	44

County

The County took no enforcement actions against construction sites because there were no active construction sites greater than one acre. No repeat offenders were identified.

5.1.3 Public Education Programs

The Permittees implemented a number of public education and outreach programs during the 2017-2018 reporting period. A summary of these efforts is provided below.

- Identify and/or Create, Revise, and Distribute Educational Materials: The Permittees distributed a total of 4,329 educational materials, including brochures and fact sheets, to the general public.
- Conduct Mixed Media Campaigns: The Permittees conducted a total of six (6) mixed media campaigns for the general public. These efforts included utility bill inserts, store front ads located in the retail space under the Stockton Arena, and billboards posted along three major roads. A radio message was also broadcast within the area.
- Participate in Community-Wide Events: The Permittees conducted a total of eight (8) community-wide events with an estimated 9,309 total attendees.
- **Reach Out to School Age Children:** SAWS held 346 events at Stockton area schools, reaching an estimated 12,013 students.
- **Distribute Educational Material to Selected Businesses:** The Permittees distributed 454 educational materials to high-priority commercial businesses.

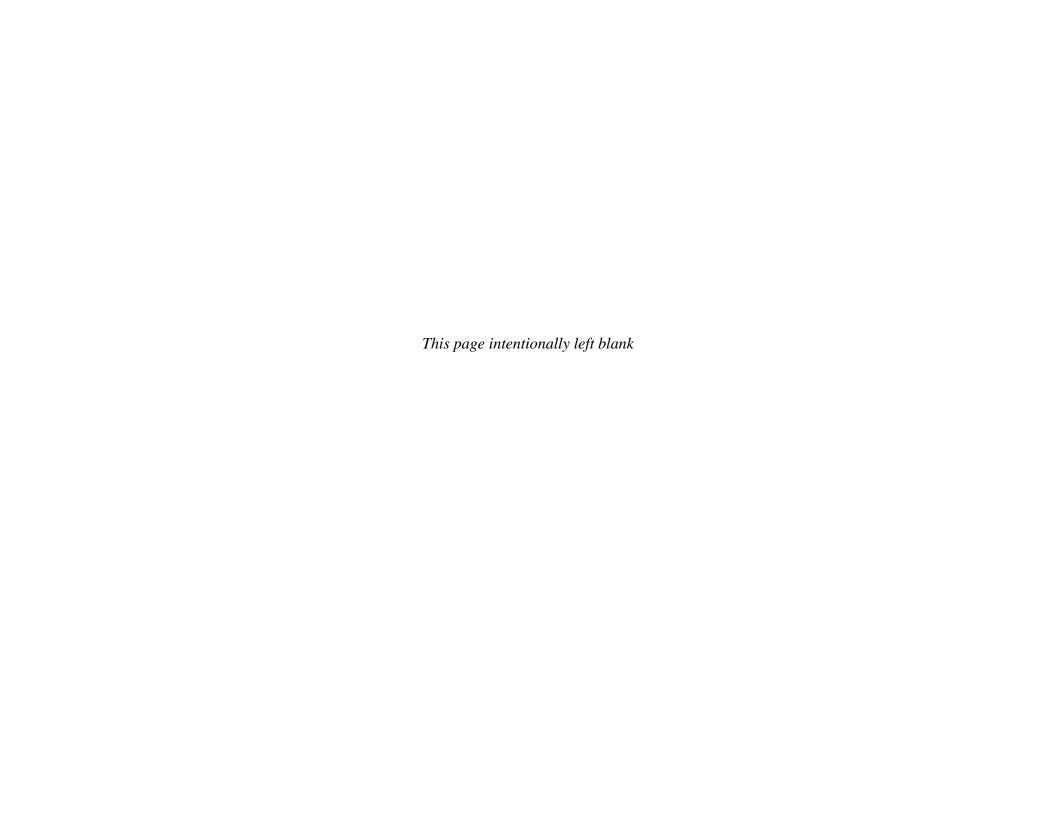
6. Proposed Modifications

As a part of the annual reporting process, the City and County have qualitatively evaluated the effectiveness of the stormwater program during the Permit term, as well as the experience that staff has had in implementing the program, to identify potential modifications. At this time, no program modifications have been identified. Modifications identified in the future will be incorporated into the revised SWMP and corresponding Work Plan prior to the submittal to the Regional Water Board (anticipated in late 2019).

Appendix A Work Plan as submitted November 1, 2016

ID	Task Name	Q3	Q4	Q1	Q2
1	Section 1 - Program Management				
2	Program Coordination				
3	Review/revise SWMP as needed				
4	Co-permittees meet quarterly				
5	Participate in internal quarterly Stormwater Program Meetings				
6	Participate in statewide stormwater-related meetings, conferences, and				
U	stakeholder groups as needed				
7	Review/revise MOUs as necessary				
8	Establish, review, and revise cooperative agreements as needed				
9	Fiscal Analysis				
10	Review and revise the Fiscal Analysis reporting format as needed				
11	Legal Authority				
12	Review the legal authority as needed				

ID	Task Name	Q3	Q4	Q1	Q2
13	Section 2 - Illicit Discharges Program Element (ID)				
14	ID1 - Detection of Illicit Discharges and Illegal Connections				
15	Public Reporting				
16	Maintain and advertise Hotline				
17	Coordinate with other agencies and departments				
18	Field Crew Inspections				
19	Continue field observations for IDIC				
20	ID2 - Illegal Connection Identification and Elimination				
21	Investigate and eliminate illegal connections				
22	Coordinate with Planning and Land Development program				
23	Coordinate with Construction program				
24	ID3 - Investigation/Inspection and Follow Up				
25	Respond to illicit discharges				
26	Maintain contractual services for incident clean-up				
27	Maintain Illicit Discharges Database				
28	ID4 - Enforcement				
29	Implement progressive enforcement policy and procedures				
30	Track enforcement actions in Illicit Discharges Database				
31	ID5 - Training				
32	Conduct training				


ID	Task Name	Q3	Q4	Q1	Q2
33	Section 3 - Public Outreach (PO)				
34	PO1 - Public Participation				
35	Implement Storm Drain Marker Program				
36	Organize, support, and/or participate in stream cleanup events				
37	Promote Used Oil and Household Hazardous Waste Programs				
38	Coordinate with Household Hazardous Waste program for pesticide disposal				
39	PO2 - Hotline				
40	Maintain 24-hr hotline number				
41	Promote/publicize the 24-hr hotline				
42	PO3 - Public Outreach Implementation				
43	Update Website as needed				
44	Implement pet waste outreach program				
45	Track installation of pet waste bag dispensing stations				
46	Participate in community-wide events throughout the year				
47	Conduct mixed media campaigns				
48	Provide community relations				
49	Implement pesticide outreach efforts for staff, residents, retail stores, and PCOs				
50	PO4 - Public School Education				
51	Continue to identify opportunities to reach out to school age children				

ID	Task Name	Q3	Q4	Q1	Q2
52	Section 4 - Municipal Operations (MO)				
53	MO1 - Sanitary Sewer Maintenance & Overflow and Spill Response				
54	Implement the Sanitary Sewer Overflow Emergency Response Plan (SSOERP)				
55	Review the SSOERP and revise as changes occur				
56	MO2 - Construction Requirements for Municipal Capital Improvement Projects				
57	Review CIP designs to ensure specifications and notes are included				
58	Require submission of NOI for CIPs greater than or equal to one acre				
59	If a priority project, develop in conformance with the SWQCCP				
60	Improve interdepartamental communication to facilitate accurate recordkeeping and reporting of data				
61	MO3 - Pollution Prevention at City Facilities				
62	Assess facilities to determine if they require coverage under the General Industrial Permit				
63	Implement SWPPP/FPPP for Corporation Yard and other facilities as needed				
64	Review CIP projects for compliance with general stormwater requirements, including review for vehicle or equipment wash areas				
65	MO4 - Landscape and Pest Management				
66	Implement pesticide and fertilizer application protocol at park sites, landscaped medians, and golf courses				
67	Implement IPM program				
68	Maintain and expand internal inventory on pesticide use and track Parks Division reported pesticide use				
69	Implement Landscaping Standards				
70	MO5 - Storm Drain System Maintenance				
71	Implement storm drain system mapping				
72	Review/revise prioritization for catch basin cleaning as needed				
73	Maintain and annually update Catch Basin Database				
74	Implement catch basin maintenance program				
75	Implement pump station maintenance program				
76	Implement detention basin maintenance program				
77	Implement notification procedures for ID/IC and missing catch basin markers or illegible stencils				
78	Require large events and venues to address trash and debris removal, including containerization and street sweeping as appropriate				

ID	Task Name	Q3	Q4	Q1	Q2
79	MO6 - Street Cleaning and Maintenance				
80	Implement street sweeping program				
81	Review/revise prioritization of streets for street sweeping program as needed				
82	Implement green waste collection program				
83	Implement Maintenance Staff Guide Road Maintenance and Small Construction BMPs				
84	MO7 - Training				
85	Conduct training				
86	Section 5 - Industrial and Commercial Program Element (IC)				
87	IC1 - Facility Inventory				
88	Internal audit of database				
89	Maintain and annually update the inventory and database				
90	Map the industrial and commercial facilities on an annual basis				
91	Implement and track a self-certification program for carpet cleaners				
92	IC2 - Prioritization and Inspection				
93	Prioritization				
94	Prioritize facilities as necessary				
95	Inspections				
96	Review/revise industrial inspection checklists as needed				
97	Conduct inspections				
98	Conduct follow-up inspections as needed				
99	IC3 - BMP Implementation				
100	Review/revise BMP fact sheets for high priority facilities as needed				
101	Distribute BMP Fact Sheets				
102	Implement outreach efforts to carpet cleaners				
103	IC4 - Enforcement				
104	Implement progressive enforcement and referral policy and procedures				
105	Track enforcement actions in the industrial/commercial database				
106	Implement procedures for Regional Water Board based complaints				
107	Review and Revise Industrial General Permit referral policy as needed				
108	IC5 - Training				
109	Conduct training				

ID	Task Name	Q3	Q4	Q1	Q2
110	Section 6 - Construction (CO)				
111	CO1 - Municipal Code for Construction Sites				
112	CO2 - Plan Review and Approval Process				
113	Review grading and building permit applications for SWPPP requirements				
	Review erosion control plans				
114	Distribute the Plan & Permit Application Review Procedure handout				
115	CO3 - Construction Projects Inventory				
116	Maintain and update the Construction Project Database				
117	CO4 - Construction Outreach				
118	Distribute appropriate BMP fact sheets during inspections				
119	CO5 - Construction Site Inspections & BMP Implementation				
120	Inspect construction sites >=1 acre monthly				
121	CO6 - Enforcement				
122	Implement progressive enforcement policy				
123	Track enforcement actions using the construction database				
124	CO7 - Training				
125	Conduct training				

ID	Task Name	Q3	Q4	Q1	Q2
126	Section 7 - Planning and Land Development (LD)				
127	LD1 - Incorporation of Water Quality Protection Principles into City Procedures and Policies				
128	Revise General Plan as needed				
129	LD2 - New Development Standards				
130	Require priority projects to comply with the revised SWQCCP				
131	LD3 - Plan Review Sign-off				
132	Revise Post-Construction Plan Review Database as needed				
133	Use Post-Construction Plan Review Database				
134	Review project plans and grading plans for stormwater BMPs				
135	Track projects with post-construction treatment control BMPs				
136	Conduct inspections of completed priority projects to ensure that all approved control measures have been implemented and are being maintained				
137	LD4 - Maintenance Agreement and Transfer				
138	Require Stormwater Treatment Device Access and Maintenance Agreement				
139	Implement Post-Construction BMP Maintenance Oversight Protocols				
140	LD5 - Training				
141	Conduct training				
142	Section 8 - Monitoring and Reporting Program				
143	Water Quality Monitoring (waterbody varies annually)				
144	Water quality parameters as needed				
145	Sediment toxicity and sediment chemistry as needed				
146	Water column toxicity as needed				
147	Delta Regional Monitoring Program				
148	Section 9 - Program Implementation, Evaluation, and Reporting				
149	Program Implementation				
150	Update Work Plan as needed				
151	Annual Report				

Appendix B 2017-2018 Monitoring Results

				, unbione monite	9	- g. w	-017 -	0.020					
		Date											Analysis
Event	Site Code	Sampled	Analyte	Analytical M	ethod Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Date
DW31	DC-46R	9/11/17	E. Coli	SM 9223B	=	6.3	-	1	MPN/100ml		FGL Env.	9/11/17	9/12/17
DW31	DC-66	9/11/17	E. Coli	SM 9223B	=	23.5	-	1	MPN/100ml		FGL Env.	9/11/17	9/12/17
DW31	DC-69	9/11/17	E. Coli	SM 9223B	=	86	-	1	MPN/100ml		FGL Env.	9/11/17	9/12/17
DW31	WK-64	9/11/17	E. Coli	SM 9223B	=	7.3	-	1	MPN/100ml		FGL Env.	9/11/17	9/12/17
DW31	WK-64R	9/11/17	E. Coli	SM 9223B	=	13.5	-	1	MPN/100ml		FGL Env.	9/11/17	9/12/17
DW32	DC-66	4/2/18	E. Coli	SM 9223B	=	1019	-	1	MPN/100ml		FGL Env.	4/2/18	4/3/18
DW32	DC-69	4/2/18	E. Coli	SM 9223B	=	63	-	10	MPN/100ml		FGL Env.	4/2/18	4/3/18
DW32	WK-64	4/2/18	E. Coli	SM 9223B	=	10	-	10	MPN/100ml		FGL Env.	4/2/18	4/3/18
DW32	WK-64R	4/2/18	E. Coli	SM 9223B	=	63	-	1	MPN/100ml		FGL Env.	4/2/18	4/3/18
DW33	DC-66	4/24/18	E. Coli	SM 9223B	=	122.3	-	1	MPN/100ml		FGL Env.	4/24/18	4/25/18
DW33	DC-69	4/24/18	E. Coli	SM 9223B	=	13.4		1	MPN/100ml		FGL Environ	4/24/18	4/25/18
DW33	WK-64	4/24/18	E. Coli	SM 9223B	=	101.4		1	MPN/100ml		FGL Environ	4/24/18	4/25/18
DW33	WK-64R	4/24/18	E. Coli	SM 9223B	=	5.2		1	MPN/100ml		FGL Environ	4/24/18	4/25/18
DW34	DC-46R	6/5/18	E. Coli	SM 9223B	=	1	-	1	MPN/100ml		FGL Env.	6/5/18	6/6/18
DW34	DC-66	6/5/18	E. Coli	SM 9223B	=	36.2	-	1	MPN/100ml		FGL Env.	6/5/18	6/6/18
DW34	DC-69	6/5/18	E. Coli	SM 9223B	=	16.1	-	1	MPN/100ml		FGL Env.	6/5/18	6/6/18
DW34	WK-64	6/5/18	E. Coli	SM 9223B	=	727	-	1	MPN/100ml		FGL Env.	6/5/18	6/6/18
DW34	WK-64R	6/5/18	E. Coli	SM 9223B	=	11	-	1	MPN/100ml		FGL Env.	6/5/18	6/6/18
SE65	DC-65	11/16/17	E. Coli	SM 9223B	=	2419.6		1	MPN/100ml		FGL Environ	11/16/17	11/17/17
SE65	DC-65R	11/16/17	E. Coli	SM 9223B	=	13.4		1	MPN/100ml		FGL Environ	11/16/17	11/17/17
SE65	DC-69	11/16/17	E. Coli	SM 9223B	=	1732.9		1	MPN/100ml		FGL Environ	11/16/17	11/17/17
SE65	WK-64	11/16/17	E. Coli	SM 9223B	>	2419.6		1	MPN/100ml		FGL Environ	11/16/17	11/17/17
SE65	WK-64R	11/16/17	E. Coli	SM 9223B	=	307.6		1	MPN/100ml		FGL Environ	11/16/17	11/17/17
SE66	DC-65	3/1/18	E. Coli	SM 9223B	=	2187	-	10	MPN/100ml		FGL Env.	3/1/18	3/2/18
SE66	DC-65R	3/1/18	E. Coli	SM 9223B	=	86	-	10	MPN/100ml		FGL Env.	3/1/18	3/2/18
SE66	DC-69	3/1/18	E. Coli	SM 9223B	=	591	-	10	MPN/100ml		FGL Env.	3/1/18	3/2/18
SE66	WK-64	3/1/18	E. Coli	SM 9223B	=	7270	-	10	MPN/100ml		FGL Env.	3/1/18	3/2/18
SE66	WK-64R	3/1/18	E. Coli	SM 9223B	=	373	-	10	MPN/100ml		FGL Env.	3/1/18	3/2/18
SE67	DC-65	4/6/18	E. Coli	SM 9223B	=	135.4	-	1	MPN/100ml		FGL Env.	4/6/18	4/7/18
SE67	DC-65R	4/6/18	E. Coli	SM 9223B	=	87.8	-	1	MPN/100ml		FGL Env.	4/6/18	4/7/18
SE67	DC-69	4/6/18	E. Coli	SM 9223B	=	187.2	-	1	MPN/100ml		FGL Env.	4/6/18	4/7/18
SE67	WK-64	4/6/18	E. Coli	SM 9223B	=	2419.6	-	1	MPN/100ml		FGL Env.	4/6/18	4/7/18
SE67	WK-64R	4/6/18	E. Coli	SM 9223B	=	7.4	-	1	MPN/100ml		FGL Env.	4/6/18	4/7/18
DW31	DC-46R	9/11/17	Fecal Coliform	SM 9221B	=	230	-	18	MPN/100ml		FGL Env.	9/11/17	9/14/17
DW31	DC-66	9/11/17	Fecal Coliform	SM 9221B	=	79000	-	1800	MPN/100ml		FGL Env.	9/11/17	9/14/17
DW31	DC-69	9/11/17	Fecal Coliform	SM 9221B	=	7900	-	180	MPN/100ml		FGL Env.	9/11/17	9/14/17
DW31	WK-64	9/11/17	Fecal Coliform	SM 9221B	=	140	-	18	MPN/100ml		FGL Env.	9/11/17	9/14/17

				7 timbront monito		- g	-0						
		Date											Analysis
Event	Site Code	Sampled	Analyte	Analytical M	ethod Q	Result	MDL		Units	Flag	Lab Name	Prep Date	Date
DW31	WK-64R	9/11/17	Fecal Coliform	SM 9221B	=	170	-	18	MPN/100ml		FGL Env.	9/11/17	9/14/17
DW32	DC-66	4/2/18	Fecal Coliform	SM 9221B	=	1300	-	1800	MPN/100ml		FGL Env.	4/2/18	4/5/18
DW32	DC-69	4/2/18	Fecal Coliform	SM 9221B	=	460	-	18	MPN/100ml		FGL Env.	4/2/18	4/5/18
DW32	WK-64	4/2/18	Fecal Coliform	SM 9221B	=	20	-	18	MPN/100ml		FGL Env.	4/2/18	4/5/18
DW32	WK-64R	4/2/18	Fecal Coliform	SM 9221B	=	110	-	18	MPN/100ml		FGL Env.	4/2/18	4/5/18
DW33	DC-66	4/24/18	Fecal Coliform	SM 9221B	=	7900	-	180	MPN/100ml		FGL Env.	4/24/18	4/27/18
DW33	DC-69	4/24/18	Fecal Coliform	SM 9221B	=	790		18	MPN/100ml		FGL Environ	4/24/18	4/27/18
DW33	WK-64	4/24/18	Fecal Coliform	SM 9221B	=	33000		1800	MPN/100ml		FGL Environ	4/24/18	4/27/18
DW33	WK-64R	4/24/18	Fecal Coliform	SM 9221B	=	140		18	MPN/100ml		FGL Environ	4/24/18	4/27/18
DW34	DC-46R	6/5/18	Fecal Coliform	SM 9221B	=	78	-	18	MPN/100ml		FGL Env.	6/5/18	6/8/18
DW34	DC-66	6/5/18	Fecal Coliform	SM 9221B	=	110000	-	1800	MPN/100ml		FGL Env.	6/5/18	6/8/18
DW34	DC-69	6/5/18	Fecal Coliform	SM 9221B	=	23000	-	1800	MPN/100ml		FGL Env.	6/5/18	6/9/18
DW34	WK-64	6/5/18	Fecal Coliform	SM 9221B	=	230000	-	18000	MPN/100ml		FGL Env.	6/5/18	6/8/18
DW34	WK-64R	6/5/18	Fecal Coliform	SM 9221B	=	20	-	18	MPN/100ml		FGL Env.	6/5/18	6/9/18
SE65	DC-65	11/16/17	Fecal Coliform	SM 9221B	=	330000		18000	MPN/100ml		FGL Environ	11/16/17	11/19/17
SE65	DC-65R	11/16/17	Fecal Coliform	SM 9221B	=	490		18	MPN/100ml		FGL Environ	11/16/17	11/19/17
SE65	DC-69	11/16/17	Fecal Coliform	SM 9221B	=	94000		1800	MPN/100ml		FGL Environ	11/16/17	11/19/17
SE65	WK-64	11/16/17	Fecal Coliform	SM 9221B	=	3300		180	MPN/100ml		FGL Environ	11/16/17	11/19/17
SE65	WK-64R	11/16/17	Fecal Coliform	SM 9221B	=	13000		180	MPN/100ml		FGL Environ	11/16/17	11/19/17
SE66	DC-65	3/1/18	Fecal Coliform	SM 9221B	=	4900	-	180	MPN/100ml		FGL Env.	3/1/18	3/3/18
SE66	DC-65R	3/1/18	Fecal Coliform	SM 9221B	=	220	-	18	MPN/100ml		FGL Env.	3/1/18	3/3/18
SE66	DC-69	3/1/18	Fecal Coliform	SM 9221B	=	2300	-	180	MPN/100ml		FGL Env.	3/1/18	3/4/18
SE66	WK-64	3/1/18	Fecal Coliform	SM 9221B	=	2300	-	1800	MPN/100ml		FGL Env.	3/1/18	3/5/18
SE66	WK-64R	3/1/18	Fecal Coliform	SM 9221B	=	1300	-	18	MPN/100ml		FGL Env.	3/1/18	3/4/18
SE67	DC-65	4/6/18	Fecal Coliform	SM 9221B	=	2300	-	180	MPN/100ml		FGL Env.	4/6/18	4/9/18
SE67	DC-65R	4/6/18	Fecal Coliform	SM 9221B	=	4900	-	180	MPN/100ml		FGL Env.	4/6/18	4/9/18
SE67	DC-69	4/6/18	Fecal Coliform	SM 9221B	=	2300	-	180	MPN/100ml		FGL Env.	4/6/18	4/9/18
SE67	WK-64	4/6/18	Fecal Coliform	SM 9221B	=	79000	-	1800	MPN/100ml		FGL Env.	4/6/18	4/9/18
SE67	WK-64R	4/6/18	Fecal Coliform	SM 9221B	=	45	-	18	MPN/100ml		FGL Env.	4/6/18	4/9/18
DW31	DC-46R	9/11/17	Total Coliform	SM 9221B	=	4900	-	180	MPN/100ml		FGL Env.	9/11/17	9/14/17
DW31	DC-46R	9/11/17	Total Coliform	SM 9223B	>	2419.6	-	1	MPN/100ml		FGL Env.	9/11/17	9/12/17
DW31	DC-66	9/11/17	Total Coliform	SM 9221B	=	460000	-	18000	MPN/100ml		FGL Env.	9/11/17	9/14/17
DW31	DC-66	9/11/17	Total Coliform	SM 9223B	>	2419.6	-	1	MPN/100ml		FGL Env.	9/11/17	9/12/17
DW31	DC-69	9/11/17	Total Coliform	SM 9221B	=	70000	-	1800	MPN/100ml		FGL Env.	9/11/17	9/14/17
DW31	DC-69	9/11/17	Total Coliform	SM 9223B	>	2419.6	-	1	MPN/100ml		FGL Env.	9/11/17	9/12/17
DW31	WK-64	9/11/17	Total Coliform	SM 9221B	=	2200	-	18	MPN/100ml		FGL Env.	9/11/17	9/14/17
DW31	WK-64	9/11/17	Total Coliform	SM 9223B	=	1119.9	-	1	MPN/100ml		FGL Env.	9/11/17	9/12/17

				/ dinbione monito		•	-0						
		Date											Analysis
Event	Site Code	Sampled	Analyte	Analytical Me	ethod Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Date
DW31	WK-64R	9/11/17	Total Coliform	SM 9221B	=	3300	-	180	MPN/100ml		FGL Env.	9/11/17	9/14/17
DW31	WK-64R	9/11/17	Total Coliform	SM 9223B	=	1203.3	-	1	MPN/100ml		FGL Env.	9/11/17	9/12/17
DW32	DC-66	4/2/18	Total Coliform	SM 9221B	=	700000	-	18000	MPN/100ml		FGL Env.	4/2/18	4/5/18
DW32	DC-66	4/2/18	Total Coliform	SM 9223B	>	24196	-	1	MPN/100ml		FGL Env.	4/2/18	4/3/18
DW32	DC-69	4/2/18	Total Coliform	SM 9221B	=	490000	-	18000	MPN/100ml		FGL Env.	4/2/18	4/5/18
DW32	DC-69	4/2/18	Total Coliform	SM 9223B	>	24196	-	10	MPN/100ml		FGL Env.	4/2/18	4/3/18
DW32	WK-64	4/2/18	Total Coliform	SM 9221B	=	700	-	18	MPN/100ml		FGL Env.	4/2/18	4/5/18
DW32	WK-64	4/2/18	Total Coliform	SM 9223B	=	1956	-	10	MPN/100ml		FGL Env.	4/2/18	4/3/18
DW32	WK-64R	4/2/18	Total Coliform	SM 9221B	=	2200	-	180	MPN/100ml		FGL Env.	4/2/18	4/5/18
DW32	WK-64R	4/2/18	Total Coliform	SM 9223B	=	4352	-	1	MPN/100ml		FGL Env.	4/2/18	4/3/18
DW33	DC-66	4/24/18	Total Coliform	SM 9221B	=	490000	-	18000	MPN/100ml		FGL Env.	4/24/18	4/27/18
DW33	DC-66	4/24/18	Total Coliform	SM 9223B	>	2419.6	-	1	MPN/100ml		FGL Env.	4/24/18	4/25/18
DW33	DC-69	4/24/18	Total Coliform	SM 9221B	=	17000		180	MPN/100ml		FGL Environ	4/24/18	4/27/18
DW33	DC-69	4/24/18	Total Coliform	SM 9223B	>	2419.6		1	MPN/100ml		FGL Environ	4/24/18	4/25/18
DW33	WK-64	4/24/18	Total Coliform	SM 9221B	=	490000		18000	MPN/100ml		FGL Environ	4/24/18	4/27/18
DW33	WK-64	4/24/18	Total Coliform	SM 9223B	>	2419.6		1	MPN/100ml		FGL Environ	4/24/18	4/25/18
DW33	WK-64R	4/24/18	Total Coliform	SM 9221B	=	4900		180	MPN/100ml		FGL Environ	4/24/18	4/27/18
DW33	WK-64R	4/24/18	Total Coliform	SM 9223B	=	184.2		1	MPN/100ml		FGL Environ	4/24/18	4/25/18
DW34	DC-46R	6/5/18	Total Coliform	SM 9221B	=	1300	-	18	MPN/100ml		FGL Env.	6/5/18	6/8/18
DW34	DC-46R	6/5/18	Total Coliform	SM 9223B	=	547.5	-	1	MPN/100ml		FGL Env.	6/5/18	6/6/18
DW34	DC-66	6/5/18	Total Coliform	SM 9221B	=	2200000	-	18000	MPN/100ml		FGL Env.	6/5/18	6/8/18
DW34	DC-66	6/5/18	Total Coliform	SM 9223B	>	2419.6	-	1	MPN/100ml		FGL Env.	6/5/18	6/6/18
DW34	DC-69	6/5/18	Total Coliform	SM 9221B	=	33000	-	1800	MPN/100ml		FGL Env.	6/5/18	6/9/18
DW34	DC-69	6/5/18	Total Coliform	SM 9223B	>	2419.6	-	1	MPN/100ml		FGL Env.	6/5/18	6/6/18
DW34	WK-64	6/5/18	Total Coliform	SM 9221B	=	1700000	-	18000	MPN/100ml		FGL Env.	6/5/18	6/8/18
DW34	WK-64	6/5/18	Total Coliform	SM 9223B	>	2419.6	-	1	MPN/100ml		FGL Env.	6/5/18	6/6/18
DW34	WK-64R	6/5/18	Total Coliform	SM 9221B	=	490	-	18	MPN/100ml		FGL Env.	6/5/18	6/9/18
DW34	WK-64R	6/5/18	Total Coliform	SM 9223B	=	770.1	-	1	MPN/100ml		FGL Env.	6/5/18	6/6/18
SE65	DC-65	11/16/17	Total Coliform	SM 9221B	=	4900000		180000	MPN/100ml		FGL Environ	11/16/17	11/19/17
SE65	DC-65	11/16/17	Total Coliform	SM 9223B	>	2419.6		1	MPN/100ml		FGL Environ	11/16/17	11/17/17
SE65	DC-65R	11/16/17	Total Coliform	SM 9221B	=	2300		180	MPN/100ml		FGL Environ	11/16/17	11/19/17
SE65	DC-65R	11/16/17	Total Coliform	SM 9223B	=	980.4		1	MPN/100ml		FGL Environ	11/16/17	11/17/17
SE65	DC-69	11/16/17	Total Coliform	SM 9221B	=	1300000		18000	MPN/100ml		FGL Environ	11/16/17	11/19/17
SE65	DC-69	11/16/17	Total Coliform	SM 9223B	>	2419.6		1	MPN/100ml		FGL Environ	11/16/17	11/17/17
SE65	WK-64	11/16/17	Total Coliform	SM 9221B	=	4600000		180000	MPN/100ml		FGL Environ	11/16/17	11/19/17
SE65	WK-64	11/16/17	Total Coliform	SM 9223B	>	2419.6		1	MPN/100ml		FGL Environ	11/16/17	11/17/17
SE65	WK-64R	11/16/17	Total Coliform	SM 9221B	=	49000		1800	MPN/100ml		FGL Environ	11/16/17	11/19/17
-													

				/ timbionic monitorini		- 3	.0., _						
	01. 0.1	Date											Analysis
Event	Site Code	Sampled	Analyte	Analytical Metho	d Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Date
SE65	WK-64R	11/16/17	Total Coliform	SM 9223B	>	2419.6		1	MPN/100ml		FGL Environ	11/16/17	11/17/17
SE66	DC-65	3/1/18	Total Coliform	SM 9221B	=	33000	-	1800	MPN/100ml		FGL Env.	3/1/18	3/3/18
SE66	DC-65	3/1/18	Total Coliform	SM 9223B	>	24196	-	10	MPN/100ml		FGL Env.	3/1/18	3/2/18
SE66	DC-65R	3/1/18	Total Coliform	SM 9221B	=	23000	-	1800	MPN/100ml		FGL Env.	3/1/18	3/3/18
SE66	DC-65R	3/1/18	Total Coliform	SM 9223B	>	24196	-	10	MPN/100ml		FGL Env.	3/1/18	3/2/18
SE66	DC-69	3/1/18	Total Coliform	SM 9221B	=	330000	-	18000	MPN/100ml		FGL Env.	3/1/18	3/4/18
SE66	DC-69	3/1/18	Total Coliform	SM 9223B	>	24196	-	10	MPN/100ml		FGL Env.	3/1/18	3/2/18
SE66	WK-64	3/1/18	Total Coliform	SM 9221B	=	3300000	-	180000	MPN/100ml		FGL Env.	3/1/18	3/5/18
SE66	WK-64	3/1/18	Total Coliform	SM 9223B	>	24196	-	10	MPN/100ml		FGL Env.	3/1/18	3/2/18
SE66	WK-64R	3/1/18	Total Coliform	SM 9221B	=	330000	-	18000	MPN/100ml		FGL Env.	3/1/18	3/4/18
SE66	WK-64R	3/1/18	Total Coliform	SM 9223B	>	24196	-	10	MPN/100ml		FGL Env.	3/1/18	3/2/18
SE67	DC-65	4/6/18	Total Coliform	SM 9221B	=	33000	-	1800	MPN/100ml		FGL Env.	4/6/18	4/9/18
SE67	DC-65	4/6/18	Total Coliform	SM 9223B	>	2419.6	-	1	MPN/100ml		FGL Env.	4/6/18	4/7/18
SE67	DC-65R	4/6/18	Total Coliform	SM 9221B	=	33000	-	1800	MPN/100ml		FGL Env.	4/6/18	4/9/18
SE67	DC-65R	4/6/18	Total Coliform	SM 9223B	>	2419.6	-	1	MPN/100ml		FGL Env.	4/6/18	4/7/18
SE67	DC-69	4/6/18	Total Coliform	SM 9221B	=	35000	-	180	MPN/100ml		FGL Env.	4/6/18	4/9/18
SE67	DC-69	4/6/18	Total Coliform	SM 9223B	>	2419.6	-	1	MPN/100ml		FGL Env.	4/6/18	4/7/18
SE67	WK-64	4/6/18	Total Coliform	SM 9221B	=	230000	-	18000	MPN/100ml		FGL Env.	4/6/18	4/9/18
SE67	WK-64	4/6/18	Total Coliform	SM 9223B	>	2419.6	-	1	MPN/100ml		FGL Env.	4/6/18	4/7/18
SE67	WK-64R	4/6/18	Total Coliform	SM 9221B	=	1700	-	18	MPN/100ml		FGL Env.	4/6/18	4/9/18
SE67	WK-64R	4/6/18	Total Coliform	SM 9223B	=	248.1	-	1	MPN/100ml		FGL Env.	4/6/18	4/7/18
DW31	DC-46R	9/11/17	Mercury	EPA 1631E	=	1.2	0.2	0.5	ng/L		Caltest	9/19/17	9/20/17
DW31	DC-66	9/11/17	Mercury	EPA 1631E	=	2.2	0.2	0.5	ng/L		Caltest	9/19/17	9/20/17
DW31	DC-69	9/11/17	Mercury	EPA 1631E	=	1.5	0.2	0.5	ng/L		Caltest	9/19/17	9/20/17
DW31	WK-64	9/11/17	Mercury	EPA 1631E	=	1.5	0.2	0.5	ng/L		Caltest	9/19/17	9/20/17
DW31	WK-64R	9/11/17	Mercury	EPA 1631E	=	2.2	0.2	0.5	ng/L		Caltest	9/19/17	9/20/17
DW32	DC-66	4/2/18	Mercury	EPA 1631E	=	3.8	0.2	0.5	ng/L		Caltest	4/4/18	4/5/18
DW32	DC-69	4/2/18	Mercury	EPA 1631E	=	5.1	0.2	0.5	ng/L		Caltest	4/4/18	4/5/18
DW32	WK-64	4/2/18	Mercury	EPA 1631E	=	2.7	0.2	0.5	ng/L		Caltest	4/4/18	4/5/18
DW32	WK-64R	4/2/18	Mercury	EPA 1631E	=	4.7	0.2	0.5	ng/L		Caltest	4/4/18	4/5/18
DW33	DC-66	4/24/18	Mercury	EPA 1631E	=	4.7	0.2	0.5	ng/L		Caltest	5/3/18	5/4/18
DW33	DC-69	4/24/18	Mercury	EPA 1631E	=	2.1	0.2	0.5	ng/L		Caltest	5/3/18	5/4/18
DW33	WK-64	4/24/18	Mercury	EPA 1631E	=	5	0.2	0.5	ng/L		Caltest	5/3/18	5/4/18
DW33	WK-64R	4/24/18	Mercury	EPA 1631E	=	4	0.2	0.5	ng/L		Caltest	5/3/18	5/4/18
DW34	DC-46R	6/5/18	Mercury	EPA 1631E	=	1.5	0.2	0.5	ng/L		Caltest	6/13/18	6/14/18
DW34	DC-66	6/5/18	Mercury	EPA 1631E	=	7.8	0.2	0.5	ng/L		Caltest	6/13/18	6/14/18
DW34	DC-69	6/5/18	Mercury	EPA 1631E	=	2	0.2	0.5	ng/L		Caltest	6/13/18	6/14/18

		Date			- J	9							Analysis
Event	Site Code	Sampled	Analyte	Analytical Metho	od Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Date
DW34	WK-64	6/5/18	Mercury	EPA 1631E	=	4.2	0.2	0.5	ng/L		Caltest	6/13/18	6/14/18
DW34	WK-64R	6/5/18	Mercury	EPA 1631E	=	2.2	0.2	0.5	ng/L		Caltest	6/13/18	6/14/18
SE65	DC-65	11/16/17	Mercury	EPA 1631E	=	12	0.2	0.5	ng/L		Caltest	11/29/17	11/30/17
SE65	DC-65R	11/16/17	Mercury	EPA 1631E	=	2.4	0.2	0.5	ng/L		Caltest	11/29/17	11/30/17
SE65	DC-69	11/16/17	Mercury	EPA 1631E	=	12	0.2	0.5	ng/L		Caltest	11/29/17	11/30/17
SE65	NE-RAIN	11/16/17	Mercury	EPA 1631E	=	5.4	0.2	0.5	ng/L		Caltest	11/30/17	12/1/17
SE65	NW-RAIN	11/16/17	Mercury	EPA 1631E	=	5.2	0.2	0.5	ng/L		Caltest	11/30/17	12/1/17
SE65	SC-RAIN	11/16/17	Mercury	EPA 1631E	=	2.4	0.2	0.5	ng/L		Caltest	11/30/17	12/1/17
SE65	WK-64	11/16/17	Mercury	EPA 1631E	=	32	0.2	0.5	ng/L		Caltest	11/29/17	11/30/17
SE65	WK-64R	11/16/17	Mercury	EPA 1631E	=	2.7	0.2	0.5	ng/L		Caltest	11/29/17	11/30/17
SE66	DC-65	3/1/18	Mercury	EPA 1631E	=	9.4	0.2	0.5	ng/L		Caltest	3/12/18	3/13/18
SE66	DC-65R	3/1/18	Mercury	EPA 1631E	=	9.5	0.2	0.5	ng/L		Caltest	3/12/18	3/13/18
SE66	DC-69	3/1/18	Mercury	EPA 1631E	=	6.1	0.2	0.5	ng/L		Caltest	3/12/18	3/13/18
SE66	NE-RAIN	3/1/18	Mercury	EPA 1631E	=	7.3	0.2	0.5	ng/L		Caltest	3/6/18	3/7/18
SE66	NW-RAIN	3/1/18	Mercury	EPA 1631E	=	4.8	0.2	0.5	ng/L		Caltest	3/6/18	3/7/18
SE66	SC-RAIN	3/1/18	Mercury	EPA 1631E	=	5.3	0.2	0.5	ng/L		Caltest	3/6/18	3/7/18
SE66	WK-64	3/1/18	Mercury	EPA 1631E	=	12	0.2	0.5	ng/L		Caltest	3/12/18	3/13/18
SE66	WK-64R	3/1/18	Mercury	EPA 1631E	=	1.3	0.2	0.5	ng/L		Caltest	3/6/18	3/7/18
SE67	DC-65	4/6/18	Mercury	EPA 1631E	=	7.9	0.2	0.5	ng/L		Caltest	4/12/18	4/13/18
SE67	DC-65R	4/6/18	Mercury	EPA 1631E	=	2.7	0.2	0.5	ng/L		Caltest	4/12/18	4/13/18
SE67	DC-69	4/6/18	Mercury	EPA 1631E	=	6.2	0.2	0.5	ng/L		Caltest	4/12/18	4/13/18
SE67	NE-RAIN	4/6/18	Mercury	EPA 1631E	=	3.3	0.2	0.5	ng/L		Caltest	4/12/18	4/13/18
SE67	NW-RAIN	4/6/18	Mercury	EPA 1631E	=	4.7	0.2	0.5	ng/L		Caltest	4/12/18	4/13/18
SE67	SC-RAIN	4/6/18	Mercury	EPA 1631E	=	4.8	0.2	0.5	ng/L		Caltest	4/12/18	4/13/18
SE67	WK-64	4/6/18	Mercury	EPA 1631E	=	10	0.2	0.5	ng/L		Caltest	4/12/18	4/13/18
SE67	WK-64R	4/6/18	Mercury	EPA 1631E	=	4.4	0.2	0.5	ng/L		Caltest	4/12/18	4/13/18
DW31	DC-46R	9/11/17	Methyl Mercury	EPA 1630	=	0.3	0.02	0.05	ng/L		Caltest	9/19/17	9/21/17
DW31	DC-66	9/11/17	Methyl Mercury	EPA 1630	=	0.08	0.02	0.05	ng/L		Caltest	9/19/17	9/21/17
DW31	DC-69	9/11/17	Methyl Mercury	EPA 1630	=	0.06	0.02	0.05	ng/L		Caltest	9/19/17	9/21/17
DW31	WK-64	9/11/17	Methyl Mercury	EPA 1630	=	0.05	0.02	0.05	ng/L		Caltest	9/19/17	9/21/17
DW31	WK-64R	9/11/17	Methyl Mercury	EPA 1630	=	0.06	0.02	0.05	ng/L		Caltest	9/19/17	9/21/17
DW32	DC-66	4/2/18	Methyl Mercury	EPA 1630	=	0.19	0.02	0.05	ng/L		Caltest	4/10/18	4/10/18
DW32	DC-69	4/2/18	Methyl Mercury	EPA 1630	=	0.18	0.02	0.05	ng/L		Caltest	4/10/18	4/10/18
DW32	WK-64	4/2/18	Methyl Mercury	EPA 1630	=	0.15	0.02	0.05	ng/L		Caltest	4/10/18	4/10/18
DW32	WK-64R	4/2/18	Methyl Mercury	EPA 1630	=	0.13	0.02	0.05	ng/L		Caltest	4/10/18	4/10/18
DW33	DC-66	4/24/18	Methyl Mercury	EPA 1630	=	0.26	0.02	0.05	ng/L		Caltest	5/8/18	5/8/18
DW33	DC-69	4/24/18	Methyl Mercury	EPA 1630	=	0.11	0.02	0.05	ng/L		Caltest	5/8/18	5/8/18

				Autorite mornies									
	011 0 1	Date											Analysis
Event	Site Code	Sampled	Analyte	Analytical Me	thod Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Date
DW33	WK-64	4/24/18	Methyl Mercury	EPA 1630	=	0.51	0.02	0.05	ng/L		Caltest	5/8/18	5/8/18
DW33	WK-64R	4/24/18	Methyl Mercury	EPA 1630	=	0.09	0.02	0.05	ng/L		Caltest	5/8/18	5/8/18
DW34	DC-46R	6/5/18	Methyl Mercury	EPA 1630	=	0.33	0.02	0.05	ng/L		Caltest	6/7/18	6/7/18
DW34	DC-66	6/5/18	Methyl Mercury	EPA 1630	=	0.86	0.02	0.05	ng/L		Caltest	6/7/18	6/7/18
DW34	DC-69	6/5/18	Methyl Mercury	EPA 1630	=	0.12	0.02	0.05	ng/L		Caltest	6/7/18	6/7/18
DW34	WK-64	6/5/18	Methyl Mercury	EPA 1630	=	0.91	0.02	0.05	ng/L		Caltest	6/7/18	6/7/18
DW34	WK-64R	6/5/18	Methyl Mercury	EPA 1630	=	0.07	0.02	0.05	ng/L		Caltest	6/7/18	6/7/18
SE65	DC-65	11/16/17	Methyl Mercury	EPA 1630	=	0.13	0.02	0.05	ng/L		Caltest	11/27/17	11/28/17
SE65	DC-65R	11/16/17	Methyl Mercury	EPA 1630	=	0.04	0.02	0.05	ng/L	J	Caltest	11/27/17	11/28/17
SE65	DC-69	11/16/17	Methyl Mercury	EPA 1630	=	0.11	0.02	0.05	ng/L		Caltest	11/27/17	11/28/17
SE65	NE-RAIN	11/16/17	Methyl Mercury	EPA 1630	=	0.07	0.02	0.05	ng/L		Caltest	12/6/17	12/7/17
SE65	NW-RAIN	11/16/17	Methyl Mercury	EPA 1630	=	0.02	0.02	0.05	ng/L	J	Caltest	12/6/17	12/7/17
SE65	SC-RAIN	11/16/17	Methyl Mercury	EPA 1630	<	0.02	0.02	0.05	ng/L	ND	Caltest	12/6/17	12/7/17
SE65	WK-64	11/16/17	Methyl Mercury	EPA 1630	=	0.13	0.02	0.05	ng/L		Caltest	11/27/17	11/28/17
SE65	WK-64R	11/16/17	Methyl Mercury	EPA 1630	=	0.04	0.02	0.05	ng/L	J	Caltest	11/27/17	11/28/17
SE66	DC-65	3/1/18	Methyl Mercury	EPA 1630	=	0.14	0.02	0.05	ng/L		Caltest	3/7/18	3/8/18
SE66	DC-65R	3/1/18	Methyl Mercury	EPA 1630	=	0.11	0.02	0.05	ng/L		Caltest	3/7/18	3/8/18
SE66	DC-69	3/1/18	Methyl Mercury	EPA 1630	=	0.21	0.02	0.05	ng/L		Caltest	3/7/18	3/8/18
SE66	NE-RAIN	3/1/18	Methyl Mercury	EPA 1630	=	0.12	0.02	0.05	ng/L		Caltest	3/8/18	3/9/18
SE66	NW-RAIN	3/1/18	Methyl Mercury	EPA 1630	=	0.1	0.02	0.05	ng/L		Caltest	3/8/18	3/9/18
SE66	SC-RAIN	3/1/18	Methyl Mercury	EPA 1630	=	0.07	0.02	0.05	ng/L		Caltest	3/8/18	3/9/18
SE66	WK-64	3/1/18	Methyl Mercury	EPA 1630	=	0.88	0.02	0.05	ng/L		Caltest	3/7/18	3/8/18
SE66	WK-64R	3/1/18	Methyl Mercury	EPA 1630	=	0.07	0.02	0.05	ng/L		Caltest	3/7/18	3/8/18
SE67	DC-65	4/6/18	Methyl Mercury	EPA 1630	=	0.1	0.02	0.05	ng/L		Caltest	4/19/18	4/19/18
SE67	DC-65R	4/6/18	Methyl Mercury	EPA 1630	=	0.1	0.02	0.05	ng/L		Caltest	4/19/18	4/19/18
SE67	DC-69	4/6/18	Methyl Mercury	EPA 1630	=	0.07	0.02	0.05	ng/L		Caltest	4/19/18	4/19/18
SE67	NE-RAIN	4/6/18	Methyl Mercury	EPA 1630	<	0.02	0.02	0.05	ng/L	ND	Caltest	4/19/18	4/19/18
SE67	NW-RAIN	4/6/18	Methyl Mercury	EPA 1630	=	0.03	0.02	0.05	ng/L	J	Caltest	4/19/18	4/19/18
SE67	SC-RAIN	4/6/18	Methyl Mercury	EPA 1630	=	0.04	0.02	0.05	ng/L	J	Caltest	4/19/18	4/19/18
SE67	WK-64	4/6/18	Methyl Mercury	EPA 1630	=	0.11	0.02	0.05	ng/L		Caltest	4/19/18	4/19/18
SE67	WK-64R	4/6/18	Methyl Mercury	EPA 1630	=	0.08	0.02	0.05	ng/L		Caltest	4/19/18	4/19/18
DW31	DC-66	9/11/17	Aluminum, Dissolved	200.8	<	0.1	0.1	10	ug/L	U	FGL Env.	9/13/17	9/15/17
DW32	DC-66	4/2/18	Aluminum, Dissolved	200.8	=	16.2	0.1	10	ug/L		FGL Env.	4/4/18	4/4/18
DW33	DC-66	4/24/18	Aluminum, Dissolved	200.8	=	10	0.1	10	ug/L	J	FGL Environ	4/26/17	4/26/18
DW34	DC-66	6/5/18	Aluminum, Dissolved	200.8	=	20.5	0.1	10	ug/L		FGL Env.	6/16/17	6/16/18
SE65	DC-65	11/16/17	Aluminum, Dissolved	200.8	=	94	0.071	10	ug/L		FGL Environ	11/28/17	11/28/17
SE65	DC-65R	11/16/17	Aluminum, Dissolved	200.8	=	4.08	0.071	10	ug/L	J	FGL Environ	11/28/17	11/28/17
									J				

			•		<u> </u>	- 9	_0., _						
		Date											Analysis
Event	Site Code	Sampled	Analyte	Analytical Method	Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Date
SE66	DC-65	3/1/18	Aluminum, Dissolved	200.8	=	32.2	0.1	10	ug/L		FGL Env.	3/5/18	3/5/18
SE66	DC-65R	3/1/18	Aluminum, Dissolved	200.8	=	16.8	0.1	10	ug/L		FGL Env.	3/5/18	3/5/18
SE67	DC-65	4/6/18	Aluminum, Dissolved	200.8	=	41.8	0.1	10	ug/L		FGL Env.	4/11/18	4/11/18
SE67	DC-65R	4/6/18	Aluminum, Dissolved	200.8	=	5.82	0.1	10	ug/L	J	FGL Env.	4/13/18	4/13/18
DW31	DC-66	9/11/17	Aluminum, Total	200.8	=	55.9	0.05	10	ug/L	[FGL Env.	9/18/17	9/19/17
DW32	DC-66	4/2/18	Aluminum, Total	200.8	=	313	0.05	10	ug/L	Р	FGL Env.	4/4/18	4/5/18
DW33	DC-66	4/24/18	Aluminum, Total	200.8	=	265	0.05	10	ug/L	hP	FGL Env.	4/26/17	4/27/18
DW34	DC-66	6/5/18	Aluminum, Total	200.8	=	14.3	0.05	10	ug/L		FGL Env.	6/21/17	6/29/18
SE65	DC-65	11/16/17	Aluminum, Total	200.8	=	2450	0.05	100	ug/L		FGL Environ	11/28/17	12/1/17
SE65	DC-65R	11/16/17	Aluminum, Total	200.8	=	2140	0.05	100	ug/L	Р	FGL Environ	11/21/17	11/27/17
SE66	DC-65	3/1/18	Aluminum, Total	200.8	=	1640	0.05	50	ug/L	Р	FGL Env.	3/6/18	3/7/18
SE66	DC-65R	3/1/18	Aluminum, Total	200	=	1870	8.5	100	ug/L		FGL Env.	3/20/18	3/20/18
SE67	DC-65	4/6/18	Aluminum, Total	200.8	=	2380	0.05	100	ug/L	Р	FGL Env.	4/16/18	4/19/18
SE67	DC-65R	4/6/18	Aluminum, Total	200.8	=	818	0.05	20	ug/L	Р	FGL Env.	4/16/18	4/19/18
DW31	DC-66	9/11/17	Copper, Dissolved	200.8	=	3.46	0.066	1	ug/L		FGL Env.	9/13/17	9/15/17
DW32	DC-66	4/2/18	Copper, Dissolved	200.8	=	3.9	0.066	1	ug/L		FGL Env.	4/4/18	4/4/18
DW33	DC-66	4/24/18	Copper, Dissolved	200.8	=	4.39	0.066	1	ug/L	h	FGL Env.	4/26/17	4/26/18
DW34	DC-66	6/5/18	Copper, Dissolved	200.8	=	2.69	0.066	1	ug/L		FGL Env.	6/16/17	6/16/18
SE65	DC-65	11/16/17	Copper, Dissolved	200.8	=	5.48	0.038	1	ug/L	1	FGL Environ	11/28/17	11/28/17
SE65	DC-65R	11/16/17	Copper, Dissolved	200.8	=	2.09	0.038	1	ug/L	1	FGL Environ	11/28/17	11/28/17
SE66	DC-65	3/1/18	Copper, Dissolved	200.8	=	6.7	0.066	1	ug/L	1	FGL Env.	3/5/18	3/5/18
SE66	DC-65R	3/1/18	Copper, Dissolved	200.8	=	3.48	0.066	1	ug/L	1	FGL Env.	3/5/18	3/5/18
SE67	DC-65	4/6/18	Copper, Dissolved	200.8	=	4.57	0.066	1	ug/L		FGL Env.	4/13/18	4/13/18
SE67	DC-65R	4/6/18	Copper, Dissolved	200.8	=	2.46	0.066	1	ug/L		FGL Env.	4/13/18	4/13/18
DW31	DC-66	9/11/17	Copper, Total	200.8	=	5.07	0.071	1	ug/L		FGL Env.	9/18/17	9/19/17
DW32	DC-66	4/2/18	Copper, Total	200.8	=	8.18	0.071	1	ug/L	IhP	FGL Env.	4/4/18	4/5/18
DW33	DC-66	4/24/18	Copper, Total	200.8	=	10.3	0.071	1	ug/L	hP	FGL Env.	4/26/17	4/27/18
DW34	DC-66	6/5/18	Copper, Total	200.8	=	9.17	0.071	1	ug/L		FGL Env.	6/21/17	6/29/18
SE65	DC-65	11/16/17	Copper, Total	200.8	=	18.8	0.071	1	ug/L	Р	FGL Environ	11/28/17	11/29/17
SE65	DC-65R	11/16/17	Copper, Total	200.8	=	5.34	0.071	1	ug/L	1	FGL Environ	11/21/17	11/23/17
SE66	DC-65	3/1/18	Copper, Total	200.8	=	12.7	0.071	1	ug/L	hP	FGL Env.	3/6/18	3/6/18
SE66	DC-65R	3/1/18	Copper, Total	200.8	=	7.26	0.071	1	ug/L	1P	FGL Env.	3/20/18	3/22/18
SE67	DC-65	4/6/18	Copper, Total	200.8	=	9.14	0.071	2	ug/L		FGL Env.	4/16/18	4/19/18
SE67	DC-65R	4/6/18	Copper, Total	200.8	=	5.05	0.071	2	ug/L		FGL Env.	4/16/18	4/19/18
DW31	DC-66	9/11/17	Iron, Total	200.7	=	614	0.97	50	ug/L		FGL Env.	9/13/17	9/15/17
DW32	DC-66	4/2/18	Iron, Total	200.7	=	957	0.97	50	ug/L		FGL Env.	4/4/18	4/4/18
DW33	DC-66	4/24/18	Iron, Total	200.7	=	746	1.4	50	ug/L		FGL Env.	4/26/17	4/29/18
			•	*					J				

				7 timbletit merintering		<u> </u>							
	a a .	Date			_								Analysis
Event	Site Code	Sampled	Analyte	Analytical Method		Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Date
DW34	DC-66	6/5/18	Iron, Total	===::	=	2110	1.4	50	ug/L		FGL Env.	6/21/17	6/27/18
SE65	DC-65	11/16/17	Iron, Total	200.7	=	3640	0.97	50	ug/L		FGL Environ	11/28/17	11/28/17
SE65	DC-65R	11/16/17	Iron, Total		=	1960	0.97	50	ug/L		FGL Environ	11/21/17	11/27/17
SE66	DC-65	3/1/18	Iron, Total	===::	=	1210	0.97	50	ug/L		FGL Env.	3/6/18	3/7/18
SE66	DC-65R	3/1/18	Iron, Total		=	1860	0.97	50	ug/L		FGL Env.	3/20/18	3/20/18
SE67	DC-65	4/6/18	Iron, Total		=	2170	1.4	50	ug/L		FGL Env.	4/16/18	4/17/18
SE67	DC-65R	4/6/18	Iron, Total	===::	=	1120	1.4	50	ug/L		FGL Env.	4/16/18	4/18/18
DW31	DC-66	9/11/17	Lead, Dissolved		<	0.015	0.015	0.2	ug/L	U	FGL Env.	9/13/17	9/15/17
DW32	DC-66	4/2/18	Lead, Dissolved	200.0	=	0.24	0.015	0.2	ug/L	J	FGL Env.	4/4/18	4/4/18
DW33	DC-66	4/24/18	Lead, Dissolved	=	=	0.153	0.015	0.2	ug/L	Jh	FGL Env.	4/26/17	4/26/18
DW34	DC-66	6/5/18	Lead, Dissolved		=	0.511	0.015	0.2	ug/L		FGL Env.	6/16/17	6/16/18
SE65	DC-65	11/16/17	Lead, Dissolved		=	0.294	0.036	0.2	ug/L	J	FGL Environ	11/28/17	11/28/17
SE65	DC-65R	11/16/17	Lead, Dissolved	200.8	<	0.036	0.036	0.2	ug/L	U, ND	FGL Environ	11/28/17	11/28/17
SE66	DC-65	3/1/18	Lead, Dissolved	200.8	=	0.057	0.015	0.2	ug/L	J1	FGL Env.	3/5/18	3/5/18
SE66	DC-65R	3/1/18	Lead, Dissolved	200.8	=	0.069	0.015	0.2	ug/L	J1	FGL Env.	3/5/18	3/5/18
SE67	DC-65	4/6/18	Lead, Dissolved	200.8	=	0.046	0.015	0.2	ug/L	J	FGL Env.	4/11/18	4/11/18
SE67	DC-65R	4/6/18	Lead, Dissolved	200.8	=	0.111	0.015	0.2	ug/L	J	FGL Env.	4/13/18	4/13/18
DW31	DC-66	9/11/17	Lead, Total	200.8	=	0.466	0.013	0.2	ug/L		FGL Env.	9/18/17	9/19/17
DW32	DC-66	4/2/18	Lead, Total	200.8	=	1.14	0.013	0.2	ug/L	hP	FGL Env.	4/4/18	4/5/18
DW33	DC-66	4/24/18	Lead, Total	200.8	=	1.77	0.013	0.2	ug/L	hP	FGL Env.	4/26/17	4/27/18
DW34	DC-66	6/5/18	Lead, Total	200.8	=	2.28	0.013	0.2	ug/L		FGL Env.	6/21/17	6/29/18
SE65	DC-65	11/16/17	Lead, Total	200.8	=	2.66	0.013	0.2	ug/L		FGL Environ	11/28/17	11/29/17
SE65	DC-65R	11/16/17	Lead, Total	200.8	=	2.43	0.013	0.2	ug/L		FGL Environ	11/21/17	11/23/17
SE66	DC-65	3/1/18	Lead, Total	200.8	=	1.44	0.013	0.2	ug/L	hP	FGL Env.	3/6/18	3/6/18
SE66	DC-65R	3/1/18	Lead, Total	200.8	=	2.8	0.013	0.2	ug/L	hP	FGL Env.	3/20/18	3/22/18
SE67	DC-65	4/6/18	Lead, Total	200.8	=	2.1	0.013	0.4	ug/L		FGL Env.	4/16/18	4/19/18
SE67	DC-65R	4/6/18	Lead, Total	200.8	=	2.29	0.013	0.4	ug/L		FGL Env.	4/16/18	4/19/18
DW31	DC-66	9/11/17	Zinc, Total	200.8	=	38.5	0.1	10	ug/L	IP	FGL Env.	9/18/17	9/20/17
DW32	DC-66	4/2/18	Zinc, Total	200.8	=	70.6	0.1	10	ug/L	Р	FGL Env.	4/4/18	4/5/18
DW33	DC-66	4/24/18	Zinc, Total	200.8	=	36.7	0.1	10	ug/L	Р	FGL Env.	4/26/17	4/27/18
DW34	DC-66	6/5/18	Zinc, Total		=	58.7	0.1	10	ug/L	hP	FGL Env.	6/21/17	6/29/18
SE65	DC-65	11/16/17	Zinc, Total		=	228	0.1	10	ug/L		FGL Environ	11/28/17	11/29/17
SE65	DC-65R	11/16/17	Zinc, Total		=	19.4	0.1	10	ug/L		FGL Environ	11/21/17	11/23/17
SE66	DC-65	3/1/18	Zinc, Total		=	90.6	0.1	10	ug/L	1P	FGL Env.	3/6/18	3/6/18
SE66	DC-65R	3/1/18	Zinc, Total		=	42.1	0.1	10	ug/L	1	FGL Env.	3/20/18	3/22/18
SE67	DC-65	4/6/18	Zinc, Total		=	107	0.1	20	ug/L		FGL Env.	4/16/18	4/19/18
SE67	DC-65R	4/6/18	Zinc, Total		=	24.7	0.1	20	ug/L		FGL Env.	4/16/18	4/19/18
									J.				

				7 timbionic monitoring i	9							
		Date										Analysis
Event	Site Code	Sampled	Analyte	Analytical Method Q		MDL		Units	Flag	Lab Name	Prep Date	Date
DW31	DC-46R	9/11/17	Chlorpyrifos	EPA 8270M_NCI =		0.5	1	ng/L		Caltest	9/14/17	10/12/17
DW31	DC-66	9/11/17	Chlorpyrifos	EPA 8270M_NCI <		0.5	1	ng/L	ND	Caltest	9/14/17	10/12/17
DW31	DC-69	9/11/17	Chlorpyrifos	EPA 8270M_NCI =		0.5	1	ng/L		Caltest	9/14/17	10/12/17
DW31	WK-64	9/11/17	Chlorpyrifos	EPA 8270M_NCI <		0.5	1	ng/L	ND	Caltest	9/14/17	10/12/17
DW31	WK-64R	9/11/17	Chlorpyrifos	EPA 8270M_NCI =		0.6	1.2	ng/L	J	Caltest	9/14/17	10/12/17
DW32	DC-66	4/2/18	Chlorpyrifos	EPA 8270M_NCI =		0.6	1.1	ng/L		Caltest	4/4/18	4/7/18
DW32	DC-69	4/2/18	Chlorpyrifos	EPA 8270M_NCI =		0.6	1.1	ng/L		Caltest	4/4/18	4/7/18
DW32	WK-64	4/2/18	Chlorpyrifos	EPA 8270M_NCI =	7.5	0.5	1	ng/L		Caltest	4/4/18	4/7/18
DW32	WK-64R	4/2/18	Chlorpyrifos	EPA 8270M_NCI =	0.8	0.6	1.1	ng/L	J	Caltest	4/4/18	4/7/18
DW33	DC-66	4/24/18	Chlorpyrifos	EPA 8270M_NCI =		1	2	ng/L	J	Caltest	4/27/18	5/8/18
DW33	DC-69	4/24/18	Chlorpyrifos	EPA 8270M_NCI =	0.7	0.5	1	ng/L	J	Caltest	4/27/18	5/2/18
DW33	WK-64	4/24/18	Chlorpyrifos	EPA 8270M_NCI =	4.7	1	2	ng/L		Caltest	4/27/18	5/8/18
DW33	WK-64R	4/24/18	Chlorpyrifos	EPA 8270M_NCI <	1	1	2	ng/L	ND	Caltest	4/27/18	5/2/18
DW34	DC-46R	6/5/18	Chlorpyrifos	EPA 8270M_NCI =	0.6	0.5	1	ng/L	J,1	Caltest	6/8/18	7/10/18
DW34	DC-66	6/5/18	Chlorpyrifos	EPA 8270M_NCI <	2	2	5	ng/L	ND	Caltest	6/8/18	7/11/18
DW34	DC-69	6/5/18	Chlorpyrifos	EPA 8270M_NCI <	1	1	2	ng/L	ND	Caltest	6/8/18	7/11/18
DW34	WK-64	6/5/18	Chlorpyrifos	EPA 8270M_NCI =	4.1	0.6	1.2	ng/L		Caltest	6/8/18	7/11/18
DW34	WK-64R	6/5/18	Chlorpyrifos	EPA 8270M_NCI =	0.6	0.5	1	ng/L	J	Caltest	6/8/18	7/11/18
SE65	DC-65	11/16/17	Chlorpyrifos	EPA 8270M_NCI =	1.4	1	2	ng/L	J	Caltest	11/17/17	12/14/17
SE65	DC-65R	11/16/17	Chlorpyrifos	EPA 8270M_NCI <	0.5	0.5	1	ng/L	ND	Caltest	11/17/17	12/10/17
SE65	DC-69	11/16/17	Chlorpyrifos	EPA 8270M_NCI =	4.1	0.5	1	ng/L		Caltest	11/17/17	12/10/17
SE65	NE-RAIN	11/16/17	Chlorpyrifos	EPA 8270M_NCI =	29	0.5	1	ng/L		Caltest	11/17/17	12/11/17
SE65	NW-RAIN	11/16/17	Chlorpyrifos	EPA 8270M_NCI =	5.1	0.5	1	ng/L		Caltest	11/17/17	12/10/17
SE65	SC-RAIN	11/16/17	Chlorpyrifos	EPA 8270M_NCI =	0.6	0.5	1	ng/L	J	Caltest	11/17/17	12/10/17
SE65	WK-64	11/16/17	Chlorpyrifos	EPA 8270M_NCI =	1.6	0.6	1.2	ng/L		Caltest	11/17/17	12/10/17
SE65	WK-64R	11/16/17	Chlorpyrifos	EPA 8270M_NCI =	0.7	0.6	1.2	ng/L	J	Caltest	11/17/17	12/10/17
SE66	DC-65	3/1/18	Chlorpyrifos	EPA 8270M_NCI =	1.4	0.5	1	ng/L		Caltest	3/2/18	3/6/18
SE66	DC-65R	3/1/18	Chlorpyrifos	EPA 8270M_NCI =	1.5	0.5	1	ng/L		Caltest	3/2/18	3/6/18
SE66	DC-69	3/1/18	Chlorpyrifos	EPA 8270M_NCI =	1.6	0.6	1.1	ng/L		Caltest	3/2/18	3/6/18
SE66	NE-RAIN	3/1/18	Chlorpyrifos	EPA 8270M_NCI =	6.0	0.5	1	ng/L		Caltest	3/2/18	3/7/18
SE66	NW-RAIN	3/1/18	Chlorpyrifos	EPA 8270M_NCI =	8.7	0.5	1	ng/L		Caltest	3/2/18	3/7/18
SE66	SC-RAIN	3/1/18	Chlorpyrifos	EPA 8270M_NCI =	4.2	0.5	1	ng/L		Caltest	3/2/18	3/7/18
SE66	WK-64	3/1/18	Chlorpyrifos	EPA 8270M_NCI =	7.8	0.5	1	ng/L		Caltest	3/2/18	3/6/18
SE66	WK-64R	3/1/18	Chlorpyrifos	EPA 8270M_NCI =	1.7	0.5	1	ng/L		Caltest	3/2/18	3/6/18
SE67	DC-65	4/6/18	Chlorpyrifos	EPA 8270M_NCI =	3.5	0.5	1	ng/L		Caltest	4/9/18	4/24/18
SE67	DC-65R	4/6/18	Chlorpyrifos	EPA 8270M_NCI =	1.8	1	2.2	ng/L	J	Caltest	4/9/18	5/2/18
SE67	DC-69	4/6/18	Chlorpyrifos	EPA 8270M_NCI =	4.8	0.5	1	ng/L		Caltest	4/9/18	4/24/18
			1 7	-				J				

				7 timblotte monitoring i	9							
		Date										Analysis
Event	Site Code	Sampled	Analyte	Analytical Method Q	Result	MDL		Units	Flag	Lab Name	Prep Date	Date
SE67	NE-RAIN	4/6/18	Chlorpyrifos	EPA 8270M_NCI =	0.9	0.5		ng/L	J	Caltest	4/9/18	4/24/18
SE67	NW-RAIN	4/6/18	Chlorpyrifos	EPA 8270M_NCI =	3.8	0.5		ng/L		Caltest	4/9/18	4/24/18
SE67	SC-RAIN	4/6/18	Chlorpyrifos	EPA 8270M_NCI =	9.5	0.5	1	ng/L		Caltest	4/9/18	4/24/18
SE67	WK-64	4/6/18	Chlorpyrifos	EPA 8270M_NCI =	8.7	0.5		ng/L		Caltest	4/9/18	4/24/18
SE67	WK-64R	4/6/18	Chlorpyrifos	EPA 8270M_NCI <	1	1		ng/L	ND	Caltest	4/9/18	5/2/18
SE65	NE-RAIN	11/16/17	Diazinon	EPA 8270M_NCI <	0.1	0.1	0.5	ng/L	ND	Caltest	11/17/17	12/10/17
SE65	NW-RAIN	11/16/17	Diazinon	EPA 8270M_NCI <	0.1	0.1		ng/L	ND	Caltest	11/17/17	12/10/17
SE65	SC-RAIN	11/16/17	Diazinon	EPA 8270M_NCI <	0.1	0.1	0.5	ng/L	ND	Caltest	11/17/17	12/11/17
SE66	NE-RAIN	3/1/18	Diazinon	EPA 8270M_NCI <	0.1	0.1	0.6	ng/L	ND	Caltest	3/2/18	3/7/18
SE66	NW-RAIN	3/1/18	Diazinon	EPA 8270M_NCI <	0.1	0.1	0.5	ng/L	ND	Caltest	3/2/18	3/7/18
SE66	SC-RAIN	3/1/18	Diazinon	EPA 8270M_NCI =	6.7	0.1	0.5	ng/L		Caltest	3/2/18	3/7/18
SE67	NE-RAIN	4/6/18	Diazinon	EPA 8270M_NCI =	2.8	0.1	0.5	ng/L		Caltest	4/9/18	4/24/18
SE67	NW-RAIN	4/6/18	Diazinon	EPA 8270M_NCI <	0.1	0.1	0.5	ng/L	ND	Caltest	4/9/18	4/24/18
SE67	SC-RAIN	4/6/18	Diazinon	EPA 8270M_NCI <	0.1	0.1	0.5	ng/L	ND	Caltest	4/9/18	4/24/18
DW31	DC-46R	9/11/17	Allethrin	EPA 8270M_NCI <	0.1	0.1	0.5	ng/L	ND	Caltest	9/14/17	10/12/17
DW31	DC-66	9/11/17	Allethrin	EPA 8270M_NCI <	0.1	0.1	0.5	ng/L	ND	Caltest	9/14/17	10/12/17
DW31	DC-69	9/11/17	Allethrin	EPA 8270M_NCI <	0.1	0.1	0.5	ng/L	ND	Caltest	9/14/17	10/12/17
DW31	WK-64	9/11/17	Allethrin	EPA 8270M_NCI <	0.1	0.1		ng/L	ND	Caltest	9/14/17	10/12/17
DW31	WK-64R	9/11/17	Allethrin	EPA 8270M_NCI <	0.1	0.1	0.6	ng/L	ND, 2	Caltest	9/14/17	10/12/17
DW32	DC-66	4/2/18	Allethrin	EPA 8270M_NCI <	0.1	0.1	0.6	ng/L	ND, 1	Caltest	4/4/18	4/7/18
DW32	DC-69	4/2/18	Allethrin	EPA 8270M_NCI <	0.1	0.1	0.6	ng/L	ND, 1	Caltest	4/4/18	4/7/18
DW32	WK-64	4/2/18	Allethrin	EPA 8270M_NCI <	0.1	0.1	0.5	ng/L	ND	Caltest	4/4/18	4/7/18
DW32	WK-64R	4/2/18	Allethrin	EPA 8270M_NCI <	0.1	0.1	0.6	ng/L	ND, 1	Caltest	4/4/18	4/7/18
DW33	DC-66	4/24/18	Allethrin	EPA 8270M_NCI <	0.2	0.2	1	ng/L	ND, 1	Caltest	4/27/18	5/8/18
DW33	DC-69	4/24/18	Allethrin	EPA 8270M_NCI <	0.1	0.1	0.5	ng/L	ND	Caltest	4/27/18	5/2/18
DW33	WK-64	4/24/18	Allethrin	EPA 8270M_NCI <	0.2	0.2	1	ng/L	ND, 1	Caltest	4/27/18	5/8/18
DW33	WK-64R	4/24/18	Allethrin	EPA 8270M_NCI <	0.2	0.2	1	ng/L	ND, 1	Caltest	4/27/18	5/2/18
DW34	DC-46R	6/5/18	Allethrin	EPA 8270M_NCI <	0.1	0.1	0.5	ng/L	ND	Caltest	6/8/18	7/10/18
DW34	DC-66	6/5/18	Allethrin	EPA 8270M_NCI <	0.5	0.5	2.5	ng/L	ND, 2	Caltest	6/8/18	7/11/18
DW34	DC-69	6/5/18	Allethrin	EPA 8270M_NCI <	0.2	0.2	1	ng/L	ND,2	Caltest	6/8/18	7/11/18
DW34	WK-64	6/5/18	Allethrin	EPA 8270M_NCI <	0.1	0.1	0.6	ng/L	ND, 3	Caltest	6/8/18	6/21/18
DW34	WK-64R	6/5/18	Allethrin	EPA 8270M_NCI <	0.1	0.1		ng/L	ND	Caltest	6/8/18	6/21/18
SE65	DC-65	11/16/17	Allethrin	EPA 8270M_NCI <	0.2	0.2		ng/L	ND, 1	Caltest	11/17/17	12/14/17
SE65	DC-65R	11/16/17	Allethrin	EPA 8270M_NCI <	0.1	0.1		ng/L	ND	Caltest	11/17/17	12/10/17
SE65	DC-69	11/16/17	Allethrin	EPA 8270M_NCI <	0.1	0.1		ng/L	ND	Caltest	11/17/17	12/10/17
SE65	NE-RAIN	11/16/17	Allethrin	EPA 8270M_NCI <	0.1	0.1		ng/L	ND	Caltest	11/17/17	12/11/17
SE65	NW-RAIN	11/16/17	Allethrin	EPA 8270M_NCI <	0.1	0.1		ng/L	ND	Caltest	11/17/17	12/10/17
				-				J				

					- 3							
Event	Site Code	Date	Apolyto	Applytical Mothed O	Docult	MDI	RL/ML	Units	Elog	Lab Name	Drop Data	Analysis Date
Event SE65	SC-RAIN	Sampled 11/16/17	Analyte Allethrin	Analytical Method Q EPA 8270M_NCI <	Result 0.1	MDL 0.1	0.5		Flag ND	Caltest	Prep Date 11/17/17	12/10/17
SE65	WK-64	11/16/17	Allethrin	EPA 8270M_NCI <	0.1	0.1	0.6	ng/L	ND, 2	Caltest	11/17/17	12/10/17
SE65	WK-64R	11/16/17		EPA 8270M_NCI <	0.1	0.1	0.6	ng/L	ND, 2		11/17/17	12/10/17
SE66	DC-65	3/1/18	Allethrin		0.1	0.1	0.6	ng/L	ND, Z	Caltest	3/2/18	3/6/18
			Allethrin	EPA 8270M_NCI <				ng/L		Caltest		
SE66	DC-65R	3/1/18	Allethrin	EPA 8270M_NCI <	0.1	0.1	0.5	ng/L	ND 1	Caltest	3/2/18	3/6/18
SE66	DC-69	3/1/18	Allethrin	EPA 8270M_NCI <	0.1	0.1	0.6	ng/L	ND, 1	Caltest	3/2/18	3/6/18
SE66	NE-RAIN	3/1/18	Allethrin	EPA 8270M_NCI <	0.1	0.1	0.6	ng/L	ND, 1	Caltest	3/2/18	3/7/18
SE66	NW-RAIN	3/1/18	Allethrin	EPA 8270M_NCI <	0.1	0.1	0.5	ng/L	ND	Caltest	3/2/18	3/7/18
SE66	SC-RAIN	3/1/18	Allethrin	EPA 8270M_NCI <	0.1	0.1	0.5	ng/L	ND	Caltest	3/2/18	3/7/18
SE66	WK-64	3/1/18	Allethrin	EPA 8270M_NCI <	0.1	0.1	0.5	ng/L	ND	Caltest	3/2/18	3/6/18
SE66	WK-64R	3/1/18	Allethrin	EPA 8270M_NCI <	0.1	0.1	0.5	ng/L	ND	Caltest	3/2/18	3/6/18
SE67	DC-65	4/6/18	Allethrin	EPA 8270M_NCI <	0.1	0.1	0.5	ng/L	ND	Caltest	4/9/18	4/24/18
SE67	DC-65R	4/6/18	Allethrin	EPA 8270M_NCI <	0.2	0.2	1.1	ng/L	ND, 2, 1		4/9/18	5/2/18
SE67	DC-69	4/6/18	Allethrin	EPA 8270M_NCI <	0.1	0.1	0.5	ng/L	ND	Caltest	4/9/18	4/24/18
SE67	NE-RAIN	4/6/18	Allethrin	EPA 8270M_NCI <	0.1	0.1	0.5	ng/L	ND	Caltest	4/9/18	4/24/18
SE67	NW-RAIN	4/6/18	Allethrin	EPA 8270M_NCI <	0.1	0.1	0.5	ng/L	ND	Caltest	4/9/18	4/24/18
SE67	SC-RAIN	4/6/18	Allethrin	EPA 8270M_NCI <	0.1	0.1	0.5	ng/L	ND	Caltest	4/9/18	4/24/18
SE67	WK-64	4/6/18	Allethrin	EPA 8270M_NCI <	0.1	0.1	0.5	ng/L	ND	Caltest	4/9/18	4/24/18
SE67	WK-64R	4/6/18	Allethrin	EPA 8270M_NCI <	0.2	0.2	1	ng/L	ND, 1	Caltest	4/9/18	5/2/18
DW31	DC-46R	9/11/17	Bifenthrin	EPA 8270M_NCI =	0.6	0.1	0.5	ng/L		Caltest	9/14/17	10/12/17
DW31	DC-66	9/11/17	Bifenthrin	EPA 8270M_NCI =	6.9	0.1	0.5	ng/L		Caltest	9/14/17	10/12/17
DW31	DC-69	9/11/17	Bifenthrin	EPA 8270M_NCI =	1.3	0.1	0.5	ng/L		Caltest	9/14/17	10/12/17
DW31	WK-64	9/11/17	Bifenthrin	EPA 8270M_NCI =	4	0.1	0.5	ng/L		Caltest	9/14/17	10/12/17
DW31	WK-64R	9/11/17	Bifenthrin	EPA 8270M_NCI =	1	0.1	0.6	ng/L		Caltest	9/14/17	10/12/17
DW32	DC-66	4/2/18	Bifenthrin	EPA 8270M_NCI <	0.1	0.1	0.6	ng/L	ND	Caltest	4/4/18	4/7/18
DW32	DC-69	4/2/18	Bifenthrin	EPA 8270M_NCI <	0.1	0.1	0.6	ng/L	ND	Caltest	4/4/18	4/7/18
DW32	WK-64	4/2/18	Bifenthrin	EPA 8270M_NCI =	1.5	0.1	0.5	ng/L		Caltest	4/4/18	4/7/18
DW32	WK-64R	4/2/18	Bifenthrin	EPA 8270M_NCI =	0.7	0.1	0.6	ng/L		Caltest	4/4/18	4/7/18
DW33	DC-66	4/24/18	Bifenthrin	EPA 8270M_NCI =	5.2	0.2	1	ng/L		Caltest	4/27/18	5/8/18
DW33	DC-69	4/24/18	Bifenthrin	EPA 8270M_NCI <	0.1	0.1	0.5	ng/L	ND	Caltest	4/27/18	5/2/18
DW33	WK-64	4/24/18	Bifenthrin	EPA 8270M_NCI =	3.9	0.2	1	ng/L		Caltest	4/27/18	5/8/18
DW33	WK-64R	4/24/18	Bifenthrin	EPA 8270M_NCI =	0.6	0.2	1	ng/L	J	Caltest	4/27/18	5/2/18
DW34	DC-46R	6/5/18	Bifenthrin	EPA 8270M_NCI <	0.1	0.1	0.5	ng/L	ND	Caltest	6/8/18	7/10/18
DW34	DC-66	6/5/18	Bifenthrin	EPA 8270M_NCI =	3.2	0.5	2.5	ng/L		Caltest	6/8/18	7/11/18
DW34	DC-69	6/5/18	Bifenthrin	EPA 8270M_NCI =	0.7	0.2	1	ng/L	J	Caltest	6/8/18	7/11/18
DW34	WK-64	6/5/18	Bifenthrin	EPA 8270M_NCI =	14	0.1	0.6	ng/L		Caltest	6/8/18	6/21/18
DW34	WK-64R	6/5/18	Bifenthrin	EPA 8270M_NCI <	0.1	0.1	0.5	ng/L	ND	Caltest	6/8/18	6/21/18
		3, 3, . 3	01.01.01	2 52 . 51101	· · ·			g. =		- 4	5, 5, 15	3,20

		Date			3							Analysis
Event	Site Code	Sampled	Analyte	Analytical Method Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Date
SE65	DC-65	11/16/17	Bifenthrin	EPA 8270M_NCI <	0.2	0.2	1	ng/L	ND	Caltest	11/17/17	12/14/17
SE65	DC-65R	11/16/17	Bifenthrin	EPA 8270M_NCI <	0.1	0.1	0.5	ng/L	ND	Caltest	11/17/17	12/10/17
SE65	DC-69	11/16/17	Bifenthrin	EPA 8270M_NCI =	13	0.1	0.5	ng/L		Caltest	11/17/17	12/10/17
SE65	NE-RAIN	11/16/17	Bifenthrin	EPA 8270M_NCI =	1.4	0.1	0.5	ng/L		Caltest	11/17/17	12/11/17
SE65	NW-RAIN	11/16/17	Bifenthrin	EPA 8270M_NCI =	0.5	0.1	0.5	ng/L		Caltest	11/17/17	12/10/17
SE65	SC-RAIN	11/16/17	Bifenthrin	EPA 8270M_NCI =	0.6	0.1	0.5	ng/L		Caltest	11/17/17	12/10/17
SE65	WK-64	11/16/17	Bifenthrin	EPA 8270M_NCI =	22	0.1	0.6	ng/L		Caltest	11/17/17	12/10/17
SE65	WK-64R	11/16/17	Bifenthrin	EPA 8270M_NCI =	1.2	0.1	0.6	ng/L		Caltest	11/17/17	12/10/17
SE66	DC-65	3/1/18	Bifenthrin	EPA 8270M_NCI <	0.1	0.1	0.5	ng/L	ND	Caltest	3/2/18	3/6/18
SE66	DC-65R	3/1/18	Bifenthrin	EPA 8270M_NCI =	3	0.1	0.5	ng/L		Caltest	3/2/18	3/6/18
SE66	DC-69	3/1/18	Bifenthrin	EPA 8270M_NCI =	1.9	0.1	0.6	ng/L		Caltest	3/2/18	3/6/18
SE66	NE-RAIN	3/1/18	Bifenthrin	EPA 8270M_NCI =	0.5	0.1	0.6	ng/L	J	Caltest	3/2/18	3/7/18
SE66	NW-RAIN	3/1/18	Bifenthrin	EPA 8270M_NCI =	1.4	0.1	0.5	ng/L		Caltest	3/2/18	3/7/18
SE66	SC-RAIN	3/1/18	Bifenthrin	EPA 8270M_NCI <	0.1	0.1	0.5	ng/L	ND	Caltest	3/2/18	3/7/18
SE66	WK-64	3/1/18	Bifenthrin	EPA 8270M_NCI =	4.7	0.1	0.5	ng/L		Caltest	3/2/18	3/6/18
SE66	WK-64R	3/1/18	Bifenthrin	EPA 8270M_NCI =	2.4	0.1	0.5	ng/L		Caltest	3/2/18	3/6/18
SE67	DC-65	4/6/18	Bifenthrin	EPA 8270M_NCI =	4	0.1	0.5	ng/L		Caltest	4/9/18	4/24/18
SE67	DC-65R	4/6/18	Bifenthrin	EPA 8270M_NCI =	2.2	0.2	1.1	ng/L		Caltest	4/9/18	5/2/18
SE67	DC-69	4/6/18	Bifenthrin	EPA 8270M_NCI =	2.5	0.1	0.5	ng/L		Caltest	4/9/18	4/24/18
SE67	NE-RAIN	4/6/18	Bifenthrin	EPA 8270M_NCI =	0.2	0.1	0.5	ng/L	J	Caltest	4/9/18	4/24/18
SE67	NW-RAIN	4/6/18	Bifenthrin	EPA 8270M_NCI =	0.5	0.1	0.5	ng/L		Caltest	4/9/18	4/24/18
SE67	SC-RAIN	4/6/18	Bifenthrin	EPA 8270M_NCI =	0.5	0.1	0.5	ng/L		Caltest	4/9/18	4/24/18
SE67	WK-64	4/6/18	Bifenthrin	EPA 8270M_NCI =	34	0.1	0.5	ng/L		Caltest	4/9/18	4/24/18
SE67	WK-64R	4/6/18	Bifenthrin	EPA 8270M_NCI =	0.9	0.2	1	ng/L	J	Caltest	4/9/18	5/2/18
DW31	DC-46R	9/11/17	Cyfluthrin	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND	Caltest	9/14/17	10/12/17
DW31	DC-66	9/11/17	Cyfluthrin	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND	Caltest	9/14/17	10/12/17
DW31	DC-69	9/11/17	Cyfluthrin	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND	Caltest	9/14/17	10/12/17
DW31	WK-64	9/11/17	Cyfluthrin	EPA 8270M_NCI =	0.6	0.2	0.5	ng/L		Caltest	9/14/17	10/12/17
DW31	WK-64R	9/11/17	Cyfluthrin	EPA 8270M_NCI <	0.2	0.2	0.6	ng/L	ND	Caltest	9/14/17	10/12/17
DW32	DC-66	4/2/18	Cyfluthrin	EPA 8270M_NCI <	0.2	0.2	0.6	ng/L	ND	Caltest	4/4/18	4/7/18
DW32	DC-69	4/2/18	Cyfluthrin	EPA 8270M_NCI <	0.2	0.2	0.6	ng/L	ND	Caltest	4/4/18	4/7/18
DW32	WK-64	4/2/18	Cyfluthrin	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND	Caltest	4/4/18	4/7/18
DW32	WK-64R	4/2/18	Cyfluthrin	EPA 8270M_NCI <	0.2	0.2	0.6	ng/L	ND	Caltest	4/4/18	4/7/18
DW33	DC-66	4/24/18	Cyfluthrin	EPA 8270M_NCI =	0.4	0.4	1	ng/L	J	Caltest	4/27/18	5/8/18
DW33	DC-69	4/24/18	Cyfluthrin	EPA 8270M_NCI =	0.3	0.2	0.5	ng/L	J	Caltest	4/27/18	5/2/18
DW33	WK-64	4/24/18	Cyfluthrin	EPA 8270M_NCI <	0.4	0.4	1	ng/L	ND	Caltest	4/27/18	5/8/18
DW33	WK-64R	4/24/18	Cyfluthrin	EPA 8270M_NCI <	0.4	0.4	1	ng/L	ND	Caltest	4/27/18	5/2/18

-		Date										Analysis
Event	Site Code	Sampled	Analyte	Analytical Method Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Date
DW34	DC-46R	6/5/18	Cyfluthrin	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND	Caltest	6/8/18	7/10/18
DW34	DC-66	6/5/18	Cyfluthrin	EPA 8270M_NCI <	1	1		ng/L	ND	Caltest	6/8/18	7/11/18
DW34	DC-69	6/5/18	Cyfluthrin	EPA 8270M_NCI <	0.4	0.4	1	ng/L	ND	Caltest	6/8/18	7/11/18
DW34	WK-64	6/5/18	Cyfluthrin	EPA 8270M_NCI =	1	0.2	0.6	ng/L		Caltest	6/8/18	6/21/18
DW34	WK-64R	6/5/18	Cyfluthrin	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND	Caltest	6/8/18	6/21/18
SE65	DC-65	11/16/17	Cyfluthrin	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND	Caltest	11/17/17	12/10/17
SE65	DC-65R	11/16/17	Cyfluthrin	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND	Caltest	11/17/17	12/10/17
SE65	DC-69	11/16/17	Cyfluthrin	EPA 8270M_NCI =	0.6	0.2	0.5	ng/L		Caltest	11/17/17	12/10/17
SE65	NE-RAIN	11/16/17	Cyfluthrin	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND	Caltest	11/17/17	12/11/17
SE65	NW-RAIN	11/16/17	Cyfluthrin	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND	Caltest	11/17/17	12/10/17
SE65	SC-RAIN	11/16/17	Cyfluthrin	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND	Caltest	11/17/17	12/10/17
SE65	WK-64	11/16/17	Cyfluthrin	EPA 8270M_NCI =	12	0.2	0.6	ng/L		Caltest	11/17/17	12/10/17
SE65	WK-64R	11/16/17	Cyfluthrin	EPA 8270M_NCI <	0.2	0.2	0.6	ng/L	ND	Caltest	11/17/17	12/10/17
SE66	DC-65	3/1/18	Cyfluthrin	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND	Caltest	3/2/18	3/6/18
SE66	DC-65R	3/1/18	Cyfluthrin	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND	Caltest	3/2/18	3/6/18
SE66	DC-69	3/1/18	Cyfluthrin	EPA 8270M_NCI =	0.3	0.2	0.6	ng/L	J	Caltest	3/2/18	3/6/18
SE66	NE-RAIN	3/1/18	Cyfluthrin	EPA 8270M_NCI <	0.2	0.2	0.6	ng/L	ND	Caltest	3/2/18	3/7/18
SE66	NW-RAIN	3/1/18	Cyfluthrin	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND	Caltest	3/2/18	3/7/18
SE66	SC-RAIN	3/1/18	Cyfluthrin	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND	Caltest	3/2/18	3/7/18
SE66	WK-64	3/1/18	Cyfluthrin	EPA 8270M_NCI =	0.4	0.2	0.5	ng/L	J	Caltest	3/2/18	3/6/18
SE66	WK-64R	3/1/18	Cyfluthrin	EPA 8270M_NCI =	0.4	0.2	0.5	ng/L	J	Caltest	3/2/18	3/6/18
SE67	DC-65	4/6/18	Cyfluthrin	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND	Caltest	4/9/18	4/24/18
SE67	DC-65R	4/6/18	Cyfluthrin	EPA 8270M_NCI <	0.4	0.4		ng/L	ND	Caltest	4/9/18	5/2/18
SE67	DC-69	4/6/18	Cyfluthrin	EPA 8270M_NCI =	1.5	0.2	0.5	ng/L		Caltest	4/9/18	4/24/18
SE67	NE-RAIN	4/6/18	Cyfluthrin	EPA 8270M_NCI <	0.2	0.2		ng/L	ND	Caltest	4/9/18	4/24/18
SE67	NW-RAIN	4/6/18	Cyfluthrin	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND	Caltest	4/9/18	4/24/18
SE67	SC-RAIN	4/6/18	Cyfluthrin	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND	Caltest	4/9/18	4/24/18
SE67	WK-64	4/6/18	Cyfluthrin	EPA 8270M_NCI =	1.8	0.2	0.5	ng/L		Caltest	4/9/18	4/24/18
SE67	WK-64R	4/6/18	Cyfluthrin	EPA 8270M_NCI <	0.4	0.4	1	ng/L	ND	Caltest	4/9/18	5/2/18
DW31	DC-46R	9/11/17	Cypermethrin	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND	Caltest	9/14/17	10/12/17
DW31	DC-66	9/11/17	Cypermethrin	EPA 8270M_NCI =	3	0.2	0.5	ng/L		Caltest	9/14/17	10/12/17
DW31	DC-69	9/11/17	Cypermethrin	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND	Caltest	9/14/17	10/12/17
DW31	WK-64	9/11/17	Cypermethrin	EPA 8270M_NCI =	1	0.2	0.5	ng/L		Caltest	9/14/17	10/12/17
DW31	WK-64R	9/11/17	Cypermethrin	EPA 8270M_NCI <	0.2	0.2	0.6	ng/L	ND	Caltest	9/14/17	10/12/17
DW32	DC-66	4/2/18	Cypermethrin	EPA 8270M_NCI <	0.2	0.2	0.6	ng/L	ND	Caltest	4/4/18	4/7/18
DW32	DC-69	4/2/18	Cypermethrin	EPA 8270M_NCI <	0.2	0.2		ng/L	ND	Caltest	4/4/18	4/7/18
DW32	WK-64	4/2/18	Cypermethrin	EPA 8270M_NCI =	0.5	0.2	0.5	ng/L		Caltest	4/4/18	4/7/18

-		Date			- <u>J</u>							Analycic
Event	Site Code	Sampled	Analyte	Analytical Method Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Analysis Date
DW32	WK-64R	4/2/18	Cypermethrin	EPA 8270M NCI <	0.2	0.2	0.6	ng/L	ND	Caltest	4/4/18	4/7/18
DW33	DC-66	4/24/18	Cypermethrin	EPA 8270M_NCI =	2.2	0.4	1	ng/L		Caltest	4/27/18	5/8/18
DW33	DC-69	4/24/18	Cypermethrin	EPA 8270M_NCI =	0.2	0.2	-	ng/L	J	Caltest	4/27/18	5/2/18
DW33	WK-64	4/24/18	Cypermethrin	EPA 8270M_NCI =	1	0.4	1	ng/L		Caltest	4/27/18	5/8/18
DW33	WK-64R	4/24/18	Cypermethrin	EPA 8270M_NCI <	0.4	0.4	1	ng/L	ND	Caltest	4/27/18	5/2/18
DW34	DC-46R	6/5/18	Cypermethrin	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND	Caltest	6/8/18	7/10/18
DW34	DC-66	6/5/18	Cypermethrin	EPA 8270M_NCI =	1.7	1	2.5	ng/L	J	Caltest	6/8/18	7/11/18
DW34	DC-69	6/5/18	Cypermethrin	EPA 8270M_NCI <	0.4	0.4	1	ng/L	ND	Caltest	6/8/18	7/11/18
DW34	WK-64	6/5/18	Cypermethrin	EPA 8270M_NCI =	2.3	0.2	0.6	ng/L		Caltest	6/8/18	6/21/18
DW34	WK-64R	6/5/18	Cypermethrin	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND	Caltest	6/8/18	6/21/18
SE65	DC-65	11/16/17	Cypermethrin	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND	Caltest	11/17/17	12/10/17
SE65	DC-65R	11/16/17	Cypermethrin	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND	Caltest	11/17/17	12/10/17
SE65	DC-69	11/16/17	Cypermethrin	EPA 8270M_NCI =	2.8	0.2	0.5	ng/L		Caltest	11/17/17	12/10/17
SE65	NE-RAIN	11/16/17	Cypermethrin	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND	Caltest	11/17/17	12/11/17
SE65	NW-RAIN	11/16/17	Cypermethrin	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND	Caltest	11/17/17	12/10/17
SE65	SC-RAIN	11/16/17	Cypermethrin	EPA 8270M_NCI =	0.2	0.2	0.5	ng/L	J	Caltest	11/17/17	12/10/17
SE65	WK-64	11/16/17	Cypermethrin	EPA 8270M_NCI =	13	0.2	0.6	ng/L		Caltest	11/17/17	12/10/17
SE65	WK-64R	11/16/17	Cypermethrin	EPA 8270M_NCI =	0.6	0.2	0.6	ng/L	J	Caltest	11/17/17	12/10/17
SE66	DC-65	3/1/18	Cypermethrin	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND	Caltest	3/2/18	3/6/18
SE66	DC-65R	3/1/18	Cypermethrin	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND	Caltest	3/2/18	3/6/18
SE66	DC-69	3/1/18	Cypermethrin	EPA 8270M_NCI <	0.2	0.2	0.6	ng/L	ND	Caltest	3/2/18	3/6/18
SE66	NE-RAIN	3/1/18	Cypermethrin	EPA 8270M_NCI =	0.3	0.2	0.6	ng/L	J	Caltest	3/2/18	3/7/18
SE66	NW-RAIN	3/1/18	Cypermethrin	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND	Caltest	3/2/18	3/7/18
SE66	SC-RAIN	3/1/18	Cypermethrin	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND	Caltest	3/2/18	3/7/18
SE66	WK-64	3/1/18	Cypermethrin	EPA 8270M_NCI =	1.5	0.2	0.5	ng/L		Caltest	3/2/18	3/6/18
SE66	WK-64R	3/1/18	Cypermethrin	EPA 8270M_NCI =	8.0	0.2	0.5	ng/L		Caltest	3/2/18	3/6/18
SE67	DC-65	4/6/18	Cypermethrin	EPA 8270M_NCI =	0.6	0.2	0.5	ng/L		Caltest	4/9/18	4/24/18
SE67	DC-65R	4/6/18	Cypermethrin	EPA 8270M_NCI <	0.4	0.4	1.1	ng/L	ND	Caltest	4/9/18	5/2/18
SE67	DC-69	4/6/18	Cypermethrin	EPA 8270M_NCI =	0.6	0.2	0.5	ng/L		Caltest	4/9/18	4/24/18
SE67	NE-RAIN	4/6/18	Cypermethrin	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND	Caltest	4/9/18	4/24/18
SE67	NW-RAIN	4/6/18	Cypermethrin	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND	Caltest	4/9/18	4/24/18
SE67	SC-RAIN	4/6/18	Cypermethrin	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND	Caltest	4/9/18	4/24/18
SE67	WK-64	4/6/18	Cypermethrin	EPA 8270M_NCI =	3.6	0.2	0.5	ng/L		Caltest	4/9/18	4/24/18
SE67	WK-64R	4/6/18	Cypermethrin	EPA 8270M_NCI <	0.4	0.4	1	ng/L	ND	Caltest	4/9/18	5/2/18
DW31	DC-46R	9/11/17	Deltamethrin:Tralomethrin	EPA 8270M_NCI <	0.2	0.2	1	ng/L	ND	Caltest	9/14/17	10/12/17
DW31	DC-66	9/11/17	Deltamethrin:Tralomethrin	EPA 8270M_NCI <	0.2	0.2	1	ng/L	ND	Caltest	9/14/17	10/12/17
DW31	DC-69	9/11/17	Deltamethrin:Tralomethrin	EPA 8270M_NCI <	0.2	0.2	1	ng/L	ND	Caltest	9/14/17	10/12/17

		Date			- 9							Analysis
Event	Site Code	Sampled	Analyte	Analytical Method Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Date
DW31	WK-64	9/11/17	Deltamethrin:Tralomethrin	EPA 8270M_NCI <	0.2	0.2	1	ng/L	ND	Caltest	9/14/17	10/12/17
DW31	WK-64R	9/11/17	Deltamethrin:Tralomethrin	EPA 8270M_NCI <	0.2	0.2	1.2	ng/L	ND	Caltest	9/14/17	10/12/17
DW32	DC-66	4/2/18	Deltamethrin:Tralomethrin	EPA 8270M_NCI <	0.2	0.2	1.1	ng/L	ND	Caltest	4/4/18	4/7/18
DW32	DC-69	4/2/18	Deltamethrin:Tralomethrin	EPA 8270M_NCI <	0.2	0.2	1.1	ng/L	ND	Caltest	4/4/18	4/7/18
DW32	WK-64	4/2/18	Deltamethrin:Tralomethrin	EPA 8270M_NCI <	0.2	0.2	1	ng/L	ND	Caltest	4/4/18	4/7/18
DW32	WK-64R	4/2/18	Deltamethrin:Tralomethrin	EPA 8270M_NCI <	0.2	0.2	1.1	ng/L	ND	Caltest	4/4/18	4/7/18
DW33	DC-66	4/24/18	Deltamethrin:Tralomethrin	EPA 8270M_NCI <	0.4	0.4	2	ng/L	ND	Caltest	4/27/18	5/8/18
DW33	DC-69	4/24/18	Deltamethrin:Tralomethrin	EPA 8270M_NCI <	0.2	0.2	1	ng/L	ND	Caltest	4/27/18	5/2/18
DW33	WK-64	4/24/18	Deltamethrin:Tralomethrin	EPA 8270M_NCI <	0.4	0.4	2	ng/L	ND	Caltest	4/27/18	5/8/18
DW33	WK-64R	4/24/18	Deltamethrin:Tralomethrin	EPA 8270M_NCI <	0.4	0.4	2	ng/L	ND	Caltest	4/27/18	5/2/18
DW34	DC-46R	6/5/18	Deltamethrin:Tralomethrin	EPA 8270M_NCI <	0.2	0.2	1	ng/L	ND	Caltest	6/8/18	7/10/18
DW34	DC-66	6/5/18	Deltamethrin:Tralomethrin	EPA 8270M_NCI <	1	1	5	ng/L	ND	Caltest	6/8/18	7/11/18
DW34	DC-69	6/5/18	Deltamethrin:Tralomethrin	EPA 8270M_NCI <	0.4	0.4	2	ng/L	ND	Caltest	6/8/18	7/11/18
DW34	WK-64	6/5/18	Deltamethrin:Tralomethrin	EPA 8270M_NCI <	0.2	0.2	1.2	ng/L	ND	Caltest	6/8/18	6/21/18
DW34	WK-64R	6/5/18	Deltamethrin:Tralomethrin	EPA 8270M_NCI <	0.2	0.2	1	ng/L	ND	Caltest	6/8/18	6/21/18
SE65	DC-65	11/16/17	Deltamethrin:Tralomethrin	EPA 8270M_NCI <	0.4	0.4	2	ng/L	ND	Caltest	11/17/17	12/14/17
SE65	DC-65R	11/16/17	Deltamethrin:Tralomethrin	EPA 8270M_NCI <	0.2	0.2	1	ng/L	ND	Caltest	11/17/17	12/10/17
SE65	DC-69	11/16/17	Deltamethrin:Tralomethrin	EPA 8270M_NCI <	0.2	0.2	1	ng/L	ND	Caltest	11/17/17	12/10/17
SE65	NE-RAIN	11/16/17	Deltamethrin:Tralomethrin	EPA 8270M_NCI <	0.2	0.2	1	ng/L	ND	Caltest	11/17/17	12/11/17
SE65	NW-RAIN	11/16/17	Deltamethrin:Tralomethrin	EPA 8270M_NCI <	0.2	0.2	1	ng/L	ND	Caltest	11/17/17	12/10/17
SE65	SC-RAIN	11/16/17	Deltamethrin:Tralomethrin	EPA 8270M_NCI <	0.2	0.2	1	ng/L	ND	Caltest	11/17/17	12/10/17
SE65	WK-64	11/16/17	Deltamethrin:Tralomethrin	EPA 8270M_NCI =	4.4	0.2	1.2	ng/L		Caltest	11/17/17	12/10/17
SE65	WK-64R	11/16/17	Deltamethrin:Tralomethrin	EPA 8270M_NCI <	0.2	0.2	1.2	ng/L	ND	Caltest	11/17/17	12/10/17
SE66	DC-65	3/1/18	Deltamethrin:Tralomethrin	EPA 8270M_NCI <	0.2	0.2	1	ng/L	ND	Caltest	3/2/18	3/6/18
SE66	DC-65R	3/1/18	Deltamethrin:Tralomethrin	EPA 8270M_NCI <	0.2	0.2	1	ng/L	ND	Caltest	3/2/18	3/6/18
SE66	DC-69	3/1/18	Deltamethrin:Tralomethrin	EPA 8270M_NCI <	0.2	0.2	1.1	ng/L	ND	Caltest	3/2/18	3/6/18
SE66	NE-RAIN	3/1/18	Deltamethrin:Tralomethrin	EPA 8270M_NCI <	0.2	0.2	1.1	ng/L	ND	Caltest	3/2/18	3/7/18
SE66	NW-RAIN	3/1/18	Deltamethrin:Tralomethrin	EPA 8270M_NCI <	0.2	0.2	1	ng/L	ND	Caltest	3/2/18	3/7/18
SE66	SC-RAIN	3/1/18	Deltamethrin:Tralomethrin	EPA 8270M_NCI <	0.2	0.2	1	ng/L	ND	Caltest	3/2/18	3/7/18
SE66	WK-64	3/1/18	Deltamethrin:Tralomethrin	EPA 8270M_NCI <	0.2	0.2	1	ng/L	ND	Caltest	3/2/18	3/6/18
SE66	WK-64R	3/1/18	Deltamethrin:Tralomethrin	EPA 8270M_NCI <	0.2	0.2	1	ng/L	ND	Caltest	3/2/18	3/6/18
SE67	DC-65	4/6/18	Deltamethrin:Tralomethrin	EPA 8270M_NCI <	0.2	0.2	1	ng/L	ND	Caltest	4/9/18	4/24/18
SE67	DC-65R	4/6/18	Deltamethrin:Tralomethrin	EPA 8270M_NCI <	0.4	0.4	2.2	ng/L	ND	Caltest	4/9/18	5/2/18
SE67	DC-69	4/6/18	Deltamethrin:Tralomethrin	EPA 8270M_NCI =	3.8	0.2	1	ng/L		Caltest	4/9/18	4/24/18
SE67	NE-RAIN	4/6/18	Deltamethrin:Tralomethrin	EPA 8270M_NCI <	0.2	0.2	1	ng/L	ND	Caltest	4/9/18	4/24/18
SE67	NW-RAIN	4/6/18	Deltamethrin:Tralomethrin	EPA 8270M_NCI <	0.2	0.2	1	ng/L	ND	Caltest	4/9/18	4/24/18
SE67	SC-RAIN	4/6/18	Deltamethrin:Tralomethrin	EPA 8270M_NCI <	0.2	0.2	1	ng/L	ND	Caltest	4/9/18	4/24/18

		Date										Analysis
Event	Site Code	Sampled	Analyte	Analytical Method Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Date
SE67	WK-64	4/6/18	Deltamethrin:Tralomethrin	EPA 8270M_NCI <	0.2	0.2	1	ng/L	ND	Caltest	4/9/18	4/24/18
SE67	WK-64R	4/6/18	Deltamethrin:Tralomethrin	EPA 8270M_NCI <	0.4	0.4	2	ng/L	ND	Caltest	4/9/18	5/2/18
DW31	DC-46R	9/11/17	Esfenvalerate:Fenvalerate	EPA 8270M_NCI <	0.2	0.2	1	ng/L	ND	Caltest	9/14/17	10/12/17
DW31	DC-66	9/11/17	Esfenvalerate:Fenvalerate	EPA 8270M_NCI <	0.2	0.2	1	ng/L	ND	Caltest	9/14/17	10/12/17
DW31	DC-69	9/11/17	Esfenvalerate:Fenvalerate	EPA 8270M_NCI <	0.2	0.2	1	ng/L	ND	Caltest	9/14/17	10/12/17
DW31	WK-64	9/11/17	Esfenvalerate:Fenvalerate	EPA 8270M_NCI =	1.5	0.2	1	ng/L		Caltest	9/14/17	10/12/17
DW31	WK-64R	9/11/17	Esfenvalerate:Fenvalerate	EPA 8270M_NCI <	0.2	0.2	1.2	ng/L	ND	Caltest	9/14/17	10/12/17
DW32	DC-66	4/2/18	Esfenvalerate:Fenvalerate	EPA 8270M_NCI <	0.2	0.2	1.1	ng/L	ND	Caltest	4/4/18	4/7/18
DW32	DC-69	4/2/18	Esfenvalerate:Fenvalerate	EPA 8270M_NCI <	0.2	0.2	1.1	ng/L	ND	Caltest	4/4/18	4/7/18
DW32	WK-64	4/2/18	Esfenvalerate:Fenvalerate	EPA 8270M_NCI =	0.2	0.2	1	ng/L	J	Caltest	4/4/18	4/7/18
DW32	WK-64R	4/2/18	Esfenvalerate:Fenvalerate	EPA 8270M_NCI <	0.2	0.2	1.1	ng/L	ND	Caltest	4/4/18	4/7/18
DW33	DC-66	4/24/18	Esfenvalerate:Fenvalerate	EPA 8270M_NCI =	1.3	0.4	2	ng/L	J	Caltest	4/27/18	5/8/18
DW33	DC-69	4/24/18	Esfenvalerate:Fenvalerate	EPA 8270M_NCI =	0.4	0.2	1	ng/L	J	Caltest	4/27/18	5/2/18
DW33	WK-64	4/24/18	Esfenvalerate:Fenvalerate	EPA 8270M_NCI <	0.4	0.4	2	ng/L	ND	Caltest	4/27/18	5/8/18
DW33	WK-64R	4/24/18	Esfenvalerate:Fenvalerate	EPA 8270M_NCI =	0.4	0.4	2	ng/L	J	Caltest	4/27/18	5/2/18
DW34	DC-46R	6/5/18	Esfenvalerate:Fenvalerate	EPA 8270M_NCI <	0.2	0.2	1	ng/L	ND	Caltest	6/8/18	7/10/18
DW34	DC-66	6/5/18	Esfenvalerate:Fenvalerate	EPA 8270M_NCI <	1	1	5	ng/L	ND	Caltest	6/8/18	7/11/18
DW34	DC-69	6/5/18	Esfenvalerate:Fenvalerate	EPA 8270M_NCI <	0.4	0.4	2	ng/L	ND	Caltest	6/8/18	7/11/18
DW34	WK-64	6/5/18	Esfenvalerate:Fenvalerate	EPA 8270M_NCI =	1.6	0.2	1.2	ng/L		Caltest	6/8/18	6/21/18
DW34	WK-64R	6/5/18	Esfenvalerate:Fenvalerate	EPA 8270M_NCI <	0.2	0.2	1	ng/L	ND	Caltest	6/8/18	6/21/18
SE65	DC-65	11/16/17	Esfenvalerate:Fenvalerate	EPA 8270M_NCI <	0.4	0.4	2	ng/L	ND	Caltest	11/17/17	12/14/17
SE65	DC-65R	11/16/17	Esfenvalerate:Fenvalerate	EPA 8270M_NCI <	0.2	0.2	1	ng/L	ND	Caltest	11/17/17	12/10/17
SE65	DC-69	11/16/17	Esfenvalerate:Fenvalerate	EPA 8270M_NCI =	0.4	0.2	1	ng/L	J	Caltest	11/17/17	12/10/17
SE65	NE-RAIN	11/16/17	Esfenvalerate:Fenvalerate	EPA 8270M_NCI <	0.2	0.2	1	ng/L	ND	Caltest	11/17/17	12/11/17
SE65	NW-RAIN	11/16/17	Esfenvalerate:Fenvalerate	EPA 8270M_NCI <	0.2	0.2	1	ng/L	ND	Caltest	11/17/17	12/10/17
SE65	SC-RAIN	11/16/17	Esfenvalerate:Fenvalerate	EPA 8270M_NCI <	0.2	0.2	1	ng/L	ND	Caltest	11/17/17	12/10/17
SE65	WK-64	11/16/17	Esfenvalerate:Fenvalerate	EPA 8270M_NCI =	2.7	0.2	1.2	ng/L		Caltest	11/17/17	12/10/17
SE65	WK-64R	11/16/17	Esfenvalerate:Fenvalerate	EPA 8270M_NCI <	0.2	0.2	1.2	ng/L	ND	Caltest	11/17/17	12/10/17
SE66	DC-65	3/1/18	Esfenvalerate:Fenvalerate	EPA 8270M_NCI <	0.2	0.2	1	ng/L	ND	Caltest	3/2/18	3/6/18
SE66	DC-65R	3/1/18	Esfenvalerate:Fenvalerate	EPA 8270M_NCI <	0.2	0.2	1	ng/L	ND	Caltest	3/2/18	3/6/18
SE66	DC-69	3/1/18	Esfenvalerate:Fenvalerate	EPA 8270M_NCI <	0.2	0.2	1.1	ng/L	ND	Caltest	3/2/18	3/6/18
SE66	NE-RAIN	3/1/18	Esfenvalerate:Fenvalerate	EPA 8270M_NCI =	0.3	0.2	1.1	ng/L	J	Caltest	3/2/18	3/7/18
SE66	NW-RAIN	3/1/18	Esfenvalerate:Fenvalerate	EPA 8270M_NCI <	0.2	0.2	1	ng/L	ND	Caltest	3/2/18	3/7/18
SE66	SC-RAIN	3/1/18	Esfenvalerate:Fenvalerate	EPA 8270M_NCI <	0.2	0.2	1	ng/L	ND	Caltest	3/2/18	3/7/18
SE66	WK-64	3/1/18	Esfenvalerate:Fenvalerate	EPA 8270M_NCI =	0.7	0.2	1	ng/L	J	Caltest	3/2/18	3/6/18
SE66	WK-64R	3/1/18	Esfenvalerate:Fenvalerate	EPA 8270M_NCI <	0.2	0.2	1	ng/L	ND	Caltest	3/2/18	3/6/18
SE67	DC-65	4/6/18	Esfenvalerate:Fenvalerate	EPA 8270M_NCI =	0.8	0.2	1	ng/L	J	Caltest	4/9/18	4/24/18

					<u> </u>							
Front	Site Code	Date	Amaluta	Analytical Mathed	Dagult	MDL	RL/ML I	l leito	Floor	Lab Name	Dran Data	Analysis
Event SE67	DC-65R	Sampled 4/6/18	Analyte Esfenvalerate:Fenvalerate	Analytical Method Q EPA 8270M_NCI <	Result 0.4	0.4		Units	Flag ND	Caltest	Prep Date 4/9/18	Date 5/2/18
SE67	DC-65R DC-69	4/6/18	Esfenvalerate: Fenvalerate Esfenvalerate: Fenvalerate	EPA 8270W_NCI =	0.4	0.4		ng/L		Caltest	4/9/18	4/24/18
SE67				_				ng/L	J ND		4/9/18	4/24/18
	NE-RAIN	4/6/18	Esfenvalerate:Fenvalerate	EPA 8270M_NCI <	0.2	0.2		ng/L		Caltest		
SE67	NW-RAIN	4/6/18	Esfenvalerate:Fenvalerate	EPA 8270M_NCI <	0.2	0.2		ng/L	ND	Caltest	4/9/18	4/24/18
SE67	SC-RAIN	4/6/18	Esfenvalerate:Fenvalerate	EPA 8270M_NCI <	0.2	0.2		ng/L	ND	Caltest	4/9/18	4/24/18
SE67	WK-64	4/6/18	Esfenvalerate: Fenvalerate	EPA 8270M_NCI =	0.5	0.2		ng/L	J	Caltest	4/9/18	4/24/18
SE67	WK-64R	4/6/18	Esfenvalerate:Fenvalerate	EPA 8270M_NCI <	0.4	0.4		ng/L	ND 1	Caltest	4/9/18	5/2/18
DW31	DC-46R	9/11/17	Fenpropathrin	EPA 8270M_NCI <	0.2	0.2		ng/L	ND, 1	Caltest	9/14/17	10/12/17
DW31	DC-66	9/11/17	Fenpropathrin	EPA 8270M_NCI =	0.5	0.2		ng/L	1	Caltest	9/14/17	10/12/17
DW31	DC-69	9/11/17	Fenpropathrin	EPA 8270M_NCI <	0.2	0.2		ng/L	ND, 1	Caltest	9/14/17	10/12/17
DW31	WK-64	9/11/17	Fenpropathrin	EPA 8270M_NCI <	0.2	0.2		ng/L	ND, 1	Caltest	9/14/17	10/12/17
DW31	WK-64R	9/11/17	Fenpropathrin	EPA 8270M_NCI <	0.2	0.2		ng/L	ND, 1	Caltest	9/14/17	10/12/17
DW32	DC-66	4/2/18	Fenpropathrin	EPA 8270M_NCI <	0.2	0.2		ng/L	ND	Caltest	4/4/18	4/7/18
DW32	DC-69	4/2/18	Fenpropathrin	EPA 8270M_NCI <	0.2	0.2		ng/L	ND	Caltest	4/4/18	4/7/18
DW32	WK-64	4/2/18	Fenpropathrin	EPA 8270M_NCI <	0.2	0.2		ng/L	ND	Caltest	4/4/18	4/7/18
DW32	WK-64R	4/2/18	Fenpropathrin	EPA 8270M_NCI <	0.2	0.2		ng/L	ND	Caltest	4/4/18	4/7/18
DW33	DC-66	4/24/18	Fenpropathrin	EPA 8270M_NCI <	0.4	0.4		ng/L	ND	Caltest	4/27/18	5/8/18
DW33	DC-69	4/24/18	Fenpropathrin	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND	Caltest	4/27/18	5/2/18
DW33	WK-64	4/24/18	Fenpropathrin	EPA 8270M_NCI <	0.4	0.4	1 ı	ng/L	ND	Caltest	4/27/18	5/8/18
DW33	WK-64R	4/24/18	Fenpropathrin	EPA 8270M_NCI <	0.4	0.4	1 i	ng/L	ND	Caltest	4/27/18	5/2/18
DW34	DC-46R	6/5/18	Fenpropathrin	EPA 8270M_NCI <	0.2	0.2	0.5 ı	ng/L	ND	Caltest	6/8/18	7/10/18
DW34	DC-66	6/5/18	Fenpropathrin	EPA 8270M_NCI <	1	1	2.5 ı	ng/L	ND	Caltest	6/8/18	7/11/18
DW34	DC-69	6/5/18	Fenpropathrin	EPA 8270M_NCI <	0.4	0.4	1 ı	ng/L	ND	Caltest	6/8/18	7/11/18
DW34	WK-64	6/5/18	Fenpropathrin	EPA 8270M_NCI <	0.2	0.2	0.6	ng/L	ND	Caltest	6/8/18	6/21/18
DW34	WK-64R	6/5/18	Fenpropathrin	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND	Caltest	6/8/18	6/21/18
SE65	DC-65	11/16/17	Fenpropathrin	EPA 8270M_NCI <	0.4	0.4	1 ı	ng/L	ND	Caltest	11/17/17	12/14/17
SE65	DC-65R	11/16/17	Fenpropathrin	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND	Caltest	11/17/17	12/10/17
SE65	DC-69	11/16/17	Fenpropathrin	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND	Caltest	11/17/17	12/10/17
SE65	NE-RAIN	11/16/17	Fenpropathrin	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND	Caltest	11/17/17	12/11/17
SE65	NW-RAIN	11/16/17	Fenpropathrin	EPA 8270M_NCI <	0.2	0.2		ng/L	ND	Caltest	11/17/17	12/10/17
SE65	SC-RAIN	11/16/17	Fenpropathrin	EPA 8270M_NCI <	0.2	0.2		ng/L	ND	Caltest	11/17/17	12/10/17
SE65	WK-64	11/16/17	Fenpropathrin	EPA 8270M_NCI <	0.2	0.2		ng/L	ND	Caltest	11/17/17	12/10/17
SE65	WK-64R	11/16/17	Fenpropathrin	EPA 8270M_NCI <	0.2	0.2		ng/L	ND	Caltest	11/17/17	12/10/17
SE66	DC-65	3/1/18	Fenpropathrin	EPA 8270M_NCI <	0.2	0.2		ng/L	ND	Caltest	3/2/18	3/6/18
SE66	DC-65R	3/1/18	Fenpropathrin	EPA 8270M_NCI <	0.2	0.2		ng/L	ND	Caltest	3/2/18	3/6/18
SE66	DC-69	3/1/18	Fenpropathrin	EPA 8270M_NCI <	0.2	0.2		ng/L	ND	Caltest	3/2/18	3/6/18
SE66	NE-RAIN	3/1/18	Fenpropathrin	EPA 8270M_NCI <	0.2	0.2		ng/L	ND	Caltest	3/2/18	3/7/18
		5, ., . 5	: -::L:: > -::	=: / : 02 / 0		V. –	0.0 1	· J' =	.10	- 4	5, 2, . 5	5,,,,,

		Data			- 3 -							A a la !-
Event	Site Code	Date Sampled	Analyte	Analytical Method Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Analysis Date
SE66	NW-RAIN	3/1/18	Fenpropathrin	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND	Caltest	3/2/18	3/7/18
SE66	SC-RAIN	3/1/18	Fenpropathrin	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND	Caltest	3/2/18	3/7/18
SE66	WK-64	3/1/18	Fenpropathrin	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND	Caltest	3/2/18	3/6/18
SE66	WK-64R	3/1/18	Fenpropathrin	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND	Caltest	3/2/18	3/6/18
SE67	DC-65	4/6/18	Fenpropathrin	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND	Caltest	4/9/18	4/24/18
SE67	DC-65R	4/6/18	Fenpropathrin	EPA 8270M_NCI <	0.4	0.4	1.1	ng/L	ND	Caltest	4/9/18	5/2/18
SE67	DC-69	4/6/18	Fenpropathrin	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND	Caltest	4/9/18	4/24/18
SE67	NE-RAIN	4/6/18	Fenpropathrin	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND	Caltest	4/9/18	4/24/18
SE67	NW-RAIN	4/6/18	Fenpropathrin	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND	Caltest	4/9/18	4/24/18
SE67	SC-RAIN	4/6/18	Fenpropathrin	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND	Caltest	4/9/18	4/24/18
SE67	WK-64	4/6/18	Fenpropathrin	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND	Caltest	4/9/18	4/24/18
SE67	WK-64R	4/6/18	Fenpropathrin	EPA 8270M_NCI <	0.4	0.4	1	ng/L	ND	Caltest	4/9/18	5/2/18
DW31	DC-46R	9/11/17	Lambda-Cyhalothrin	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND	Caltest	9/14/17	10/12/17
DW31	DC-66	9/11/17	Lambda-Cyhalothrin	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND	Caltest	9/14/17	10/12/17
DW31	DC-69	9/11/17	Lambda-Cyhalothrin	EPA 8270M_NCI =	0.2	0.2	0.5	ng/L	J	Caltest	9/14/17	10/12/17
DW31	WK-64	9/11/17	Lambda-Cyhalothrin	EPA 8270M_NCI =	1.3	0.2	0.5	ng/L		Caltest	9/14/17	10/12/17
DW31	WK-64R	9/11/17	Lambda-Cyhalothrin	EPA 8270M_NCI <	0.2	0.2	0.6	ng/L	ND	Caltest	9/14/17	10/12/17
DW32	DC-66	4/2/18	Lambda-Cyhalothrin	EPA 8270M_NCI <	0.2	0.2	0.6	ng/L	ND	Caltest	4/4/18	4/7/18
DW32	DC-69	4/2/18	Lambda-Cyhalothrin	EPA 8270M_NCI <	0.2	0.2	0.6	ng/L	ND	Caltest	4/4/18	4/7/18
DW32	WK-64	4/2/18	Lambda-Cyhalothrin	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND	Caltest	4/4/18	4/7/18
DW32	WK-64R	4/2/18	Lambda-Cyhalothrin	EPA 8270M_NCI <	0.2	0.2	0.6	ng/L	ND	Caltest	4/4/18	4/7/18
DW33	DC-66	4/24/18	Lambda-Cyhalothrin	EPA 8270M_NCI =	0.4	0.4	1	ng/L	J	Caltest	4/27/18	5/8/18
DW33	DC-69	4/24/18	Lambda-Cyhalothrin	EPA 8270M_NCI =	0.8	0.2	0.5	ng/L		Caltest	4/27/18	5/2/18
DW33	WK-64	4/24/18	Lambda-Cyhalothrin	EPA 8270M_NCI =	2.8	0.4	1	ng/L		Caltest	4/27/18	5/8/18
DW33	WK-64R	4/24/18	Lambda-Cyhalothrin	EPA 8270M_NCI <	0.4	0.4	1	ng/L	ND	Caltest	4/27/18	5/2/18
DW34	DC-46R	6/5/18	Lambda-Cyhalothrin	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND	Caltest	6/8/18	7/10/18
DW34	DC-66	6/5/18	Lambda-Cyhalothrin	EPA 8270M_NCI <	1	1	2.5	ng/L	ND	Caltest	6/8/18	7/11/18
DW34	DC-69	6/5/18	Lambda-Cyhalothrin	EPA 8270M_NCI <	0.4	0.4	1	ng/L	ND	Caltest	6/8/18	7/11/18
DW34	WK-64	6/5/18	Lambda-Cyhalothrin	EPA 8270M_NCI =	1	0.2	0.6	ng/L		Caltest	6/8/18	6/21/18
DW34	WK-64R	6/5/18	Lambda-Cyhalothrin	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND	Caltest	6/8/18	6/21/18
SE65	DC-65	11/16/17	Lambda-Cyhalothrin	EPA 8270M_NCI <	0.4	0.4	1	ng/L	ND	Caltest	11/17/17	12/14/17
SE65	DC-65R	11/16/17	Lambda-Cyhalothrin	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND	Caltest	11/17/17	12/10/17
SE65	DC-69	11/16/17	Lambda-Cyhalothrin	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND	Caltest	11/17/17	12/10/17
SE65	NE-RAIN	11/16/17	Lambda-Cyhalothrin	EPA 8270M_NCI =	0.3	0.2	0.5	ng/L	J	Caltest	11/17/17	12/11/17
SE65	NW-RAIN	11/16/17	Lambda-Cyhalothrin	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND	Caltest	11/17/17	12/10/17
SE65	SC-RAIN	11/16/17	Lambda-Cyhalothrin	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND	Caltest	11/17/17	12/10/17
SE65	WK-64	11/16/17	Lambda-Cyhalothrin	EPA 8270M_NCI =	2.8	0.2	0.6	ng/L		Caltest	11/17/17	12/10/17
•												

		Date			- 3							Analysis
Event	Site Code	Sampled	Analyte	Analytical Method Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Date
SE65	WK-64R	11/16/17	Lambda-Cyhalothrin	EPA 8270M_NCI <	0.2	0.2	0.6	ng/L	ND	Caltest	11/17/17	12/10/17
SE66	DC-65	3/1/18	Lambda-Cyhalothrin	EPA 8270M_NCI =	1.2	0.2		ng/L		Caltest	3/2/18	3/6/18
SE66	DC-65R	3/1/18	Lambda-Cyhalothrin	EPA 8270M_NCI <	0.2	0.2		ng/L	ND	Caltest	3/2/18	3/6/18
SE66	DC-69	3/1/18	Lambda-Cyhalothrin	EPA 8270M_NCI <	0.2	0.2		ng/L	ND	Caltest	3/2/18	3/6/18
SE66	NE-RAIN	3/1/18	Lambda-Cyhalothrin	EPA 8270M_NCI =	0.3	0.2		ng/L	J	Caltest	3/2/18	3/7/18
SE66	NW-RAIN	3/1/18	Lambda-Cyhalothrin	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND	Caltest	3/2/18	3/7/18
SE66	SC-RAIN	3/1/18	Lambda-Cyhalothrin	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND	Caltest	3/2/18	3/7/18
SE66	WK-64	3/1/18	Lambda-Cyhalothrin	EPA 8270M_NCI =	0.4	0.2	0.5	ng/L	J	Caltest	3/2/18	3/6/18
SE66	WK-64R	3/1/18	Lambda-Cyhalothrin	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND	Caltest	3/2/18	3/6/18
SE67	DC-65	4/6/18	Lambda-Cyhalothrin	EPA 8270M_NCI =	2.1	0.2	0.5	ng/L		Caltest	4/9/18	4/24/18
SE67	DC-65R	4/6/18	Lambda-Cyhalothrin	EPA 8270M_NCI <	0.4	0.4	1.1	ng/L	ND	Caltest	4/9/18	5/2/18
SE67	DC-69	4/6/18	Lambda-Cyhalothrin	EPA 8270M_NCI =	0.6	0.2	0.5	ng/L		Caltest	4/9/18	4/24/18
SE67	NE-RAIN	4/6/18	Lambda-Cyhalothrin	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND	Caltest	4/9/18	4/24/18
SE67	NW-RAIN	4/6/18	Lambda-Cyhalothrin	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND	Caltest	4/9/18	4/24/18
SE67	SC-RAIN	4/6/18	Lambda-Cyhalothrin	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND	Caltest	4/9/18	4/24/18
SE67	WK-64	4/6/18	Lambda-Cyhalothrin	EPA 8270M_NCI =	3.7	0.2	0.5	ng/L		Caltest	4/9/18	4/24/18
SE67	WK-64R	4/6/18	Lambda-Cyhalothrin	EPA 8270M_NCI <	0.4	0.4	1	ng/L	ND	Caltest	4/9/18	5/2/18
DW31	DC-46R	9/11/17	Permethrin	EPA 8270M_NCI <	2	2	10	ng/L	ND	Caltest	9/14/17	10/12/17
DW31	DC-66	9/11/17	Permethrin	EPA 8270M_NCI <	2	2	10	ng/L	ND	Caltest	9/14/17	10/12/17
DW31	DC-69	9/11/17	Permethrin	EPA 8270M_NCI <	2	2	10	ng/L	ND	Caltest	9/14/17	10/12/17
DW31	WK-64	9/11/17	Permethrin	EPA 8270M_NCI =	47	2	10	ng/L		Caltest	9/14/17	10/12/17
DW31	WK-64R	9/11/17	Permethrin	EPA 8270M_NCI <	2	2		ng/L	ND	Caltest	9/14/17	10/12/17
DW32	DC-66	4/2/18	Permethrin	EPA 8270M_NCI <	2	2		ng/L	ND	Caltest	4/4/18	4/7/18
DW32	DC-69	4/2/18	Permethrin	EPA 8270M_NCI <	2	2		ng/L	ND	Caltest	4/4/18	4/7/18
DW32	WK-64	4/2/18	Permethrin	EPA 8270M_NCI =	34	2		ng/L		Caltest	4/4/18	4/7/18
DW32	WK-64R	4/2/18	Permethrin	EPA 8270M_NCI <	2	2		ng/L	ND	Caltest	4/4/18	4/7/18
DW33	DC-66	4/24/18	Permethrin	EPA 8270M_NCI =	15	4		ng/L	J	Caltest	4/27/18	5/8/18
DW33	DC-69	4/24/18	Permethrin	EPA 8270M_NCI <	2	2		ng/L	ND	Caltest	4/27/18	5/2/18
DW33	WK-64	4/24/18	Permethrin	EPA 8270M_NCI <	4	4		ng/L	ND	Caltest	4/27/18	5/8/18
DW33	WK-64R	4/24/18	Permethrin	EPA 8270M_NCI <	4	4		ng/L	ND	Caltest	4/27/18	5/2/18
DW34	DC-46R	6/5/18	Permethrin	EPA 8270M_NCI <	2	2		ng/L	ND	Caltest	6/8/18	7/10/18
DW34	DC-66	6/5/18	Permethrin	EPA 8270M_NCI <	10	10		ng/L	ND	Caltest	6/8/18	7/11/18
DW34	DC-69	6/5/18	Permethrin	EPA 8270M_NCI <	4	4		ng/L	ND	Caltest	6/8/18	7/11/18
DW34	WK-64	6/5/18	Permethrin	EPA 8270M_NCI =	99	2		ng/L		Caltest	6/8/18	6/21/18
DW34	WK-64R	6/5/18	Permethrin	EPA 8270M_NCI <	2	2		ng/L	ND	Caltest	6/8/18	6/21/18
SE65	DC-65	11/16/17	Permethrin	EPA 8270M_NCI <	4	4		ng/L	ND	Caltest	11/17/17	12/14/17
SE65	DC-65R	11/16/17	Permethrin	EPA 8270M_NCI <	2	2	10	ng/L	ND	Caltest	11/17/17	12/10/17

					- 9							
Fuont	Site Code	Date	Analyta	Analytical Method O	Dogult	MDI	DI /MI	Linito	Flog Lol	Momo	Drop Data	Analysis Date
Event SE65	DC-69	Sampled 11/16/17	Analyte Permethrin	Analytical Method Q EPA 8270M NCI <	Result 2	MDL 2	RL/ML 10		3	Name Itest	Prep Date 11/17/17	12/10/17
SE65	NE-RAIN	11/16/17	Permethrin	EPA 8270M_NCI =	<u>4.1</u>	2	10	ng/L		ltest	11/17/17	12/10/17
SE65	NW-RAIN	11/16/17	Permethrin	EPA 8270M_NCI =			10	ng/L		itest Itest	11/17/17	12/11/17
SE65	SC-RAIN	11/16/17	Permethrin		2	2	10	ng/L			11/17/17	12/10/17
				EPA 8270M_NCI <				ng/L		Itest		
SE65	WK-64	11/16/17	Permethrin	EPA 8270M_NCI =	450	2	12	ng/L		Itest	11/17/17	12/10/17
SE65	WK-64R	11/16/17	Permethrin	EPA 8270M_NCI <	2		12	ng/L		Itest	11/17/17	12/10/17
SE66	DC-65	3/1/18	Permethrin	EPA 8270M_NCI <	2	2	10	ng/L		Itest	3/2/18	3/6/18
SE66	DC-65R	3/1/18	Permethrin	EPA 8270M_NCI <	2	2	10	ng/L		ltest	3/2/18	3/6/18
SE66	DC-69	3/1/18	Permethrin	EPA 8270M_NCI <	2	2	11	ng/L		ltest	3/2/18	3/6/18
SE66	NE-RAIN	3/1/18	Permethrin	EPA 8270M_NCI <	2	2	11	ng/L		ltest	3/2/18	3/7/18
SE66	NW-RAIN	3/1/18	Permethrin	EPA 8270M_NCI <	2	2	10	ng/L		ltest	3/2/18	3/7/18
SE66	SC-RAIN	3/1/18	Permethrin	EPA 8270M_NCI <	2	2	10	ng/L		ltest	3/2/18	3/7/18
SE66	WK-64	3/1/18	Permethrin	EPA 8270M_NCI =	84	2	10	ng/L		ltest	3/2/18	3/6/18
SE66	WK-64R	3/1/18	Permethrin	EPA 8270M_NCI <	2	2	10	ng/L		ltest	3/2/18	3/6/18
SE67	DC-65	4/6/18	Permethrin	EPA 8270M_NCI <	2	2	10	ng/L		ltest	4/9/18	4/24/18
SE67	DC-65R	4/6/18	Permethrin	EPA 8270M_NCI <	4	4	22	ng/L		ltest	4/9/18	5/2/18
SE67	DC-69	4/6/18	Permethrin	EPA 8270M_NCI <	2	2	10	ng/L		ltest	4/9/18	4/24/18
SE67	NE-RAIN	4/6/18	Permethrin	EPA 8270M_NCI <	2	2	10	ng/L	ND Ca	ltest	4/9/18	4/24/18
SE67	NW-RAIN	4/6/18	Permethrin	EPA 8270M_NCI <	2	2	10	ng/L	ND Ca	ltest	4/9/18	4/24/18
SE67	SC-RAIN	4/6/18	Permethrin	EPA 8270M_NCI <	2	2	10	ng/L	ND Ca	ltest	4/9/18	4/24/18
SE67	WK-64	4/6/18	Permethrin	EPA 8270M_NCI =	320	2	10	ng/L	Ca	ltest	4/9/18	4/24/18
SE67	WK-64R	4/6/18	Permethrin	EPA 8270M_NCI <	4	4	20	ng/L	ND Ca	ltest	4/9/18	5/2/18
DW31	DC-46R	9/11/17	Tau-Fluvalinate	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND Ca	ltest	9/14/17	10/12/17
DW31	DC-66	9/11/17	Tau-Fluvalinate	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND Ca	ltest	9/14/17	10/12/17
DW31	DC-69	9/11/17	Tau-Fluvalinate	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND Ca	ltest	9/14/17	10/12/17
DW31	WK-64	9/11/17	Tau-Fluvalinate	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND Ca	ltest	9/14/17	10/12/17
DW31	WK-64R	9/11/17	Tau-Fluvalinate	EPA 8270M_NCI <	0.2	0.2	0.6	ng/L	ND Ca	ltest	9/14/17	10/12/17
DW32	DC-66	4/2/18	Tau-Fluvalinate	EPA 8270M_NCI <	0.2	0.2	0.6	ng/L	ND Ca	ltest	4/4/18	4/7/18
DW32	DC-69	4/2/18	Tau-Fluvalinate	EPA 8270M_NCI <	0.2	0.2	0.6	ng/L	ND Ca	ltest	4/4/18	4/7/18
DW32	WK-64	4/2/18	Tau-Fluvalinate	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND Ca	ltest	4/4/18	4/7/18
DW32	WK-64R	4/2/18	Tau-Fluvalinate	EPA 8270M_NCI <	0.2	0.2	0.6	ng/L	ND Ca	ltest	4/4/18	4/7/18
DW33	DC-66	4/24/18	Tau-Fluvalinate	EPA 8270M_NCI <	0.4	0.4	1	ng/L	ND Ca	ltest	4/27/18	5/8/18
DW33	DC-69	4/24/18	Tau-Fluvalinate	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND Ca	Itest	4/27/18	5/2/18
DW33	WK-64	4/24/18	Tau-Fluvalinate	EPA 8270M_NCI <	0.4	0.4	1	ng/L		Itest	4/27/18	5/8/18
DW33	WK-64R	4/24/18	Tau-Fluvalinate	EPA 8270M_NCI <	0.4	0.4	1	ng/L		Itest	4/27/18	5/2/18
DW34	DC-46R	6/5/18	Tau-Fluvalinate	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L		Itest	6/8/18	7/10/18
DW34	DC-66	6/5/18	Tau-Fluvalinate	EPA 8270M_NCI <	1	1	2.5	ng/L		Itest	6/8/18	7/11/18
		3, 3, 10		2.7.52.5	•	•		g. =	04		0, 0, . 0	

					9: 5::::							
Event	Site Code	Date Sampled	Analyte	Analytical Method Q	Result	MDL	RL/ML	Unite	Flag	Lab Name	Prep Date	Analysis Date
DW34	DC-69	6/5/18	Tau-Fluvalinate	EPA 8270M NCI <	0.4	0.4	1	ng/L	ND	Caltest	6/8/18	7/11/18
DW34	WK-64	6/5/18	Tau-Fluvalinate	EPA 8270M_NCI <	0.4	0.4	0.6	ng/L	ND ND	Caltest	6/8/18	6/21/18
DW34	WK-64R	6/5/18	Tau-Fluvalinate	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND ND	Caltest	6/8/18	6/21/18
SE65	DC-65	11/16/17	Tau-Fluvalinate	EPA 8270M_NCI <	0.4	0.2	1	ng/L	ND ND	Caltest	11/17/17	12/14/17
SE65	DC-65R	11/16/17	Tau-Fluvalinate	EPA 8270M_NCI <	0.4	0.4	0.5	ng/L	ND ND	Caltest	11/17/17	12/10/17
SE65	DC-69	11/16/17	Tau-Fluvalinate	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND ND	Caltest	11/17/17	12/10/17
SE65	NE-RAIN	11/16/17	Tau-Fluvalinate	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND ND	Caltest	11/17/17	12/10/17
SE65	NW-RAIN	11/16/17	Tau-Fluvalinate	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND ND	Caltest	11/17/17	12/11/17
SE65	SC-RAIN	11/16/17	Tau-Fluvalinate	EPA 8270M_NCI <	0.2	0.2			ND ND	Caltest	11/17/17	12/10/17
	WK-64				0.2	0.2	0.5	ng/L	ND ND	Caltest	11/17/17	12/10/17
SE65		11/16/17	Tau-Fluvalinate	EPA 8270M_NCI <			0.6	ng/L				12/10/17
SE65	WK-64R	11/16/17	Tau-Fluvalinate	EPA 8270M_NCI <	0.2	0.2	0.6	ng/L	ND	Caltest	11/17/17	
SE66	DC-65	3/1/18	Tau-Fluvalinate	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND	Caltest	3/2/18	3/6/18
SE66	DC-65R	3/1/18	Tau-Fluvalinate	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND	Caltest	3/2/18	3/6/18
SE66	DC-69	3/1/18	Tau-Fluvalinate	EPA 8270M_NCI <	0.2	0.2	0.6	ng/L	ND	Caltest	3/2/18	3/6/18
SE66	NE-RAIN	3/1/18	Tau-Fluvalinate	EPA 8270M_NCI <	0.2	0.2	0.6	ng/L	ND	Caltest	3/2/18	3/7/18
SE66	NW-RAIN	3/1/18	Tau-Fluvalinate	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND	Caltest	3/2/18	3/7/18
SE66	SC-RAIN	3/1/18	Tau-Fluvalinate	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND	Caltest	3/2/18	3/7/18
SE66	WK-64	3/1/18	Tau-Fluvalinate	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND	Caltest	3/2/18	3/6/18
SE66	WK-64R	3/1/18	Tau-Fluvalinate	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND	Caltest	3/2/18	3/6/18
SE67	DC-65	4/6/18	Tau-Fluvalinate	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND	Caltest	4/9/18	4/24/18
SE67	DC-65R	4/6/18	Tau-Fluvalinate	EPA 8270M_NCI <	0.4	0.4	1.1	ng/L	ND	Caltest	4/9/18	5/2/18
SE67	DC-69	4/6/18	Tau-Fluvalinate	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND	Caltest	4/9/18	4/24/18
SE67	NE-RAIN	4/6/18	Tau-Fluvalinate	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND	Caltest	4/9/18	4/24/18
SE67	NW-RAIN	4/6/18	Tau-Fluvalinate	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND	Caltest	4/9/18	4/24/18
SE67	SC-RAIN	4/6/18	Tau-Fluvalinate	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND	Caltest	4/9/18	4/24/18
SE67	WK-64	4/6/18	Tau-Fluvalinate	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND	Caltest	4/9/18	4/24/18
SE67	WK-64R	4/6/18	Tau-Fluvalinate	EPA 8270M_NCI <	0.4	0.4	1	ng/L	ND	Caltest	4/9/18	5/2/18
DW31	DC-46R	9/11/17	Tetramethrin	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND	Caltest	9/14/17	10/12/17
DW31	DC-66	9/11/17	Tetramethrin	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND	Caltest	9/14/17	10/12/17
DW31	DC-69	9/11/17	Tetramethrin	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND	Caltest	9/14/17	10/12/17
DW31	WK-64	9/11/17	Tetramethrin	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND	Caltest	9/14/17	10/12/17
DW31	WK-64R	9/11/17	Tetramethrin	EPA 8270M_NCI <	0.2	0.2	0.6	ng/L	ND	Caltest	9/14/17	10/12/17
DW32	DC-66	4/2/18	Tetramethrin	EPA 8270M_NCI <	0.2	0.2	0.6	ng/L	ND	Caltest	4/4/18	4/7/18
DW32	DC-69	4/2/18	Tetramethrin	EPA 8270M_NCI <	0.2	0.2	0.6	ng/L	ND	Caltest	4/4/18	4/7/18
DW32	WK-64	4/2/18	Tetramethrin	EPA 8270M_NCI <	0.2	0.2	0.5	ng/L	ND	Caltest	4/4/18	4/7/18
DW32	WK-64R	4/2/18	Tetramethrin	EPA 8270M_NCI <	0.2	0.2	0.6	ng/L	ND	Caltest	4/4/18	4/7/18
DW33	DC-66	4/24/18	Tetramethrin	EPA 8270M_NCI <	0.4	0.4	1	ng/L	ND	Caltest	4/27/18	5/8/18
								J				

				unbioni monitoring		- 9	-017 -						
		Date											Analysis
Event	Site Code	Sampled	Analyte	Analytical Method		Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Date
DW33	DC-69	4/24/18	Tetramethrin	EPA 8270M_NCI		0.2	0.2	0.5	ng/L	ND	Caltest	4/27/18	5/2/18
DW33	WK-64	4/24/18	Tetramethrin	EPA 8270M_NCI		0.4	0.4	1	ng/L	ND	Caltest	4/27/18	5/9/18
DW33	WK-64R	4/24/18	Tetramethrin	EPA 8270M_NCI		0.4	0.4	1	ng/L	ND	Caltest	4/27/18	5/2/18
DW34	DC-46R	6/5/18	Tetramethrin	EPA 8270M_NCI		0.2	0.2	0.5	ng/L	ND	Caltest	6/8/18	7/10/18
DW34	DC-66	6/5/18	Tetramethrin	EPA 8270M_NCI		1	1	2.5	ng/L	ND	Caltest	6/8/18	7/11/18
DW34	DC-69	6/5/18	Tetramethrin	EPA 8270M_NCI		0.4	0.4	1	ng/L	ND	Caltest	6/8/18	7/11/18
DW34	WK-64	6/5/18	Tetramethrin	EPA 8270M_NCI		0.2	0.2	0.6	ng/L	ND	Caltest	6/8/18	6/21/18
DW34	WK-64R	6/5/18	Tetramethrin	EPA 8270M_NCI		0.2	0.2	0.5	ng/L	ND	Caltest	6/8/18	6/21/18
SE65	DC-65	11/16/17	Tetramethrin	EPA 8270M_NCI		0.4	0.4	1	ng/L	ND	Caltest	11/17/17	12/14/17
SE65	DC-65R	11/16/17	Tetramethrin	EPA 8270M_NCI		0.2	0.2	0.5	ng/L	ND	Caltest	11/17/17	12/10/17
SE65	DC-69	11/16/17	Tetramethrin	EPA 8270M_NCI		0.2	0.2	0.5	ng/L	ND	Caltest	11/17/17	12/10/17
SE65	NE-RAIN	11/16/17	Tetramethrin	EPA 8270M_NCI		0.2	0.2	0.5	ng/L	ND	Caltest	11/17/17	12/11/17
SE65	NW-RAIN	11/16/17	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	11/17/17	12/10/17
SE65	SC-RAIN	11/16/17	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	11/17/17	12/10/17
SE65	WK-64	11/16/17	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.6	ng/L	ND	Caltest	11/17/17	12/10/17
SE65	WK-64R	11/16/17	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.6	ng/L	ND	Caltest	11/17/17	12/10/17
SE66	DC-65	3/1/18	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	3/2/18	3/6/18
SE66	DC-65R	3/1/18	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	3/2/18	3/6/18
SE66	DC-69	3/1/18	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.6	ng/L	ND	Caltest	3/2/18	3/6/18
SE66	NE-RAIN	3/1/18	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.6	ng/L	ND	Caltest	3/2/18	3/7/18
SE66	NW-RAIN	3/1/18	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	3/2/18	3/7/18
SE66	SC-RAIN	3/1/18	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	3/2/18	3/7/18
SE66	WK-64	3/1/18	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	3/2/18	3/6/18
SE66	WK-64R	3/1/18	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	3/2/18	3/6/18
SE67	DC-65	4/6/18	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	4/9/18	4/24/18
SE67	DC-65R	4/6/18	Tetramethrin	EPA 8270M_NCI	<	0.4	0.4	1.1	ng/L	ND	Caltest	4/9/18	5/2/18
SE67	DC-69	4/6/18	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	4/9/18	4/24/18
SE67	NE-RAIN	4/6/18	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	4/9/18	4/24/18
SE67	NW-RAIN	4/6/18	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	4/9/18	4/24/18
SE67	SC-RAIN	4/6/18	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	4/9/18	4/24/18
SE67	WK-64	4/6/18	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	4/9/18	4/24/18
SE67	WK-64R	4/6/18	Tetramethrin	EPA 8270M_NCI	<	0.4	0.4	1	ng/L	ND	Caltest	4/9/18	5/2/18
DW31	DC-66	9/11/17	Alkalinity (as CaCO3)	2320B	=	80	1.1	10	mg/L		FGL Env.	9/14/17	9/14/17
DW32	DC-66	4/2/18	Alkalinity (as CaCO3)	2320B	=	47.1	1.1	10	mg/L		FGL Env.	4/4/18	4/4/18
DW33	DC-66	4/24/18	Alkalinity (as CaCO3)	2320B	=	31	1.1	10	mg/L		FGL Env.	4/25/18	4/25/18
DW34	DC-66	6/5/18	Alkalinity (as CaCO3)	2320B	=	41.7	1.1	10	mg/L	I	FGL Env.	6/8/18	6/8/18
SE65	DC-65	11/16/17	Alkalinity (as CaCO3)	2320B	=	50.3	1.1	10	mg/L		FGL Environ	11/21/17	11/21/17
			- '-										

		Date				9							Analysis
Event	Site Code	Sampled	Analyte	Analytical Metho	O b	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Date
SE65	DC-65R	11/16/17	Alkalinity (as CaCO3)	2320B	=	50.4	1.1	10	mg/L		FGL Environ	11/20/17	11/21/17
SE66	DC-65	3/1/18	Alkalinity (as CaCO3)	2320B	=	20.6	1.1	10	mg/L		FGL Env.	3/5/18	3/5/18
SE66	DC-65R	3/1/18	Alkalinity (as CaCO3)	2320B	=	26	1.1	10	mg/L		FGL Env.	3/5/18	3/5/18
SE67	DC-65	4/6/18	Alkalinity (as CaCO3)	2320B	=	17.7	1.1	10	mg/L		FGL Env.	4/10/18	4/10/18
SE67	DC-65R	4/6/18	Alkalinity (as CaCO3)	2320B	=	53.1	1.1	10	mg/L		FGL Env.	4/10/18	4/10/18
DW31	DC-66	9/11/17	Ammonia Nitrogen	4500NO3F	=	0.315	0.072	0.2	mg/L	h	FGL Env.	9/13/17	9/14/17
DW32	DC-66	4/2/18	Ammonia Nitrogen	4500NH3G	=	0.413	0.072	0.2	mg/L		FGL Env.	4/4/18	4/4/18
DW33	DC-66	4/24/18	Ammonia Nitrogen	4500NH3G	=	0.336	0.072	0.2	mg/L		FGL Env.	4/26/17	4/26/18
DW34	DC-66	6/5/18	Ammonia Nitrogen	4500NH3G	=	1.32	0.072	0.2	mg/L		FGL Env.	6/19/17	6/19/18
SE65	DC-65	11/16/17	Ammonia Nitrogen	4500NH3G	=	1.89	0.072	0.2	mg/L		FGL Environ	11/20/17	11/20/17
SE65	DC-65R	11/16/17	Ammonia Nitrogen	4500NH3G	<	0.072	0.072	0.2	mg/L	U, ND	FGL Environ	11/22/17	11/22/17
SE66	DC-65	3/1/18	Ammonia Nitrogen	4500NH3G	=	1.01	0.072	0.2	mg/L		FGL Env.	3/5/18	3/5/18
SE66	DC-65R	3/1/18	Ammonia Nitrogen	4500NH3G	<	0.072	0.072	0.2	mg/L	U, ND	FGL Env.	3/5/18	3/5/18
SE67	DC-65	4/6/18	Ammonia Nitrogen	4500NH3G	=	0.337	0.072	0.2	mg/L	h	FGL Env.	4/10/18	4/10/18
SE67	DC-65R	4/6/18	Ammonia Nitrogen	4500NH3G	<	0.072	0.072	0.2	mg/L	Uh, ND		4/10/18	4/10/18
DW31	DC-66	9/11/17	Bicarbonate	2320B	=	97.6	1.1	10	mg/L		FGL Env.	9/14/17	9/14/17
DW32	DC-66	4/2/18	Bicarbonate	2320B	=	57.3	1.1	10	mg/L		FGL Env.	4/4/18	4/4/18
DW33	DC-66	4/24/18	Bicarbonate	2320B	=	37.8	1.1	10	mg/L		FGL Env.	4/25/18	4/25/18
DW34	DC-66	6/5/18	Bicarbonate	2320B	=	50.8	1.1	10	mg/L	I	FGL Env.	6/8/18	6/8/18
SE65	DC-65	11/16/17	Bicarbonate	2320B	=	61.5	1.1	10	mg/L		FGL Environ	11/21/17	11/21/17
SE65	DC-65R	11/16/17	Bicarbonate	2320B	=	61.5	1.1	10	mg/L		FGL Environ	11/20/17	11/21/17
SE66	DC-65	3/1/18	Bicarbonate	2320B	=	25.1	1.1	10	mg/L		FGL Env.	3/5/18	3/5/18
SE66	DC-65R	3/1/18	Bicarbonate	2320B	=	31.7	1.1	10	mg/L		FGL Env.	3/5/18	3/5/18
SE67	DC-65	4/6/18	Bicarbonate	2320B	=	21.7	1.1	10	mg/L		FGL Env.	4/10/18	4/10/18
SE67	DC-65R	4/6/18	Bicarbonate	2320B	=	64.9	1.1	10	mg/L		FGL Env.	4/10/18	4/10/18
DW31	DC-46R	9/11/17	BOD	5210B	=	2.6	0.19	2	mg/L	I	FGL Env.	9/11/17	9/16/17
DW31	DC-66	9/11/17	BOD	5210B	=	2.7	0.19	2	mg/L	I	FGL Env.	9/11/17	9/16/17
DW31	DC-69	9/11/17	BOD	5210B	=	2.8	0.19	2	mg/L	I	FGL Env.	9/11/17	9/16/17
DW31	WK-64	9/11/17	BOD	5210B	=	3	0.19	2	mg/L	I	FGL Env.	9/11/17	9/16/17
DW31	WK-64R	9/11/17	BOD	5210B	=	1.6	0.19	2	mg/L	JI	FGL Env.	9/11/17	9/16/17
DW32	DC-66	4/2/18	BOD	5210B	=	13.7	0.19	4.3	mg/L		FGL Env.	4/2/18	4/7/18
DW32	DC-69	4/2/18	BOD	5210B	=	7.17	0.19	4.3	mg/L		FGL Env.	4/2/18	4/7/18
DW32	WK-64	4/2/18	BOD	5210B	=	3.2	0.19	2	mg/L		FGL Env.	4/2/18	4/7/18
DW32	WK-64R	4/2/18	BOD	5210B	=	2.4	0.19	2	mg/L		FGL Env.	4/2/18	4/7/18
DW33	DC-66	4/24/18	BOD	5210B	=	6.5	0.19	2	mg/L		FGL Env.	4/25/18	4/30/18
DW33	DC-69	4/24/18	BOD	5210B	=	4.2	0.19	2	mg/L		FGL Environ	4/25/18	4/30/18
DW33	WK-64	4/24/18	BOD	5210B	=	8.26	0.19	4.3	mg/L		FGL Environ	4/25/18	4/30/18

		Data				· 9· ····							Analysis
Event	Site Code	Date Sampled	Analyte	Analytical Method	0	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Analysis Date
DW33	WK-64R	4/24/18	BOD		=	1.7	0.19	2	mg/L		FGL Environ	4/25/18	4/30/18
DW34	DC-46R	6/5/18	BOD		=	2.2	0.19	2	mg/L		FGL Env.	6/6/18	6/11/18
DW34	DC-66	6/5/18	BOD		=	66.5	0.19	32	mg/L	I	FGL Env.	6/6/18	6/11/18
DW34	DC-69	6/5/18	BOD		=	2.6	0.19	2	mg/L	I	FGL Env.	6/6/18	6/11/18
DW34	WK-64	6/5/18	BOD	=0.45	=	28.6	0.19	8.7	mg/L	I	FGL Env.	6/6/18	6/11/18
DW34	WK-64R	6/5/18	BOD		=	2.2	0.19	2	mg/L	I	FGL Env.	6/6/18	6/11/18
SE65	DC-65	11/16/17	BOD	5210B	=	33.5	0.19	17	mg/L		FGL Environ	11/17/17	11/22/17
SE65	DC-65R	11/16/17	BOD	5210B	=	2.5	0.19	2	mg/L		FGL Environ	11/17/17	11/22/17
SE65	DC-69	11/16/17	BOD	5210B	=	14.8	0.19	4.3	mg/L		FGL Environ	11/17/17	11/22/17
SE65	WK-64	11/16/17	BOD	5210B	=	34.7	0.19	17	mg/L		FGL Environ	11/17/17	11/22/17
SE65	WK-64R	11/16/17	BOD	5210B	=	2.8	0.19	2	mg/L		FGL Environ	11/17/17	11/22/17
SE66	DC-65	3/1/18	BOD	5210B	=	2.1	0.19	2	mg/L		FGL Env.	3/1/18	3/6/18
SE66	DC-65R	3/1/18	BOD	5210B	=	4.6	0.19	2	mg/L		FGL Env.	3/1/18	3/6/18
SE66	DC-69	3/1/18	BOD	5210B	=	10.3	0.19	4.3	mg/L	I	FGL Env.	3/1/18	3/6/18
SE66	WK-64	3/1/18	BOD	5210B	=	9.4	0.19	4.3	mg/L	ļ	FGL Env.	3/1/18	3/6/18
SE66	WK-64R	3/1/18	BOD	5210B	=	2.7	0.19	2	mg/L	I	FGL Env.	3/1/18	3/6/18
SE67	DC-65	4/6/18	BOD	5210B	=	10.1	0.19	4.3	mg/L	I	FGL Env.	4/6/18	4/11/18
SE67	DC-65R	4/6/18	BOD		=	3.3	0.19	2	mg/L	I	FGL Env.	4/6/18	4/11/18
SE67	DC-69	4/6/18	BOD		=	4.9	0.19	2	mg/L		FGL Env.	4/6/18	4/11/18
SE67	WK-64	4/6/18	BOD	5210B	=	20.2	0.19	8.7	mg/L		FGL Env.	4/6/18	4/11/18
SE67	WK-64R	4/6/18	BOD		=	2.6	0.19	2	mg/L	I	FGL Env.	4/6/18	4/11/18
DW31	DC-66	9/11/17	Carbonate		<	1.1	1.1	10	mg/L	U	FGL Env.	9/14/17	9/14/17
DW32	DC-66	4/2/18	Carbonate		<	1.1	1.1	10	mg/L	U	FGL Env.	4/4/18	4/4/18
DW33	DC-66	4/24/18	Carbonate		<	1.1	1.1	10	mg/L	U	FGL Env.	4/25/18	4/25/18
DW34	DC-66	6/5/18	Carbonate		<	1.1	1.1	10	mg/L	U	FGL Env.	6/8/18	6/8/18
SE65	DC-65	11/16/17	Carbonate		<	1.1	1.1	10	mg/L	U, ND	FGL Environ	11/21/17	11/21/17
SE65	DC-65R	11/16/17	Carbonate		<	1.1	1.1	10	mg/L	U, ND	FGL Environ	11/20/17	11/21/17
SE66	DC-65	3/1/18	Carbonate		<	1.1	1.1	10	mg/L	U, ND	FGL Env.	3/5/18	3/5/18
SE66	DC-65R	3/1/18	Carbonate		<	1.1	1.1	10	mg/L	U, ND	FGL Env.	3/5/18	3/5/18
SE67	DC-65	4/6/18	Carbonate		<	1.1	1.1	10	mg/L	U, ND	FGL Env.	4/10/18	4/10/18
SE67	DC-65R	4/6/18	Carbonate		<	1.1	1.1	10	mg/L	U, ND	FGL Env.	4/10/18	4/10/18
DW31	DC-66	9/11/17	COD	32232	=	20.2	4.4	20	mg/L		FGL Env.	9/19/17	9/19/17
DW32	DC-66	4/2/18	COD	5220D	=	42.5	4.4	20	mg/L		FGL Env.	4/9/18	4/9/18
DW33	DC-66	4/24/18	COD		=	40.2	4.4	20	mg/L		FGL Env.	4/30/18	4/30/18
DW34	DC-66	6/5/18	COD		=	147	4.4	20	mg/L		FGL Env.	6/8/18	6/8/18
SE65	DC-65	11/16/17	COD		=	170	4.4	20	mg/L		FGL Environ	11/27/17	11/27/17
SE65	DC-65R	11/16/17	COD	5220D	=	41.9	4.4	20	mg/L		FGL Environ	11/27/17	11/27/17

				/ unbione monitorin	J	3	-0., -						
		Date											Analysis
Event	Site Code	Sampled	Analyte	Analytical Metho	d Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Date
SE66	DC-65	3/1/18	COD	5220D	=	56.2	4.4	20	mg/L	b	FGL Env.	3/5/18	3/5/18
SE66	DC-65R	3/1/18	COD	5220D	=	33.3	4.4	20	mg/L	b	FGL Env.	3/5/18	3/5/18
SE67	DC-65	4/6/18	COD	5220D	=	56.2	4.4	20	mg/L		FGL Env.	4/17/18	4/17/18
SE67	DC-65R	4/6/18	COD	5220D	=	28.7	4.4	20	mg/L		FGL Env.	4/17/18	4/17/18
DW31	DC-46R	9/11/17	Dissolved Oxygen	Field	=	2.44	-	0.01	mg/L		Field		
DW31	DC-66	9/11/17	Dissolved Oxygen	Field	=	3.16	-	0.01	mg/L		Field		
DW31	DC-69	9/11/17	Dissolved Oxygen	Field	=	3.48	-	0.01	mg/L		Field		
DW31	WK-64	9/11/17	Dissolved Oxygen	Field	=	3.94	-	0.01	mg/L		Field		•
DW31	WK-64R	9/11/17	Dissolved Oxygen	Field	=	5.06	-	0.01	mg/L		Field		
DW32	DC-66	4/2/18	Dissolved Oxygen	Field	=	5.43	-	0.01	mg/L		Field		
DW32	DC-69	4/2/18	Dissolved Oxygen	Field	=	7.73	-	0.01	mg/L		Field		
DW32	WK-64	4/2/18	Dissolved Oxygen	Field	=	5.42	-	0.01	mg/L		Field		
DW32	WK-64R	4/2/18	Dissolved Oxygen	Field	=	6.92	-	0.01	mg/L		Field		
DW33	DC-66	4/24/18	Dissolved Oxygen	Field	=	3.63	-	0.01	mg/L		Field		
DW33	DC-69	4/24/18	Dissolved Oxygen	Field	=	5.59		0.01	mg/L		Field		
DW33	WK-64	4/24/18	Dissolved Oxygen	Field	=	3.32		0.01	mg/L		Field		
DW33	WK-64R	4/24/18	Dissolved Oxygen	Field	=	7.46		0.01	mg/L		Field		
DW34	DC-46R	6/5/18	Dissolved Oxygen	Field	=	7.55	-	0.01	mg/L		Field		
DW34	DC-66	6/5/18	Dissolved Oxygen	Field	=	1.44	-	0.01	mg/L		Field		
DW34	DC-69	6/5/18	Dissolved Oxygen	Field	=	3.69	-	0.01	mg/L		Field		
DW34	WK-64	6/5/18	Dissolved Oxygen	Field	=	2.58	-	0.01	mg/L		Field		
DW34	WK-64R	6/5/18	Dissolved Oxygen	Field	=	5.65	-	0.01	mg/L		Field		
SE65	DC-65	11/16/17	Dissolved Oxygen	Field	=	7.16		0.01	mg/L		Field		
SE65	DC-65R	11/16/17	Dissolved Oxygen	Field	=	5		0.01	mg/L		Field		
SE65	DC-69	11/16/17	Dissolved Oxygen	Field	=	6.76		0.01	mg/L		Field		
SE65	NE-RAIN	11/16/17	Dissolved Oxygen	Field	=	9.54		0.01	mg/L		Field		
SE65	NW-RAIN	11/16/17	Dissolved Oxygen	Field	=	9.11		0.01	mg/L		Field		
SE65	SC-RAIN	11/16/17	Dissolved Oxygen	Field	=	9.58		0.01	mg/L		Field		
SE65	WK-64	11/16/17	Dissolved Oxygen	Field	=	5.63		0.01	mg/L		Field		
SE65	WK-64R	11/16/17	Dissolved Oxygen	Field	=	5.96		0.01	mg/L		Field		
SE66	DC-65	3/1/18	Dissolved Oxygen	Field	=	10.2	-	0.01	mg/L		Field		
SE66	DC-65R	3/1/18	Dissolved Oxygen	Field	=	11.12	-	0.01	mg/L		Field		
SE66	DC-69	3/1/18	Dissolved Oxygen	Field	=	9.38	-	0.01	mg/L		Field		
SE66	NE-RAIN	3/1/18	Dissolved Oxygen	Field	=	16.31	-	0.01	mg/L		Field		
SE66	NW-RAIN	3/1/18	Dissolved Oxygen	Field	=	14.01	-	0.01	mg/L		Field		
SE66	SC-RAIN	3/1/18	Dissolved Oxygen	Field	=	15.12	-	0.01	mg/L		Field		
SE66	WK-64	3/1/18	Dissolved Oxygen	Field	=	7.29	-	0.01	mg/L		Field		

					9	9							
	011 0 1	Date				5 "	1451	51.44				5 5 .	Analysis
Event	Site Code	Sampled	Analyte	Analytical Me		Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Date
SE66	WK-64R	3/1/18	Dissolved Oxygen	Field	=	8.16	-	0.01	mg/L		Field		
SE67	DC-65	4/6/18	Dissolved Oxygen	Field	=	8.66	-	0.01	mg/L		Field		
SE67	DC-65R	4/6/18	Dissolved Oxygen	Field	=	5.43	-	0.01	mg/L		Field		
SE67	DC-69	4/6/18	Dissolved Oxygen	Field	=	8.49	-	0.01	mg/L		Field		
SE67	NE-RAIN	4/6/18	Dissolved Oxygen	Field	=	8.25	-	0.01	mg/L		Field		
SE67	NW-RAIN	4/6/18	Dissolved Oxygen	Field	=	8.61	-	0.01	mg/L		Field		
SE67	SC-RAIN	4/6/18	Dissolved Oxygen	Field	=	8.33	-	0.01	mg/L		Field		
SE67	WK-64	4/6/18	Dissolved Oxygen	Field	=	7.57	-	0.01	mg/L		Field		
SE67	WK-64R	4/6/18	Dissolved Oxygen	Field	=	6.19	-	0.01	mg/L		Field		
DW31	DC-46R	9/11/17	Electrical Conductivity	Field	=	125.3	-	1	µmhos/cm		Field		
DW31	DC-66	9/11/17	Electrical Conductivity	Field	=	1238	-	1	µmhos/cm		Field		
DW31	DC-69	9/11/17	Electrical Conductivity	Field	=	182.7	-	1	µmhos/cm		Field		
DW31	WK-64	9/11/17	Electrical Conductivity	Field	=	704	-	1	µmhos/cm		Field		
DW31	WK-64R	9/11/17	Electrical Conductivity	Field	=	111.7	-	1	µmhos/cm		Field		
DW32	DC-66	4/2/18	Electrical Conductivity	Field	=	144	-	1	µmhos/cm		Field		
DW32	DC-69	4/2/18	Electrical Conductivity	Field	=	179	-	1	µmhos/cm		Field		
DW32	WK-64	4/2/18	Electrical Conductivity	Field	=	230	-	1	µmhos/cm		Field		
DW32	WK-64R	4/2/18	Electrical Conductivity	Field	=	231	-	1	µmhos/cm		Field		
DW33	DC-66	4/24/18	Electrical Conductivity	Field	=	141.4	-	1	µmhos/cm		Field		
DW33	DC-69	4/24/18	Electrical Conductivity	Field	=	-		1	µmhos/cm		Field		
DW33	WK-64	4/24/18	Electrical Conductivity	Field	=	136.9		1	µmhos/cm		Field		
DW33	WK-64R	4/24/18	Electrical Conductivity	Field	=	163.6		1	µmhos/cm		Field		
DW34	DC-46R	6/5/18	Electrical Conductivity	Field	=	152	-	1	µmhos/cm		Field		
DW34	DC-66	6/5/18	Electrical Conductivity	Field	=	201	-	1	µmhos/cm		Field		
DW34	DC-69	6/5/18	Electrical Conductivity	Field	=	151	-	1	µmhos/cm		Field		
DW34	WK-64	6/5/18	Electrical Conductivity	Field	=	328	_	1	µmhos/cm		Field		
DW34	WK-64R	6/5/18	Electrical Conductivity	Field	=	304	-	1	µmhos/cm		Field		
SE65	DC-65	11/16/17	Electrical Conductivity	Field	=	228.5		1	µmhos/cm		Field		
SE65	DC-65R	11/16/17	Electrical Conductivity	Field	=	236.1		1	µmhos/cm		Field		
SE65	DC-69	11/16/17	Electrical Conductivity	Field	=	136		 1	µmhos/cm		Field		
SE65	NE-RAIN	11/16/17	Electrical Conductivity	Field	=	11.8		1	µmhos/cm		Field		
SE65	NW-RAIN	11/16/17	Electrical Conductivity	Field	=	5		 1	µmhos/cm		Field		
SE65	SC-RAIN	11/16/17	Electrical Conductivity	Field	=	5	_	1	µmhos/cm		Field		
SE65	WK-64	11/16/17	Electrical Conductivity	Field	=	172		1	µmhos/cm		Field		
SE65	WK-64R	11/16/17	Electrical Conductivity	Field	=	232.8		1	µmhos/cm		Field		
SE66	DC-65	3/1/18	Electrical Conductivity	Field	=	118	_	1	µmhos/cm		Field		
SE66	DC-65R	3/1/18	Electrical Conductivity	Field		113.5		<u>'</u> 1	µmhos/cm		Field		
JLUU	סר-סטוג	3/1/10	Licenteal Conductivity	i iciu		113.3	-	ı	pilliosicili		i iciu		

			Allik		iig i i	ogram /	2017-2	010 0	ala				
		Date											Analysis
Event	Site Code	Sampled	Analyte	Analytical Meth	nod Q	Result	MDL	RL/ML		Flag	Lab Name	Prep Date	Date
SE66	DC-69	3/1/18	Electrical Conductivity	Field	=	98.3	-	1	µmhos/cm		Field		
SE66	NE-RAIN	3/1/18	Electrical Conductivity	Field	=	19	-	1	µmhos/cm		Field		
SE66	NW-RAIN	3/1/18	Electrical Conductivity	Field	=	12	-	1	µmhos/cm		Field		
SE66	SC-RAIN	3/1/18	Electrical Conductivity	Field	=	28	-	1	µmhos/cm		Field		
SE66	WK-64	3/1/18	Electrical Conductivity	Field	=	111	-	1	µmhos/cm		Field		
SE66	WK-64R	3/1/18	Electrical Conductivity	Field	=	117	-	1	µmhos/cm		Field		
SE67	DC-65	4/6/18	Electrical Conductivity	Field	=	71.6	-	1	µmhos/cm		Field		
SE67	DC-65R	4/6/18	Electrical Conductivity	Field	=	200.5	-	1	µmhos/cm		Field		
SE67	DC-69	4/6/18	Electrical Conductivity	Field	=	30.6	-	1	µmhos/cm		Field		
SE67	NE-RAIN	4/6/18	Electrical Conductivity	Field	=	3	-	1	µmhos/cm		Field		
SE67	NW-RAIN	4/6/18	Electrical Conductivity	Field	=	3	-	1	µmhos/cm		Field		
SE67	SC-RAIN	4/6/18	Electrical Conductivity	Field	=	4	-	1	µmhos/cm		Field		
SE67	WK-64	4/6/18	Electrical Conductivity	Field	=	108.6	-	1	µmhos/cm		Field		
SE67	WK-64R	4/6/18	Electrical Conductivity	Field	=	159.6	-	1	µmhos/cm		Field		
DW31	DC-66	9/11/17	Hydroxide	2320B	<	1.1	1.1	10	mg/L	U	FGL Env.	9/14/17	9/14/17
DW32	DC-66	4/2/18	Hydroxide	2320B	<	1.1	1.1	10	mg/L	U	FGL Env.	4/4/18	4/4/18
DW33	DC-66	4/24/18	Hydroxide	2320B	<	1.1	1.1	10	mg/L	U	FGL Env.	4/25/18	4/25/18
DW34	DC-66	6/5/18	Hydroxide	2320B	<	1.1	1.1	10	mg/L	U	FGL Env.	6/8/18	6/8/18
SE65	DC-65	11/16/17	Hydroxide	2320B	<	1.1	1.1	10	mg/L	U, ND	FGL Environ	11/21/17	11/21/17
SE65	DC-65R	11/16/17	Hydroxide	2320B	<	1.1	1.1	10	mg/L	U, ND	FGL Environ	11/20/17	11/21/17
SE66	DC-65	3/1/18	Hydroxide	2320B	<	1.1	1.1	10	mg/L	U, ND	FGL Env.	3/5/18	3/5/18
SE66	DC-65R	3/1/18	Hydroxide	2320B	<	1.1	1.1	10	mg/L	U, ND	FGL Env.	3/5/18	3/5/18
SE67	DC-65	4/6/18	Hydroxide	2320B	<	1.1	1.1	10	mg/L	U, ND	FGL Env.	4/10/18	4/10/18
SE67	DC-65R	4/6/18	Hydroxide	2320B	<	1.1	1.1	10	mg/L	U, ND	FGL Env.	4/10/18	4/10/18
DW31	DC-66	9/11/17	Nitrogen, Total Kjeldahl	EPA351.2	=	0.747	0.19	0.5	mg/L		FGL Env.	9/20/17	9/21/17
DW32	DC-66	4/2/18	Nitrogen, Total Kjeldahl	EPA351.2	=	1.06	0.32	0.5	mg/L		FGL Env.	4/4/18	4/5/18
DW33	DC-66	4/24/18	Nitrogen, Total Kjeldahl	EPA351.2	=	1.26	0.32	0.5	mg/L		FGL Env.	4/30/18	4/30/18
DW34	DC-66	6/5/18	Nitrogen, Total Kjeldahl	EPA351.2	=	4	0.32	0.5	mg/L		FGL Env.	6/18/18	6/18/18
SE65	DC-65	11/16/17	Nitrogen, Total Kjeldahl	EPA351.2	=	4.77	0.32	0.5	mg/L	b	FGL Environ	11/20/17	11/27/17
SE65	DC-65R	11/16/17	Nitrogen, Total Kjeldahl	EPA351.2	=	0.419	0.32	0.5	mg/L	Jb	FGL Environ	11/20/17	11/27/17
SE66	DC-65	3/1/18	Nitrogen, Total Kjeldahl	EPA351.2	<	0.32	0.32	0.5	mg/L	U	FGL Env.	3/7/18	3/8/18
SE66	DC-65R	3/1/18	Nitrogen, Total Kjeldahl	EPA351.2	=	11.4	0.32	0.5	mg/L		FGL Env.	3/7/18	3/8/18
SE67	DC-65	4/6/18	Nitrogen, Total Kjeldahl	EPA351.2	=	0.582	0.32	0.5	mg/L		FGL Env.	4/13/18	4/17/18
SE67	DC-65R	4/6/18	Nitrogen, Total Kjeldahl	EPA351.2	<	0.32	0.32	0.5	mg/L	U, ND	FGL Env.	4/13/18	4/17/18
DW31	DC-66	9/11/17	Oil and Grease	1664A	=	3.57	1.5	3.3	mg/L		FGL Env.	9/14/17	9/18/17
DW32	DC-66	4/2/18	Oil and Grease	1664A	=	5.05	1.5	3	mg/L		FGL Env.	4/10/18	4/11/18
DW33	DC-66	4/24/18	Oil and Grease	1664A	=	6.09	1.5	3	mg/L		FGL Env.	5/2/18	5/3/18
-													

		Date				9							Analysis
Event	Site Code	Sampled	Analyte	Analytical Method	Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Date
DW34	DC-66	6/5/18	Oil and Grease	1664A	=	4.51	1.5	3	mg/L		FGL Env.	6/14/18	6/14/18
SE65	DC-65	11/16/17	Oil and Grease	1664A	=	2.69	1.5	3.2	mg/L	J	FGL Environ	12/4/17	12/4/17
SE65	DC-65R	11/16/17	Oil and Grease	1664A	=	2.69	1.5	3.2	mg/L	J	FGL Environ	12/4/17	12/4/17
SE66	DC-65	3/1/18	Oil and Grease	1664A	=	2.09	1.5	3	mg/L	J	FGL Env.	3/19/18	3/20/18
SE66	DC-65R	3/1/18	Oil and Grease	1664A	<	1.5	1.5	3	mg/L	UL, ND		3/15/18	3/15/18
SE67	DC-65	4/6/18	Oil and Grease	1664A	=	4.95	1.5	3	mg/L		FGL Env.	4/24/18	4/24/18
SE67	DC-65R	4/6/18	Oil and Grease	1664A	=	3.8	1.5	3	mg/L		FGL Env.	4/24/18	4/25/18
DW31	DC-46R	9/11/17	pН	Field	=	6.95	-	0-14	pH Units		Field		
DW31	DC-66	9/11/17	pH	Field	=	7.03	-	0-14	pH Units		Field		
DW31	DC-69	9/11/17	pH	Field	=	7.29	-	0-14	pH Units		Field		
DW31	WK-64	9/11/17	pH	Field	=	7.56	-	0-14	pH Units		Field		
DW31	WK-64R	9/11/17	pH	Field	=	7.51	-	0-14	pH Units		Field		
DW32	DC-66	4/2/18	pH	Field	=	7.28	-	0-14	pH Units		Field		
DW32	DC-69	4/2/18	pH	Field	=	7.25	-	0-14	pH Units		Field		
DW32	WK-64	4/2/18	pH	Field	=	6.74	-	0-14	pH Units		Field		
DW32	WK-64R	4/2/18	pH	Field	=	6.93	-	0-14	pH Units		Field		
DW33	DC-66	4/24/18	pH	Field	=	6.56	-	0-14	pH Units		Field		
DW33	DC-69	4/24/18	pH	Field	=	6.66		0-14	pH Units		Field		
DW33	WK-64	4/24/18	pH	Field	=	6.92		0-14	pH Units		Field		
DW33	WK-64R	4/24/18	pH	Field	=	7.09		0-14	pH Units		Field		
DW34	DC-46R	6/5/18	pH	Field	=	7.15	-	0-14	pH Units		Field		
DW34	DC-66	6/5/18	pH	Field	=	6.35	-	0-14	pH Units		Field		
DW34	DC-69	6/5/18	pH	Field	=	7.44	-	0-14	pH Units		Field		
DW34	WK-64	6/5/18	pH	Field	=	6.87	-	0-14	pH Units		Field		
DW34	WK-64R	6/5/18	рН	Field	=	7.72	-	0-14	pH Units		Field		
SE65	DC-65	11/16/17	рН	Field	=	8.66		0-14	pH Units		Field		
SE65	DC-65R	11/16/17	рН	Field	=	7.33		0-14	pH Units		Field		
SE65	DC-69	11/16/17	pH	Field	=	7.69		0-14	pH Units		Field		
SE65	NE-RAIN	11/16/17	pH	Field	=	8.2		0-14	pH Units		Field		
SE65	NW-RAIN	11/16/17	рН	Field	=	6.92		0-14	pH Units		Field		
SE65	SC-RAIN	11/16/17	pH	Field	=	6.53		0-14	pH Units		Field		
SE65	WK-64	11/16/17	pH	Field	=	7.81		0-14	pH Units		Field		
SE65	WK-64R	11/16/17	pH	Field	=	7.29		0-14	pH Units		Field		
SE66	DC-65	3/1/18	pH	Field	=	7.32	-	0-14	pH Units		Field		
SE66	DC-65R	3/1/18	pH	Field	=	7	-	0-14	pH Units		Field		
SE66	DC-69	3/1/18	pH	Field	=	7.79	-	0-14	pH Units		Field		
SE66	NE-RAIN	3/1/18	pH	Field	=	7.45	-	0-14	pH Units		Field		
-			•						•				

		Date											Analysis
Event	Site Code	Sampled	Analyte	Analytical Method	I Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Date
SE66	NW-RAIN	3/1/18	рН	Field	=	7.87	-	0-14	pH Units		Field		
SE66	SC-RAIN	3/1/18	pH	Field	=	7.72	-	0-14	pH Units		Field		
SE66	WK-64	3/1/18	pH	Field	=	7.38	-	0-14	pH Units		Field		
SE66	WK-64R	3/1/18	pH	Field	=	6.71	-	0-14	pH Units		Field		
SE67	DC-65	4/6/18	рН	Field	=	7.18	-	0-14	pH Units		Field		
SE67	DC-65R	4/6/18	рН	Field	=	6.82	-	0-14	pH Units		Field		
SE67	DC-69	4/6/18	рН	Field	=	8.01	-	0-14	pH Units		Field		
SE67	NE-RAIN	4/6/18	рН	Field	=	7.1	-	0-14	pH Units		Field		
SE67	NW-RAIN	4/6/18	рН	Field	=	7.01	-	0-14	pH Units		Field		
SE67	SC-RAIN	4/6/18	рН	Field	=	6.98	-	0-14	pH Units		Field		
SE67	WK-64	4/6/18	рН	Field	=	7.56	-	0-14	pH Units		Field		
SE67	WK-64R	4/6/18	рН	Field	=	7.42	-	0-14	pH Units		Field		
DW31	DC-66	9/11/17	Solids, Total Suspended (TSS)	2540D	=	6.29	0.019	1.1	mg/L		FGL Env.	9/11/17	9/12/17
DW32	DC-66	4/2/18	Solids, Total Suspended (TSS)	2540D	=	9.05	0.019	1.1	mg/L		FGL Env.	4/2/18	4/3/18
DW33	DC-66	4/24/18	Solids, Total Suspended (TSS)	2540D	=	9.91	0.019	1.9	mg/L		FGL Env.	4/24/18	4/25/18
DW34	DC-66	6/5/18	Solids, Total Suspended (TSS)	2540D	=	9.32	0.019	2	mg/L		FGL Env.	6/6/18	6/7/18
SE65	DC-65	11/16/17	Solids, Total Suspended (TSS)	2540D	=	61.3	0.019	10	mg/L	b	FGL Environ	11/20/17	11/21/17
SE65	DC-65R	11/16/17	Solids, Total Suspended (TSS)	2540D	=	92.5	0.019	5	mg/L	b	FGL Environ	11/20/17	11/21/17
SE66	DC-65	3/1/18	Solids, Total Suspended (TSS)	2540D	=	24	0.019	2	mg/L		FGL Env.	3/6/18	3/7/18
SE66	DC-65R	3/1/18	Solids, Total Suspended (TSS)	2540D	=	67.8	0.019	2.9	mg/L		FGL Env.	3/6/18	3/7/18
SE67	DC-65	4/6/18	Solids, Total Suspended (TSS)	2540D	=	55.8	0.019	4	mg/L		FGL Env.	4/9/18	4/10/18
SE67	DC-65R	4/6/18	Solids, Total Suspended (TSS)	2540D	=	16.5	0.019	2.2	mg/L	b	FGL Env.	4/9/18	4/10/18
DW31	DC-66	9/11/17	Specific Conductance	2510B	=	1250	0.16	1	µmhos/cm	b	FGL Env.	9/13/17	9/13/17
DW32	DC-66	4/2/18	Specific Conductance	2510B	=	139	0.16	1	µmhos/cm		FGL Env.	4/4/18	4/4/18
DW33	DC-66	4/24/18	Specific Conductance	2510B	=	130	0.16	1	µmhos/cm		FGL Env.	4/26/18	4/26/18
DW34	DC-66	6/5/18	Specific Conductance	2510B	=	193	0.16	1	µmhos/cm		FGL Env.	6/7/18	6/7/18
SE65	DC-65	11/16/17	Specific Conductance	2510B	=	193	0.16	1	µmhos/cm	b	FGL Environ	11/18/17	11/18/17
SE65	DC-65R	11/16/17	Specific Conductance	2510B	=	232	0.16	1	µmhos/cm	b	FGL Environ	11/18/17	11/18/17
SE66	DC-65	3/1/18	Specific Conductance	2510B	=	111	0.16	1	µmhos/cm	b	FGL Env.	3/5/18	3/5/18
SE66	DC-65R	3/1/18	Specific Conductance	2510B	=	110	0.16	1	µmhos/cm	b	FGL Env.	3/5/18	3/5/18
SE67	DC-65	4/6/18	Specific Conductance	2510B	=	62.4	0.16	1	µmhos/cm		FGL Env.	4/10/18	4/10/18
SE67	DC-65R	4/6/18	Specific Conductance	2510B	=	201	0.16	1	µmhos/cm		FGL Env.	4/10/18	4/10/18
DW31	DC-46R	9/11/17	Temperature	Field	=	28	-	0.01	°C		Field		
DW31	DC-66	9/11/17	Temperature	Field	=	23.6	-	0.01	°C		Field		
DW31	DC-69	9/11/17	Temperature	Field	=	25	-	0.01	°C		Field		
DW31	WK-64	9/11/17	Temperature	Field	=	21.9	-	0.01	°C		Field		
DW31	WK-64R	9/11/17	Temperature	Field	=	24.7	-	0.01	°C		Field		

				7 timbionic monitoring									
		Date			_	5 "		51.41				5 5 .	Analysis
Event	Site Code	Sampled	Analyte	Analytical Method	Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Date
DW32	DC-66	4/2/18	Temperature		=	15.3	-	0.01	°C		Field		
DW32	DC-69	4/2/18	Temperature		=	15.9	-	0.01	°C		Field		
DW32	WK-64	4/2/18	Temperature		=	15.3	-	0.01	°C		Field		
DW32	WK-64R	4/2/18	Temperature		=	19	-	0.01	°C		Field		
DW33	DC-66	4/24/18	Temperature		=	17.7	-	0.01	°C		Field		
DW33	DC-69	4/24/18	Temperature		=	17.4		0.01	°C		Field		
DW33	WK-64	4/24/18	Temperature		=	18.1		0.01	°C		Field		
DW33	WK-64R	4/24/18	Temperature	1.1010	=	23.5		0.01	°C		Field		
DW34	DC-46R	6/5/18	Temperature	Field	=	28	-	0.01	°C		Field		
DW34	DC-66	6/5/18	Temperature	Field	=	19.2	-	0.01	°C		Field		
DW34	DC-69	6/5/18	Temperature	Field	=	20	-	0.01	°C		Field		
DW34	WK-64	6/5/18	Temperature	Field	=	18.3	-	0.01	°C		Field		
DW34	WK-64R	6/5/18	Temperature	Field	=	23	-	0.01	°C		Field		
SE65	DC-65	11/16/17	Temperature	Field	=	17.8		0.01	°C		Field		
SE65	DC-65R	11/16/17	Temperature	Field	=	15.5		0.01	°C		Field		
SE65	DC-69	11/16/17	Temperature	Field	=	17.8		0.01	°C		Field		
SE65	NE-RAIN	11/16/17	Temperature	Field	=	13.9		0.01	°C		Field		
SE65	NW-RAIN	11/16/17	Temperature	Field	=	14.3		0.01	°C		Field		
SE65	SC-RAIN	11/16/17	Temperature	Field	=	14.1	-	0.01	°C		Field		
SE65	WK-64	11/16/17	Temperature	Field	=	18.3		0.01	°C		Field		
SE65	WK-64R	11/16/17	Temperature	Field	=	15		0.01	°C		Field		
SE66	DC-65	3/1/18	Temperature	Field	=	11.6	-	0.01	°C		Field		
SE66	DC-65R	3/1/18	Temperature	Field	=	10	-	0.01	°C		Field		
SE66	DC-69	3/1/18	Temperature	=:	=	10.6	-	0.01	°C		Field		
SE66	NE-RAIN	3/1/18	Temperature	Field	=	8.4	-	0.01	°C		Field		
SE66	NW-RAIN	3/1/18	Temperature	=.	=	8.4	-	0.01	°C		Field		
SE66	SC-RAIN	3/1/18	Temperature	Field	=	8.8	-	0.01	°C		Field		
SE66	WK-64	3/1/18	Temperature		=	9.6	-	0.01	°C		Field		
SE66	WK-64R	3/1/18	Temperature		=	9.9	-	0.01	°C		Field		
SE67	DC-65	4/6/18	Temperature	EL LI	=	15.9	-	0.01	°C		Field		
SE67	DC-65R	4/6/18	Temperature		=	15.9	-	0.01	°C		Field		
SE67	DC-69	4/6/18	Temperature	=:	=	15.9	-	0.01	°C		Field		
SE67	NE-RAIN	4/6/18	Temperature	=.	=	17.2	-	0.01	°C		Field		
SE67	NW-RAIN	4/6/18	Temperature		=	17.8	_	0.01	°C		Field		
SE67	SC-RAIN	4/6/18	Temperature		=	17.8	-	0.01	°C		Field		
SE67	WK-64	4/6/18	Temperature	=.	=	16.2	_	0.01	°C		Field		
SE67	WK-64R	4/6/18	Temperature		 =	16.6		0.01	°C		Field		
JLUI	VVIX UTIX	7/0/10	romporature	i iciu	-	10.0		0.01	0		i iciu		

		Date											Analysis
Event	Site Code	Sampled	Analyte	Analytical Metho	d Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Date
DW31	DC-66	9/11/17	TOC	5310C	=	2.89	0.15	0.5	mg/L		FGL Env.	9/18/17	9/18/17
DW32	DC-66	4/2/18	TOC	5310C	=	7.6	0.15	0.5	mg/L		FGL Env.	4/16/18	4/17/18
DW33	DC-66	4/24/18	TOC	5310C	=	12.2	0.15	0.5	mg/L		FGL Env.	5/6/18	5/7/18
DW34	DC-66	6/5/18	TOC	5310C	=	61.4	0.15	5	mg/L		FGL Env.	6/18/18	6/18/18
SE65	DC-65	11/16/17	TOC	5310C	=	58.7	0.15	2.5	mg/L		FGL Environ	12/6/17	12/6/17
SE65	DC-65R	11/16/17	TOC	5310C	=	4.1	0.15	0.5	mg/L		FGL Environ	11/29/17	11/30/17
SE66	DC-65	3/1/18	TOC	5310C	=	13.5	0.15	0.5	mg/L	b	FGL Env.	3/12/18	3/12/18
SE66	DC-65R	3/1/18	TOC	5310C	=	5.4	0.15	0.5	mg/L	b	FGL Env.	3/12/18	3/12/18
SE67	DC-65	4/6/18	TOC	5310C	=	8.93	0.15	0.5	mg/L		FGL Env.	4/25/18	4/26/18
SE67	DC-65R	4/6/18	TOC	5310C	=	7.64	0.15	0.5	mg/L		FGL Env.	4/25/18	4/26/18
DW31	DC-66	9/11/17	Total Dissolved Solids (TFR)	2540C	=	1070	5.8	20	mg/L		FGL Env.	9/12/17	9/13/17
DW32	DC-66	4/2/18	Total Dissolved Solids (TFR)	2540C	=	84.1	5.8	20	mg/L		FGL Env.	4/4/18	4/5/18
DW33	DC-66	4/24/18	Total Dissolved Solids (TFR)	2540C	=	70.8	5.8	20	mg/L		FGL Env.	4/27/18	4/30/18
DW34	DC-66	6/5/18	Total Dissolved Solids (TFR)	2540C	=	137	5.8	20	mg/L		FGL Env.	6/7/18	6/8/18
SE65	DC-65	11/16/17	Total Dissolved Solids (TFR)	2540C	=	137	5.8	20	mg/L		FGL Environ	11/20/17	11/21/17
SE65	DC-65R	11/16/17	Total Dissolved Solids (TFR)	2540C	=	113	5.8	20	mg/L	b	FGL Environ	11/20/17	11/21/17
SE66	DC-65	3/1/18	Total Dissolved Solids (TFR)	2540C	=	71.4	5.8	20	mg/L		FGL Env.	3/5/18	3/6/18
SE66	DC-65R	3/1/18	Total Dissolved Solids (TFR)	2540C	=	59.2	5.8	20	mg/L		FGL Env.	3/5/18	3/6/18
SE67	DC-65	4/6/18	Total Dissolved Solids (TFR)	2540C	=	16.5	5.8	20	mg/L		FGL Env.	4/11/18	4/12/18
SE67	DC-65R	4/6/18	Total Dissolved Solids (TFR)	2540C	=	95.5	5.8	20	mg/L		FGL Env.	4/11/18	4/12/18
DW31	DC-66	9/11/17	Total Hardness as CaCO3	200.7	=	363	0.0075	2.5	mg/L	Ph	FGL Env.	9/13/17	9/15/17
DW32	DC-66	4/2/18	Total Hardness as CaCO3	200.7	=	43.8	0.0075	2.5	mg/L	Р	FGL Env.	4/4/18	4/4/18
DW33	DC-66	4/24/18	Total Hardness as CaCO3	200.7	=	29.4	0.018	2.5	mg/L		FGL Env.	4/26/17	4/29/18
DW34	DC-66	6/5/18	Total Hardness as CaCO3	200.7	=	59.3	0.018	2.5	mg/L		FGL Env.	6/21/17	6/27/18
SE65	DC-65	11/16/17	Total Hardness as CaCO3	200.7	=	75.4	0.0075	2.5	mg/L	Р	FGL Environ	11/28/17	11/28/17
SE65	DC-65R	11/16/17	Total Hardness as CaCO3	200.7	=	56.5	0.0075	2.5	mg/L		FGL Environ	11/21/17	11/27/17
SE66	DC-65	3/1/18	Total Hardness as CaCO3	200.7	=	25	0.0075	2.5	mg/L	1P	FGL Env.	3/6/18	3/7/18
SE66	DC-65R	3/1/18	Total Hardness as CaCO3	200.7	=	35	0.0075	2.5	mg/L	hP	FGL Env.	3/20/18	3/20/18
SE67	DC-65	4/6/18	Total Hardness as CaCO3	200.7	=	19.3	0.018	2.5	mg/L		FGL Env.	4/16/18	4/17/18
SE67	DC-65R	4/6/18	Total Hardness as CaCO3	200.7	=	54.3	0.018	2.5	mg/L		FGL Env.	4/16/18	4/17/18
DW31	DC-66	9/11/17	Turbidity	2130B	=	0.206	0.021	0.2	NTU		FGL Env.	9/11/17	9/11/17
DW32	DC-66	4/2/18	Turbidity	2130B	=	7.54	0.021	0.2	NTU		FGL Env.	4/3/18	4/3/18
DW33	DC-66	4/24/18	Turbidity	2130B	=	9.92	0.021	0.2	NTU		FGL Env.	4/25/18	4/25/18
DW34	DC-66	6/5/18	Turbidity	2130B	=	24.4	0.021	0.2	NTU		FGL Env.	6/5/18	6/5/18
SE65	DC-65	11/16/17	Turbidity	2130B	=	82.2	0.021	0.2	NTU		FGL Environ	11/17/17	11/17/17
SE65	DC-65R	11/16/17	Turbidity	2130B	=	17	0.021	0.2	NTU		FGL Environ	11/17/17	11/17/17
SE66	DC-65	3/1/18	Turbidity	2130B	=	44.1	0.021	0.2	NTU		FGL Env.	3/1/18	3/1/18
			-										

		Date											Analysis
Event	Site Code	Sampled	Analyte	Analytical Method	Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Date
SE66	DC-65R	3/1/18	Turbidity	2130B	=	64.8	0.021	0.2	NTU		FGL Env.	3/1/18	3/1/18
SE67	DC-65	4/6/18	Turbidity	2130B	=	63.5	0.021	0.2	NTU		FGL Env.	4/6/18	4/6/18
SE67	DC-65R	4/6/18	Turbidity	2130B	=	18.7	0.021	0.2	NTU		FGL Env.	4/6/18	4/6/18

Appendix C 2017-2018 Data Summary Tables

DUCK CREEK 2017-2018 DATA FOR POLLUTANTS OF CONCERN

Fecal Indicator Bacteria

Event	DC-46R	DC-65	DC-66	DC-65R	DC-66R	DC-69	WK-64	WK-64R	WQO
E. Coli (MP	N/100mL)								
DW31	6.3	[a]	23.5	[a]	No flow	86	7.3	13.5	235
DW32	-	[a]	1019	[a]	No flow	63	10	63	235
DW33	-	[a]	122.3	[a]	No flow	13.4	101.4	5.2	235
DW34	1.00	[a]	36.2	[a]	No flow	16.1	727	11	235
SE65	-	2419.6	[b]	13.4	[b]	1732.9	2419.6	307.6	235
SE66	-	2187	[b]	86	[b]	591	7270	373	235
SE67	-	135.4	[b]	87.8	[b]	187.2	2419.6	7.4	235
Fecal Colifo	orm (MPN/1	00mL)							
DW31	230	[a]	79000	[a]	No flow	7900	140	170	400
DW32	-	[a]	1300	[a]	No flow	460	20	110	400
DW33	-	[a]	7900	[a]	No flow	790	33000	140	400
DW34	78	[a]	110000	[a]	No flow	23000	230000	20	400
SE65	-	330000	[b]	490	[b]	94000	3300	13000	400
SE66	-	4900	[b]	220	[b]	2300	2300	1300	400
SE67	-	2300	[b]	4900	[b]	2300	79000	45	400

[[]a] This location is only sampled during wet weather.
[b] This location is only sampled during dry weather.

Mercury

Event	DC-46R	DC-65	DC-66	DC-65R	DC-66R	DC-69	WK-64	WK-64R	NE-RAIN	NW-RAIN	SC-RAIN
Methyl Merc	ury, Total ((ng/L)									
DW31	0.3	[a]	0.08	[a]	No flow	0.06	0.05	0.06	-	-	-
DW32	-	[a]	0.19	[a]	No flow	0.18	0.15	0.13	-	-	-
DW33	-	[a]	0.26	[a]	No flow	0.11	0.51	0.09	-	-	-
DW34	0.33	[a]	0.86	[a]	No flow	0.12	0.91	0.07	-	-	-
SE65	-	0.13	[b]	0.04	[b]	0.11	0.13	0.04	0.07	0.02	<0.02
SE66	-	0.14	[b]	0.11	[b]	0.21	0.88	0.07	0.12	0.1	0.07
SE67	-	0.10	[b]	0.10	[b]	0.07	0.11	0.08	<0.02	0.03	0.04
Mercury, To	tal (ng/L)		•	•							
DW31	1.2	[a]	2.2	[a]	No flow	1.5	1.5	2.2	-	-	-
DW32	-	[a]	3.8	[a]	No flow	5.1	2.7	4.7	-	-	-
DW33	-	[a]	4.7	[a]	No flow	2.1	5.0	4.0	-	-	-
DW34	1.5	[a]	7.8	[a]	No flow	2.0	4.2	2.2	-	-	-
SE65	-	12	[b]	2.4	[b]	12	32	2.7	5.4	5.2	2.4
SE66	-	9.4	[b]	9.5	[b]	6.1	12	1.3	7.3	4.8	5.3
SE67	-	7.9	[b]	2.7	[b]	6.2	10	4.4	3.3	4.7	4.8

[[]a] This location is only sampled during wet weather.[b] This location is only sampled during dry weather.

Dissolved Oxygen

Event	DC-46R	DC-65	DC-66	DC-65R	DC-66R	DC-69	WK-64	WK-64R	NE-RAIN	NW-RAIN	SC-RAIN	WQO
Dissolved O	xygen (mg	/L)										
DW31	2.44	[a]	3.16	[a]	No flow	3.48	3.94	5.06	-	-	-	>6
DW32	-	[a]	5.43	[a]	No flow	7.73	5.42	6.92	-	-	-	>5
DW33	-	[a]	3.63	[a]	No flow	5.59	3.32	7.46	-	-	-	>5
DW34	7.55	[a]	1.44	[a]	No flow	3.69	2.58	5.65	-	-	-	>5
SE65	-	7.16	[b]	5.00	[b]	6.76	5.63	5.96	9.54	9.11	9.58	>6
SE66	-	10.2	[b]	11.12	[b]	9.38	7.29	8.16	16.31	14.01	15.12	>5
SE67	-	8.66	[b]	5.43	[b]	8.49	7.57	6.19	8.25	8.61	8.33	>5

[[]a] This location is only sampled during wet weather.
[b] This location is only sampled during dry weather.

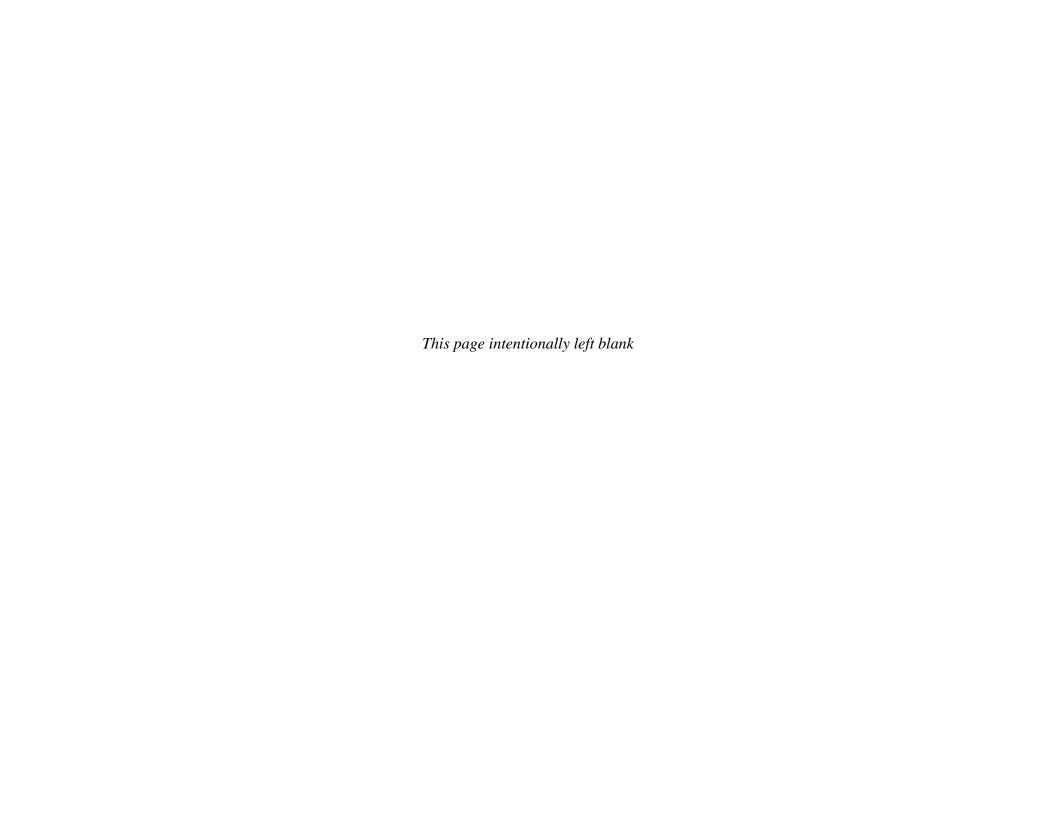
Chlorpyrifos

Event	DC-46R	DC-65	DC-66	DC-65R	DC-66R	DC-69	WK-64	WK-64R	NE-RAIN	NW-RAIN	SC-RAIN	WQO
Chlorpyrifo	s (ng/L)						•				•	
DW31	2.9	[a]	<0.5	[a]	No flow	1.2	<0.5	0.7	-	-	-	15
DW32	-	[a]	3.4	[a]	No flow	1.2	7.5	0.8	-	-	-	15
DW33	-	[a]	1.1	[a]	No flow	0.7	4.7	<1	-	-	-	15
DW34	0.6	[a]	<2	[a]	No flow	<1	4.1	0.6	-	-	-	15
SE65	-	1.4	[b]	<0.5	[b]	4.1	1.6	0.7	29	5.1	0.6	15
SE66	-	1.4	[b]	1.5	[b]	1.6	7.8	1.7	6.0	8.7	4.2	15
SE67	-	3.5	[b]	1.8	[b]	4.8	8.7	<1	0.9	3.8	9.5	15

[[]a] This location is only sampled during wet weather.

[[]b] This location is only sampled during dry weather.

Pyrethroids


Event	DC-46R	DC-65	DC-66	DC-65R	DC-66R	DC-69	WK-64	WK-64R	NE-RAIN	NW-RAIN	SC-RAIN
Allethrin (ng	/L)	•	•	•	•	•	•	•	•	•	
DW31	<0.1	[a]	<0.1	[a]	No flow	<0.1	<0.1	<0.1	-	-	-
DW32	-	[a]	<0.1	[a]	No flow	<0.1	<0.1	<0.1	-	-	-
DW33	-	[a]	<0.2	[a]	No flow	<0.1	<0.2	<0.2	-	-	-
DW34	<0.1	[a]	<0.5	[a]	No flow	<0.2	<0.1	<0.1	-	-	-
SE65	-	<0.2	[b]	<0.1	[b]	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
SE66	-	<0.1	[b]	<0.1	[b]	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
SE67	-	<0.1	[b]	<0.2	[b]	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1
Bifenthrin (n	g/L)							•			
DW31	0.6	[a]	6.9	[a]	No flow	1.3	4	1	-	-	-
DW32	-	[a]	<0.1	[a]	No flow	<0.1	1.5	0.7	-	-	-
DW33	-	[a]	5.2	[a]	No flow	<0.1	3.9	0.6	-	-	-
DW34	<0.1	[a]	3.2	[a]	No flow	0.7	14	<0.1	-	-	-
SE65	-	<0.2	[b]	<0.1	[b]	13	22	1.2	1.4	0.5	0.6
SE66	-	<0.1	[b]	3.0	[b]	1.9	4.7	2.4	0.5	1.4	<0.1
SE67	-	4.0	[b]	2.2	[b]	2.5	34	0.9	0.2	0.5	0.5
Cyfluthrin (n	g/L)	1	1	1		•	1	1	1	•	
DW31	<0.2	[a]	<0.2	[a]	No flow	<0.2	0.6	<0.2	-	-	-
DW32	-	[a]	<0.2	[a]	No flow	<0.2	<0.2	<0.2	-	-	-
DW33	-	[a]	0.4	[a]	No flow	0.3	<0.4	<0.4	-	-	-
DW34	<0.2	[a]	<1	[a]	No flow	<0.4	1.0	<0.2	-	-	-
SE65	-	<0.2	[b]	<0.2	[b]	0.6	12	<0.2	<0.2	<0.2	<0.2
SE66	-	<0.2	[b]	<0.2	[b]	0.3	0.4	0.4	<0.2	<0.2	<0.2
SE67	-	<0.2	[b]	<0.4	[b]	1.5	1.8	<0.4	<0.2	<0.2	<0.2
Cypermethri	n (ng/L)	1		1	•	,				•	
DW31	<0.2	[a]	3.00	[a]	No flow	<0.2	1.00	<0.2	-	-	-
			•			•	•				

Event	DC-46R	DC-65	DC-66	DC-65R	DC-66R	DC-69	WK-64	WK-64R	NE-RAIN	NW-RAIN	SC-RAIN
DW32	-	[a]	<0.2	[a]	No flow	<0.2	0.5	<0.2	-	-	-
DW33	-	[a]	2.2	[a]	No flow	0.2	1.00	<0.4	-	-	-
DW34	<0.2	[a]	1.7	[a]	No flow	<0.4	2.3	<0.2	-	-	-
SE65	-	<0.2	[b]	<0.2	[b]	2.8	13	0.6	<0.2	<0.2	0.2
SE66	-	<0.2	[b]	<0.2	[b]	<0.2	1.5	0.8	0.3	<0.2	<0.2
SE67	-	0.6	[b]	<0.4	[b]	0.6	3.6	<0.4	<0.2	<0.2	<0.2
Deltamethrin	:Tralometh	rin (ng/L)						•			
DW31	<0.2	[a]	<0.2	[a]	No flow	<0.2	<0.2	<0.2	-	-	-
DW32	-	[a]	<0.2	[a]	No flow	<0.2	<0.2	<0.2	-	-	-
DW33	-	[a]	<0.4	[a]	No flow	<0.2	<0.4	<0.4	-	-	-
DW34	<0.2	[a]	<1	[a]	No flow	<0.4	<0.2	<0.2	-	-	-
SE65	-	<0.4	[b]	<0.2	[b]	<0.2	4.4	<0.2	<0.2	<0.2	<0.2
SE66	-	<0.2	[b]	<0.2	[b]	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
SE67	-	<0.2	[b]	<0.4	[b]	3.8	<0.2	<0.4	<0.2	<0.2	<0.2
Esfenvalerat	e:Fenvalera	ite (ng/L)	1	•	II.	•	1		•	•	
DW31	<0.2	[a]	<0.2	[a]	No flow	<0.2	1.5	<0.2	-	-	-
DW32	-	[a]	<0.2	[a]	No flow	<0.2	0.2	<0.2	-	-	-
DW33	-	[a]	1.3	[a]	No flow	0.4	<0.4	0.4	-	-	-
DW34	<0.2	[a]	<1	[a]	No flow	<0.4	1.6	<0.2	-	-	-
SE65	-	<0.4	[b]	<0.2	[b]	0.4	2.7	<0.2	<0.2	<0.2	<0.2
SE66	-	<0.2	[b]	<0.2	[b]	<0.2	0.7	<0.2	0.3	<0.2	<0.2
SE67	-	0.8	[b]	<0.4	[b]	0.5	0.5	<0.4	<0.2	<0.2	<0.2
Fenpropathr	in (ng/L)	1	1	•	II.	•	1		•	•	
DW31	<0.2	[a]	0.5	[a]	No flow	<0.2	<0.2	<0.2	-	-	-
DW32	-	[a]	<0.2	[a]	No flow	<0.2	<0.2	<0.2	-	-	-
DW33	-	[a]	<0.4	[a]	No flow	<0.2	<0.4	<0.4	-	-	-
DW34	<0.2	[a]	<1	[a]	No flow	<0.4	<0.2	<0.2	-	-	-
SE65	-	<0.4	[b]	<0.2	[b]	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2

Event	DC-46R	DC-65	DC-66	DC-65R	DC-66R	DC-69	WK-64	WK-64R	NE-RAIN	NW-RAIN	SC-RAIN
SE66	-	<0.2	[b]	<0.2	[b]	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
SE67	-	<0.2	[b]	<0.4	[b]	<0.2	<0.2	<0.4	<0.2	<0.2	<0.2
Lambda-Cyh	alothrin (ng	ı/L)	•			•	•	•	1	•	
DW31	<0.2	[a]	<0.2	[a]	No flow	0.2	1.3	<0.2	-	-	-
DW32	-	[a]	<0.2	[a]	No flow	<0.2	<0.2	<0.2	-	-	-
DW33	-	[a]	0.4	[a]	No flow	0.8	2.8	<0.4	-	-	-
DW34	<0.2	[a]	<1	[a]	No flow	<0.4	1	<0.2	-	-	-
SE65	-	<0.4	[b]	<0.2	[b]	<0.2	2.8	<0.2	0.3	<0.2	<0.2
SE66	-	1.2	[b]	<0.2	[b]	<0.2	0.4	<0.2	0.3	<0.2	<0.2
SE67	-	2.1	[b]	<0.4	[b]	0.6	3.7	<0.4	<0.2	<0.2	<0.2
Permethrin (ng/L)		•			•	•	•	1	•	
DW31	<2	[a]	<2	[a]	No flow	<2	47	<2	-	-	-
DW32	-	[a]	<2	[a]	No flow	<2	34	<2	-	-	-
DW33	-	[a]	15	[a]	No flow	<2	<4	<4	-	-	-
DW34	<2	[a]	<10	[a]	No flow	<4	99	<2	-	-	-
SE65	-	<4	[b]	<2	[b]	<2	450	<2	4.1	<2	<2
SE66	-	<2	[b]	<2	[b]	<2	84	<2	<2	<2	<2
SE67	-	<2	[b]	<4	[b]	<2	320	<4	<2	<2	<2
Tau-Fluvalina	ate (ng/L)			•							
DW31	<0.2	[a]	<0.2	[a]	No flow	<0.2	<0.2	<0.2	-	-	-
DW32	-	[a]	<0.2	[a]	No flow	<0.2	<0.2	<0.2	-	-	-
DW33	-	[a]	<0.4	[a]	No flow	<0.2	<0.4	<0.4	-	-	-
DW34	<0.2	[a]	<1	[a]	No flow	<0.4	<0.2	<0.2	-	-	-
SE65	-	<0.4	[b]	<0.2	[b]	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
SE66	-	<0.2	[b]	<0.2	[b]	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
SE67	-	<0.2	[b]	<0.4	[b]	<0.2	<0.2	<0.4	<0.2	<0.2	<0.2
Tetramethrin	(ng/L)	•		•	•	•			•	•	
DW31	<0.2	[a]	<0.2	[a]	No flow	<0.2	<0.2	<0.2	-	-	-

Event	DC-46R	DC-65	DC-66	DC-65R	DC-66R	DC-69	WK-64	WK-64R	NE-RAIN	NW-RAIN	SC-RAIN
DW32	-	[a]	<0.2	[a]	No flow	<0.2	<0.2	<0.2	=	-	-
DW33	-	[a]	<0.4	[a]	No flow	<0.2	<0.4	<0.4	-	-	-
DW34	<0.2	[a]	<1	[a]	No flow	<0.4	<0.2	<0.2	-	-	-
SE65	-	<0.4	[b]	<0.2	[b]	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
SE66	-	<0.2	[b]	<0.2	[b]	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
SE67	-	<0.2	[b]	<0.4	[b]	<0.2	<0.2	<0.4	<0.2	<0.2	<0.2

[[]a] This location is only sampled during wet weather.
[b] This location is only sampled during dry weather.

Appendix D 2017-2018 Sediment Toxicity Results

Sediment Toxicity Lab Report November 17, 2018 at WK-64R After Storm Event

Micheline Kipf Condor Earth Technologies, Inc. 188 Frank West Circle, Suite I Stockton, CA 95206 December 14, 2017

Dear Micheline:

I have enclosed a copy of our report "An Evaluation of the Toxicity of a City of Stockton Stormwater Program Sediment Samples" for the samples that were collected November 17, 2017. The results of this testing are summarized below:

Summary of Stockton Stormwater Program sediment effects on Hyalella azteca.					
Sample Station	Toxicity Present Relative to Lab Control?				
Sample Station	Survival	Growth			
WK-64R	No	No			
FD	No	YES			

If you have any questions regarding the performance and interpretation of this testing, please contact my colleague Stephen Clark or myself at (707) 207-7760.

Sincerely,

Michael McElroy Project Manager

Pacific EcoRisk is accredited in accordance with NELAP (ORELAP ID 4043). Pacific EcoRisk certifies that the test results reported herein conform to the most current NELAP requirements for parameters for which accreditation is required and available. Any exceptions to NELAP requirements are noted, where applicable, in the body of the report. This report shall not be reproduced, except in full, without the written consent of Pacific EcoRisk. This testing was performed under Lab Order 28107.

An Evaluation of the Toxicity of a City of Stockton Stormwater Program Sediment Samples

Samples collected November 17, 2017

Prepared For:

Condor Earth Technologies, Inc. 188 Frank West Circle, Suite I Stockton, CA 95206

Prepared By:

Pacific EcoRisk 2250 Cordelia Rd. Fairfield, CA 94534 (707) 207-7760

December 2017

An Evaluation of the Toxicity of a City of Stockton Stormwater Program Sediment Samples

Samples collected November 17, 2017

Table of Contents

		Page
1. INTRODU	JCTION	1
2. SEDIMEN	TT TOXICITY TEST PROCEDURES	1
2.1 Receip	t and Handling of the Sediment Samples	1
	Phase Sediment Toxicity Testing with Hyalella azteca	
3. RESULTS		3
4. SUMMAR	RY AND CONCLUSIONS	3
4.1 QA/QC	C Summary	3
	Appendices	
Appendix A	Chain-of-Custody Record for the Collection and Delivery of the Stock Stormwater Program Sediment Samples	kton
Annendix B	Test Data and Summary of Statistics for the Evaluation of the Toxicit	v of

Stockton Stormwater Program Sediment Samples to Hyalella azteca

1. INTRODUCTION

In compliance with the City of Stockton Stormwater Program NPDES permit monitoring requirements, Condor Earth Technologies, Inc., has contracted Pacific EcoRisk (PER) to perform evaluations of the toxicity of selected ambient water and sediment samples. The current testing event was designed to meet the sediment monitoring requirements using sediment samples that were collected on November 17, 2017. This evaluation consisted of performing the US EPA 10-day survival and growth test with the amphipod *Hyalella azteca*. This report describes the performance and results of this testing.

2. SEDIMENT TOXICITY TEST PROCEDURES

This testing followed the guidelines established by the EPA manual "Methods for Measuring the Toxicity and Bioaccumulation of Sediment-associated Contaminants with Freshwater Invertebrates, Second Edition" (EPA/600/R-99/064).

2.1 Receipt and Handling of the Sediment Samples

On November 17, sediment samples were collected into appropriately cleaned sample containers. These samples were transported on ice and under chain-of-custody, to the PER laboratory in Fairfield, CA (Table 1). The samples were then stored at \leq 6°C until being used to initiate toxicity tests within 14 days of collection. The chain-of-custody record for the collection and delivery of the samples is presented in Appendix A.

Table 1. Sampling station and date of sediment collection for the Stockton Stormwater Program monitoring.					
Sample Station	Date Collected	Date Received			
WK-64R	11/17/17	11/20/17			
FD	11/17/17	11/20/17			

2.2 Solid-Phase Sediment Toxicity Testing with *Hyalella azteca*

The sediment toxicity test with H. azteca consists of exposing the amphipods to the sediment for 10 days, after which effects on survival and growth are evaluated. The specific procedures used in this testing are described below.

The *H. azteca* used in this testing were obtained from a commercial supplier (Aquatic BioSystems, Fort Collins, CO). Upon receipt at the laboratory, the amphipods were maintained in tanks containing Lab Water Control medium at 23°C, and were fed a commercial Yeast-Cerophyll®-Trout chow (YCT) food amended with freeze-dried *Spirulina*.

The Control treatment sediment for this testing consisted of a composite of reference site sediments that have been maintained under culture at the PER lab for >3 months. The sediment samples were tested at the 100% concentration only. There were eight replicates for each test treatment, each replicate container consisting of a 300-mL tall-form glass beaker with a 3-cm ribbon of 540 μ m mesh NITEX attached to the top of the beaker with silicone sealant. Each sediment sample was homogenized prior to loading of sediment into the test replicates. For each sediment, approximately 100 mL of sediment was then loaded into each of the test replicate containers. Each test replicate was then carefully filled with clean Lab Water Control medium (Standard Artificial Medium [SAM-5S] water [Borgmann 1996]). The test replicates with sediments and clean overlying water were established ~24 hrs prior to the introduction of the amphipods, and were placed in a temperature-controlled room at 23°C during this pre-test period.

After this initial 24 hr period, the overlying water in each replicate was flushed with one volume (approximately 150 mL) of fresh overlying water. For each test treatment, a small aliquot of the renewed overlying water was then collected from each of the eight replicates and composited for measurement of "initial" water quality characteristics (pH, dissolved oxygen [D.O.], conductivity, alkalinity, hardness, and total ammonia). The testing was then initiated with the random allocation of ten 11-12 day-old amphipods into each replicate, followed by the addition of 1.0 mL of *Spirulina*-amended YCT food. The test replicates were then placed in a temperature-controlled room at 23°C. At the time of test initiation, eight replicates of 10 randomly-selected organisms were collected, dried, and weighed (described below) to determine the mean dry weight of the test organisms at test initiation (T₀).

Each day, for the following nine days, each test replicate was examined and any dead amphipods were removed via pipette and the mortality recorded. A small aliquot of the overlying water in each of the eight replicates for each test treatment was then collected and composited as before for measurement of "old" D.O., after which each replicate was flushed with one volume of fresh water. Another small aliquot of the overlying water in each of the eight replicates was then collected and composited as before for measurement of "new" D.O., after which each replicate was fed 1.0 mL of *Spirulina*-amended YCT.

After 10 days exposure, testing was terminated. An aliquot of overlying water was collected from each replicate and composited for analysis of the "final" water quality characteristics. The sediments in each replicate container were then carefully sorted and sieved and the number of surviving amphipods determined. The surviving organisms were euthanized in methanol, rinsed in de-ionized water, and transferred to small pre-tared weighing pans, which were placed into a drying oven at 100°C. After drying for ~24 hrs, the pans were transferred to a desiccator to cool, and then weighed to the nearest 0.01 mg to determine the mean dry weight per surviving organism for each replicate. The resulting survival and growth (mean dry weight) data were then analyzed to evaluate any impairment due to the sediments; all statistical analyses were performed using the CETIS® statistical software (TidePool Scientific, McKinleyville, CA).

3. RESULTS

Test results are summarized in Table 2. There were no significant reductions in survival in either of the sediment samples. There was no significant reduction in growth in the WK-64R sediment sample. However, there was a significant reduction in growth in the FD sediment sample, primarily due to less inter-replicate variability than was observed for the WK-64R sediment sample. The test data and summary of statistical analyses for this testing are presented in Appendix B.

Table 2.	Table 2. Data summary for the Stockton Stormwater Program sediment samples.							
Test Treatment	% Survival	% Reduction	Toxic? (Y/N)	Mean dry weight (mg)	% Reduction	Toxic? (Y/N)		
Control	97.5	N/A	N/A	0.103	N/A	N/A		
WK-64R	98.8	-1.28%	N	0.085	17.6%	N		
FD	86.2	11.5%	N	0.086*	16.1%	Y ^a		

^{*} The response at this test treatment was significantly less than the Control sediment response (at p<0.05).

4. SUMMARY AND CONCLUSIONS

The results of this testing are summarized below. There were no significant reductions in survival in either of the sediment samples. There was no significant reduction in growth in the WK-64R sediment sample. However, there was a significant reduction in growth in the FD sediment sample.

Summary of Stockton Stormwater Program sediment effects on Hyalella azteca.					
Sample Station	Toxicity Present Relative to Lab Control?				
Sample Station	Survival	Growth			
WK-64R	No	No			
FD	No	YES			

4.1 QA/QC Summary

Test Conditions – All test conditions (pH, D.O., temperature, etc.) were within acceptable limits. All analyses were performed according to laboratory Standard Operating Procedures.

Negative Control – The biological responses for the test organisms at the Lab Control treatment were within acceptable limits.

a - Growth statistically toxic due to low inter-replicate variability observed for the sample.

Appendix A

Chain-of-Custody Record for the Collection and Delivery of the Stockton Stormwater Program Sediment Samples

CHAIN-OF-CUSTODY Sample Results TAT: Rush Standard 10 Day (discount) **SHIPPED TO:**

17271

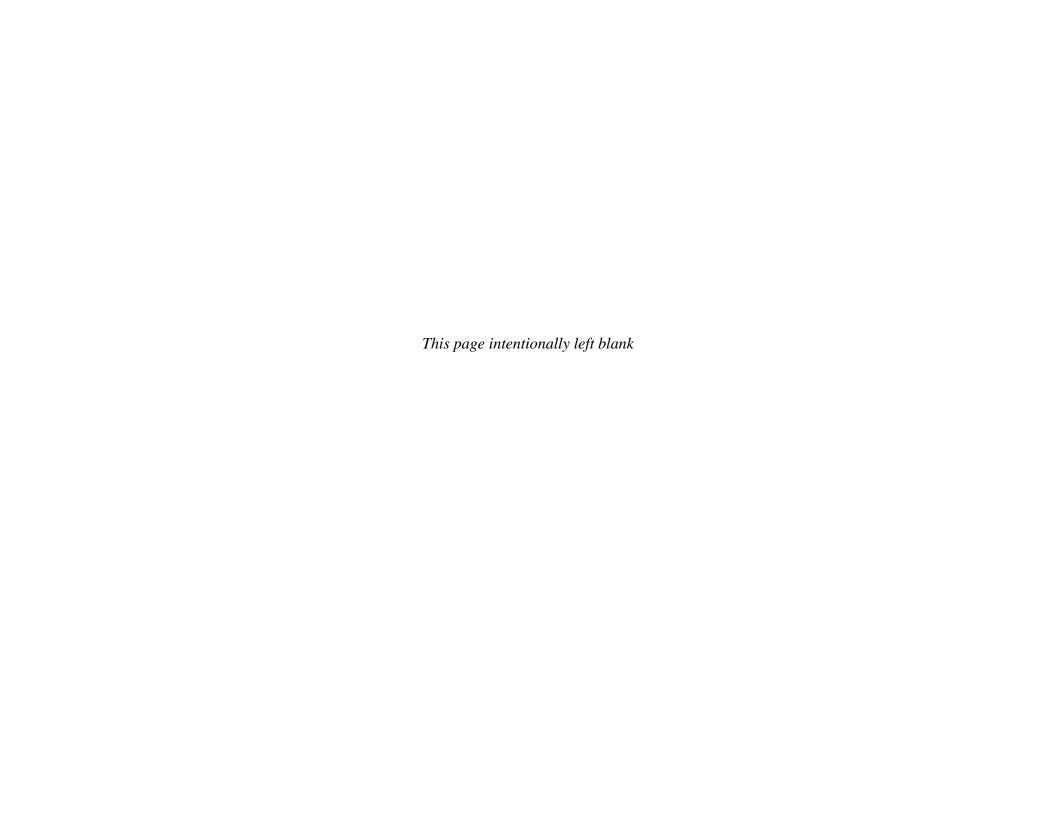
-		A			
	1				
		٧.	g ³	1	
		•	4	· ali	4
C	O	N	D	O	Ř

Condor Earth Technologies, Inc.

P.O. Box 3905/21663 Brian Lane Sonora, CA 95370
 Sonora, CA 95370
209.532.0361
209.532.0773 (fax)
condor.sonora@condorearth.com

188 Frank West Circle, Suite I Stockton, CA 95206 209.234.0518 209.234.0538 (fax) condor.stockton@condorearth.com

1739 Ashby Road, Suite B Merced, CA 95348	
209.388.9601	
209.388.1778 (fax)	


S PACIFIC ELDRISIK (707) 207-7760

2250 CORDELIA RD. FAIRFIELD CA 94534

END	RES	ULTS	TO:

NAME:	MICHELINE KIPF
E-MAIL:	mkipf@condorearth.com

						_								-	L (preferred)	OR FAX RESU	JLTS TO ADDRI	ESS MARI	KED ABOVE
PROJECT NAME/LOCATION: COS URBAN DISCHARGE							EDF RESULTS REQUIRED YES (NO) SITE GLOBAL ID:						Approximate the second						
PROJECT SAMPLE Date		gnature) Sample Site Name	Sample ID (if different)	Matrix	# of containers	Preservatives (see below)	ANALYCE	ield Fir	" Illored	The state of the s	GRANT ALTERA *	3/5/5/	//	//					
		· 1.			#	Pre	1	1	1	1	19	1	/	/	//_	REMA	ARKS		LAB ID#
11-17-17		WK-64R	DC 65ROT	9				N :	×		X				* Cutr	LOWIC FRES	HWATER		
11-17-17 1315 FD		FD	5		1		N X X X EPA GOD 4-91 (003) HYAU					003) HYALEY	A						
															AZTE	CA SURVI	VAL/GROW	H	
															CONDU	LT ADDITIO	NAL PURETH	ROIDS	
								ANALYSIS IF TOXICITY IS											
								-	-						08522				
																SAMPLES T	O BE COLLE	(61)	
									+			+			TOC	R.L n	ng/L		
									1										
Relinquishe				Date	20-2	017	Time:	1007	I	Recei	ved By:	(Signa	ture) –	Ker	n R	my	Da	ate: 11/20/1	Time:
Relinquishe	d By: (Sign	nature									ved By:					U			
Matr DW Drinl		WW Waste Water	√ Hazardous Waste (Water)	S	Soil/So		W Stor	m Wat	er	w c	roundv	ater		servati © (2		nOH 4 Na ₂ S ₂ O	3 5 HNO ₃ 6	H ₂ SO ₄	Other

Appendix B

Test Data and Summary of Statistics for the Evaluation of the Toxicity of the Stockton Stormwater Program Sediment Samples to *Hyalella azteca*

CETIS Summary Report

Report Date:

08 Dec-17 14:10 (p 1 of 1)

Test Code:

CE_1117_C1_sed | 08-8383-0003

Hyalella 10-d Surv	ival and G	rowth Se	ediment Test								Pacif	ic EcoRisk
Batch ID: 07-6	6531-7651		Test Type: S	urvival-Growt	h (10 day)			Analy	/st: Jes	sica Okutsu		
Start Date: 25 l	Nov-17 11:4	0 1	Protocol: E	PA/600/R-99/	/064 (2000)			Dilue		Applicable		
Ending Date: 05 B	Dec-17 11:1	0 \$	Species: H	yalella azteca	a			Brine	: Not	Applicable		
Duration: 10d			Source: A	quatic Biosys	tems, CO			Age:	12			
Sample Code	Sample I	D 5	Sample Date	Receip	t Date	Sample	Age	Clien	t Name	Pı	roject	
CE_1117_C1_sed	16-5507-7	7284 2	25 Nov-17 11:	40 25 Nov	-17 11:40	n/a (22.7	°C)	Cond	or Earth Te	echnologi 28	3107	
WK-64R	05-9056-2	2879 1	17 Nov-17 13:	30 20 Nov	-17 10:07	7d 22h (3.2 °C)					
FD	07-6957-0	314 1	17 Nov-17 13:	15 20 Nov	-17 10:07	7d 22h (3.2 °C)					
Sample Code	Material ⁻		S	ample Sourc	e		Station L	ocatio	on	Lat/Long		
CE_1117_C1_sed	Control Se			ondor Earth 1	-		ABQA					
WK-64R	Sediment			ondor Earth T	-		VK-64R					
FD	Sediment		С	ondor Earth T	Technologie:	s F	D					
Single Compariso	n Summary	/										
	point			ison Method			P-Va			son Result		
00-2932-2886 Mea		•		ariance t Two-	-		0.07	72	WK-64R	passed mea	n dry weigh	t-mg
19-1066-0664 Mea		ht-mg	-	ariance t Two-	•		0.03	06	FD failed	mean dry w	eight-mg	
11-2590-6025 Sun				Rank Sum T			0.76	67	WK-64R	passed surv	ival rate	
00-2949-9170 Sun	/ival Rate		Wilcoxor	Rank Sum 1	Гwo-Sample	Test	0.05	01	FD passe	d survival ra	te	
Mean Dry Weight-	mg Summa	гу										
Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max		Std Err	Std Dev	CV%	%Effect
CE_1117_C1_sed	CS	8	0.103	0.0874	0.119	0.08	0.14		0.0066	0.0187	18.13%	0.00%
WK-64R		8	0.0848	0.061	0.109	0.026	0.12		0.0101	0.0285	33.63%	17.62%
FD		8	0.0864	0.0751	0.0977	0.067	0.10	6	0.00478	0.0135	15.66%	16.11%
Survival Rate Sum	ımary											
Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max		Std Err	Std Dev	CV%	%Effect
CE_1117_C1_sed	CS	8	0.975	0.916	1.000	0.800	1.00		0.025	0.071	7.25%	0.00%
WK-64R		8	0.988	0.958	1.000	0.900	1.00		0.013	0.035	3.58%	-1.28%
FD		8	0.862	0.722	1.000	0.500	1.000) 	0.060	0.169	19.54%	11.54%
Mean Dry Weight-	_											
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep		Rep 7	Rep 8		
CE_1117_C1_sed	CS	0.14	0.083	0.107	0.08	0.111	0.106	3	0.096	0.101		
WK-64R												
FD		0.083	0.109	0.089	0.0678	0.026	0.12		0.093	0.091		
		0.083 0.104	0.109 0.106	0.089 0.08	0.0678 0.0922			5	0.093 0.0837	0.091 0.074		
Survival Rate Deta	il					0.026	0.12	5				
Sample	Code	0.104 Rep 1	0.106 Rep 2	0.08 Rep 3	0.0922 Rep 4	0.026 0.067 Rep 5	0.12 0.088 Rep	6	0.0837 Rep 7			
Sample CE_1117_C1_sed		0.104 Rep 1	0.106 Rep 2 1.000	0.08 Rep 3 1.000	0.0922 Rep 4 0.800	0.026 0.067 Rep 5 1.000	0.12 0.088 Rep 1.000	6	0.0837	0.074		
Sample CE_1117_C1_sed WK-64R	Code	0.104 Rep 1 1.000 1.000	0.106 Rep 2 1.000 1.000	0.08 Rep 3 1.000 1.000	0.0922 Rep 4 0.800 0.900	0.026 0.067 Rep 5 1.000 1.000	0.12 0.085 Rep 1.000	6	0.0837 Rep 7	0.074 Rep 8		
Sample CE_1117_C1_sed WK-64R	Code	0.104 Rep 1	0.106 Rep 2 1.000	0.08 Rep 3 1.000	0.0922 Rep 4 0.800	0.026 0.067 Rep 5 1.000	0.12 0.088 Rep 1.000	6	0.0837 Rep 7 1.000	0.074 Rep 8		
Sample CE_1117_C1_sed WK-64R FD	Code	0.104 Rep 1 1.000 1.000	0.106 Rep 2 1.000 1.000	0.08 Rep 3 1.000 1.000	0.0922 Rep 4 0.800 0.900	0.026 0.067 Rep 5 1.000 1.000	0.12 0.085 Rep 1.000	6	Rep 7 1.000 1.000	0.074 Rep 8 1.000 1.000		
Survival Rate Deta Sample CE_1117_C1_sed WK-64R FD Survival Rate Bino Sample	Code CS mials	Rep 1 1.000 1.000 0.800 Rep 1	0.106 Rep 2 1.000 1.000 0.900 Rep 2	0.08 Rep 3 1.000 1.000	0.0922 Rep 4 0.800 0.900	0.026 0.067 Rep 5 1.000 1.000	0.12 0.085 Rep 1.000	6	Rep 7 1.000 1.000	0.074 Rep 8 1.000 1.000		
Sample CE_1117_C1_sed WK-64R FD Survival Rate Bino Sample CE_1117_C1_sed	Code CS	Rep 1 1.000 1.000 0.800 Rep 1 10/10	0.106 Rep 2 1.000 1.000 0.900	0.08 Rep 3 1.000 1.000 1.000	Rep 4 0.800 0.900 0.900	0.026 0.067 Rep 5 1.000 1.000	0.12 0.085 Rep 1.000 1.000	6	Rep 7 1.000 1.000 0.800	0.074 Rep 8 1.000 1.000 0.500		
Sample CE_1117_C1_sed WK-64R FD Survival Rate Bino Sample	Code CS mials	Rep 1 1.000 1.000 0.800 Rep 1	0.106 Rep 2 1.000 1.000 0.900 Rep 2	0.08 Rep 3 1.000 1.000 1.000 Rep 3	Rep 4 0.800 0.900 0.900 Rep 4	0.026 0.067 Rep 5 1.000 1.000 1.000	0.12 0.085 Rep 1.000 1.000	6	Rep 7 1.000 1.000 0.800	0.074 Rep 8 1.000 1.000 0.500 Rep 8		

10-Day Hyalella azteca Sediment Toxicity Test Data

Client:	Condor Earth	Project#: 28107	Organism Log #:	Age: 4-12 days
Species:	Hyalella azteca	Test ID#:	Organism Supplier:	ABS

			Test N	Taterial		Water Qu	ality Measure	ments	
Day	Date		Lab (Control		Parameter	Value	Meter ID	Sign-off:
			# Live (Organisms		рН	7.97	6123	AM Change: RAP
0	11/25/17	A o	В ю	C yo	D po	D.O. (mg/L)	8.3	RDII	WQ: RAP
/- /	1-1-1	E vo	F v	G vo	H 100	Conductivity (µS/cm)	184.	ECID	Initiation Time: 1140
						Alkalinity (mg/L)	1719 476		Initiation Counts: んり
	MARK A SECOND STREET,	4 X X X X X X X X X X X X X X X X X X X	MANUAL CONTROL OF THE			Hardness (mg/L)	122		Confirmation Counts:
						Ammonia (mg/L)	41.00	DR3580	PM Feed: NL
	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	K K K K K K K K K K		12. 12. 12. 12. 12. 12. 12. 12. 12. 12.	LINE SECTION OF THE S	Temp. (°C)	22.7	484	
			# of M	ortalities		Old D.O. (mg/L)	6.9	RDIZ	AM Change: ETWQ: ET
1	11126117	A 0	B 0	c O	D 0	New D.O. (mg/L)	7.9	RDIZ	Mortality Counts: F7
		E 0	F O	G O	н о	Temp. (°C)	23.0	48A	PM Change: F 7 PM Feed: F 7
	. 1		# of M	ortalities		Old D.O. (mg/L)	6.6	PDII	AM Change: Ky WQ: Ky
2	11/27/17	A 0	ВО	c 0	D O	New D.O. (mg/L)	7.7	RDII	Mortality Counts:
		E O	F O	G O	н О	Temp. (°C)	22.8	48A	PM Change: A PM Feed:
			# of M	ortalities		Old D.O. (mg/L)	6.6	R1009	AM Change: 5 B WQ: 5B
3	11/28/17	A 0	B 0	c n	D O	New D.O. (mg/L)	7.3	R1009	Mortality Counts: 53
-/		E 0	F O	G ()	н ()	Temp. (°C)	22.8	4EA	PM Change: N PM Feed: JN
			# of M	ortalities	1 0	Old D.O. (mg/L)	6.2	RD09	AM Change: X4 WQ: X4
4	11/29/17	A Ø	ВО	c O	D O	New D.O. (mg/L)	NEV 7.5	PD09	Mortality Counts: 23
		E O	F O	G O	н О	Temp. (°C)	22.9	48A	PM Change: 7 PM Feed: 75
			# of M	ortalities		Old D.O. (mg/L)	6.1	PDII	AM Change: XJ WQ: XJ
5	11/30/17	A 0	B 0	C O	D 0	New D.O. (mg/L)	7.6	2011	Mortality Counts: 74
	יון אפן ניי	E 6	F O	G 0	н О	Temp. (°C)	27.9	48A	PM Change: RAP PM Feed: RAP
				ortalities		Old D.O. (mg/L)	6.4	RDII	AM Change: F7 WQ: F7
6	12/1/17	A 0	B 0	C O	D 0	New D.O. (mg/L)	7.8	RDII	Mortality Counts: F 7
	12	E 0	F O	G 0	н б	Temp. (°C)	22.4	48A	PM Change: F7 PM Feed: F7
			# of M	ortalities		Old D.O. (mg/L)	7.9	RNII	AM Change: 513 WQ: 519
7	12/2/17	A D	В	c 0	D D	New D.O. (mg/L)	E.1	2011	Mortality Counts: 33
	1-1-111	E 0	F O	G 0	н ()	Temp. (°C)	22.7	AFA	PM Change: 58 PM Feed: SS
				ortalities		Old D.O. (mg/L)	6.9	RDIZ	AM Change: TF WQ: TF
8	12/3/17	A 0	B 0	c o	D 0	New D.O. (mg/L)	7.6	RD12	Mortality Counts: TF
		E O	F O	G 0	H 0	Temp. (°C)	22.6	48A	PM Change PM Feed 7
				ortalities	-	Old D.O. (mg/L)	6.5	RD14	AM Change: FT WQ: FT
9	12/4/17	A 10	B 0	c 0	D 0	New D.O. (mg/L)	8.2	RDIZ	Mortality Counts: FT
		E 0	F O	G 0	н О	Temp. (°C)	22.4	48A	PM Change: F 7 PM Feed: F 7
				Alive	*	pН	773	PH23	WQ: 3:777
10	126	A iO	BiO	c 10	D 8	D.O. (mg/L)	5.6	1012	Termination Counts: SMC
	12/3/17	E 10	F 1()	G VO	H 10	Conductivity (µS/cm)	437	EU2	Termination Time:
						Alkalinity (mg/L)	158		
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						Hardness (mg/L)	118		
				A CANADA		Ammonia (mg/L)	61.00	D2340	
				2.00 mm of the control of the contro	100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Temp. (°C)	22.11	984	

Report Date:

08 Dec-17 14:10 (p 3 of 4)

Test Code:

CE_1117_C1_sed | 08-8383-0003

Hyalella 10-d Sur	vival and G	rowth Sedi	ment Test							Paci	fic EcoRis
	-2590-6025		-	urvival Rate	T C			IS Version		1.9.2	
	Dec-17 14:		alysis: No	onparametric	- I wo Sampi	e 		ial Result			
Data Transform	n	Alt Hyp						son Resul			PMSD
Angular (Corrected	1)	C > T					WK-64R	passed sur	vival rate		4.89%
Wilcoxon Rank S	um Two-Sa	mple Test									
Sample I vs	Sample II		Test Sta	t Critical	Ties DF	P-Type	P-Value	Decisio	n(α:5%)		
Control Sed	WK-64R		68.5	n/a	1 14	Exact	0.7667	Non-Sig	nificant Effec	t	
ANOVA Table											
Source	Sum Squ	ares	Mean So	uare	DF	F Stat	P-Value	Decisio	n(a:5%)		
Between	0.0012584	4	0.001258	34	1	0.168	0.6877	Non-Sig	nificant Effec	t	
Error	0.104566		0.007469)	14						
Total	0.105824				15						
Distributional Tes	its										
Attribute	Test				Test Stat	Critical	P-Value	Decisio	n(α:1%)		
Variances	Variance I	Ratio F Tes	st		3.5	8.89	0.1205	Equal Va	ariances		
Distribution	Shapiro-W	Vilk W Norr	nality Test		0.493	0.841	1.8E-06	Non-Nor	mal Distribut	ion	
Survival Rate Sur	nmary										
Sample	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
CE_1117_C1_sed	CS	8	0.975	0.916	1.000	1.000	0.800	1.000	0.025	7.25%	0.00%
WK-64R		8	0.987	0.958	1.000	1.000	0.900	1.000	0.013	3.58%	-1.28%
Angular (Correcte	d) Transfor	med Sumr	nary								
Sample	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
CE_1117_C1_sed	CS	8	1.37	1.28	1.46	1.41	1.11	1.41	0.0381	7.85%	0.00%
NK-64R		8	1.39	1.34	1.44	1.41	1.25	1.41	0.0204	4.14%	-1.29%
Graphics											
1.0	11/11/			111		0.05		ı			
0.9						0.00	• •		•		
0.8						0.00					
0.7						-0.05					
					Centered	Angle					
0.6 2					20	5 -0.10					
Survival Rate							•				
S 0.4						-0.15					
0,3						-0.20		1			
V.											

CE_1117_C1_sed

1.5

2.0

-0.30 -2.0

-1.5

-1.0

-0.5

0.5

10-Day Hyalella azteca Sediment Toxicity Test Data

Client:	Condor Earth	Project#:	28107	Organism Log #:	10642LA) Age:	11-12 days
Species:	Hyalella azteca	Test ID#:	75571	Organism Supplier:	ABS	

			Test N	Taterial		Water Qua	ality Measure	ments	Ct. 00
Day	Date		WK	-64R		Parameter	Value	Meter ID	Sign-off:
4			# Live (Organisms		pН	7.75	CH23	AM Change: RAP
0	who furt	Α νρ	B w	CP	DW	D.O. (mg/L)	8.3	RDI)	WQ: RAP
	11/25/17	E vo	F w	G 10	Η Ю	Conductivity (µS/cm)	400	ECIO	Initiation Time:
						Alkalinity (mg/L)	V 43.6		Initiation Counts: (M)
				20	MANAGER PROPERTY OF THE PROPER	Hardness (mg/L)	1118	1	Confirmation Counts:
						Ammonia (mg/L)	41.00	D23800	PM Feed:
						Temp. (°C)	22.7	VENTRAP 484	
			# of M	ortalities		Old D.O. (mg/L)	7.3	RDD	AM Change: FT WQ: F 7
1	11/26/17	A 0	B 0	c 0	D 0	New D.O. (mg/L)	8.0	RDIZ	Mortality Counts: F 7
	[1,20,1]	е О	F O	G 0	н О	Temp. (°C)	23.0	484	PM Change: FT PM Feed: FT
			# of M	ortalities		Old D.O. (mg/L)	6.4	RDII	AM Change: - WQ: 73
2	11/27/17	A ()	B 0	c 0	D 0	New D.O. (mg/L)	7.60	RDII	Mortality Counts: 748
		E 0	F O	G 0	H O	Temp. (°C)	72.8	48A	PM Change: 7-j PM Feed: 7
			# of M	ortalities		Old D.O. (mg/L)	5.4	R1009	AM Change: SB WQ: SB
3	11/28/17	A 0	B 0	C O	D 0	New D.O. (mg/L)	7.2	R009	Mortality Counts: 5B
		E 0	F O	G ()	H (C)	Temp. (°C)	22-9	48A	PM Change: JN PM Feed: JN
			# of M	ortalities		Old D.O. (mg/L)	5.5	RD09	AM Change: of WO: -
4	11/29/17	A ()	В	c O	PO	New D.O. (mg/L)	7.4	RD09	Mortality Counts:
	11/21/11	в ()	F O	G 0	н С	Temp. (°C)	22.9	484	PM Change: PM Feed:
				ortalities		Old D.O. (mg/L)	6.1	EPII	AM Change: WQ: 74
5	11/30/17	A 0	B 0	C O	PO	New D.O. (mg/L)	7.7	RDII	Mortality Counts: 1/4
		в С	F O	G O	н О	Temp. (°C)	27.9	48A	PM Change: BAP PM Feed 24
			# of M	ortalities		Old D.O. (mg/L)	5.8	RDII	AM Change: F7 WQ: F7
6	12/11/17	A 0	B 0	c o	DO	New D.O. (mg/L)	8.0	ROII	Mortality Counts: F7
		E O	F O	G O	н 6	Temp. (°C)	22.4	48A	PM Change: F 7 PM Feed: F
			# of M	ortalities		Old D.O. (mg/L)	7.6	ROIL	AM Change: SB WQ: SB
7	12/2/17	A 0	В 0	C	D N	New D.O. (mg/L)	8.2	(201	Mortality Counts:53
		E ()	F 0	G 0	н ()	Temp. (°C)	22.7	48A	PM Change: SB PM Feed SB
			# of M	ortalities		Old D.O. (mg/L)	5.5	RP12	AM Change: WQ: TF
8	12/3/17	A 0	B 0	C 0	D 0	New D.O. (mg/L)	7.4	RDIZ	Mortality Counts:
		E 0	F O	G 0	H 0	Temp. (°C)	22.6	48A	PM Change: F PM Feed: F
				ortalities		Old D.O. (mg/L)	66	RDIZ	AM Change: F7 WQ: F7
9	12/4/17	A 0	B 0	C O	D D	New D.O. (mg/L)	8.1	RDIZ	Mortality Counts:
		E O	F 0	G O	н О	Temp. (°C)	27.4	48.A	PM Change: F7 PM Feed: F7
-			# /	Alive		pН	7.20	PH23	WQ: 9773
10	12/5/17	A IO	B 10	c 10	p q	D.O. (mg/L)	4,1	Lilz	Termination Counts:
	11/2/14	E 10	FiO	G 10	н 10	Conductivity (µS/cm)	433	EL12	Termination Time:
						Alkalinity (mg/L)	59		
						Hardness (mg/L)	V113,2		
ENG PROPERTY OF THE PROPERTY O						Ammonia (mg/L)	1.29	VA33800	
					N. K. C. B.	Temp. (°C)	22.4	444	

Report Date:

08 Dec-17 14:10 (p 1 of 4)

Test Code:

CE_1117_C1_sed | 08-8383-0003

	Hyalella	10-d	Survival.	and	Grouth	Sediment	Toof
- 01	nvarena	ro-u	Survivai	anu	Growth	Sealment	rest

Analyzed: **Data Transform**

Analysis ID:

Untransformed

Source

Between

00-2932-2886 08 Dec-17 14:10

Sum Squares

0.0013181

Endpoint: Mean Dry Weight-mg

Alt Hyp

C > T

Parametric-Two Sample

CETIS Version:

CETISv1.9.2

Official Results: Yes **Comparison Result**

Decision(a:5%)

Non-Significant Effect

PMSD WK-64R passed mean dry weight-mg 20.61%

Pacific EcoRisk

Equal Variance t Two-Sample Test

Sample I	VS	Sample II	Test Stat	Critical	MSD	DF	P-Type	P-Value	Decision(α:5%)
Control Sed		WK-64R	1.51	1.76	0.021	1/1	CDE	0.0772	Non Significant Eff

Mean Square

0.0013181

0.0005813

Control Sea	VVK-04R	1.51	1.76	0.021 14 CDF	0.0772	Non-Significant Effect	
ANOVA Table							

Error 0.0081385 Total 0.0094566

Distributional	lests					
Attribute	Test	Test Stat	Critical	P-Value	Decision(α:1%)	
Variances	Variance Ratio F Test	2.34	8.89	0.2856	Equal Variances	
Distribution	Shapiro-Wilk W Normality Test	0.93	0.841	0.2401	Normal Distribution	

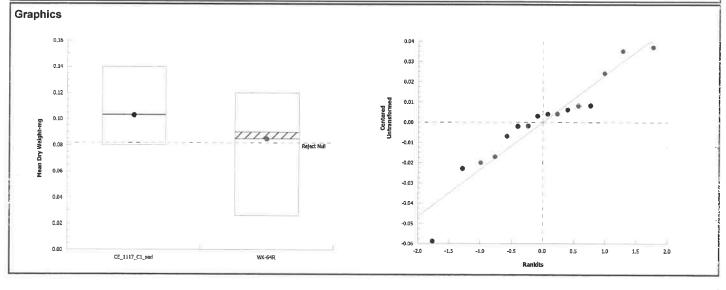
DF

1

14

15

F Stat


2.27

P-Value

0.1543

Mean Dry Weight-mg Summary

Sample	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
CE_1117_C1_sed	CS	8	0.103	0.0874	0.119	0.103	0.08	0.14	0.0066	18.13%	0.00%
WK-64R		8	0.0848	0.061	0.109	0.09	0.026	0.12	0.0101	33.63%	17.62%

Hyalella azteca Weight Data Sheets

Client:	Condor Earth	Project #:_	28107	Balance ID:	BAL04
Sample ID:	WK-64R	Tare Wt Date:	11/27/17	Sign-Off:	HR_
Test ID #:	75571	Final Wt Date:	12/6/17	Sign-Off:	175

Pan	Concentration Replicate		Initial Weight. (mg)	Final Weight. (mg)	# organisms	Ave Weight (mg)
1	Control	A	69.58	70.98	10	0.140
2	Sediment	В	69.92	70.75	10	0.083
3		С	65.32	66.39	10	0.107
4		D	69.36	70.00	8	0.080
5		Е	64:05	65.16	10	0.111
6		F	66.30	67.36	10	0.106
7		G	66.03	66.99	10	0.096
8		Н	60.37	61.38	10	0,101
9	WK-64R	A	61.15	61.98	10	0.083
10		В	63.69	64.78	10	0.109
11		С	64.38	65.17	10	0.089
12		D	62.21	62.82	9	0.063
13		Е	66.94 66.17 Malia	67.20	10	0.026
14		F	65.50 66.94 1111111	66.70	10	0.120
15		G	63.79 65.50 PM	63.72	10	0,093
16		Н	65.02	65.93	10	0,091
QA 1			61.40	61.38		

Report Date:

08 Dec-17 14:10 (p 4 of 4)

Test Code:

CE_1117_C1_sed | 08-8383-0003

Hyalella 10-d Surv	vival and G	rowth Sedi	ment Test							Pacif	ic EcoRis
Analysis ID: 00-	-2949-9170	En	dpoint: Su	vival Rate			CET	IS Version	: CETISv1	.9.2	
,	Dec-17 14:		•	nparametric-	Two Samp	le		cial Results			
Data Transform		Alt Hyp		<u> </u>	<u> </u>		Comparis	son Result			PMSD
Angular (Corrected)	C > T						d survival r			9.31%
Aligulai (Collected	/						1 D passo	- Julyivai i			3.5170
Wilcoxon Rank St	um Two-Sa	mple Test									
Sample I vs	Sample I	I	Test Stat	Critical	Ties Di	F P-Type	P-Value	Decision	ι(α:5%)		
Control Sed	FD		52.5	n/a	2 14	Exact	0.0501	Non-Sigr	ificant Effect	t	
ANOVA Table											
Source	Sum Squ	ıares	Mean Squ	ıare	DF	F Stat	P-Value	Decision	ι(α:5%)		
Between	0.09882		0.09882		1	3.39	0.0868	Non-Sign	ificant Effect		
Error	0.407888		0.0291349)	14						
Total	0.506708				15						
Distributional Tes	ts										
Attribute	Test				Test Stat	Critical	P-Value	Decision	ı(α:1%)		
Variances	Variance	Ratio F Tes	t		4.02	8.89	0.0868	Equal Va			
Distribution	Shapiro-V	Vilk W Norn	nality Test		0.813	0.841	0.0040	•	nal Distributi	on	
Survival Rate Sum	marv										
Sample	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
CE_1117_C1_sed	CS	8	0.975	0.916	1.000	1.000	0.800	1.000	0.025	7.25%	0.00%
FD		8	0.862	0.722	1.000	0.900	0.500	1.000	0.060	19.54%	11.54%
Angular (Correcte	d) Transfo	rmed Sumn	narv								
Sample	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
CE_1117_C1_sed	CS	8	1.37	1.28	1.46	1.41	1.11	1.41	0.0381	7.85%	0.00%
FD		8	1.22	1.04	1.4	1.25	0.785	1.41	0.0764	17.75%	11.44%
Graphics											
1.0						0.3					
	1118111	4									
0.9			1///	111		0.2			•		
0.8		_									
0.7						0.1		1			
					para	Corr. Angle		0 0 0 016			
0.6 . B					5	-E					
roival 80.5						-0.1	• •				
3						:					

0.3

0.1

CE_1117_C1_sed

-0.2

-1.5

-1.0

0.5

1.0

1.5

2.0

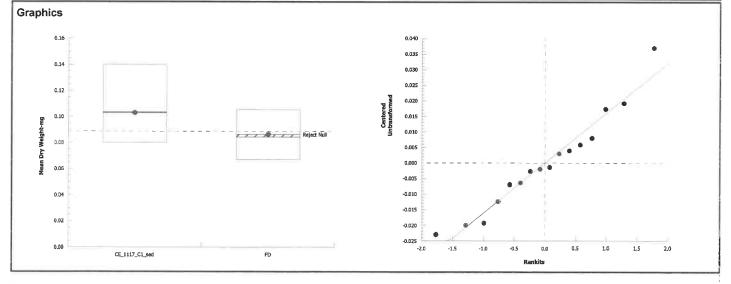
10-Day Hyalella azteca Sediment Toxicity Test Data

Client:	Condor Earth	Project#:	28107	Organism Log #: V642 (A)	Age: 11-12-days
Species:	Hyalella azteca	Test ID#:	75572	Organism Supplier:	ABS

			Test l	Material		Water Qua	ality Measure	ments	Sign-off:	
Day	Date		WK-	64R-FD		Parameter	Value	Meter ID		
			# Live (Organisms		рН	7.61	eH23	AM Change: RAP	
0		A vo	В 100	C No	D v	D.O. (mg/L)	8.3	PD11	WQ: RAP	
	11/25/17	E w	F vo	G 10	H v	Conductivity (µS/cm)	40%	ECIO	Initiation Time:	
						Alkalinity (mg/L)	¥ 42.8		Initiation Counts:	
						Hardness (mg/L)	122		Confirmation Counts:	
						Ammonia (mg/L)	41.00	DR3-600	PM Feed: NL	
						Temp. (°C)	22.7	48A		
e-e-e-e-e-e-e-e-e-e-e-e-e-e-e-e-e-e-e-			# of M	lortalities		Old D.O. (mg/L)	6.4	RD12	AM Change: FT WQ: FT	
1	110611	A 0	B Ø	c o	D 0	New D.O. (mg/L)	7.1	RDIZ	Mortality Counts: F 7	
1	11126117	E 0	F 0	G 0	н б	Temp. (°C)	23.0	48A	PM Change: F7 PM Feed: F7	
			# of M	ortalities		Old D.O. (mg/L)	6.2	RDII	AM Change: WQ: WQ:	
2	11/27/17	A ()	B 0	c 0	P Ô	New D.O. (mg/L)	7.7	RDII	Mortality Counts: 74	
	11/2/11	E O	F ()	G ()	н С	Temp. (°C)	22.8	48A	PM Change. PM Feed:	
		V		Iortalities		Old D.O. (mg/L)	6.3	RDa9	AM Change: SB WQ:59	
3	11/28/17	A 0	B 9	C A	D N	New D.O. (mg/L)	7.7	RDOA	Mortality Counts: 513	
	11.00 11 (E (F 0	G	н	Temp. (°C)	22.9	48A	PM Change: JN PM Feed JN	
			# of M	Iortalities		Old D.O. (mg/L)	6.0	RDOR	AM Change: 74 WQ: 74	
4	11/29/17	A ()	B ()	c 0	D A	New D.O. (mg/L)	7.6	RDO9	Mortality Counts: 1/4	
	, ,	E ()	F O	G ()	н О	Temp. (°C)	22.9	48A	PM Change: PM Feed: 4	
			# of M	Iortalities		Old D.O. (mg/L)	6.2	RDII	AM Change: 2 WQ: 24	
5	11/30/17	Α (%)	B O	c G	PG	New D.O. (mg/L)	7.6	RDII	Mortality Counts: 74	
		E C	F G	G O	н О	Temp. (°C)	22.1	48A	PM Change: RAP PM Feed: RAP	
				Iortalities		Old D.O. (mg/L)	5.8	RDII	AM Change: F7 WQ: F7	
6	12/1/17	A 0	B 🗸	C O	D O	New D.O. (mg/L)	7.5	RDII	Mortality Counts: F-7	
		E ,O	F O	G 0	H 0	Temp. (°C)	22.4	48A	PM Change: F7 PM Feed: F7	
			# of M	Iortalities		Old D.O. (mg/L)	7.4	Roll	AM Change:53 WQ:53	
7	12/2/17	^ 0	В	C A	D ()	New D.O. (mg/L)	8.3	ROIL	Mortality Counts: 53	
	14411	E 0	F ()	G ()	н	Temp. (°C)	22.7	48A	PM Change: SB PM Feed: SB	
		,	# of M	Iortalities		Old D.O. (mg/L)	4.4	RDIZ	AM Change: TF WQ: TF	
8	la /a fr -	A O	B 0	C O	D 0	New D.O. (mg/L)	7.4	RP12	Mortality Counts: TF	
	12/3/17	E ()	F O	G 0	н О	Temp. (°C)	22.6	48 A	PM Change TF PM Feed. TF	
				Iortalities		Old D.O. (mg/L)	5.9	RDIZ	AM Change: F 7 WQ: F 7	
9	12/4/17	A ()	B O	c o	D O	New D.O. (mg/L)	7.9	RDIZ	Mortality Counts: FT	
		E 0	F O	G O	н 6	Temp. (°C)	22.4	48A	PM Change: F7 PM Feed: F7	
			#	Alive		pН	7.13	PH23	WQ: S&B	
10	12/5/19	A 8	В Ф	c 10	D 9	D.O. (mg/L)	3.5	RD12	Termination Counts: SMC	
	1211	E 10	F 10	G 8	н 5	Conductivity (µS/cm)	-	EC12	Termination Time:	
						Alkalinity (mg/L)	157			
						Hardness (mg/L)	104.4			
	100 100 100 100 100 100 100 100 100 100					Ammonia (mg/L)	1.21	013800		
				A CAN IN CASE OF THE CASE OF T	TO SECURE AND ADDRESS OF THE PROPERTY OF THE P	Temp. (°C)	22.4	USA		

Report Date:

08 Dec-17 14:10 (p 2 of 4)


Test Code:

CE_1117_C1_sed | 08-8383-0003

Hyalella 10-d	Surv	rival and Growth	Sediment Te	est								Pacific EcoRisk
Analysis ID: Analyzed:		1066-0664 Dec-17 14:10	Endpoint: Analysis:		an Dry Wei ametric-Tw		е			CETIS Version: CETISv1.9.2 Official Results: Yes		
Data Transfor	rm	Alt	Нур						Comparis	son Result		PMSD
Untransformed	d	C >	T						FD failed	mean dry wei	ght-mg	13.94%
Equal Variand	ce t T	wo-Sample Test										
Sample I	vs	Sample II	Test	Stat	Critical	MSD	DF	P-Type	P-Value	Decision(a	:5%)	
Control Sed		FD*	2.04		1.76	0.014	14	CDF	0.0306	Significant	Effect	
ANOVA Table	•											
Source		Sum Squares	Mean	Squ	are	DF		F Stat	P-Value	Decision(a	:5%)	
Between		0.001101	0.001	101		1		4.14	0.0612	Non-Signific	cant Effect	
Error		0.0037219	0.000	2659		14						
Total		0.0048229				15						
Distributional	l Test	ts										
Attribute		Test				Test S	tat	Critical	P-Value	Decision(a	:1%)	

Attribute	Test	Test Stat	Critical	P-Value	Decision(a:1%)
Variances	Variance Ratio F Test	1.9	8.89	0.4151	Equal Variances
Distribution	Shapiro-Wilk W Normality Test	0.957	0.841	0.6077	Normal Distribution
Mean Dry Weig	ght-mg Summary				

Mean Dry Weight-	ng Summ	ary									
Sample	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
CE_1117_C1_sed	CS	8	0.103	0.0874	0.119	0.103	0.08	0.14	0.0066	18.13%	0.00%
FD		8	0.0864	0.0751	0.0977	0.0844	0.067	0.106	0.00478	15.66%	16.11%

Hyalella azteca Weight Data Sheets

Client: Condor Earth Project #: 28107 Balance ID: BHLO4—Sample ID: WK-64R-FD Tare Wt Date: 1/27/17 Sign-Off: 以 Sign-Off: 以 Sign-Off: 日本

Pan	Concentration Replicate		Initial Weight. (mg)	Final Weight. (mg)	# organisms	Ave Weight (mg)
1	Control	A	69.58	70.98	10	0.140
2	Sediment	В	69.92	70.75	10	0.083
3		С	好别	66.39	10	0.107
4		D	69.36	70.00	8	0,080
5		Е	64.05	65.16	10	0./11
6		F	G6.30	67.36	10	0.106
7		G	66.03	66.99	10	0.096
8		Н	60.37	61.38	10	6_101
17	WK-64R-FD	A	64.15	64.98	8	0.104
18		В	65.47	66.42	9	0.106
19		С	67.15	67.95	10	0.080
20		D	65.39	66.22	9	0.092
21		Е	61.63	6230	10	0.067
22	1 /	F	69.97	70.82	10	0.085
23		G	62.84-64:79 Malif	63.51	8	0,084
24		Н	64.79	65.16	5	0. 0.74
QA 2			66.16	66.24		

Sediment Toxicity Lab Report April 2, 2018 at WK-64R Dry Weather Event

Micheline Kipf Condor Earth Technologies, Inc. 188 Frank West Circle, Suite I Stockton, CA 95206

May 4, 2018

Dear Micheline:

I have enclosed a copy of our report "An Evaluation of the Toxicity of City of Stockton Stormwater Program Sediment Samples" for the samples that were collected April 2, 2018. The results of this testing are summarized below:

Summary of Stockto	n Stormwater Program sedimen	t effects on Hyalella azteca.						
Comple Station	Toxicity Present Relative to Lab Control?							
Sample Station	Survival	Growth						
WK-64R	YES	YES						
FD	YES	No						

If you have any questions regarding the performance and interpretation of this testing, please contact my colleague Stephen Clark or myself at (707) 207-7760.

Sincerely,

Michael McElroy Project Manager

Pacific EcoRisk is accredited in accordance with NELAP (ORELAP ID 4043). Pacific EcoRisk certifies that the test results reported herein conform to the most current NELAP requirements for parameters for which accreditation is required and available. Any exceptions to NELAP requirements are noted, where applicable, in the body of the report. This report shall not be reproduced, except in full, without the written consent of Pacific EcoRisk. This testing was performed under Lab Order 28676.

An Evaluation of the Toxicity of City of Stockton Stormwater Program Sediment Samples

Samples collected April 2, 2018

Prepared For:

Condor Earth Technologies, Inc. 188 Frank West Circle, Suite I Stockton, CA 95206

Prepared By:

Pacific EcoRisk 2250 Cordelia Rd. Fairfield, CA 94534 (707) 207-7760

May 2018

An Evaluation of the Toxicity of **City of Stockton Stormwater Program Sediment Samples**

Samples collected April 2, 2018

Table of Contents

		Page
1. INTRODU	JCTION	1
2. SEDIMEN	NT TOXICITY TEST PROCEDURES	1
2.1 Receipt	ot and Handling of the Sediment Samples	1
	Phase Sediment Toxicity Testing with <i>Hyalella azteca</i>	
3. RESULTS	S	3
4. SUMMAR	RY AND CONCLUSIONS	3
4.1 QA/QC	C Summary	3
	Appendices	
Appendix A	Chain-of-Custody Record for the Collection and Delivery of the Stockt	con
	Ctampayyatan Dua angua Cadina ant Campalag	

- Stormwater Program Sediment Samples
- Appendix B Test Data and Summary of Statistics for the Evaluation of the Toxicity of Stockton Stormwater Program Sediment Samples to Hyalella azteca

1. INTRODUCTION

In compliance with the City of Stockton Stormwater Program NPDES permit monitoring requirements, Condor Earth Technologies, Inc., has contracted Pacific EcoRisk (PER) to perform evaluations of the toxicity of selected ambient water and sediment samples. The current testing event was designed to meet the sediment monitoring requirements using sediment samples that were collected on April 2, 2018. This evaluation consisted of performing the US EPA 10-day survival and growth test with the amphipod *Hyalella azteca*. This report describes the performance and results of this testing.

2. SEDIMENT TOXICITY TEST PROCEDURES

This testing followed the guidelines established by the EPA manual "Methods for Measuring the Toxicity and Bioaccumulation of Sediment-associated Contaminants with Freshwater Invertebrates, Second Edition" (EPA/600/R-99/064).

2.1 Receipt and Handling of the Sediment Samples

On April 2, sediment samples were collected into appropriately cleaned sample containers. These samples were transported on ice and under chain-of-custody, to the PER laboratory in Fairfield, CA (Table 1). The samples were then stored at ≤6°C until being used to initiate toxicity tests within 14 days of collection. The chain-of-custody record for the collection and delivery of the samples is presented in Appendix A.

Table 1. Sampling station and date of sediment collection for the Stockton Stormwater Program.										
Sample Station	Date Collected	Date Received								
WK-64R	4/2/18	4/3/18								
FD	4/2/18	4/3/18								

2.2 Solid-Phase Sediment Toxicity Testing with Hyalella azteca

The sediment toxicity test with *H. azteca* consists of exposing the amphipods to the sediment for 10 days, after which effects on survival and growth are evaluated. The specific procedures used in this testing are described below.

The *H. azteca* used in this testing were obtained from a commercial supplier (Aquatic BioSystems, Fort Collins, CO). Upon receipt at the laboratory, the amphipods were maintained in tanks containing Lab Water Control medium at 23°C and were fed a commercial Yeast-Cerophyll®-Trout chow (YCT) food amended with freeze-dried *Spirulina*.

The Control treatment sediment for this testing consisted of a composite of reference site sediments that have been maintained under culture at the PER lab for >3 months. The sediment samples were tested at the 100% concentration only. There were eight replicates for each test treatment, each replicate container consisting of a 300-mL tall-form glass beaker with a 3-cm ribbon of 540 µm mesh NITEX attached to the top of the beaker with silicone sealant. Each sediment sample was homogenized prior to loading of sediment into the test replicates. For each sediment, approximately 100 mL of sediment was then loaded into each of the test replicate containers. Each test replicate was then carefully filled with clean Lab Water Control medium (Standard Artificial Medium [SAM-5S] water). The test replicates with sediments and clean overlying water were established ~24 hrs prior to the introduction of the amphipods, and were placed in a temperature-controlled room at 23°C during this pre-test period.

After this initial 24 hr period, the overlying water in each replicate was flushed with one volume (approximately 150 mL) of fresh overlying water. For each test treatment, a small aliquot of the renewed overlying water was then collected from each of the eight replicates and composited for measurement of "initial" water quality characteristics (pH, dissolved oxygen [D.O.], conductivity, alkalinity, hardness, and total ammonia). The testing was then initiated with the random allocation of ten 8-9 day-old amphipods into each replicate, followed by the addition of 1.0 mL of *Spirulina*-amended YCT food. The test replicates were then placed in a temperature-controlled room at 23°C. At the time of test initiation, eight replicates of 10 randomly-selected organisms were collected, dried, and weighed (described below) to determine the mean dry weight of the test organisms at test initiation (T₀).

Each day, for the following nine days, each test replicate was examined and any dead amphipods were removed via pipette and the mortality recorded. A small aliquot of the overlying water in each of the eight replicates for each test treatment was then collected and composited as before for measurement of "old" D.O., after which each replicate was flushed with one volume of fresh water. Another small aliquot of the overlying water in each of the eight replicates was then collected and composited as before for measurement of "new" D.O., after which each replicate was fed 1.0 mL of *Spirulina*-amended YCT.

After 10 days exposure, testing was terminated. An aliquot of overlying water was collected from each replicate and composited for analysis of the "final" water quality characteristics. The sediments in each replicate container were then carefully sorted and sieved and the number of surviving amphipods determined. The surviving organisms were euthanized in methanol, rinsed in de-ionized water, and transferred to small pre-tared weighing pans, which were placed into a drying oven at 100°C. After drying for ~24 hrs, the pans were transferred to a desiccator to cool, and then weighed to the nearest 0.01 mg to determine the mean dry weight per surviving organism for each replicate. The resulting survival and growth (mean dry weight) data were then analyzed to evaluate any impairment due to the sediments; all statistical analyses were performed using the CETIS® statistical software (TidePool Scientific, McKinleyville, CA).

3. RESULTS

Test results are summarized in Table 2. There were significant reductions in survival in both of the sediment samples. There was no significant reduction in growth in the FD sediment sample. However, there was a significant reduction in growth in the WK-64R sediment sample. The test data and summary of statistical analyses for this testing are presented in Appendix B.

Table 2. 1	Table 2. Data summary for the Stockton Stormwater Program sediment samples.												
Test Treatment %													
Control	100	N/A	N/A	0.049	N/A	N/A							
WK-64R	92.5*	7.5%	Y	0.040*	17.6%	Y							
FD	92.5*	7.5%	Y	0.043	11.4%	N							

^{*} The response at this test treatment was significantly less than the Control sediment response (at p<0.05).

4. SUMMARY AND CONCLUSIONS

The results of this testing are summarized below. There were no significant reductions in survival in either of the sediment samples. There was no significant reduction in growth in the WK-64R sediment sample. However, there was a significant reduction in growth in the FD sediment sample.

Summary of Stockton	n Stormwater Program sediment e	ffects on <i>Hyalella azteca</i> .							
Sample Station Toxicity Present Relative to Lab Control?									
	Growth								
WK-64R	YES	YES							
FD	YES	No							

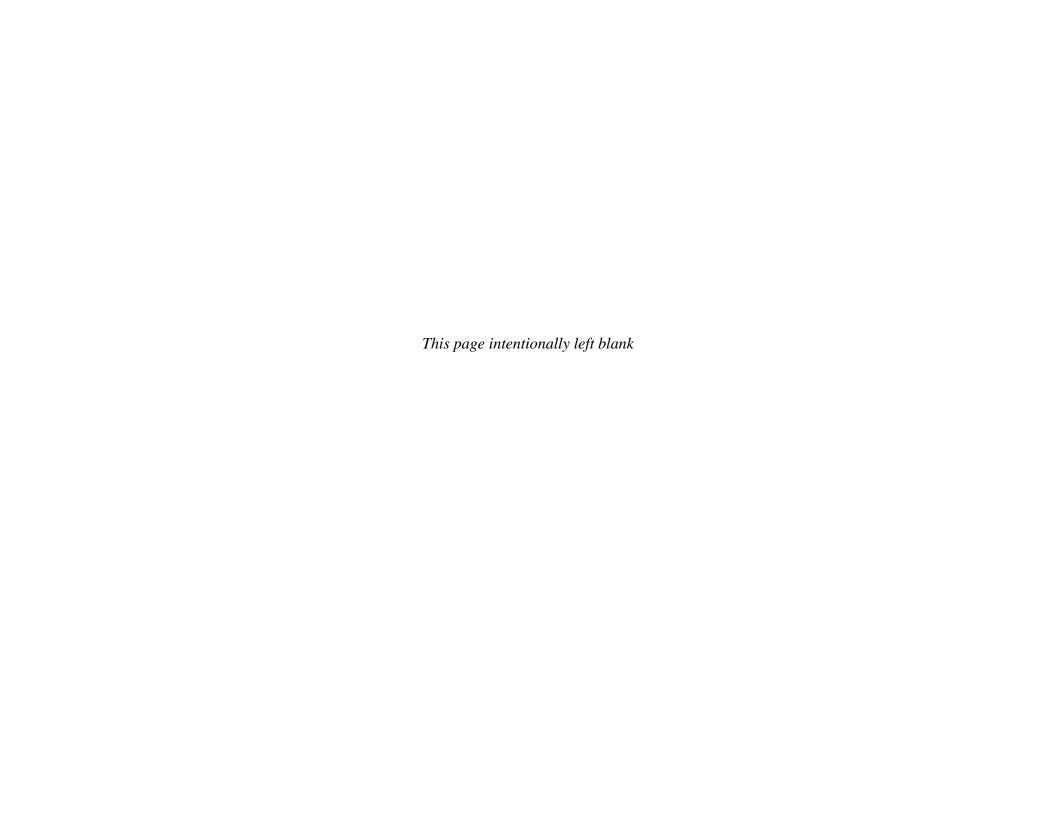
4.1 QA/QC Summary

Test Conditions – All test conditions (pH, D.O., temperature, etc.) were within acceptable limits. All analyses were performed according to laboratory Standard Operating Procedures.

Negative Control – The biological responses for the test organisms at the Lab Control treatment were within acceptable limits.

Appendix A

Chain-of-Custody Record for the Collection and Delivery of the Stockton Stormwater Program Sediment Samples



SHIPI	PED TO	<u>:</u>					DND	OK		9.532.0361 9.532.0773	fax		209,234,0518 209,234,0538	fax	916.783.2060 916.783.2464 fax		388,9601 388,1778 fax
Pacifi	ic EcoR	isk					_			SEND	RESUL		Micheline Doyle Kipf				
2250	Cordel	ia Road									NAME E-MA		_		prearth.com		
Fairfi	eld, CA	94534 (707) 207-7	7760								E-MAI						
													EASEE	AX/EMA	AIL RESULTS TO AD	DRESS MAI	SKED VBOA
PROJE	ECTNA	ME/LOCATION: CO	OS Urban Disch	narge	•	EDF RE	ESULT	SRE	QUIRI	ED 🔲 Y	ES N	0	ADA KOD I		GLOBAL ID:	DRESS WAI	CKED ABOV
ROJE	ECT NO	·· 6066J-05-01							**								
SAMP	LED BY	T: (Signature)	R/ZAS			ro			azteca*		size						
				ı; i	ainers	Preservatives (see below)	ANALYSIS /METHOD:	Field Filtered	<u>a</u>								
			Sample ID	Matrix	# of containers	serviee be	ANALYSIS /METHOD:	ld Fi	Hyalella	T0C	Grain						
Date	Time	Sample Site Name	(if different)		#	Pre (s	₹ ₹	Fie	Ŧ	F	Ō				REMARKS		LAB ID#
12/18	1550 1718-DW32- WK-64R S 1 N						N	1	1	✓:				*chronic freshwater (E	*chronic freshwater (EPA/600/4-91/003)		
//	1550	1718-DW32-	FD	S		1		N	✓	1	1				Hyalella azteca su	Hyalella azteca survival & growth	
+													-		Canada at a della		
-				-								-			Conduct addition	ai pyrethroids	
													+		analysis if toxicity	is observed.	
															Sub sampl	es to be	
															collected fo	r Caltest	
															TOC RL=	1 mg/L	
		Signature)	Koon	Date	4/	3/18	Time	0/0)		ed By: (Sig	nature)	2	4		Date	Time: / U

Pink - Log Book

Yellow - File

Original - Send

Appendix B

Test Data and Summary of Statistics for the Evaluation of the Toxicity of the Stockton Stormwater Program Sediment Samples to *Hyalella azteca*

Report Date:

03 May-18 11:05 (p 1 of 1)

Test Code:

CE_0418HA_C1 | 00-9729-6588

Hyalella 10-d Sur	vival and G	rowth S	ediment Tes	t							Pacif	ic EcoRisk
Batch ID: 13-	3897-1280		Test Type:	Survival-Growt	h (10 day)			Analy	st: Sin	nin Delijani		
Start Date: 07	Apr-18 14:3	0	Protocol:	EPA/600/R-99/	(064 (2000)			Dilue	nt: No	Applicable		
Ending Date: 17	Apr-18 11:4	5	Species:	Hyalella azteca	a			Brine	: No	Applicable		
Duration: 9d	21h		Source:	Aquatic Biosys	tems, CO			Age:	9			
Sample Code	Sample		Sample Date			Sample			t Name		roject	
CE_0418HA_C1	00-7074-		07 Apr-18 14	=	18 14:30	n/a (22.0	6 °C)	Cond	or Earth Te	echnologi 28	3676	
WK-64R	17-4680-		02 Apr-18 15		18 10:10	4d 23h						
FD	02-0631-	8992	02 Apr-18 15	:50 03 Apr-	18 10:10	4d 23h						
Sample Code	Material			Sample Sourc			Station L	ocatio	n	Lat/Long		
CE_0418HA_C1	Control S			Condor Earth T	-		LABQA					
WK-64R	Sedimen			Condor Earth T	•		WK-64R					
FD	Sedimen	t		Condor Earth T	rechnologie:	s	WK-64R-	FD				
SIngle Compariso	on Summar	У										
	dpoint			rison Method			P-Va	alue		son Result		
16-1784-7961 Me	an Dry Weig	ht-mg	Equal \	/ariance t Two-	Sample Te	st	0.01	01	WK-64R	failed mean	dry weight-i	ng
08-5843-2231 Me	an Dry Weig	ght-mg	Equal \	/ariance t Two	-Sample Te	st	0.05	05	FD passe	ed mean dry	weight-mg	
14-7757-1732 Sur	vival Rate		Wilcox	on Rank Sum 1	Two-Sample	Test	0.03	85	WK-64R	failed surviv	al rate	
01-2189-8423 Sur	vival Rate		Wilcox	on Rank Sum	ſwo-Sample	Test	0.03	85	FD failed	survival rate		
Mean Dry Weight	-mg Summ	ary										
Sample	Code	Coun	t Mean	95% LCL	95% UCL	Min	Max		Std Err	Std Dev	CV%	%Effect
CE_0418HA_C1	CS	8	0.0486	0.0425	0.0547	0.041	0.06		0.00258	0.00729	14.99%	0.00%
WK-64R		8	0.0401	0.0354	0.0448	0.03	0.04		0.002	0.00565	14.10%	17.58%
FD		8	0.0431	0.0387	0.0474	0.035	0.05		0.00184	0.00522	12.11%	11.44%
Survival Rate Sur	nmary											
Sample	Code	Coun	t Mean	95% LCL	95% UCL	Min	Max		Std Err	Std Dev	CV%	%Effect
CE_0418HA_C1	CS	8	1.000	1.000	1.000	1.000	1.00		0.000	0.000	0.00%	0.00%
WK-64R		8	0.925	0.838	1.000	0.700	1.00		0.037	0.104	11.19%	7.50%
FD		8	0.925	0.851	0.999	0.800	1.00	0	0.031	0.089	9.58%	7.50%
Mean Dry Weight	mg Detail											
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep	6	Rep 7	Rep 8		
CE_0418HA_C1	CS	0.06	0.044	0.059	0.044	0.05	0.04	8	0.041	0.043		
WK-64R		0.042	0.0378	0.0444	0.0411	0.046	0.03		0.0343	0.045		
FD		0.043	0.042	0.047	0.0475	0.05	0.03	5	0.0367	0.0433		
Survival Rate Det	ail											
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep	6	Rep 7	Rep 8		
CE_0418HA_C1	CS	1.000		1.000	1.000	1.000	1.00	0	1.000	1.000		
WK-64R		1.000	0.900	0.900	0.900	1.000	1.00	0	0.700	1.000		
FD		1.000	1.000	1.000	0.800	1.000	0.80	0	0.900	0.900		
Survival Rate Bin	omials											
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep	6	Rep 7	Rep 8	_	
CE_0418HA_C1	CS	10/10	10/10	10/10	10/10	10/10	10/1	0	10/10	10/10		
WK-64R		10/10	9/10	9/10	9/10	10/10	10/1	0	7/10	10/10		
FD		10/10	10/10	10/10	8/10	10/10	8/10		9/10	9/10		

Analyst: SD QA: R6

10-Day Hyalella azteca Sediment Toxicity Test Data

Client:	Condor Earth	Project#: 28676	Organism Log #:	19880 Age: 8-91
Species:	Hyalella azteca	Test ID#: 77569-70	Organism Supplier:	ABS

D	D		Test M	[aterial		Water Qu	ality Measure	ments	C) 40
Day	Date		Lab C	ontrol		Parameter	Value	Meter ID	Sign-off:
			# Live C	rganisms		рН	7.96	PHZI	AM Change: 5R
0	14/7/18	A (O	B (0	C 10	Dlo	D.O. (mg/L)	8.3	PDII	WQ: JR
		E 10	F 10	GLO	H (5	Conductivity (µS/cm	74 4944 W	ECIL	Initiation Time: 1436
	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					Alkalinity (mg/L)	157		Initiation Counts: WB
						Hardness (mg/L)	139		Confirmation Counts: SMC
						Ammonia (mg/L)	41.00	DR3800	PM Feed: VB
						Temp. (°C)	22.6	48A	
			# of Mo	rtalities		Old D.O. (mg/L)	6.3	RD13	AM Change: JR WQ: JR
1	4/8/18	A B	BB	°. 0	00	New D.O. (mg/L)	7.4	PD13	Mortality Counts: 5@
	11 9/10	E O	FO	° 0	H O	Temp. (°C)	22.4	48A	PM Change: PM Feod
	.111		# of Mo	rtalities		Old D.O. (mg/L)	7.4	2011	AM Change: 32 WQ: JR
2	14/9/18	A ()	B 6	^c O	D 0	New D.O. (mg/L)	7.9	RDII	Mortality Counts: 3R
	17 17 0	E ()	F O	° O	H O	Temp. (°C)	22.6	48A	PM Change: PM Feed:
			# of Mo	rtalities		Old D.O. (mg/L)	5.9	ROIZ	AM Change: WQ: WQ:
3		A 0	ВО	c O	DO	New D.O. (mg/L)	6.5	12012	Mortality Courter
	4/10/18	E O	FO	G 0	H O	Temp. (°C)	22.8	48A	PM Change PM Feed: 44
	11.1		# of Mo	rtalities		Old D.O. (mg/	18-63	ROIO	AM Change: DM WQ: DM
4	4/11/18	A O	0	c Ô	D 0	New D.O. (mg/L)	7.6	ROIO	Mortality Counts: 0M
		E O	F 0	G O	H O	Temp. (°C)	22,8	48A	PM Change: M PM Feed: M
	100160		# of Mo	rtalities		Old D.O. (mg/L)	6.6	RDID	AM Change: AP WQ: RAP
5	4/12/16	A 0	B 0	c O	DO	New D.O. (mg/L)	76	(109)	Mortality Counts: RA
		E ()	F C	c O	H C	Temp. (°C)	23.1	48A	PM Change: MY PM Feed: MY
			# of Mo	rtalities		Old D.O. (mg/L)	6.6	RDIO	AM Change: F7 WQ: F7
6	4/13/18	A 0	B	c 0	DO	New D.O. (mg/L)	8.2	RDIO	Mortality Counts: F 7
	0.000	E 0	F O	G 0	H O	Temp. (°C)	23.4	48A	PM Change 7 PM Feed: 7
	. 1 1		# of Mo	rtalities		Old D.O. (mg/L)	5.1	RDID	AM Change: My WQ: MY
7	14/14/18	^ 0	В 0	c 0	D, 0	New D.O. (mg/L)	7.6	RDID	Mortality Counts: MYL
		E ()	F ()	G (н О	Temp. (°C)	23.4	48A	PM Change: PM Feed: PM
	is (IT he		# of Mo	rtalities		Old D.O. (mg/L)	6,6	-	AM Change: DM WQ: DM
8	4/15/18	^ ()	В	C	DO	New D.O. (mg/L)	7.3	R012	Mortality Counts: DM
		6	F O	° a	H O	Temp. (°C)	23.4	484	PM Change: OM PM Feed: OM
			# of Mo	rtalities		Old D.O. (mg/L)	57	RDII	AM Change: K WQ: K Z
9	4/11/19	^A 0	B 0	c 0	D 0	New D.O. (mg/L)	7.5	ROII	Mortality Counts: KD
	U	E ()	F Ü	G U	н ()	Temp. (°C)	23.3	48A	PM Change: PM Feed:
			# A	live		рН	7.48		wo:3573
10	4/17/18	A 10	B 10	c 10	DIP	D.O. (mg/L)	5.2	R013	Termination Counts: NB
2 182 182 287 S	1, 11, 0	E 10	F 10	° 10	H 10	Conductivity (µS/cm)	424	ECIL	Termination Time:
			19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MAP AND		Alkalinity (mg/L)	√ 58	A	
						Hardness (mg/L)	127		
		No. 10 N			A CONTROL OF THE CONT	Ammonia (mg/L)	<1.00	De3800	
						Temp. (°C)	23.2	484	

Report Date:

01 May-18 15:00 (p 3 of 4)

CE 0418HA C1 | 00-9729-6588

							Test	Code:	CE_0418	BHA_C1 0	0-9729-658
Hyalella 10-d Sur	vival and	Growth Sed	iment Test							Paci	fic EcoRis
Analysis ID: 14	-7757-173	2 En	dpoint: S	urvival Rate			CET	IS Version	: CETISv	1.9.2	
Analyzed: 0°	1 May-18 1	5:00 An	alysis: N	onparametric	Two Sampl	е	Offic	cial Results	s: Yes		
Data Transform		Alt Hyp					Comparis	son Result			PMSD
Angular (Corrected	d)	C > T						failed surviv			6.17%
Wilcoxon Rank S	um Two-S	ample Test									
Sample I vs	Sample	-	Test Sta	t Critical	Ties DF	P-Type	P-Value	Decision	/a.E9/)		
Control Sed	WK-64F		52	n/a		Exact	0.0385	Decision Significar	<u> </u>		
				11/04		EXCO		Olgriniour	TE LICOI		
ANOVA Table	0				D.E.	E 01-1	D.1/-1		. =0()		
Source	Sum So		Mean Sc		DF 1	F Stat	P-Value	Decision			
Between Error	0.05173 0.15334		0.051730		1	4.72	0.0474	Significar	it Effect		
Total	0.15334		0.010952	29	14 15						
					15						
Distributional Tes	sts										
Attribute	Test				Test Stat		P-Value	Decision	(a:1%)		
Variances	Variance	Ratio F Tes	st		8.63E+13	8.89	<1.0E-37	Unequal '	Variances		
Distribution	Shapiro-	Wilk W Norr	nality Test		0.75	0.841	6.3E-04	Non-Norr	Non-Normal Distribution		
Survival Rate Sur	nmary										
Sample	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
CE_0418HA_C1	CS	8	1.000	1.000	1.000	1.000	1.000	1.000	0.000	0.00%	0.00%
WK-64R		8	0.925	0.838	1.000	0.950	0.700	1.000	0.037	11.19%	7.50%
Angular (Correcte	ed) Transfo	ormed Sumi	nary								
Sample	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
CE_0418HA_C1	CS	8	1.41	1.41	1.41	1.41	1.41	1.41	0	0.00%	0.00%
WK-64R		8	1.3	1.17	1.42	1.33	0.991	1.41	0.0523	11.40%	8.05%
Graphics											
1.0	- 2					0.20					
0.9	7		7/1/0	111.		0.15					
0.9						E			• •		
0.8						0.10		i			
0.7					_	0.05 <u>w</u>					
					Centered	60.00		-0-0-0-0			
0.5 2					25	5 -0.05					
Survival Rate						-0.10					
\$ 0.4						1					
						-0.15					

1.5

0.5

0.3

0.2

0.1

0.0

CE_0418HA_C1

WK-54R

-0.25

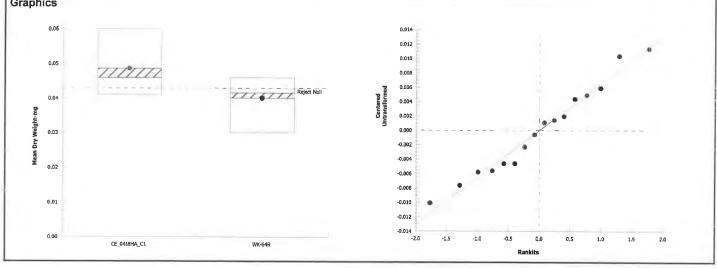
-0.30

-0.35 -2.0

10-Day Hyalella azteca Sediment Toxicity Test Data

Client:	Condor Earth	Project#: 28676	Organism Log #: 10880	Age: 8-91
Species:	Hvalella azteca	Test ID#: 77569	Organism Supplier:	ABS

	D.		Test l	Material		Water Qu	ality Measure	ments	G: 88
Day	Date	W	<-64R	2		Parameter	Value	Meter ID	Sign-off:
			# Live (Organisms		pН	7.74	PHZI	AM Change: 3 R
0	4/7/18	A	B (0	C (0	Dio	D.O. (mg/L)	8.0	RDII	WQ: JR
	17 17.0	E (o	FO	GUO	H	Conductivity (µS/cm)	437	ECIL	Initiation Time: 1436
						Alkalinity (mg/L)	156		Initiation Counts: 13
					NAME OF STREET	Hardness (mg/L)	134		Confirmation Counts: SMC
						Ammonia (mg/L)	41.00	DR3800	PM Feed: UB
						Temp. (°C)	22.0	48A	
			# of M	ortalities		Old D.O. (mg/L)	6.5	PD13	AM Change: 5 R WQ: 3 R
1	4/8/18	A ()	B O	c 0	D O	New D.O. (mg/L)	7.7	RD13	Mortality Counts: 3 R
	110110	E O	F O	G O	н О	Temp. (°C)	22.4	48A	PM Change: DPM Feed. 5
	.17.		# of M	ortalities		Old D.O. (mg/L)	6.0	RDII	AM Change: JR WQ: JR
2	14/9/18	A 0	BO	c O	DO	New D.O. (mg/L)	7.1	RDIL	Mortality Counts: 5 (2
	,, ,	E O	FO	G 0	н О	Temp. (°C)	22.6	48A	PM Change: PM Feed: TV
			# of M	ortalities		Old D.O. (mg/L)	5.8	RD12	AM Changer WO:
3		A 0	B 0	CO	D U	New D.O. (mg/L)	6.9	PDIZ	Mortality Counts:
	4/10/18	E 0	F O	G 🔨	H P	Temp. (°C)	22.8	48 A	PM Change: W PM Feed: W
	1. 1		# of M	ortalities		Old D.O. (mg/L)	5.2	RDIO	AM Change: DM WQ: DM
4	4/11/18	^ 0	ВО	c O	D O	New D.O. (mg/L)	7.3	RDIO	Mortality Counts: 1/1
		E ()	F O	G O	н О	Temp. (°C)	22.8	48A	PM Change: M PM Feed: M
			# of M	ortalities		Old D.O. (mg/L)	5.4	2010	AM Change: PAP WQ: RA
5	4/7/14	^ <i>O</i>	B ()	c O	DO	New D.O. (mg/L)	4.7	POID	Mortality Counts: PAP
		E ()	F ()	G ()	H O	Temp. (°C)	23.1	48A	PM Change: PM Feed:
			# of M	ortalities		Old D.O. (mg/L)	5.5	RDIO	AM Change: F7 WQ: F7
6	4/13/18	^ O	B G	c O	D 0	New D.O. (mg/L)	80	RDIO	Mortality Counts: F 7
		E O	F O	G O	н О	Temp. (°C)	23.4	48A	PM Change: FT PM Feed: FT
			# of M	ortalities		Old D.O. (mg/L)	4.4	RDIO	AM Change: MYL WQ: MYL
7	4/14/18	^A O	B D	c 0	DO	New D.O. (mg/L)	7.2	RDIO	Mortality Counts: My
	7.17.0	е О	F O	G ()	н О	Temp. (°C)	234	48A	PM Change: PM Feed: PM
	(1/17/1)			ortalities		Old D.O. (mg/L)	4.5	RD12	AM Change: DM WQ: UM
8	4/15/18	^ ð	ВО	c O	D	New D.O. (mg/L)	7.5	KD 12	Mortality Counts: DM
		E 0	F O	G ()	H O	Temp. (°C)	23.4	48A	PM Change: DM PM Feed: OM
			# of M	ortalities		Old D.O. (mg/L)	5.7	KDII	AM Change: K()WQ: N
9	4111116	A ()	в О	° 0	D Ô	New D.O. (mg/L)	7.9	ROH	Mortality Counts:
		E ()	F O	G ()	н ()	Temp. (°C)	23.3	481	PM Change: PM Feed: A
			_	Alive		рН	7.37	PH21	WQ: 8773
10	4/14/18	A 10	вЧ	0 9	D 9	D.O. (mg/L)	M.6	2113	Termination Counts: R6
		E 10	FiO	^G 7	н 10	Conductivity (µS/cm)	412	ECII	Termination Time: 115
						Alkalinity (mg/L)	V 56	200 CONT. CO	
						Hardness (mg/L)	133		
		1	Management of the control of the con			Ammonia (mg/L)	<1.00	103800	
						Temp. (°C)	23.2	48A	


Report Date:

01 May-18 15:00 (p 1 of 4)

Test Code:

CE_0418HA_C1 | 00-9729-6588

													0.0120-00
Hyalelia 10-d Su	ırvival and G	Frowth Se	diment Te	st								Paci	fic EcoRis
Analysis ID: 1	6-1784-7961	l E	ndpoint:	Mea	n Dry Weig	ght-mg			CET	IS Version	n: CETISv	1.9.2	
Analyzed: 0	01 May-18 15	5:00 A	nalysis:	Para	metric-Tw	o Sample)		Offic	ial Result	ts: Yes		
Data Transform		Alt Hy	р						Comparis	son Resul	t		PMSD
Untransformed		C > T							WK-64R 1	failed mea	n dry weight-	mg	11.81%
Equal Variance	t Two-Samp	le Test									-		
Sample I vs	Sample	II	Test S	Stat	Critical	MSD	DF	P-Type	P-Value	Decisio	n(a:5%)		
Control Sed	WK-64R	*	2.62		1.76	0.006	14	CDF	0.0101	Significa	ant Effect		
ANOVA Table													
Source	Sum Sq	uares	Mean	Squa	are	DF		F Stat	P-Value	Decisio	n(α:5%)		
Between	0.000292	22	0.0002	2922		1		6.87	0.0201	Significa	nt Effect		
Error	0.000598	54	4.253	E-05		14				_			
Total	0.000887	76				15							
Distributional Te	ests												
Attribute	Test					Test St	at	Critical	P-Value	Decisio	n(α:1%)		
Variances	Variance	Ratio F Te	est			1.66		8.89	0.5180	Equal Va	ariances		
Distribution	Shapiro-	Wilk W No	rmality Tes	st		0.966		0.841	0.7656	Normal I	Distribution		
Mean Dry Weigh	t-mg Summ	ary											
Sample	Code	Count	Mean		95% LCL	95% U	CL	Median	Min	Max	Std Err	CV%	%Effect
CE_0418HA_C1	CS	8	0.0486	3	0.0425	0.0547		0.046	0.041	0.06	0.00258	14.99%	0.00%
		0	0.0401	1	0.0354	0.0448		0.0416	0.03	0.046	0.002	14.10%	17.58%

Hyalella azteca Weight Data Sheets

Client: Condor Earth Project #: 28676 Balance ID: Balor Sample ID: WK-642 Tare Wt Date: 4/4/5 Sign-Off: RAF

Test ID #: 77569 Final Wt Date: 4/26/18 Sign-Off: F7

Pan	Concentration Replicate	Initial Weight. (mg)	Final Weight. (mg)	# organisms	Ave Weight (mg)
1	Control A	69.96	70.56	10	0.0600
2	Sediment B	61,43	61.87	lo	0.0440
3	С	59.34	59.93	10	0.0590
4	D	60.98	61.42	10	0.0440
5	Е	64.60	65.10	16	0.0500
6	F	654	62.01	10	0.0480
7	G	59.69	60.10	10	0.0410
8	Н	61.21	61.64	10	0.0430
9	A	62.59	63.31	10	0.0420
10	В	59.43	59.77	9	0,0378
11	С	61.88	62.28	9	0.0444
12	D	65.50	65.87	01	0.0411
13	Е	65.23	6369	10	0.0460
14	F	59.11	59.41	oi	0.0300
15	G	5946	59.70	7	0.0343
16	Н	56.66	57.11	Io I	0.0450
QA1		65.19	65.19		0.0

Report Date:

01 May-18 15:00 (p 4 of 4)

Test Code:

CE_0418HA_C1 | 00-9729-6588

							Test	Code:	CE_041	8HA_C1 0	0-9729-65
Hyalella 10-d S	Survival and	Growth Sed	liment Test							Paci	fic EcoRis
Analysis ID:	01-2189-842	3 Er	ndpoint: S	urvival Rate			CET	IS Versio	n: CETISv	1.9.2	
Analyzed:	01 May-18 1	5:00 Ar	nalysis: N	lonparametric	-Two Samp	le	Offic	ial Resul	ts: Yes		
Data Transforn	n	Alt Hyp					Comparis	son Resul	t		PMSD
Angular (Correc	cted)	C > T						survival ra			5.81%
Wilcoxon Rank	k Sum Two-S	Sample Test									
Sample I v				at Critical	Ties Di	F P-Type	P-Value	Decisio	n(α:5%)		
Control Sed	FD*		52	n/a		Exact	0.0385		ant Effect		
ANOVA Table											
Source	Sum So	quares	Mean S	quare	DF	F Stat	P-Value	Decisio	n(α:5%)		
Between	0.05471	-	0.05471		1	5.91	0.0291		int Effect		
Error	0.12957	' 1	0.00925	51	14			Ū			
Total	0.18428	9			15						
Distributional 1	Tests										
Attribute	Test				Test Stat	Critical	P-Value	Decision	n(a:1%)		
Variances	Variance	e Ratio F Te	st		7.29E+13	8.89	<1.0E-37		Variances		
Distribution	Shapiro-	-Wilk W Nor	mality Test		0.826	0.841	0.0062	Non-Nor	mal Distribut	ion	
Survival Rate S	Summary										
Sample	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
CE_0418HA_C1	1 CS	8	1.000	1.000	1.000	1.000	1.000	1.000	0.000	0.00%	0.00%
D		8	0.925	0.851	0.999	0.950	0.800	1.000	0.031	9.58%	7.50%
Angular (Corre	cted) Transfo	ormed Sum	mary								
Sample	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
E_0418HA_C1	l CS	8	1.41	1.41	1.41	1.41	1.41	1.41	0	0.00%	0.00%
-D		8	1.3	1.18	1.41	1.33	1.11	1.41	0.0481	10.51%	8.28%
Braphics											
1.0						0.20					
0.9	7		7774	111							
						0.15					
8.0						0.10			• 6	•	
0.7					2	9					
0.6					Centered	₹ 0.05 E		i			
Rate					· ·	0.00		-0-0-0-0	6-0-0-0-		
Survival Rate									3		
ਲੈ _{0.4}						-0.05	• •				
0.3						-0.10					
0.2						0.20		1			
÷						-0.15					

0.5

1.0

1.5

0.1

CE_0418HA_C1

-0.15

10-Day Hyalella azteca Sediment Toxicity Test Data

Client:	Condor Earth	Project#:	28676	Organism Log #: 10880	Age: _	8-92
Species:	Hyalella azteca	Test ID#:	77570	Organism Supplier:	ABS	

			Test 1	Material		Water Qua	ality Measure	ments	G1 80
Day	Date		F	D		Parameter	Value	Meter ID	Sign-off:
			# Live	Organisms		pН	7.68	PHZI	AM Change: 5R
0	4/7/18	A 10	B 10	CIU	D 10	D.O. (mg/L)	8.0	KOII	WQ: JR
	17 1710	E (0	FIO	G //2	H 10	Conductivity (µS/cm)	432	ECIL	Initiation Time: 1430
						Alkalinity (mg/L)	55		Initiation Counts: NB
						Hardness (mg/L)	1131		Confirmation Counts:
						Ammonia (mg/L)	21.00	DR3800	PM Feed: 1/3
						Temp. (°C)	22.6	48A	
			# of M	ortalities		Old D.O. (mg/L)	6.5	RD13	AM Change: JR WQ: 31
1	4/8/18	A 6	B 0	c O	D O	New D.O. (mg/L)	7.6	RD13	Mortality Counts: 50
	11 1 1 5	E O	F O	G O	н О	Temp. (°C)	22.4	48A	PM Change: T PM Feed: T
			# of M	ortalities		Old D.O. (mg/L)	5.8	RDII	AM Change: 5R WQ: 3R
2	4/9/18	A 0	ВО	c 6	D 0	New D.O. (mg/L)	7.0	RDII	Mortality Counts: 3R
	17 7 70	E C	F O	G O	н О	Temp. (°C)	22.6	484	PM Change: PM Feed:
			# of M	ortalities		Old D.O. (mg/L)	5.9	RDIZ	AM Change: WQ: YU
3		A 0	B 0	c 0	D D	New D.O. (mg/L)	6.6	PD12	Mortality Counts: Lu
	4/10/18	E Ø	Fo	G 0	H 0	Temp. (°C)	22.8	48 A	PM Change PM Feed PM
	1.1.		# of M	ortalities		Old D.O. (mg/L)	4.1	ROIO	AM Change: DM WQ: UM
4	4/11/18	A O	B 0	c O	PO	New D.O. (mg/L)	7,2	RDIO	Mortality Counts:
	1.0	E O	F Ò	g 9	н О	Temp. (°C)	22.8	484	PM Change: 0 M PM Feed: 6 M
			# of M	lortalities		Old D.O. (mg/L)	40	RIXO	AM Change: RAP WQ: PAP
5	4/12/18	^ ()	B ()	c 0	D ()	New D.O. (mg/L)	7.5	ROID	Mortality Counts: PAP
		E 🔿	E ()	G 0	н 🔿	Temp. (°C)	23.1	48A	PM Change: MY PM Feed: My
			# of M	ortalities		Old D.O. (mg/L)	5.3	RDIL	AM Change: F 7 WQ: F 7
6	4113/18	^ ()	B 0	c 0	D O	New D.O. (mg/L)	7.6	RDIO	Mortality Counts: F 7
		E Q	F O	G O	н б	Temp. (°C)	23.4	48A	PM Change: FT PM Feed: FT
			# of M	ortalities		Old D.O. (mg/L)	4.3	RDIO	AM Change: NY WQ: MY
7	4/14/18	A 0	ВО	c O	D O	New D.O. (mg/L)	7.1	RDIO	Mortality Counts: MHL
		E Q	F O	6 Q	н О	Temp. (°C)	23.4	48A	PM Change: WY PM Feed: MY
	11/1+10			ortalities		Old D.O. (mg/L)	4.2	RD12	AM Change: OM WQ: OM
8	4/15/18	^ O	B	c O	DO	New D.O. (mg/L)	7.2	RD12	Mortality Counts: () //
		E 0	FO	G Q	н Ә	Temp. (°C)	23.4	48A	PM Change: DM PM Feed: 0M
			# of M	lortalities		Old D.O. (mg/L)	4.5	RDII	AM Change: No. WQ:
9	4/16/18	^ 0	в 0	c 0	D 0	New D.O. (mg/L)	75	RDII	Mortality Counts:
	Histio	E D	F 0	g O	н ()	Temp. (°C)	23.3	48A	PM Change: PM Feed: 2
			# .	Alive		pН	7.17	PH21	WQ: 8573
10	4/17/18	10	ВО	c 10	D 8	D.O. (mg/L)	3.1	RD13	Termination Counts: RU
	1	E ()	F 8	g 9	н 9	Conductivity (µS/cm)	411	ELIL	Termination Time: [[5
						Alkalinity (mg/L)	V 53		
			MXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX			Hardness (mg/L)	120		
			The second secon			Ammonia (mg/L)	1.00	013900	
						Temp. (°C)	23.2	484	

Report Date:

01 May-18 15:00 (p 2 of 4)

Test Code:

CE_0418HA_C1 | 00-9729-6588

1	Hy	yalella	10-d	Survival	and	Growth	Sediment	Test
---	----	---------	------	----------	-----	--------	----------	------

Pacific EcoRisk

Analysis ID: 08-5843-2231 Analyzed:

01 May-18 15:00

Endpoint: Mean Dry Weight-mg Analysis:

Parametric-Two Sample

CETIS Version: CETISv1.9.2

Official Results: Yes

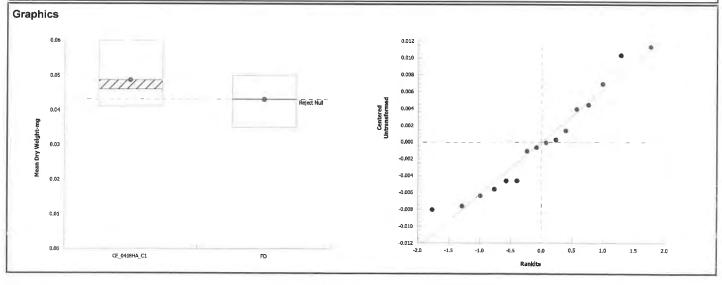
Data Transform Alt Hyp Untransformed C > T

Comparison Result **PMSD** FD passed mean dry weight-mg 11.48%

Equal Variance t Two-Sample Test

Sample I	vs	Sample II	Test Stat	Critical	MSD	DF	P-Type	P-Value	Decision(a:5%)
Control Sed		FD	1.76	1.76	0.006	14	CDF	0.0505	Non-Significant Effect

ANOVA Table


	_					
Sum Squares	Mean Square	DF	F Stat	P-Value	Decision(α:5%)	
0.0001238	0.0001238	1	3.08	0.1010	Non-Significant Effect	
0.0005623	4.016E-05	14			-	
0.0006861		15				
	0.0001238 0.0005623	0.0001238	0.0001238	0.0001238	0.0001238 0.0001238 1 3.08 0.1010 0.0005623 4.016E-05 14	0.0001238

Distributional Tests

Attribute	Test	Test Stat	Critical	P-Value	Decision(α:1%)
Variances	Variance Ratio F Test	1.95	8.89	0.3970	Equal Variances
Distribution	Shapiro-Wilk W Normality Test	0.94	0.841	0.3537	Normal Distribution

Mean Dry Weight-mg Summary

Sample	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
CE_0418HA_C1	CS	8	0.0486	0.0425	0.0547	0.046	0.041	0.06	0.00258	14.99%	0.00%
FD		8	0.0431	0.0387	0.0474	0.0432	0.035	0.05	0.00184	12.11%	11.44%

Hyalella azteca Weight Data Sheets

Client: Condor Earth Project #: 28676 Balance ID: Pulcy
Sample ID: Tare Wt Date: Pulcy
Test ID #: 77570 Final Wt Date: 4/26/1/6 Sign-Off: F7

Pan	Concentration Replicate	Initial Weight.	Final Weight.	# organisms	Ave Weight (mg)	
1	Control A	69.96	76.56	10	0.0600	
2	Sediment B	61.437	61.87	10	0,0440	
3	С	59.34	59,93	10	0.0590	
4	D	CO.99	61.42	10	0.0440	
5	Е	CH.60	65.10	ιυ	0,0500	
6	F	6.54	62.02	10	0.0480	
7	G	59.69	60.10	10	0.0410	
8	Н	G1.21	61.64	10	0,0430	
17	A	62.26	62.69	10	0.0430	
18	В	66.56	66.98	w	0.0420	
19	С	60.72	61.19	W	0.0470	
20	D	63.39	63.76	8	0.0475	
21	Е	61.07	61.57	lu	0.0500	
22	F	63.58	64.16	8	0.0350	
23	G	58-07	58.40	9	v. 0367	
24	Н	66.81	67.20	9	0.0433	
QA2		64:75	64-78		0.0	

Sediment Toxicity Lab Report June 5, 2018 at WK-64R Dry Weather Event

Micheline Kipf Condor Earth Technologies, Inc. 188 Frank West Circle, Suite I Stockton, CA 95206 June 26, 2018

Dear Micheline:

I have enclosed a copy of our report "An Evaluation of the Toxicity of City of Stockton Stormwater Program Sediment Samples" for the samples that were collected June 5, 2018. The results of this testing are summarized below:

Summary of Stockton Stormwater Program sediment effects on <i>Hyalella azteca</i> .							
Comple Station	Toxicity Present Relative to Lab Control?						
Sample Station	Survival	Growth					
WK-64R	No	YES					
FD	No	YES					

If you have any questions regarding the performance and interpretation of this testing, please contact my colleague Stephen Clark or myself at (707) 207-7760.

Sincerely,

Michael McElroy Senior Project Manager

Pacific EcoRisk is accredited in accordance with NELAP (ORELAP ID 4043). Pacific EcoRisk certifies that the test results reported herein conform to the most current NELAP requirements for parameters for which accreditation is required and available. Any exceptions to NELAP requirements are noted, where applicable, in the body of the report. This report shall not be reproduced, except in full, without the written consent of Pacific EcoRisk. This testing was performed under Lab Order 28974.

An Evaluation of the Toxicity of City of Stockton Stormwater Program Sediment Samples

Samples collected June 5, 2018

Prepared For:

Condor Earth Technologies, Inc. 188 Frank West Circle, Suite I Stockton, CA 95206

Prepared By:

Pacific EcoRisk 2250 Cordelia Rd. Fairfield, CA 94534 (707) 207-7760

June 2018

An Evaluation of the Toxicity of **City of Stockton Stormwater Program Sediment Samples**

Samples collected June 5, 2018

Table of Contents

		Page
1. INTRODU	JCTION	1
2. SEDIMEN	NT TOXICITY TEST PROCEDURES	1
2.2 Solid-F	t and Handling of the Sediment Samples	1
4. SUMMAR	RY AND CONCLUSIONS	3
4.1 OA/O	C Summary	3
	Appendices	
Appendix A	Chain-of-Custody Record for the Collection and Delivery of the Stock Stormwater Program Sediment Samples	ton
Appendix B	Test Data and Summary of Statistics for the Evaluation of the Toxicity Stockton Stormwater Program Sediment Samples to <i>Hyalella azteca</i>	y of

1. INTRODUCTION

In compliance with the City of Stockton Stormwater Program NPDES permit monitoring requirements, Condor Earth Technologies, Inc., has contracted Pacific EcoRisk (PER) to perform evaluations of the toxicity of selected ambient water and sediment samples. The current testing event was designed to meet the sediment monitoring requirements using sediment samples that were collected on June 5, 2018. This evaluation consisted of performing the US EPA 10-day survival and growth test with the amphipod *Hyalella azteca*. This report describes the performance and results of this testing.

2. SEDIMENT TOXICITY TEST PROCEDURES

This testing followed the guidelines established by the EPA manual "Methods for Measuring the Toxicity and Bioaccumulation of Sediment-associated Contaminants with Freshwater Invertebrates, Second Edition" (EPA/600/R-99/064).

2.1 Receipt and Handling of the Sediment Samples

On June 5, sediment samples were collected into appropriately cleaned sample containers. These samples were transported on ice and under chain-of-custody, to the PER laboratory in Fairfield, CA (Table 1). The samples were then stored at \leq 6°C until being used to initiate toxicity tests within 14 days of collection. The chain-of-custody record for the collection and delivery of the samples is presented in Appendix A.

Table 1. Sampling station and date of sediment collection for the Stockton Stormwater Program.										
Sample Station Date Collected Date Received										
WK-64R	6/5/18	6/6/18								
FD	6/5/18	6/6/18								

2.2 Solid-Phase Sediment Toxicity Testing with Hyalella azteca

The sediment toxicity test with *H. azteca* consists of exposing the amphipods to the sediment for 10 days, after which effects on survival and growth are evaluated. The specific procedures used in this testing are described below.

The *H. azteca* used in this testing were obtained from a commercial supplier (Aquatic BioSystems, Fort Collins, CO). Upon receipt at the laboratory, the amphipods were maintained in tanks containing Lab Water Control medium at 23°C and were fed a commercial Yeast-Cerophyll®-Trout chow (YCT) food amended with freeze-dried *Spirulina*.

The Control treatment sediment for this testing consisted of a composite of reference site sediments that have been maintained under culture at the PER lab for >3 months. The sediment samples were tested at the 100% concentration only. There were eight replicates for each test treatment, each replicate container consisting of a 300-mL tall-form glass beaker with a 3-cm ribbon of 540 µm mesh NITEX attached to the top of the beaker with silicone sealant. Each sediment sample was homogenized prior to loading of sediment into the test replicates. For each sediment, approximately 100 mL of sediment was then loaded into each of the test replicate containers. Each test replicate was then carefully filled with clean Lab Water Control medium (Standard Artificial Medium [SAM-5S] water). The test replicates with sediments and clean overlying water were established ~24 hrs prior to the introduction of the amphipods, and were placed in a temperature-controlled room at 23°C during this pre-test period.

After this initial 24 hr period, the overlying water in each replicate was flushed with one volume (approximately 150 mL) of fresh overlying water. For each test treatment, a small aliquot of the renewed overlying water was then collected from each of the eight replicates and composited for measurement of "initial" water quality characteristics (pH, dissolved oxygen [D.O.], conductivity, alkalinity, hardness, and total ammonia). The testing was then initiated with the random allocation of ten 12-13 day-old amphipods into each replicate, followed by the addition of 1.0 mL of *Spirulina*-amended YCT food. The test replicates were then placed in a temperature-controlled room at 23°C. At the time of test initiation, eight replicates of 10 randomly-selected organisms were collected, dried, and weighed (described below) to determine the mean dry weight of the test organisms at test initiation (T₀).

Each day, for the following nine days, each test replicate was examined and any dead amphipods were removed via pipette and the mortality recorded. A small aliquot of the overlying water in each of the eight replicates for each test treatment was then collected and composited as before for measurement of "old" D.O., after which each replicate was flushed with one volume of fresh water. Another small aliquot of the overlying water in each of the eight replicates was then collected and composited as before for measurement of "new" D.O., after which each replicate was fed 1.0 mL of *Spirulina*-amended YCT.

After 10 days exposure, testing was terminated. An aliquot of overlying water was collected from each replicate and composited for analysis of the "final" water quality characteristics. The sediments in each replicate container were then carefully sorted and sieved and the number of surviving amphipods determined. The surviving organisms were euthanized in methanol, rinsed in de-ionized water, and transferred to small pre-tared weighing pans, which were placed into a drying oven at 100°C. After drying for ~24 hrs, the pans were transferred to a desiccator to cool, and then weighed to the nearest 0.01 mg to determine the mean dry weight per surviving organism for each replicate. The resulting survival and growth (mean dry weight) data were then analyzed to evaluate any impairment due to the sediments; all statistical analyses were performed using the CETIS® statistical software (TidePool Scientific, McKinleyville, CA).

3. RESULTS

Test results are summarized in Table 2. There were no significant reductions in survival in either of the sediment samples. There were significant reductions in growth in the WK-64R sediment sample and field duplicate (FD) samples. The test data and summary of statistical analyses for this testing are presented in Appendix B.

Table 2. 1	Table 2. Data summary for the Stockton Stormwater Program sediment samples.										
Test Treatment	Test Treatment % Reduction Toxic? Mean dry weight (mg) % Reduction Toxic? (Y/N)										
Control	98.8	N/A	N/A	0.142	N/A	N/A					
WK-64R	WK-64R 97.5 1.3% N 0.127* 10.3% Y										
FD	93.8	5.1%	N	0.120*	15.3%	Y					

^{*} The response at this test treatment was significantly less than the Control sediment response (at p<0.05).

4. SUMMARY AND CONCLUSIONS

The results of this testing are summarized below. There were no significant reductions in survival in either of the sediment samples. There were significant reductions in growth in the WK-64R sediment sample and field duplicate (FD) samples.

Summary of Stockton	n Stormwater Program sediment e	ffects on <i>Hyalella azteca</i> .									
Sample Station	Sample Station Toxicity Present Relative to Lab Control?										
_	Survival Growth										
WK-64R	No	YES									
FD	No	YES									

4.1 QA/QC Summary

Test Conditions – All test conditions (pH, D.O., temperature, etc.) were within acceptable limits. All analyses were performed according to laboratory Standard Operating Procedures.

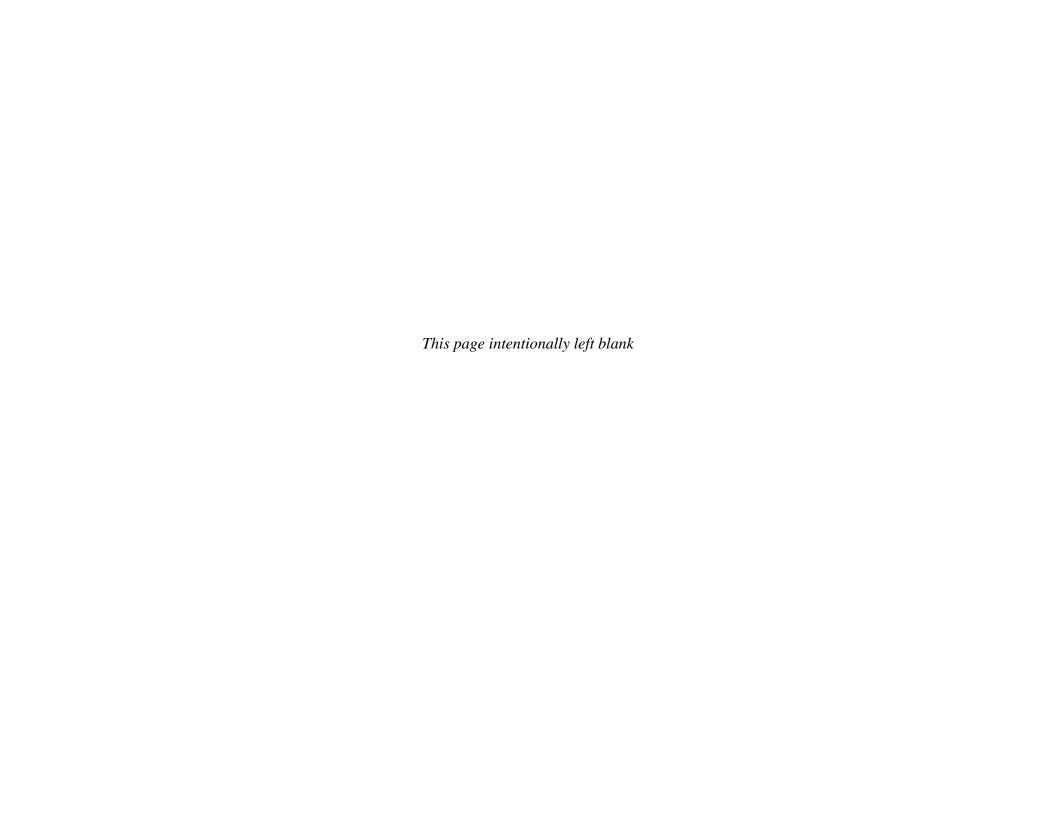
Negative Control – The biological responses for the test organisms at the Lab Control treatment were within acceptable limits.

Appendix A

Chain-of-Custody Record for the Collection and Delivery of the Stockton Stormwater Program Sediment Samples

Sample Results TAT: □Rush ✓ Standard

Condor Earth Technologies, Inc.


PO Box 3905/21663 Brian Lane Sonora, CA 95370 209.532.0361

188 Frank West Circle, Suite I Stockton, CA 95206 209.234.0518

2941 Sunrise Blvd, Suite 150 Rancho Cordova, CA 95742 916.783.2060

1739 Ashby Road, Suite B Merced, CA 95348 209.388,9601

<u>SHIPI</u>	PED TO	<u>):</u>				CC	יטאי	OK		9,532.0773	fax			34.0518 34.0538 fa	ix		916.783.2464 fax		388.1778 fax
Pacifi	c EcoR	Risk								<u>SEND</u>		LTS TO	<u>):</u>	Miche	line Do	nvie K	inf		
2250	Cordeli	ia Road									NAN E-M		_		@cond		·		
Fairfi	eld, CA	94534 (707) 207-7	7760								E-M				9				
											LW		EA.	OF F	N 37/EN 6	A II D		DEGG LA	
PROJE	ECTNA	ME/LOCATION: CO	OS Urban Disch	narq	е	EDF RE	SULT	SRE	QUIR	ED 🔲 Y	ES 🗸	NO	PLEA	SE FA			ESULTS TO ADD BAL ID:	DKESS MAF	RKED ABOVE
PROJE	ECT NO	·· 6066J-05-01		Ť					*										
SAMP	LED BY	T: (Signature)	IARA					_	azteca*		size								
Date	Time	Sample Site Name	Sample ID (if different)	Matrix	# of containers	Preservatives (see below)	ANALYSIS //METHOD:	Field Filtered	Hyalella az	TOC	Grain si						REMARKS		LAB ID#
654	1645	1718-DW34-	WK-64R	S		1		N	1	1	1						*chronic freshwater (EPA	A/600/4-91/003)	
62-18	1745	1718-DW34-	FD	s		1		N	✓	1	1						Hyalella azteca surv	ival & growth	
																	Conduct additional	pyrethroids	
																	analysis if toxicity i	is observed.	
																	Sub sample	es to be	
																	collected for	Caltest	
			n				শ্লাশ্য										TOC RL=	1 mg/L	
		Signature) Watt	Kee	Dat	e: 5/6	/18	Time:	10:4	+ 0	Receiv	red By: (Signature)	Vic	les				Date: / 19	Time:
	shed By: (Signature)					 			Receiv	ed By: (Signature)							1.36 1.35
Matrix Drie	iking Water	Waste Water	Hazardous Waste (Wa	ter)	S	Soil/Solid	su	St	torm Wate		W Grou	ınd Water		ervative 4°C (1 Na	OH 4 Na ₂ S ₂ O ₃ 5	HNO ₃	H2SO4 7 Other
			Original - Send					Ye	llow-	File							Pink - Log F		

Appendix B

Test Data and Summary of Statistics for the Evaluation of the Toxicity of the Stockton Stormwater Program Sediment Samples to *Hyalella azteca*

CETIS Summary Report

Report Date:

24 Jun-18 08:54 (p 1 of 1)

Test Code:

CE_0618HA_C1 | 20-6113-8301

Hyalella 10-d Sur	vival and G	rowth S	ediment Test							Pacif	ic EcoRisk
Batch ID: 02-	8031-3418		Test Type: S	Survival-Growtl	h (10 day)		Aı	nalyst: Be	ella Volpatti		
Start Date: 09	Jun-18 14:4	2	Protocol: E	PA/600/R-99/	064 (2000)		Di	iluent: No	t Applicable		
Ending Date: 19	Jun-18 09:1	2	Species: H	lyalella azteca	1		Ві	rine: No	t Applicable		
Duration: 9d	18h		Source: A	quatic Biosys	tems, CO		Ą	ge: 13			
Sample Code	Sample	D	Sample Date	Receip	t Date	Sample Ag	je CI	ient Name	P	roject	
CE_0618HA_C1	16-7767 -		09 Jun-18 14:			n/a (23.2 °C	C) Co	ondor Earth T	echnologi 28	3974	
WK-64R	05-9308-		05 Jun-18 16:			94h					
WK-64R-FD	01-8736-	5141	05 Jun-18 17:	45 06 Jun-	18 10:40	93h					
Sample Code	Material			ample Sourc			ation Loc	ation	Lat/Long		
CE_0618HA_C1	Sedimen			Condor Earth T	•		BQA				
WK-64R	Sedimen			ondor Earth T	_		<-64R				
WK-64R-FD	Sedimen	t	C	ondor Earth T	echnologies	s Wi	<-64R-FD				
Single Compariso	on Summar	у									
	dpoint		<u>.</u>	rison Method			P-Valu		ison Result		
14-9040-3249 Me	, ,		•	ariance t Two-			0.0245	WK-64R	failed mean	dry weight-	mg
02-3595-9304 Mea	an Dry Weig	jht-mg	Equal V	ariance t Two-	Sample Te	st	0.0236	WK-64R	-FD failed me	ean dry weig	ght-mg
12-8262-9342 Sur	vival Rate		Wilcoxo	n Rank Sum T	wo-Sample	Test	0.5000	WK-64R	passed surv	ival rate	
05-5347-0094 Sur	vival Rate		Equal V	ariance t Two-	Sample Te	st 	0.0533	WK-64R	-FD passed s	survival rate	
Mean Dry Weight	-mg Summ	агу									
Sample	Code	Coun	t Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
CE_0618HA_C1	CS	8	0.142	0.133	0.15	0.131	0.156	0.0035	0.00991	7.00%	0.00%
WK-64R		8	0.127	0.113	0.141	0.109	0.159	0.00578	0.0164	12.89%	10.31%
WK-64R-FD		8	0.12	0.0978	0.142	0.0756	0.149	0.00932	0.0264	21.99%	15.30%
Survival Rate Sur	nmary										
Sample	Code	Coun	t Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
CE_0618HA_C1	CS	8	0.988	0.958	1.000	0.900	1.000	0.013	0.035	3.58%	0.00%
WK-64R		8	0.975	0.936	1.000	0.900	1.000	0.016	0.046	4.75%	1.27%
WK-64R-FD		8	0.938	0.875	1.000	0.800	1.000	0.026	0.074	7.94%	5.06%
Mean Dry Weight-	mg Detail										
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8		
CE_0618HA_C1	CS	0.136	0.154	0.147	0.131	0.135	0.156	0.131	0.142		
WK-64R		0.124	0.123	0.159	0.111	0.124	0.109	0.123	0.142		
WK-64R-FD		0.138	0.125	0.144	0.131	0.149	0.101	0.0756	0.095		
Survival Rate Deta	ail								-		
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8		
CE_0618HA_C1	CS	1.000	1.000	1.000	0.900	1.000	1.000	1.000	1.000		
WK-64R		1.000	0.900	1.000	0.900	1.000	1.000	1.000	1.000		
WK-64R-FD		1.000	1.000	0.900	1.000	0.900	1.000	0.900	0.800		
Survival Rate Bine	omials										
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8		
CE_0618HA_C1	CS	10/10	10/10	10/10	9/10	10/10	10/10	10/10	10/10		
WK-64R		10/10	9/10	10/10	9/10	10/10	10/10	10/10	10/10		
WK-64R-FD		10/10	10/10	9/10	10/10	9/10	10/10	9/10	8/10		

Analyst: BO QA: PW

10-Day Hyalella azteca Sediment Toxicity Test Data

Client:	Condor Earth - Stockton	Project#:	28974	Organism Log #:// 004		Age: 12-13 days
Species:	Hyalella azteca	Test ID#:	78637	Organism Supplier:	ABS	

Dev	Data		Test N	laterial		Water Qu	ality Measurer	nents	Cia 00	
Day	Date		Lab C	Control		Parameter	Value	Meter ID	Sign-off:	
				rganisms		pН	7.83	PH21	AM Change;	
0	6/9/18	A 10	B 10	C	D (O	D.O. (mg/L)	8. i	RD13	wo: myc	
		E (O	FO	G 10	H 10	Conductivity (µS/cm)	,650	EC13	Initiation Time: 1442 Initiation Counts: TO	
						Alkalinity (mg/L)	1,50.4		Initiation Counts:	
						Hardness (mg/L)	126.4		Confirmation Counts: 13	
MANAGE OF STREET						Ammonia (mg/L)	21.00	DR3800	PM Feed: 50	
						Temp. (°C)	23.2	48A		
				ortalities	,	Old D.O. (mg/L)	7.4	ROLL	AM Change: D/M WQ: D/M	
1	6/10/8	A 6	B 0	° O	P 0	New D.O. (mg/L)	8,2	ROII	Mortality Counts: 6 M	
	1. [E 9	F ()	G 🔘	н О	Temp. (°C)	23.1	48A	PM Change M PM Feed: M	
	1 / /10			ortalities		Old D.O. (mg/L)	6.3	RD13	AM Change: 5R WQ: 5R	
2	6/11/18	^ O	B O	c, O	DO	New D.O. (mg/L)	7.8	PD13	Mortality Counts: ゴス	
		E ()	F O	G 🔘	H O	Temp. (°C)	23.2	48A	PM Change PM Feed TR	
	0 1 1			ortalities		Old D.O. (mg/L)	62	RAIZ	AM Change STB WQ: STB	
3	16/12/18	^ O	В	c ()	D 0	New D.O. (mg/L)	69	PHIZ	Mortality Counts:	
	-	E O	F 0	G ()	н О	Temp. (°C)	23.1	484	PM Changes PM Feed 7/2	
	11.71			ortalities		Old D.O. (mg/L)	6,1	RD13	AM Change: DM WQ: DM	
4	6/13/18	^ O	B ()	c O	D Q	New D.O. (mg/L)	7,7	RD13	Mortality Counts:) M	
		E O	F O	G 🔷	H O	Temp. (°C)	23,2	484	PM Change: MPM Feed Change	
	chu la		# of Mo	ortalities		Old D.O. (mg/L)	7.7-	RDIO	AM Change: MR WQ: MR	
5	6/14/18	^ 0	в 0	° 0	D ()	New D.O. (mg/L)	7.8	RDID	Mortality Counts:	
		E ()	10	G ()	H O	Temp. (°C)	22.8	48A	PM Change PM Feed:	
			# of Mo	ortalities		Old D.O. (mg/L)	6.7	RBII	AM Change: The WQ: The	
6	6/15/18	^ O	B 0	c Ø	D (0	New D.O. (mg/L)	7.9	Phil	Mortality Counts: TA	
		E 0	F O	G O	H O	Temp. (°C)	23.3	484	PM Change: PM Feed: TA	
			# of Mo	ortalities		Old D.O. (mg/L)	63	ROIZ	AM Change: TA WQ: ZR	
7	6/16/18	A (O	B Ø	c 0	D (0)	New D.O. (mg/L)	8.0	R012	Mortality Counts:	
	1 1.4	E 0	F O	G O	H 0	Temp. (°C)	23-4	48A	PM Change: PM Feed: TA	
			# of Mo	ortalities		Old D.O. (mg/L)	7.1	2012	AM Change: DH WQ: DH	
8	10/17/18	^A 6	B 0	c o	D O	New D.O. (mg/L)	7.9	15015	Mortality Counts: DH	
		U	F O	G U	н О	Temp. (°C)	23.1	481-	PM Change: PH PM Feed: 11-	
			# of Mo	A		Old D.O. (mg/L)	5.7	K10+13	AM Change: WQ:	
9	6-18-18	A 0	B 0	c 0	D O	New D.O. (mg/L)	MAGINE NM	MA CHANGE	Mortality Counts:	
		E 0	F Ø	G ()	н О	Temp. (°C)	22.6	48A	PM Change: YK PM Feed: 44	
			# A			pН	7,5	PHIO	wo: 0 W	
10	Chalis	10	в 10	C10 10	D 9	D.O. (mg/L)	6.7	ROIL	Termination Counts: SMC	
:.::::::::::::::::::::::::::::::::::::		F 10 F 10 G 10 H 10				Conductivity (µS/cm)	1521	ECII	Termination Time: 0912	
		CONTROL OF THE CONTRO		THE STATE OF THE S		Alkalinity (mg/L)	,60.4			
						Hardness (mg/L)	1126			
				### #### #### ##### #### #### #### #####		Ammonia (mg/L)	21,00	DR3800		
						Temp. (°C)	22,9	Aoll		

CETIS Analytical Report

Report Date:

24 Jun-18 08:54 (p 3 of 4)

Test Code:

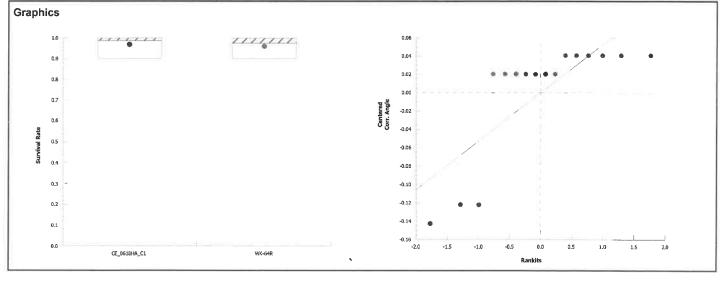
CE_0618HA_C1 | 20-6113-8301

Hyalella 10-d	Survival and Grow	th Sediment Te	est		Pacific EcoRisk	
Analysis ID:	12-8262-9342	Endpoint:	Survival Rate	CETIS Version:	CETISv1.9.2	
Analyzed:	24 Jun-18 8:53	Analysis:	Nonparametric-Two Sample	Official Results:	Yes	

Alt Hyp Comparison Result

Data Transform PMSD C > T 4.38% Angular (Corrected) WK-64R passed survival rate

Wilcoxon Rank Sum Two-Sample Test Sample I Sample II Test Stat Critical Ties DF P-Type


P-Value Decision(a:5%) WK-64R 2 14 Exact 0.5000 Non-Significant Effect Control Sed n/a

ANOVA Table Source **Sum Squares** Mean Square DF F Stat P-Value Decision(a:5%) Between 0.00166 0.00166 1 0.368 0.5536 Non-Significant Effect Error 0.0630784 0.0045056 14 Total 0.0647384 15

Distributional Tests Attribute Test Stat Critical P-Value Decision(a:1%) Variance Ratio F Test 1.71 8.89 0.4939 Variances **Equal Variances** Distribution Shapiro-Wilk W Normality Test 0.611 0.841 2.1E-05 Non-Normal Distribution

Survival Rate Sur	mmary										
Sample	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
CE_0618HA_C1	CS	8	0.987	0.958	1.000	1.000	0.900	1.000	0.013	3.58%	0.00%
WK-64R		8	0.975	0.936	1.000	1.000	0.900	1.000	0.016	4.75%	1.27%

Angular (Corrected) Transformed Summary											
Sample	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
CE_0618HA_C1	CS	8	1.39	1.34	1.44	1.41	1.25	1,41	0.0204	4.14%	0.00%
WK-64R		8	1.37	1.31	1.43	1.41	1.25	1.41	0.0267	5.50%	1.46%

CETIS Analytical Report

Mean Dry Weight-mg Summary

Code

CS

Count

8

Mean

0.142

Sample

CE_0618HA_C1

Report Date:

24 Jun-18 08:54 (p 2 of 4)

Test Code:

CE_0618HA_C1 | 20-6113-8301

Hyalella 10-d Surv	vival and Growth S	ediment Test						Pacific EcoRisi
Analysis ID: 14	-9040-3249	Endpoint: Mea	n Dry Weig	ht-mg		CETI	S Version: CETISv1.9.2	
Analyzed: 24	Jun-18 8:53	Analysis: Para	ametric-Two	Sample		Offic	ial Results: Yes	
Data Transform	Alt H	ур				Comparis	on Result	PMSD
Untransformed	C > T					WK-64R f	ailed mean dry weight-mg	8.42%
Equal Variance t	Two-Sample Test							
Sample I vs	Sample II	Test Stat	Critical	MSD DF	P-Type	P-Value	Decision(α:5%)	
Control Sed	WK-64R*	2.16	1.76	0.012 14	CDF	0.0245	Significant Effect	
ANOVA Table								
Source	Sum Squares	Mean Squa	are	DF	F Stat	P-Value	Decision(a:5%)	
Between	0.0008507	0.0008507		1	4.65	0.0489	Significant Effect	
Error	0.0025606	0.0001829		14				
Total	0.0034112			15				
Distributional Tes	ts							
Attribute	Test			Test Stat	Critical	P-Value	Decision(α:1%)	
Variances	Variance Ratio F	Test		2.72	8.89	0.2096	Equal Variances	
Distribution	Shapiro-Wilk W N	lormality Test		0.922	0.841	0.1831	Normal Distribution	

95% UCL Median

0.139

0.15

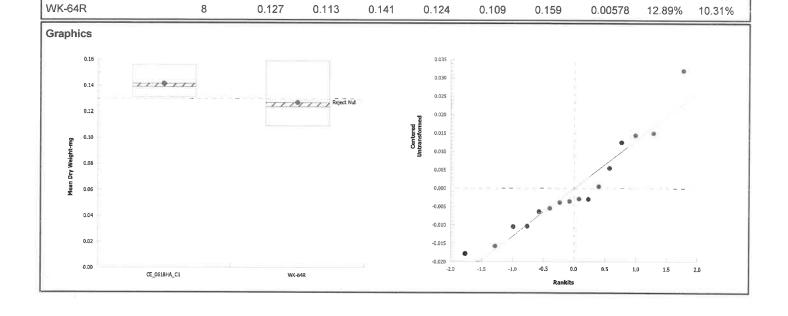
Min

0.131

Max

0.156

Std Err


0.0035

CV%

7.00%

%Effect

0.00%

95% LCL

0.133

Analyst:_____QA:_____

10-Day Hyalella azteca Sediment Toxicity Test Data

Client:	Condor Earth - Stockton	Project#:	28974	Organism Log #: 11004	Age: 12-13 days
Species:	Hyalella azteca	Test ID#:	78636	Organism Supplier: ABS	ű

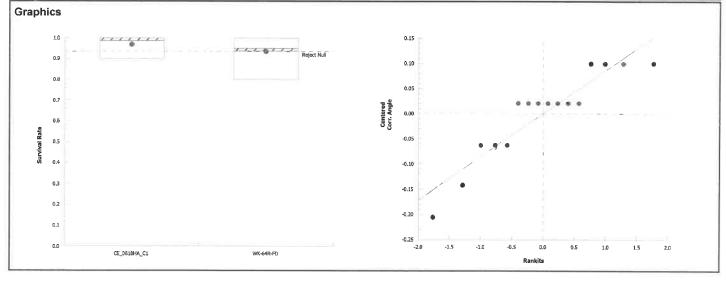
		Ι	Test I	Material		Water Qua	ality Measuren	nents	G
Day	Date		WK-6	4R		Parameter	Value	Meter ID	Sign-off:
				Organisms		рН	7.44	PH21	AM Change: MY
0	6/9/18	A 10	B / D	C 10	D 10	D.O. (mg/L)	7.7	RD13	wo: Myr
		E 10	F 10	G 10	H 10	Conductivity (µS/cm)	399	EL13	Initiation Time: 1445
		X X X X X X X X X X X X X X X X X X X	20			Alkalinity (mg/L)	40.8		Initiation Counts: JO
						Hardness (mg/L)	112.4		Confirmation Counts: VB
						Ammonia (mg/L)	41.00	DR3800	PM Feed: Jo
						Temp. (°C)	23.3	48A	
	100			ortalities		Old D.O. (mg/L)	7,4	ROII	AM Change: D / WQ;) //
1	6/10/18	A . O	B ()	c 0	P O	New D.O. (mg/L)	8,3	RDII	Mortality Counts: D M
	4/10/10	E ()	F O	G O	н О	Temp. (°C)	23,1	484	PM Change M PM Fee M
			# of M	ortalities		Old D.O. (mg/L)	5.0	PD13	AM Changer 52 WQ: JR
2-	6/14/18	^ O	B ()	° O	D O	New D.O. (mg/L)	7.4	KD13	Mortality Counts: 52
		E ()	F O	G O	н О	Temp. (°C)	23.2	48A	PM Change 5 R PM Feed JR
	. / ;			ortalities		Old D.O. (mg/L)	404	RVIZ	AM Change: WQ: SVB
3	6/12/18	A ()	ВО	° 0	D O	New D.O. (mg/L)	3.9	RAIZ	Mortality Counts: 5773
	1 "	E ()	F O	G ()	н О	Temp. (°C)	23.1	484	PM Change: PM Feed. 777
	Alex .			ortalities		Old D.O. (mg/L)	4.8	RO13	AM Change: M WQ: OM
4	6/13/18	A 0	В	° O	O	New D.O. (mg/L)	7,3	RD13	Mortality Counts: () M
		E O	F O	G O	н О	Temp. (°C)	2312	184	PM Change W PM Feed: W
	chale			ortalities	*	Old D.O. (mg/L)	7. M. 4/14/18	ROLO	AM Change: #K WQ: #K
5	G/14/18	A 0	в 0	° 0	D 0	New D.O. (mg/L)	6.7	ROID	Mortality Counts:
		E 0	10	G 0	н О	Temp. (°C)	22.8	481	PM Change: PM Feed:
				ortalities	To.	Old D.O. (mg/L)	5.2	RAII	AM Change: TA WQ: TA
6	6/15/18	A 0	B 0	c ()	D O	New D.O. (mg/L)	7.3	RDII	Mortality Counts: TA
		* (FO	G (2)	н О	Temp. (°C)	23.3	48A	PM Change: PM Feed:
	1 1			ortalities**	To .	Old D.O. (mg/L)	4.6	ROIZ	AM Change: AWQ: UL
7	6/16/14	^ 0	B 0	c O	D 0	New D.O. (mg/L)	7.5	ROIZ	Mortality Counts: TA
	10	E 0	FO	6 D	H O	Temp. (°C)	23.5	484	PM Change: PM Feed. 14
			_	ortalities	lp (2)	Old D.O. (mg/L)	5.5		AM Change: D (4 WQ: DH
8	6/17/18	A Ø	B 0	6	P 0	New D.O. (mg/L)	7.5	RDIZ	Mortality Counts: 5 4
		E D	F O	6 0	H 0	Temp. (°C)	23.1	48A	PM Change: Dit PM Feed: D H
	110.10	Δ.	5	ortalities To	In ~	Old D.O. (mg/L)	5.0	RD13	AM Change: WQ: KM KM Mortality Counts KM
9	6/11/13	^ O	B 0	C D	D 0	New D.O. (mg/L)	N/M	N/M	Mortality Counts:
		E 0	F O	G 0	H O	Temp. (°C)	22.7	48A	PM Change PM Feed: W
		Α .		Alive	In.	pH	7.26	- Indiana -	wo: DM.
10	0/19/18	10	В О	c iD	D 9	D.O. (mg/L)	416	RDII	Termination Counts: SMC
	\$2.133.133.133.133.134.134.134.	E 10	F	10	H (0	Conductivity (μS/cm)	458	EGII	Termination Time:
		MINING AND			NAME	Alkalinity (mg/L)	158	N 0 0 0 0 0 0 0 0 0	
						Hardness (mg/L)	no		
						Ammonia (mg/L)	4100	R3800	
						Temp. (°C)	22.5	484	

CETIS Analytical Report

Report Date:

24 Jun-18 08:54 (p 4 of 4)

Test Code:


CE_0618HA_C1 | 20-6113-8301

Hyalella 10-c	Surv	rival and Growth	Sediment Te	est							Pacific EcoRisk
Analysis ID: Analyzed:		5347-0094 Jun-18 8:53	Endpoint: Analysis:		ival Rate metric-Tw	o Sampl	e			IS Version: CETISv1.9	.2
Data Transfo	rm	Alt	Нур						Comparis	son Result	PMSD
Angular (Corr	ected) C >	Т						WK-64R-I	FD passed survival rate	5.41%
Equal Variar	ice t T	wo-Sample Test									
Sample I	vs	Sample II	Test	Stat	Critical	MSD	DF	P-Type	P-Value	Decision(α:5%)	
Control Sed		WK-64R-FD	1.72		1.76	0.081	14	CDF	0.0533	Non-Significant Effect	
ANOVA Tabl	9										
Source		Sum Squares	Mean	Squa	ire	DF		F Stat	P-Value	Decision(a:5%)	
Between		0.0248699	0.024	8699		1		2.97	0.1066	Non-Significant Effect	
		0.117101	0.008	3644		14					
Error		0.117101	0.000	0011							

Distributional Test	S				
Attribute	Test	Test Stat	Critical	P-Value	Decision(α:1%)
Variances	Variance Ratio F Test	4.04	8.89	0.0856	Equal Variances
Distribution	Shapiro-Wilk W Normality Test	0.867	0.841	0.0241	Normal Distribution

Survival Rate Sun	nmary										
Sample	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
CE_0618HA_C1	CS	8	0.987	0.958	1.000	1.000	0.900	1.000	0.013	3.58%	0.00%
WK-64R-FD		8	0.937	0.875	1.000	0.950	0.800	1.000	0.026	7.94%	5.06%

Angular (Correcte	ed) Transfo	rmed Sumn	nary								
Sample	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
CE_0618HA_C1	CS	8	1.39	1.34	1.44	1.41	1.25	1.41	0.0204	4.14%	0.00%
WK-64R-FD		8	1.31	1.22	1.41	1.33	1.11	1.41	0.0409	8.82%	5.67%

Analyst: QA: June

Hyalella azteca Weight Data Sheets

Client: Condor Earth - Stockton Project #: 28974 Balance ID: $\beta A \angle U = 0$ Sample ID: $W \angle U = 0$ Tare Wt Date: $\frac{1}{20} = 0$ Final Wt Date: $\frac{1}{20} = 0$ Sign-Off: $\frac{1}{20} = 0$ Test ID #: Sign-Off: $\frac{1}{20} = 0$

Pan	Concentration Replicate	Initial Weight. (mg)	Final Weight. (mg)	# organisms	Ave Weight (mg)
1	Control A	62.15	63.5	10	0.136
2	Sediment B	65.30	66.84	10	0.154
3	С	64.27	65.74	10	0.147
4	D	59.39	60.57	William +0 9	0.1311
5	Е	59.16	60.5	10	0.135
6	F	59.10	60.66	10	0.156
7	G	59.87	61.18	10	0.131
8	Н	61.90	63.32	ιδ	0.142
9	A	65.42	66.66	10	0.124
10	В	69.55	70.66	9	0.1233
11	C	67.49	69.08	10	0.159
12	D	60.21	61.21	9	0.1(1)
13	Е	60.58	61.82	10	0.124
14	F	62.69	63.78	10	0.109
15	G	64.07	65.30	ι¢	0.123
16	Н	74.70	76.12	10	0.142
QA3		66.78	66.80		

CETIS Analytical Report

Report Date:

24 Jun-18 08:54 (p 1 of 4)

Test Code:

CE_0618HA_C1 | 20-6113-8301

1	Hyalella	10-d	Survival	and	Growth	Sediment	Test
---	----------	------	----------	-----	--------	----------	------

Pacific EcoRisk

Analysis ID: 02-3595-9304 Analyzed:

24 Jun-18 8:53

Endpoint: Mean Dry Weight-mg Analysis: Parametric-Two Sample **CETIS Version:** CETISv1.9.2 Official Results: Yes

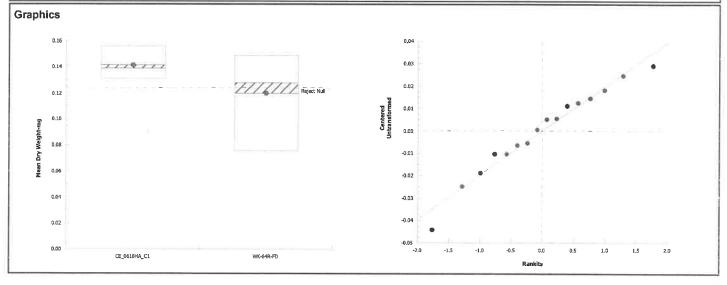
PMSD

Data Transform Alt Hyp Comparison Result WK-64R-FD failed mean dry weight-mg Untransformed C > T 12.39%

Equal Variance t Two-Sample Test

Sample I	VS	Sample II	Test Stat	Critical	MSD	DF P-Type	P-Value	Decision(α:5%)
Control Sed		WK-64R-FD*	2.17	1.76	0.018	14 CDF	0.0236	Significant Effect

ANOVA	Table
-------	-------


AITOVA TADIE						
Source	Sum Squares	Mean Square	DF	F Stat	P-Value	Decision(a:5%)
Between	0.0018754	0.0018754	1	4.73	0.0473	Significant Effect
Error	0.0055509	0.0003965	14			
Total	0.0074263		15			

Distributional Tests

Attribute	Test	Test Stat	Critical	P-Value	Decision(a:1%)
Variances	Variance Ratio F Test	7.07	8.89	0.0194	Equal Variances
Distribution	Shapiro-Wilk W Normality Test	0.969	0.841	0.8279	Normal Distribution

Mean Dry Weight-mg Summary

Sample	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
CE_0618HA_C1	CS	8	0.142	0.133	0.15	0.139	0.131	0.156	0.0035	7.00%	0.00%
WK-64R-FD		8	0.12	0.0978	0.142	0.128	0.0756	0.149	0.00932	21.99%	15.30%

10-Day Hyalella azteca Sediment Toxicity Test Data

Client:	Condor Earth - Stockton	Project#:	28974	Organism Log #:		Age: 12-13 days
Species:	Hyalella azteca	Test ID#:	78637	Organism Supplier:	ABS	

		Test Material			Water Qu	ality Measure	ments		
Day	Date	WK	-64R	- FD		Parameter	Value	Meter ID	Sign-off:
			# Live C	Organisms		pН	7.42	PH21	AM Change:
0	6/9/18	A 10	B / D	C 10	D (O	D.O. (mg/L)	7.7	2D13	wo: Myr
		E /D	F io	G 10	H 10	Conductivity (µS/cm)	399	EC13	Initiation Time: / 4 4 7
X 12 12 12 12 12 12 12 12 12 12 12 12 12						AJkalinity (mg/L)	41.6		Initiation Counts:
						Hardness (mg/L)	/ 112_		Confirmation Counts
X 23 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4						Ammonia (mg/L)	4.00	DR3800	PM Feed: J
341474						Temp. (°C)	233	48A	
			# of M	ortalities		Old D.O. (mg/L)	7.4	ROIL	AM Change: WQ: WQ:
1	6/10/18	^ 0	В	c O	D O	New D.O. (mg/L)	8,3	ROII	Mortality Counts: 0
	عا اما ام	G a	F ()	G O	н О	Temp. (°C)	23,2	48A	PM Change M PM Feed M
		180	# of M	ortalities		Old D.O. (mg/L)	5.5	RD13	AM Change: JR WQ: JR
2	6/1/18		В	c O	D O	New D.O. (mg/L)	7.1	RD13	Mortality Counts: JR
	0, ,	E O	F O	G O	н О	Temp. (°C)	23.3	48A	PM Change: 3 PM Feed R
	. (, , ,		# of M	ortalitieş		Old D.O. (mg/L)	4.4	RUIZ	AM Change STB WQ STB
3	6/12/18	^ (P)	в. ()	c (2)	D. ()	New D.O. (mg/L)	5.9	2012	Mortality Counts SON3
	1.10	E ()	F ()	G ()	н ()	Temp. (°C)	23.1	48 A	PM Change: PM Feed: PM
	Missin		# of M	ortalities	`	Old D.O. (mg/L)	SIZ	RDB	AM Change: WQ: WQ:
4	6/13/18	0	в О	°O	D O	New D.O. (mg/L)	7,1	R013	Mortality Counts:
		E ()	F O	G ()	н О	Temp. (°C)	23.2	48A	PM Change: PM Fee I:
	. , ,			ortalities		Old D.O. (mg/L)	5.4	ROID	AM Change: R WQ: #R
5	6/14/18	U	в О	c O	D 0	New D.O. (mg/L)	6,6	RDIU	Mortality Counts:
		E ()	F O	G O	H D	Temp. (°C)	22.8	484	PM Change: PM Feed:
	, ,		# of M	ortalities		Old D.O. (mg/L)	5.6	RDII	AM Change: TAWQ: TA
6	6/15/18		В 0	° 0	D 0	New D.O. (mg/L)	7-3	RDII	Mortality Counts: 74
	4 1	E O	F O	G O	H O	Temp. (°C)	23.2	484	PM Change: APM Feed: 7
				ortalities		Old D.O. (mg/L)	4.7	RPIZ	AM Change: TAWOM
7	6/16/18	^A 0	B O	° O	D 0	New D.O. (mg/L)	7.5	RDIZ	Mortality Counts: TA
	1 10	E 0	0	6 D	H 6/	Temp. (°C)	23.6	48A	PM Change: PM Feed:
				ortalities		Old D.O. (mg/L)	6.3	RDIZ	AM Change: Du WQ: DH
8	6/17/18	A 0	В О	c 0	D 0	New D.O. (mg/L)	7,7	2012	Mortality Counts: D14
		E O	O	G O	н О	Temp. (°C)	23.1	484	PM Change: DH PM Feed: DH
	1111			ortalities:		Old D.O. (mg/L)	4,3	RD13	AM Change: KM WQ: KM
9	9 6/19/18		B 0	° O	D ()	New D.O. (mg/L)	N/M	N/M	Mortality Counts:
		E ()	F 0	G O	H D	Temp. (°C)	23.0	48A	PM Changey PM Feed: YM
				live		pН	7,35	PHIA	WO: DM
10	6/19/18	10	B 10	c q	D 10	D.O. (mg/L)	4.8	RUII	Termination Counts: 5MC
2 242 242		е 9	Eliano 91 10	Gumit O 9	1 ^H 8	Conductivity (µS/cm)	431	E(1)	Termination Time: 0912
						Alkalinity (mg/L)	1, 58	2	
	MARKATAN AND AND AND AND AND AND AND AND AND A	MANAGEMENT OF THE PROPERTY OF		**************************************		Hardness (mg/L)	136		
						Ammonia (mg/L)	21:00	DR3800	
						Temp. (°C)	22.5	48A	

Hyalella azteca Weight Data Sheets

Client: Condor Earth - Stockton Project #: 28974 Balance ID: $\frac{\beta A L O A}{\delta A}$ Sample ID: $\frac{\beta A L O A}{\delta A}$ Tare Wt Date: $\frac{\delta A L O A}{\delta A}$ Test ID #: 78637 Final Wt Date: $\frac{\delta A L O A}{\delta A}$ Sign-Off: $\frac{\delta A L O A}{\delta A}$

Pan	Concentration Replicate	Initial Weight. (mg)	Final Weight. (mg)	# organisms	Ave Weight (mg)
1	Control A	62.15	63.51	10	0.136
2	Sediment B	65.30	66.84	10	0.154
3	C	64.27	65.74	10	0.147
4	D	59.39	60.57	9	0.1311
5	Е	59.16	60.51	10	0.135
6	F	59.10	60.66	16	0.156
7	G	59.87	61.18	10	0.131
8	Н	61.90	63.32	10	0.142
17	A	63.20	64.58	10	0.138
18	В	62.93	64.18	10	0.125
19	С	65-23	66.53	q	0.1444
20	D	62.39	63.70	16	0.131
21	Е	74.65	75.99	a	0.1489
22	F	64.86	65.87	10	6.161
23	G	62.84	63.52	9	0.0756
24	Н	66.48	67.24	8	0.095
QA3		66.78	66.80		

Hyalella azteca Weight Data Sheets

Client: Condor Earth - Stockton Test Init Date: 6/9/18 Balance ID: DALOY

Sample ID: T0 Tare Wt Date: 6/9/18 Sign-Off: WYLL

Test ID: 78636 - 78637 Final Wt Date: 61416 Sign-Off: RAP

Project #: _____28974

Pan	Concentration Replicate	Initial Weight. (mg)	Final Weight. (mg)	# Organisms	Ave Weight (mg)
1	Control Sed. A	64.33	64.61	10	0.028
2	В	74.32	74.52	10	0.020
3	C	71.92	72:34	10	0.042
4	D	69.02	69.44	10	0.042
5	Е	80.93	81.35	10	0.042
6	F	69.49	69.86	10	0.037
7	G	67.52	6% OH	110	0.052
8	Н	59.51	59.93	10	0.042
QA		60.23	60.21		

Appendix E 2017-2018 Water Column Toxicity Results

Water Column Toxicity Lab Report November 16, 2017 at DC-65R Wet Weather Event

Micheline Kipf Condor Earth Technologies, Inc. 188 Frank West Circle, Suite I Stockton, CA 95206

December 14, 2017

Micheline:

I have enclosed our report "An Evaluation of the Chronic Toxicity of the City of Stockton Stormwater Program Ambient Water Samples" for testing performed on the ambient water samples collected on November 16, 2017. The results of this testing are summarized below:

Toxicity summary for the Stockton Stormwater Program ambient water samples.						
	Toxicity relative to the Lab Control treatment?					
Sample ID	Ceriodapi	hnia dubia	Fathead Minnow			
	Survival	Reproduction	Survival	Growth		
DC-65R	no	no	no	no		
FD	no	no	no	no		

Chronic Toxicity of Urban Ambient Waters to Ceriodaphnia dubia

There were no significant reductions in C. dubia survival or reproduction in the DC-65R or FD samples.

Chronic Toxicity of Urban Ambient Waters to Fathead Minnows

There were no significant reductions in fathead minnow survival or growth in the DC-65R or FD samples.

If you have any questions regarding the performance and interpretation of these tests, please contact my colleague Stephen Clark or myself at (707) 207-7760.

Sincerely,

Michael McElroy Project Manager

Pacific EcoRisk is accredited in accordance with NELAP (ORELAP ID 4043). Pacific EcoRisk certifies that the test results reported herein conform to the most current NELAP requirements for parameters for which accreditation is required and available. Any exceptions to NELAP requirements are noted, where applicable, in the body of the report. This report shall not be reproduced, except in full, without the written consent of Pacific EcoRisk. This testing was performed under Lab Order 28160.

An Evaluation of the Chronic Toxicity of the City of Stockton Stormwater Program Ambient Water Samples

Samples collected November 16, 2017

Prepared For

Condor Earth Technologies, Inc. 188 Frank West Circle, Suite I Stockton, CA 95206

Prepared By

Pacific EcoRisk 2250 Cordelia Rd. Fairfield, CA 94534 (707) 207-7760

December 2017

An Evaluation of the Chronic Toxicity of the City of Stockton Stormwater Program Ambient Water Samples

Samples collected November 16, 2017

Table of Contents

		Page
1. INTRODU	CTION	1
2. CHRONIC	TOXICITY TEST PROCEDURES	1
2.1 Sample	Receipt and Handling	1
2.2 Surviva	al and Reproduction Toxicity Testing with Ceriodaphnia dubia	1
	al and Growth Toxicity Testing with Larval Fathead Minnows	
	c Effects of Ambient Water Samples on Ceriodaphnia dubia	
	c Effects of Ambient Water Samples on Fathead Minnows	
	Y AND CONCLUSIONS	
	Summary	
	Appendices	
Appendix A	Chain-of-Custody Record for the Collection and Delivery of the San	nnlas
Appendix A	Chain-or-Custody Record for the Concetion and Derivery of the San	iipies
Appendix B	Test Data and Summary of Statistics for the Evaluation of the Chron of the Ambient Water Samples to <i>Ceriodaphnia dubia</i>	nic Toxicity
Appendix C	Test Data and Summary of Statistics for the Evaluation of the Chron of the Ambient Water Samples to Fathead Minnows	nic Toxicity

1. INTRODUCTION

Condor Earth Technologies, Inc., has contracted Pacific EcoRisk (PER) to evaluate the chronic toxicity of ambient water samples. This evaluation consisted of performing the following US EPA freshwater chronic toxicity tests:

- 3-brood survival and reproduction test with Ceriodaphnia dubia; and
- 7-day survival and growth test with larval fathead minnows (*Pimephales promelas*).

The current evaluation was performed using ambient water samples collected on November 16, 2017 and designated DC-65R and FD. This report describes the performance and results of these tests.

2. CHRONIC TOXICITY TEST PROCEDURES

This testing followed the guidelines established by the EPA manual "Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms, Fourth Edition" (EPA-821-R-02-013).

2.1 Sample Receipt and Handling

On November 16, ambient water samples were collected into appropriately cleaned sample containers. The samples were transported and delivered on ice and under chain-of-custody to the PER laboratory in Fairfield, CA. Upon receipt at the laboratory, aliquots of the samples were collected for analysis of initial water quality characteristics (Table 1). The samples were then stored at \leq 6°C, except when being used to prepare test solutions. The chain-of-custody record for the collection and delivery of these samples is presented in Appendix A.

Table 1. Initial water quality characteristics of the samples.									
Sample Receipt Date	Sample ID	Temp.	рН	D.O. (mg/L)	Alkalinity (mg/L)	Hardness (mg/L)	Conductivity (µS/cm)	Total Ammonia (mg/L N)	
11/17/17	DC-65R	5.2	7.06	9.9	56.4	53.6	240	<1.0	
11/17/17	FD	10.6*	6.95	8.0	48.8	55.2	219	<1.0	

^{* -} Cooler temperature was 2.1°C at log-in; client was notified and approved proceeding with testing.

2.2 Survival and Reproduction Toxicity Testing with Ceriodaphnia dubia

The chronic toxicity test with *C. dubia* consists of exposing neonate organisms to the ambient water for the length of time it takes for the Control treatment females to produce three broods (typically 6-8 days), after which effects on survival and reproduction are evaluated. The specific procedures used in this testing are described below.

The Lab Water Control medium for this testing consisted of a moderately hard synthetic reconstituted freshwater, prepared by addition of reagent grade chemicals to Type 1 lab water. The ambient water sample was tested at the 100% concentration only. For each test treatment, a 200 mL aliquot of test solution was amended with the alga *S. capricornutum* and Yeast-Cerophyll®-Trout Food (YCT) to provide food for the test organisms. "New" water quality characteristics (pH, D.O., and conductivity) were measured on these food-amended test solutions prior to use in this testing.

There were 10 replicates for each test treatment, each replicate consisting of 15 mL of test solution in a 30-mL plastic cup. The tests were initiated by allocating one neonate (<24 hours old, and within 8-hours of age) *C. dubia*, obtained from in-house laboratory cultures, into each replicate cup. The test replicate cups were placed into a temperature-controlled room at 25°C, under cool white fluorescent lighting on a 16L:8D photoperiod.

Each day of the test, fresh test solutions were prepared and characterized as before, and a new set of replicate cups were prepared. The test replicates containing the test organisms were examined, with surviving organisms being transferred to the corresponding new replicate cup. The contents of each of the remaining old replicate cups was carefully examined and the number of neonate offspring produced by each parent organism was determined, after which the "old" water quality characteristics (pH, D.O., and conductivity) were measured for the old test solution from one randomly-selected replicate at each treatment.

After it was determined that \geq 60% of the *C. dubia* in the Lab Water Control treatment had produced their third brood of offspring, the tests were terminated. The resulting survival and reproduction data were analyzed to evaluate any impairment caused by the ambient waters. All statistical analyses were performed using the CETIS® statistical software (TidePool Scientific, McKinleyville, CA).

2.3 Survival and Growth Toxicity Testing with Larval Fathead Minnows

The chronic toxicity test with fathead minnows consists of exposing larval fish to the ambient water for seven days, after which effects on survival and growth are evaluated. The specific procedures used in this testing are described below.

Pathogen-related mortality (PRM) in chronic fathead minnow toxicity tests of ambient or ponded waters is a common confounding problem that must be controlled in order to determine the toxicity of sample waters. The US EPA has recognized this problem, and has recommended a variety of potential modifications to the testing approach that can be implemented to minimize PRM interference. The approach used in this study, described below, has the advantage of minimizing the PRM interference without affecting the water sample matrix.

The larval fathead minnows used in this testing were obtained from a commercial supplier (Aquatox, Hot Springs, AR). Upon receipt at the lab, the fish were held in aerated tanks

containing Lab Water Control medium, and were fed brine shrimp nauplii *ad libitum* during this pre-test holding period.

The Lab Water Control medium for this testing consisted of EPA moderately-hard synthetic freshwater. The ambient water sample was tested at the 100% concentration only. "New" water quality characteristics (pH, D.O., and conductivity) were measured on these test solutions prior to use in the tests.

There were 10 replicates for each test treatment, each replicate consisting of 20 mL of test solution in a 30-mL test replicate container. The tests were initiated by randomly allocating two larval fathead minnows (<48 hours old) into each replicate. The replicate containers were then placed in a temperature-controlled room at 25°C, under fluorescent lighting on a 16L:8D photoperiod. The test fish were fed brine shrimp nauplii twice daily.

Each day of the tests, fresh test solutions were prepared and characterized as before. The test replicate containers were examined, with any dead animals, uneaten food, wastes, and other detritus being removed. The number of live fish in each replicate was determined and then approximately 80% of the old test solution in each beaker was carefully poured out and replaced with fresh test solution. "Old" water quality characteristics (pH, D.O., and conductivity) were measured on the old test solution that had been discarded from one randomly-selected replicate at each treatment.

After seven days exposure, the tests were terminated and the number of live fish in each replicate was recorded. The fish from each replicate were carefully euthanized in methanol, rinsed in deionized water, and transferred to a pre-dried and pre-tared weighing pan. Replicates were paired to obtain five composite replicates for each test treatment. The fish were then dried at 100°C for ≥24 hours and re-weighed to determine the total dry weight of fish in each replicate. The total dry weight was then divided by the initial number of fish per composited replicate to determine the "biomass value." The resulting survival and biomass value data were analyzed to evaluate any impairments caused by the ambient waters. All statistical analyses were performed using the CETIS statistical software.

3. RESULTS

3.1 Chronic Effects of Ambient Water Samples on Ceriodaphnia dubia

The results of this testing are summarized in Table 2. There were no significant reductions in *C. dubia* survival or reproduction in the DC-65R and FD samples. The test data and summary of statistical analyses are presented in Appendix B.

Table 2. Chronic effects of the ambient water samples on Ceriodaphnia dubia.						
Treatment/Sample ID	Mean % Survival	Mean Reproduction (# neonates/female)				
Lab Water Control	100	34.7				
DC-65R	100	36.5				
FD	100	39.3				

3.2 Chronic Effects of Ambient Water Samples on Fathead Minnows

The results of this testing are summarized in Table 3. There were no significant reductions in fathead minnow survival or growth in the DC-65R and FD samples. The test data and summary of statistical analyses for this testing are presented in Appendix C.

Table 3. Chronic effects of the ambient water samples on fathead minnow.						
Treatment/Sample ID	Mean % Survival	Mean Biomass Value (mg)				
Lab Water Control	95	0.35				
DC-65R	75	0.29				
FD	95	0.42				

4. SUMMARY AND CONCLUSIONS

Chronic Toxicity of Urban Ambient Waters to Ceriodaphnia dubia

There were no significant reductions in *C. dubia* survival or reproduction in the DC-65R or FD samples.

Chronic Toxicity of Urban Ambient Waters to Fathead Minnows

There were no significant reductions in fathead minnow survival or growth in the DC-65R or FD samples.

4.1 QA/QC Summary

Test Conditions – All test conditions (pH, D.O., temperature, etc.) were within acceptable limits. All test analyses were performed according to laboratory Standard Operating Procedures.

Negative Control –The biological responses at the Lab Control treatments were within acceptable limits.

Appendix A

Chain-of-Custody Record for the Collection and Delivery of the Samples

CHAIN-OF-CUSTODY

Sample Results TAT: Rush Standard 10 Day (discount)

17237

7

Condor Earth Technologies, Inc.

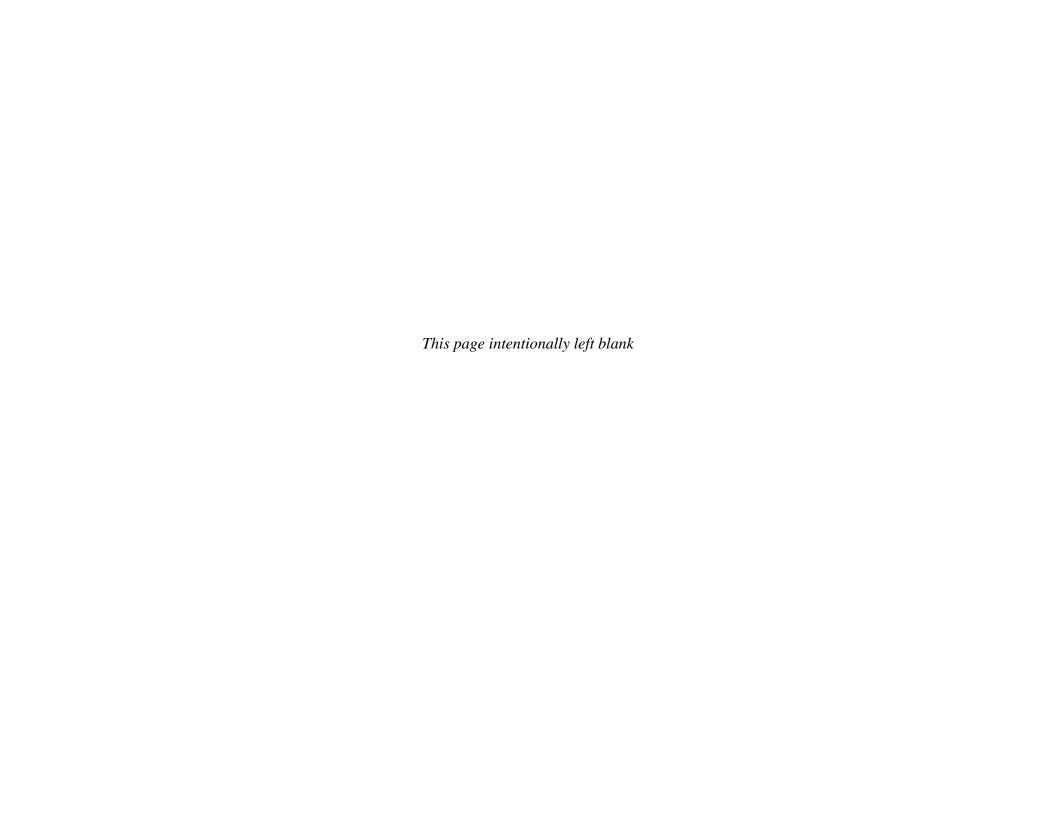
P.O. Box 3905/21663 Brian Lane Sonora, CA 95370 209.532.0361 209.532.0773 (fax)

condor.sonora@condorearth.com

188 Frank West Circle, Suite I Stockton, CA 95206 209.234.0518 209.234.0538 (fax) condor.stockton@condorearth.com

1739 Ashby Road, Suite B Merced, CA 95348 209.388.9601 209.388.1778 (fax) condor.merced@condorearth.com

SHIPPED TO:


PACIFIC ECO RISK (707) 207-7760 2250 CORDELIA RO FAIRFIELD CA 94534

SEND RESULTS TO:	
-------------------------	--

CONDOR

NAME:	MICHELINE KIPF	
E-MAIL:	mkipf@ condorearth.com	

												X P	LEA	SE E	-MA	IL (p	preferred) / OR FAX RESULTS TO A	DDRESS N	IARK	ED ABOVE
PROJEC'	ΓNAME/I	LOCATION: COS UN	2BAN DISCH	ARCI	5		EDF				QUI	RED	₂ YI	ES (NO) [SITE GLOBAL ID:			
PROJEC	T NO.: 6	066J-05-01				below)			/	//	Shar S	/3	7	//	T	1	///			
SAMPLE	DBY: (SI	1			l si	(see l	ي ا	8	/	/	0/		/	/	/	/				
Date	Time	Sample Site Name	Sample ID (if different)	Matrix	# of containers	Preservatives (see below)	ANALYE	Field Hob.	the Filler	Che Cap.	The state of the s		/	/	/	/	REMARKS		,	LAB ID#
11-16-17	1136		DC-65R	SW	2	Ī		N	X	X										
11-16-17	-		FD	SH	1	i		. 1	×	x										
			17														CHRONIC CERTODAPHNIA	TOXICIT	4	
					Н		-	+					-				CHACNIC FATHERD MINNO	W		
																	NECESSARY (100% MONTAL 24HAS)			
		TEMP: (°C): 3	8 65 E9														CHRONIC TOXILLTY (PHASE TARLETED) TILE AS N CONTACT PM PRIOR (25 MORTALITY / REPRODUCTI	ECESSAN		
	ed By: (Signed By: (Sign	pature	_		17-1	7	Time: 09	77	ol.	Recei	ved E	By: (Si Q By: (Si	gnatu	re)	_			Date: 4/17/		Time: 0930
Mata DW Drin		W W Waste Water	Hazardous Waste (Water	S	Soil/So	lid	W Stor		ater			dwate	. [Pres	ervati		CL 3 NaOH 4 Na ₂ S ₂ O ₃ 5 HNO ₃	11-(7- 6 H ₂ SO ₄		1130

Appendix B

Test Data and Summary of Statistics for the Evaluation of the Chronic Toxicity of the Ambient Water Samples to Ceriodaphnia dubia

CETIS Summary Report

Report Date:

05 Dec-17 08:56 (p 1 of 1)

Test Code:

CE_1117CD_C1 | 12-9578-3880

Ceriodaphnia Sur	vival and R	leproducti	on Test							Pacif	ic EcoRisk
Batch ID: 13-	9489-0360	Te	st Type:	Reproduction-	Survival (7d)		Α	nalyst:	Simin Delijani		
	Nov-17 15:1			EPA-821-R-02				-	Not Applicable		
Ending Date: 23 l				Ceriodaphnia d	. ,				Not Applicable		
I -	17h			In-House Cultu				ge:	1		
Sample Code	Sample I	D Sa	mple Date	Receip	nt Date	Sample A	ge C	lient Name	P	roject	
CE_1117CD_C1	07-0305-2		Nov-17 15			n/a (24.4 °			Technologi 28		
DC-65R	01-3288-		Nov-17 11			28h (5.2 °C					
FD	19-9218-		Nov-17 11			27h (10.6	-				
Sample Code	Material	Type		Sample Source	:e	Si	tation Lo	cation	Lat/Long		
CE 1117CD C1	Ambient \			Condor Earth			ABQA				
DC-65R	Ambient \	Vater	1	Condor Earth	Technologies	s D	C-65R				
FD	Ambient \	Water		Condor Earth	•		D				
Single Compariso	n Summar	y									
Analysis ID End	lpoint		Compa	arison Method			P-Valu	ie Comp	arison Result		
08-0417-4622 Rep	roduction		Equal \	/ariance t Two	-Sample Te	st	0.7793	DC-65	R passed repre	duction	
01-7661-5368 Rep	roduction		Equal \	/ariance t Two	-Sample Tes	st	0.9383	B FD pas	ssed reproduct	ion	
11-6861-7045 Sur	vival		Fisher	Exact Test			1.0000	DC-65	R passed survi	val	
10-2900-5673 Sur	vival		Fisher	Exact Test			1.0000) FD pas	ssed survival		_
Reproduction Sur	nmary										
Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Er	r Std Dev	CV%	%Effect
CE_1117CD_C1	LW	10	34.7	30.5	38.9	23	44	1.84	5.83	16.81%	0.00%
DC-65R		10	36.5	33.4	39.6	30	42	1.35	4.28	11.71%	-5.19%
FD		9	39.3	34.2	44.4	27	50	2.21	6.63	16.86%	-13.35%
Survival Summar	У										
Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Er	r Std Dev	CV%	%Effect
CE_1117CD_C1	LW	10	1.000	1.000	1.000	1.000	1.000	0.000	0.000	0.00%	0.00%
DC-65R		10	1.000	1.000	1.000	1.000	1.000	0.000	0.000	0.00%	0.00%
FÐ		9	1.000	1.000	1.000	1.000	1.000	0.000	0.000	0.00%	0.00%
Reproduction Det	ail										
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
CE_1117CD_C1	LW	36	34	33	44	38	35	28	38	23	38
DC-65R		32	40	34	42	41	30	32	39	39	36
FD		43	42	27	50	34	36	42	43	37	
Survival Detail											
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
CE_1117CD_C1	LW	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
DC-65R		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
FD		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
Survival Binomial	S										
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
CE_1117CD_C1	LW	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1
DC-65R		1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1
FD		1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	
DC-65R	LW	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	

Analyst: SD QA: APF

Report Date:

05 Dec-17 08:56 (p 1 of 2)

Test Code:

CE_1117CD_C1 | 12-9578-3880

Ceriodaphnia Survival and Reproduction Test Pacific EcoRisk Analysis ID: 11-6861-7045 Endpoint: Survival **CETIS Version:** CETISv1.9.2 Analyzed: 05 Dec-17 8:52 Analysis: Single 2x2 Contingency Table Official Results: Yes **Fisher Exact Test** Sample I P-Value Decision(a:5%) Sample II Test Stat P-Type Lab Water Control DC-65R 1.000 1.0000 Non-Significant Effect Exact Data Summary Sample Code NR %Effect R NR + R Prop NR Prop R CE_1117CD_C1 LW 10 0 10 1 0 0.0% DC-65R 10 0 10 1 0 0.0% Graphics 0.9 C.8 0.7 0.6 0.5 0.4 0.3 0.2

0.1

CE_1117CD_C1

DC-65R

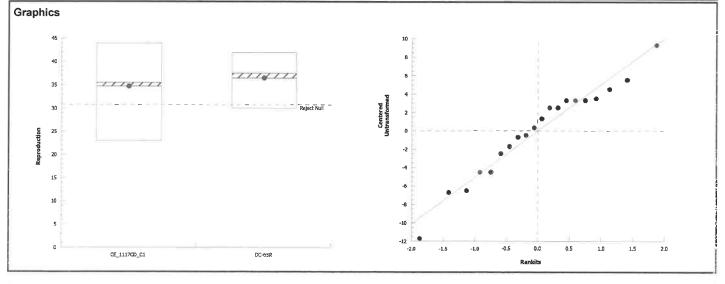
DC-65R

Report Date:

05 Dec-17 08:56 (p 1 of 2)

Test Code:

CE_1117CD_C1 | 12-9578-3880


Ceriodaphnia	Survival and Repr	oduction Test				Pacific EcoRisk
Analysis ID: Analyzed:	08-0417-4622 05 Dec-17 8:55	•	Reproduction Parametric-Two Sample	CETIS Version: Official Results:		
Data Transfor	m A	lt Hyp		Comparison Result		PMSD
Untransformed	d C	: > T		DC-65R passed reprod	uction	11.43%

Sample I vs	Sample II	Test Stat	Critical	MSD	DF P-Type	P-Value	Decision(α:5%)
Lab Water Control	DC-65R	-0.787	1.73	3.97	18 CDF	0.7793	Non-Significant Effect

ANOVA Table						
Source	Sum Squares	Mean Square	DF	F Stat	P-Value	Decision(α:5%)
Between	16.2	16.2	1	0.62	0.4414	Non-Significant Effect
Error	470.6	26.1444	18			
Total	486.8		19			

Distributional To	ests					- 1
Attribute	Test	Test Stat	Critical	P-Value	Decision(α:1%)	
Variances	Variance Ratio F Test	1.86	6.54	0.3686	Equal Variances	
Distribution	Shapiro-Wilk W Normality Test	0.965	0.866	0.6498	Normal Distribution	

Reproduction Su	nmary										
Sample	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
CE_1117CD_C1	LW	10	34.7	30.5	38.9	35.5	23	44	1.84	16.81%	0.00%
DC-65R		10	36.5	33.4	39.6	37.5	30	42	1.35	11.71%	-5.19%

Short-Term Chronic 3-Brood Ceriodaphnia dubia Survival & Reproduction Test Data

Cl	ient:		Co	ndor Eartl	h-Stocktor	1		M	[aterial:	D	C - 6	5R					st Date:	11/17/17
Proje	ect#:	28	160)	Test ID:	7550)7		Random	ization		10.4	4			Control	Water:	Modified EPAMH
	Day	pH New	Old	D.O. New	Old	Cond. (µS/cm)	Temp (°C)	Α	В	С	Sui	vival / R	eproducti F	on G	Н	1 1	J	SIGN-OFF
*******	0	7.97		7.4		366	24.4	0	0	O	0	0	D	0	0	O	0	Date: 117 New WQ: ME Test Init.: WY Sol'n Prep: 35/6
	1	7,74	7.69	8,9	6.8	377	24.4	0	٥	O	D	0	0	D	6	0	0	Date: WING New WQ: UB Counts: WING Sol'n Prep: Old WQ: WING Time: WING Sol'n Prep: Old WQ: WING
	2	7.11	8.11	8.9	8.3	364	24.4	0	0	0	0	0	0	0	0	0	0	Date: 11 1917 New WQ: 312 Counts: 272 Sol'n Prep: Old WQ: 312 Time: 322 Date: 11 20 12 New WQ: 318 Counts: 774
trol	3	7.67	8.05	7.9	7.9	379	24.3	0	٥	0	7	6	0	0	7	0	5	Sol'n Prep: Old WQ Time: 330
er Cont	4	7.64	4.58	7.5	75	368	23.7 24.40	5	6	6	0	0	6	4	0	6	0	Date: illauct New WQ: TF Counts: SMC Sol'n Prep: St Old WQ: T Time: 13.1C
Lab Water Control	5	8.13	7.69	8.4	6.3	374	24.3	11	11	11	15	12	13	10	13	12	11	Date: 11/22/17 New WQ: A Counts JR Sol'n Prep: SmC Old WQ: Time: 35
I	6	8.00	7-64	10.0	6.0	352	24 5	20	17	10	12	20	10	14	18	5	22	Date: 11/23/17 New WQ: 5MC Counts: The Sol'n Prep: 6M Old WQ: Time: Time: Date: New WQ: Counts:
	7	*!************************************		[X 324 93 1 1 1 1 1 1 1														Sol'n Prep: Old WQ: Time: Date: Old WQ: Counts:
	8		5 6 6 6 7 7 7															Time:
Local d							Total=	36	34	33	44	38	35	28	38	23	38	Mean Neonates/Female = -31.75 A
	Day	New	oH Old	New D	.O.	Cond. (µS/cm)		Α	В	C	Surviva	ıl / Repro E	duction F	G	Н	I	J	SAMPLE ID
12824322428	0	7.24		8.4		241 5		0	0	0	0	0	٥	0	0	0	b	48080
	1	7,12	7.73	9.9	7.0	238		0	D	0	D	9	O	٥	0	0	0	48080
	2	7.09	7.99	9.9	7.9	235		0	0	0	0	0	0	0	0	0	0	48080
	3	т. 34	8-10	8.8	7.9	239		O	0	0	7	0	0	0	0	0	6	48080
100%	4	7.37	7.69	9.5	7.7	241		5	5	6	0	6	4	5	b	Ø	O	48090
Ť	5	7.78	7-81	8.5	7.0	238		14	13	10	13	14	12	8	12	13	10	48080
	6	7.76	7.72	10.4	6.2	237		13	22	18	22	21	14	19	21	20	20	48080
	7		8															
	8					1.06.85.35.45		20	. 14	2.1	110	(1)		20	20	20	21	21 22 11
							Total=	30	40	34	42	41	30	32	39	39	36	Mean Neonates/Female = 30, 35 soulsh

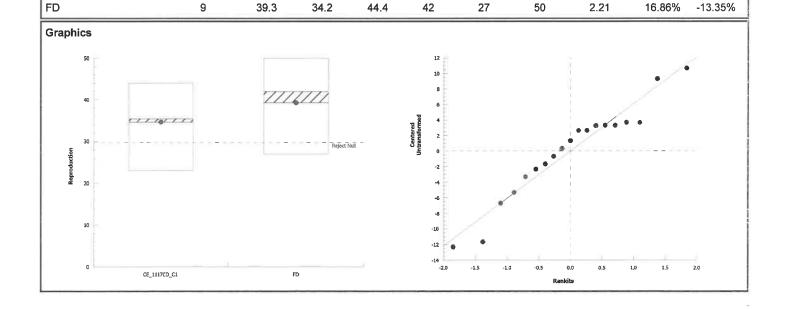
Report Date:

05 Dec-17 08:56 (p 2 of 2)

Test Code:

CE_1117CD_C1 | 12-9578-3880

Ceriodaphni	a Sur	vival and R	eprod	uction	Test						Pacific EcoRisk
Analysis ID: Analyzed:		2900-5673 Dec-17 8:52	2	Endp Analy	ooint: Su ysis: Sir	ırvival ngle 2x2 Cont	tingency Tal	ble	CETIS Version: Official Results:	CETISv1.9.2 Yes	
Fisher Exact	Test										
Sample I	vs	Sample l	I		Test Stat	t P-Type	P-Value	Decision(
Lab Water Co	ontrol	FD			1.000	Exact	1.0000	Non-Signi	ficant Effect		
Data Summa	ıry										
Sample		Code	NR		R	NR + R	Prop NR	Prop R	%Effect		
CE_1117CD_	C1	LW	10		0	10	1	0	0.0%		
FD			9		0	9	1	0	0.0%		
Graphics											
1.0		0		•		•					
0.9											
0.8											
0.7											
0.6											
0.5											
0.4											
0.3											
0.2											
0.1											
0.0	OE_11	1700_C1		FD		FD					


Report Date:

05 Dec-17 08:56 (p 2 of 2)

Test Code:

CE_1117CD_C1 | 12-9578-3880

Ceriodaphnia S	Survival and Repro	duction Test						Pacific EcoRisk
Analysis ID:	01-7661-5368	Endpoint: Re	production			CET	S Version: CETISv1.9.2	
Analyzed:	05 Dec-17 8:56	Analysis: Pa	rametric-Tw	o Sample		Offic	ial Results: Yes	
Data Transform	n Alt	Нур				Comparis	on Result	PMSD
Untransformed	C >	т				FD passe	d reproduction	14.33%
Equal Variance	t Two-Sample Tes	t						
Sample I v	Sample II	Test Stat	Critical	MSD DF	P-Type	P-Value	Decision(α:5%)	
Lab Water Cont	rol FD	-1.62	1.74	4.97 17	CDF	0.9383	Non-Significant Effect	
ANOVA Table								
Source	Sum Squares	Mean Sq	uare	DF	F Stat	P-Value	Decision(a:5%)	
Between	101.689	101.689		1	2.63	0.1235	Non-Significant Effect	
Error	658.1	38.7118		17				
Total	759.789			18				
Distributional 1	ests							
Distributional 1 Attribute	ests Test			Test Stat	Critical	P-Value	Decision(α:1%)	
		F Test		Test Stat	Critical 6.69	P-Value 0.7055	Decision(α:1%) Equal Variances	

95% LCL 95% UCL Median

35.5

38.9

Min

23

Max

44

Std Err

1.84

CV%

16.81%

%Effect

0.00%

Sample

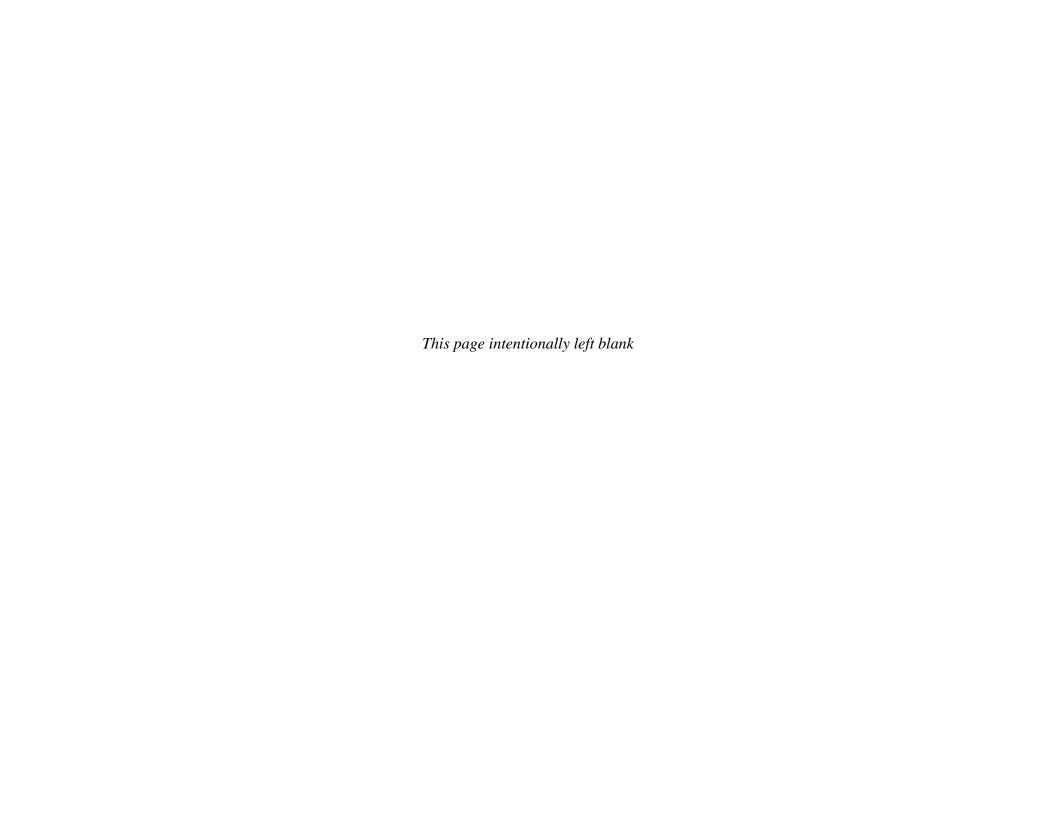
CE_1117CD_C1

Code

Count

10

Mean


34.7

30.5

Short-Term Chronic 3-Brood Ceriodaphnia dubia Survival & Reproduction Test Data

Cl	ient:		Co	ndor Eart	h-Stockton	1		N	[aterial:		F	D				Те	st Date:	11/17/17
Proje	ct #:	28	160		Test ID:	7550	08		Randon	nization		10.4 4	1			Control	Water:	Modified EPAMH
	Day	pН		D.O.		Cond.	Temp						eproducti					SIGN-OFF
		New	Old	New	Old	(µS/cm)	(°C)	A	В	С	D	Е	F	G	Н	I.	J	
	0	7.97		7.4		344	24.4	0	U	0	0	O	ව	0	0	0	0	Sol'n Prep: Sol MB/M Time: 1510
	1	7,4le	7.69	8.9	10.8	372	24.4	0	0	0	D	0	0	0	0	0	0	Date: 1\ 1817 New WQ: JB Counts IN Sol'n Prep: Old WQ: IN Time: D
	2	7.11	8.10	89	8.3	364	24.4	0	0	0	0	0	0	0	0	0	0	Date: 1117 New WQ: 3N Counts: FP Sol'n Prep: SOL Old WQ: 3N Time: 1352
trol	3	7.67	8.05	7.9	7.9	379	243	OF	0	6	7	6	0	D	7	0	5	Date: 11/20/17 New WQ: JN Counts: TK Sol'n Prep: Cold WQ: WW Time: 1.38
ter Con	4	7.64	7.58	7.5	7.5	368	23.7 24t	5	6	6	0	0	6	4	0	6	0	Date: It 2 (17) New WQ: TF Counts: SMC Sol'n Prep: 42 Old WQ: Time: 3 (5)
Lab Water Control	5	8.13	7,69	8.4	6.3	374	24.3	11	11	11	15	12	13	10	13	12	11	Date: 11/22/17 New WQ: A Counts: 355 Sol'n Prep: Sm Old WQ: T Time: 355
	6	8.00	764	10.0	6.0	352	24.5	20	17	10	22	20	16	14	18	5	22	Date: 11/23/17 New WQ: SM Counts: J3L Sol'n Prep: SMC Old WQ. Time Offs
	7																	Date: New WQ: Counts: Sol'n Prep: Old WQ: Time:
	8																	Date: Old WQ: Counts: Time:
							Total=	36	34	33	44	38	35	28	38	23	38	Mean Neonates/Female = 31.7
	Day	New	Old	New D	.O.	Cond. (µS/cm)		A	В	С	Surviva	al / Repro	duction F	G	Н	1	I	SAMPLE ID
	0	7.19		8.4		222 1117/17		0	0	0	ð	0	0	0	0	0	D	48081
	1	7.04	7.69	9.0	7.2	215		٥	٥	0	٥	0	0	0	0	0	0	48081
	2	7.01	1.87	9.2	8.1	118		0	0	0	0	0	0	0	0	0	0	५ १० ४।
	3	7,15	8-11	8.3	7-8	215		6	5	0	7	76*	0	0	6	0	6	48081
100%	4	7.25	7.10	8.5	7.6	222		0	0	Q	0	-	6	5	O	6	0	પુષ્ઠ08 (
-	5	7.56	7.83	7.9	7.0	219		14	13	9	14	-	9	1)	1)	15	12	48081
	6	7.64	7.76	9.1	6.3	218		23	24	12	29	-	19	20	25	22	9	
	7											J		KI S				
	8		000000000					X.				-						
							Total=	43	42	27	50	1/6	34	36	42	43	2182	Mean Neonates/Female = 39.3

37

Appendix C

Test Data and Summary of Statistics for the Evaluation of the Chronic Toxicity of the Ambient Water Samples to Fathead Minnows

CETIS Summary Report

Report Date:

05 Dec-17 08:39 (p 1 of 1)

Test Code:

CE_1117PP_C1 | 09-3031-7020

Chronic Larval I	Fish Survival	l and Gre	owth Test							Pacifi	ic EcoRisk
Batch ID: 11	1-6038-0884		Test Type:	Growth-Surviva	al (7d)		Ana	lyst: S	imin Delijani		
Start Date: 17	7 Nov-17 13:3	3O I	Protocol:	EPA-821-R-02	-013 (2002)		Dilu	ent: N	ot Applicable		
Ending Date: 24	4 Nov-17 08:2	28 :	Species:	Pimephales pr	omelas		Brir	ne: N	ot Applicable		
Duration: 60	d 19h	;	Source:	Aquatox, AR			Age	: 1			
Sample Code	Sample I	D :	Sample Date	e Receip	t Date	Sample Ag	e Clie	nt Name	Pi	roject	
CE_1117PP_C1	02-2462-0	0510	17 Nov-17 1:	3:30 17 Nov	-17 13:30	n/a (24.9 °C	C) Con	dor Earth	Technologi 28	3160	
DC-65R	01-3288-8	8621	16 Nov-17 1	1:36 17 Nov	-17 11:30	26h (5.2 °C)				
FD	19-9218-7	7841	16 Nov-17 1	1:46 17 Nov	-17 11:30	26h (10.6 °	C)				
Sample Code	Material '	Туре		Sample Source	e	Sta	tion Locat	ion	Lat/Long		
CE_1117PP_C1	Ambient \	Water		Condor Earth 3	Technologie	s LA	BQA				
DC-65R	Ambient \	Water		Condor Earth 1	Technologie	s DC	-65R				
FD	Ambient \	Water		Condor Earth 1	Technologie	s FD					
Single Comparis	son Summar	у									
Analysis ID Er	ndpoint		Compa	arison Method	l		P-Value	Compa	rison Result		
11-1277-8590 7c	Survival Rat	e	Wilcox	on Rank Sum	Two-Sample	e Test	0.1672	DC-65R	passed 7d si	urvival rate	
00-7773-9307 7c	l Survival Rat	e	Wilcox	on Rank Sum ⁻	Two-Sample	e Test	0.7632	FD pass	sed 7d surviva	ıl rate	
7d Survival Rate	Summary										
Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
CE_1117PP_C1	LW	10	0.950	0.837	1.000	0.500	1.000	0.050	0.158	16.64%	0.00%
DC-65R		10	0.750	0.446	1.000	0.000	1.000	0.134	0.425	56.66%	21.05%
FD		10	0.950	0.837	1.000	0.500	1.000	0.050	0.158	16.64%	0.00%
7d Survival Rate	Detail										
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
CE_1117PP_C1	LW	1.000	1.000	0.500	1.000	1.000	1.000	1.000	1.000	1.000	1.000
DC-65R		0.500	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.000	0.000
FD ·		1.000	1.000	1.000	1.000	1.000	0.500	1.000	1.000	1.000	1.000
7d Survival Rate	Binomials										
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
CE_1117PP_C1	LW	2/2	2/2	1/2	2/2	2/2	2/2	2/2	2/2	2/2	2/2
DC-65R		1/2	2/2	2/2	2/2	2/2	2/2	2/2	2/2	0/2	0/2
FD		2/2	2/2	2/2	2/2	2/2	1/2	2/2	2/2	2/2	2/2

Analyst: SD QA: ARF

CETIS Summary Report

Report Date:

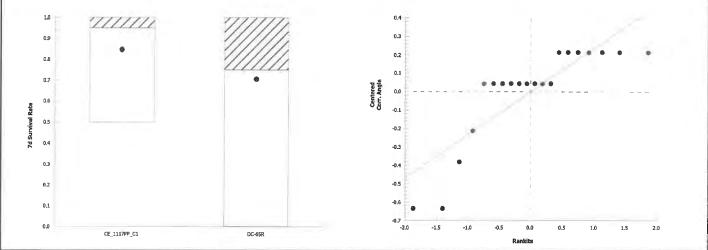
05 Dec-17 08:43 (p 1 of 1)

Test Code:

CE_1117PP_C1w | 05-1654-7027

Chronic Larva	l Fis	h Survival a	and Gro	wth Test								Pacif	ic EcoRisk
		875-9121		Гest Туре:			, ,			-	Simin Delijani		
		ov-17 13:30	-	Protocol:	EPA-82	21-R-02-	013 (2002)		Di	luent:	Not Applicable		
Ending Date:	24 N	ov-17 08:28	S	Species:	Pimeph	ales pro	melas		Ві	rine:	Not Applicable		
Duration:	6d 1	9h		Source:	Aquatox	x, AR			Ag	ge:	1		
Sample Code		Sample ID		Sample Da	te	Receipt	Date	Sample Ag	je Ci	ient Name	Р	roject	
CE_1117PP_C	1w	14-9704-52	260 1	17 Nov-17 1	13:30	17 Nov-	17 13:30	n/a (24.9 °C	C) Co	ondor Earth	Technologi 2	B160	
DC-65R		01-3288-86	521 1	16 Nov-17 1	11:36	17 Nov-	17 11:30	26h (5.2 °C	;)				
FD		19-9218-78	341 1	16 Nov-17 1	1:46	17 Nov-	17 11:30	26h (10.6°	C)				
Sample Code		Material Ty	уре		Sample	Source	3	Sta	ation Loc	ation	Lat/Long		
CE_1117PP_C	1w	Ambient W	ater		Condor	Earth To	echnologies	s LA	BQA				
DC-65R		Ambient W	ater		Condor	Earth To	echnologies	s DC	-65R				
FD		Ambient W	ater		Condor	Earth To	echnologies	s FD					
Single Compa	risor	Summary											
Analysis ID	Endp	point		Comp	arison I	Viethod			P-Value	e Comp	arison Result		
21-0708-0617	Mear	n Dry Bioma	ss-mg	Equal	Variance	e t Two-	Sample Tes	st	0.2622	DC-65	R passed mea	n dry bioma	ss-mg
07-5723-5811	Mear	n Dry Bioma	ss-mg	Equal	Variance	e t Two-	Sample Tes	st	0.9691		ssed mean dry		-
Mean Dry Bion	nass	-mg Summ	ary										
Sample		Code	Count	Mean	95	% LCL	95% UCL	Min	Max	Std Er	r Std Dev	CV%	%Effect
CE_1117PP_C	1w	LW	5	0.346	0.2	28	0.412	0.27	0.402	0.0239	0.0535	15.47%	0.00%
DC-65R			5	0.293	0.0	848	0.502	0	0.403	0.0752	0.168	57.27%	15.17%
FD			5	0.421	0.3	352	0.489	0.34	0.48	0.0246	0.0551	13.10%	-21.53%
Mean Dry Bion	nass	-mg Detail											
Sample		Code	Rep 1	Rep 2	Re	р 3	Rep 4	Rep 5					
CE_1117PP_C	1w	LW	0.323	0.27	0.4	102	0.345	0.39					
DC-65R			0.307	0.39	0.4	103	0.368	0					
FD			0.48	0.43	0.3	34	0.395	0.458					

Analyst: SD QA: APF


Report Date:

05 Dec-17 08:38 (p 1 of 2)

Test Code:

CE_1117PP_C1 | 09-3031-7020

							Test	Code:	CE_1111	7PP_C1 0	9-3031-70
Chronic Larval Fi	sh Survival	and Grow	th Test							Paci	ic EcoRis
	-1277-8590			Survival Rat				IS Version:	CETISv	1.9.2	
Analyzed: 05	Dec-17 8:3	8 A n	alysis: No	nparametric	-Two Sampl	е	Offic	ial Results:	Yes		
Data Transform		Alt Hyp					Comparis	son Result			PMSD
Angular (Corrected	f)	C > T					DC-65R p	assed 7d su	rvival rate		29.74%
Wilcoxon Rank S	um Two-Sa	mple Test									
Sample I vs	Sample I		Test Stat	Critical	Ties DF	P-Type	P-Value	Decision(α:5%)		
Lab Water Control	DC-65R		94	n/a		Exact	0.1672	Non-Signif	icant Effec	t	
ANOVA Table											
Source	Sum Squ	ares	Mean Squ	are	DF	F Stat	P-Value	Decision(a:5%)		
Between	0.143842		0.143842		1	1.95	0.1800	Non-Signif	icant Effec	t	
Error	1.33054		0.0739187	7	18						
Total	1.47438				19						
Distributional Tes	ts										
Attribute	Test				Test Stat	Critical	P-Value	Decision(α:1%)		
Variances	Variance	Ratio F Tes	st		7.22	6.54	0.0070	Unequal V	ariances		
Distribution	Shapiro-V	Vilk W Norr	nality Test		0.726	0.866	8.2E-05	Non-Norm	al Distribut	ion	
7d Survival Rate \$	Summary										
Sample	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
CE_1117PP_C1	LW	10	0.950	0.837	1.000	1.000	0.500	1.000	0.050	16.64%	0.00%
DC-65R		10	0.750	0.446	1.000	1.000	0.000	1.000	0.134	56.66%	21.05%
Angular (Correcte	d) Transfor	med Sumr	nary								
Sample	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
CE_1117PP_C1	LW	10	1.17	1.07	1.26	1.21	0.785	1.21	0.0424	11.49%	0.00%
DC-65R		10	0.997	0.74	1.26	1.21	0.361	1.21	0.114	36.13%	14.53%
Graphics											
40	//////	1	77777			0.4					

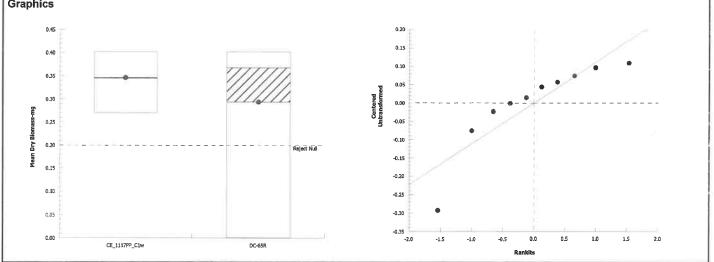
Analyst: SD QA: APF

7 Day Chronic Fathead Minnow Toxicity Test Data

Client:	Cond	lor Earth- Sto	ckton	Organism Log#: 166	33 Age: 248 hrs	
Test Material:	DC-	65R		Organism Supplier:	mater Inc	
Test ID#:	75509	Project #:	28160	Control/Diluent:	EPAMH	
Test Date:	11/1	7 117		Control Water Batch:	2028	

			THE P														
		- 0.01	p]	Н	D.O. (mg/L)	Conductivity				# L	ive ()	rganis	sms			
Tı	reatment (%)	Temp (°C)	New	Old	New	' Old	(µS/cm)	Α	В	С	D	E	F	G	Н	I	J
	Control	24.9	8.07		8.8		298	2	2	2	2	2	2	2	2	2	2
	100%	25.0	7.21		8.4		225	2	2	2	2	2	2	2	2	2	2
Day 0	Meter ID	103A	PH23		PD09		EC12										
	Date:	Sample ID:	Test Soluti	on Prep:	New WQ:	B					Initiati	on Tim	1330	Initiat	ion Sign	-off: -	TK
	11/17/17	48080	JBL	*		***************		*********									
	Control	24.8	7.92	7.61	9.0	5.6	304	2	2	2	2	2	Z	2	2	2	7
	100%	24:7	7.77	7.46	9.6	5.6	234	1	2	2	2	2	2	2	2	2	2
Day	Meter ID	109A	PH21	PH19	Rpli	RADA	ECOY										
	Date:	Sample ID:	Test Soluti	on Prep:	New WQ:	Old WQ:					Renew	al Time	1515	Renew	al Sign-	off:	74
	11/18/17	48080	TK		NB	313											
	Control	25.3	8.07	7.84	8-9	7.5	301	2	2	2	2	2	2	2	2	2	2
2	100%	25.5	7.40	7.65	9.4	7.4	235	2	2	2	2	2	2	2	2	2	2
Day	Meter ID	1034	PH21	PH 19	RDII	RDIO	E(11										
-	Date:	Sample ID:	Test Soluti	on Prep:	New WQ:	Old WQ:					Renew	al Time		Renew	al Sign-	off:	
	11/10/17	48080	15	/	TF	MC					11	40			8∨		
	Control	25.7	8.17	7.44	9.1	6.0	302	2	2	2	2	2	2	2	2	2	2
2	100%	25.8	7.35	7.42	8.9	59	230	i	2	2	2	2	2	2	2	2	2_
Day	Meter ID	BIA	DH 19	PH19	RDII	12011	ECII										
	Date:	Sample ID:	Test Soluti	****************	New WQ:	Old WQ:		*******			Renew	al Time	**********		al Sign-	off:	******
	11/20/17	48080	UP	sL	18	17			·		1115				SF.		
	Control	25.0	7.97	7.37	8.0	6.0	311	2	2	2	2	2	2	2	2	2	2
4	100%	25.3	7.59	7.37	9.5	6.7	238	1	2	2	2	2	2	2	2	2	2
Day	Meter ID	103 A	PH19	PH23	RUIZ	ROIL	ECII					1.77		0	al Sign	o.ff	
	Date:	Sample ID:	Test Soluti	on Prep:	New WQ:	Old WQ:	200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	*******				al Time		пепен	ui sign	·ojj:	******
	11/21/17	48080	51	-	TF	VR.					34			-	20	-	_
	Control	25.7	7-83	793	9-1	4.6	306	2	2	2	2	2	2	2	2	2	-
S	100%	25.8	7.72	7.73	9.6	49	242	1	2	2	7	2	2	_	20090	38383	
Day	Meter ID	Aloj	PM 1 9 Test Soluti	RHIL	New WQ:	Old WQ:	ECOB				Panaw	al Time		Reneu	al Sign	off:	
	Date:	Sample ID:	*****		New WQ.			*******			****	11			70.7		*****
	11/22/17	48080	Sm	C 20	4u	NB			112	0	90	-	0	1	(0	-	1
	Control	25.9	3.14	7-19	8.8	4-8	278	2	2	2	2	2	2	2	-	2	1
9 /	100%	16.0	1.17	4743	10.0	4.6	732					2	12	2	2	2_	4
Day	Meter ID	(03A) Sample ID:	FH 23 Test Soluti	on Pren	New WQ:	Old WQ:	E(10				Renew	al Time		Renev	val Sign	off:	
	Date:		******************	on trop.		Old HQ.	A CONTROL OF THE CONT	4.,,,,,,,,	*******	1. 1					01	30 ·	******
		48080	SMC	010	TF Black	u		-	12	0	15	*		0	KU	2	1
	Control	25.3		7.00		5.7	315	2	2	1	2	2	2	2	1	2	2
Day 7	100%	25.3 81A		7.88		57	5011		12	12	1	2	2			10	
ğ	Meter ID	TO TA		[[レムカ		Old WQ:	EC//				Termi	nation I	ime:	Termi	nation S	ign-off	
	Date:		20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	A CHIEF OF THE PROPERTY OF THE		7		*******	********	· · · · · · · · · · · · · · · · · · ·		7.01				********	
	1111/11/11	[iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii				THE					OB	8			Jo		

Report Date:


05 Dec-17 08:43 (p 1 of 4)

Test Code:

CE_1117PP_C1w | 05-1654-7027

Chronic Larval	Fish Survival and C	Growth Test					Paci	fic EcoRisk
Analysis ID:	21-0708-0617	Endpoint:	Mean Dry Bior	nass-mg		CET	IS Version: CETISv1.9.2	
Analyzed:	05 Dec-17 8:42	Analysis:	Parametric-Tw	o Sample		Offic	ial Results: Yes	
Data Transform	n Alt	Нур				Comparis	son Result	PMSD
Untransformed	C >	Т				DC-65R p	assed mean dry biomass-mg	42.40%
Equal Variance	t Two-Sample Test	:						
Sample I v	s Sample II	Test S	tat Critical	MSD DE	P-Type	P-Value	Decision(α:5%)	
Lab Water Cont	rol DC-65R	0.666	1.86	0.147 8	CDF	0.2622	Non-Significant Effect	
ANOVA Table								
Source	Sum Squares	Mean S	Square	DF	F Stat	P-Value	Decision(a:5%)	
Between	0.0068909	0.0068	909	1	0.443	0.5244	Non-Significant Effect	
Error	0.124464	0.0155	581	8				
Total	0.131355			9				
Distributional 1	Tests							
Attribute	Test			Test Stat	Critical	P-Value	Decision(a:1%)	
Variances	Variance Ratio I	F Test		9.86	23.2	0.0477	Equal Variances	
Distribution	Shapiro-Wilk W	Normality Test	t	0.807	0.741	0.0174	Normal Distribution	

Wean Dry Blomas	s-mg Sur	ımary									
Sample	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
CE_1117PP_C1w	LW	5	0.346	0.28	0.412	0.345	0.27	0.402	0.0239	15.47%	0.00%
DC-65R		5	0.293	0.0848	0.502	0.368	0	0.403	0.0752	57.27%	15.17%
Graphics											

Fathead Minnow Dry Weight Data Sheet

 Client:
 Condor Earth
 Test ID #:
 75509
 Project #:
 28160

 Sample:
 DC-65R
 Tare Weight Date:
 11/19/17
 Sign-off:
 Image: Test Date:
 Image: Test Date:

Pan	Concentrati	ion Replicate	Initial Pan Weight (mg)	Final Pan Weight (mg)	Initial # of Organisms	Biomass Value (mg)
1	Lab	A+B	410.80	412.09	4	0.323
2	Control	C+D	411.61	412.69	4	0.270
3		E+F	414.73	416.34	4	0.403
4		G+H	409.43	410.8	4	0.345
5		I+J	415.64	417.30	4	0.390
6	100%	A+B	410.26	411.49	4	0.308
7	DC-65R	C+D	416.05	417.61	Ц	0.390
8		E+F	415.02	416.63	4	0,403
9		G+H	415.94	417.41	4	0.368
10			41237	_	14	_
QA 1			408.45	408,43		
Balance ID			BAL 04	BAL 04		

Report Date:

05 Dec-17 08:39 (p 2 of 2)

Test Code:

CE_1117PP_C1 | 09-3031-7020

								0000.	Q	0.10.	
Chronic Larval Fi	sh Survival	and Grow	th Test							Pacif	ic EcoRis
Analysis ID: 00	-7773-9307	En	dpoint:	7d Survival Rat	e		CET	IS Version:	CETISv1	.9.2	
•	Dec-17 8:3			Nonparametric-	Two Sampl	е	Offic	cial Results:	Yes		
Data Transform		Alt Hyp					Comparis	son Result			PMSD
Angular (Corrected)	C > T					FD passe	d 7d survival	rate		19.62%
Wilcoxon Rank S	um Two-Sa	mple Test									
Sample I vs	Sample I	ı	Test St	tat Critical	Ties DF	P-Type	P-Value	Decision(a:5%)		
_ab Water Control	FD		105	n/a	2 18	Exact	0.7632	Non-Signif	icant Effec	t	
ANOVA Table											
Source	Sum Squ	iares	Mean S	Square	DF	F Stat	P-Value	Decision(α:5%)		
Between	0		0		1	0	1.0000	Non-Signif	icant Effect		
Error	0.323644		0.01798	802	18						
Гotal	0.323644				19						
Distributional Tes	ts										
Attribute	Test				Test Stat	Critical	P-Value	Decision(<u> </u>		
/ariances		Ratio F Tes			1	6.54	1.0000	Equal Vari			
Distribution	Shapiro-V	Vilk W Norr	nality Test		0.351	0.866	1.8E-08	Non-Norma	al Distributi	on	
d Survival Rate S	Summary										
Sample	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
CE_1117PP_C1	LW	10	0.950	0.837	1.000	1.000	0.500	1.000	0.050	16.64%	0.00%
.D		10	0.950	0.837	1.000	1.000	0.500	1.000	0.050	16.64%	0.00%
Angular (Correcte	d) Transfor	med Sumi	nary								
Sample	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
CE_1117PP_C1	LW	10	1.17	1.07	1.26	1.21	0.785	1.21	0.0424	11.49%	0.00%
D		10	1.17	1.07	1.26	1.21	0.785	1.21	0.0424	11.49%	0.00%
1.0 0.9 0.8 0.7 0.6 0.6 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.7 0.8 0.7	•	2		•	Centered	-0.20 -0.25				• • •	
0.2						-0.35 -0.35					
							•				

7 Day Chronic Fathead Minnow Toxicity Test Data

Client:	Cond	lor Earth- Stoo	ckton	Organism Log#: 1063	3 Age: <48 hrs	
Test Material:		FD		Organism Supplier: Aqu	atox Inc	
Test ID#:	75510	Project #:	28160	Control/Diluent:	EPAMH	
Test Date:	11/1-	7 1 1 7		Control Water Batch:	20%8	

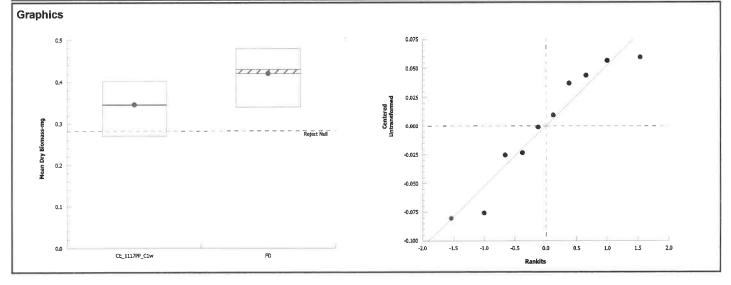
		pH D.O. (mg/L) Conductivity # Live Organisms															
Treatment (%)		Temp (°C)	p	_		mg/L)	Conductivity (µS/cm)	_	В			1	_		Viv	T 7	Y
			New	Old	New	Old		A	В	C	D	E	F	G	H	1	J
	Control	24.9	8.07		8.8		298	2	2	2	2	2	2	2	2	2	2
0	100%	25.1	7.13		7.7		2/1	2	2	2	2	て	2	2	2	2	Z
Day	Meter ID	1034	PHZ3		PD09 New WQ:		ECIZ				buitiat	on Tim		Initiat	ion Sigi	off:	
	Date:	Sample ID:	Test Soluti		New WQ:	MB		*******			1511151411	on Time	1330	λ			K
_	11/17/17	18081	TB					_									
	Control	24.8	7.92	7.61	2.0	5.6	306	2	2	2	2	1	2	2	2	2	2
-	100%	24.9	7 07	1.47	8.9	S.B	2/16	2	l	2	2	2	2	2	2	2	7
Day	Meter ID	APOI	P421	PHIC	RD(1	ROOM	ELOS				D	al Time		Danas	al Sign	off:	
	Date:	Sample ID:	Test Soluti	on Prep:	New WQ:	Old WQ:	100 000 000 000 000 000 000 000 000 000	*********			Kenew	ui Iime	1515	Nenen	u sign	7	べ
	11 18/17	48081	TK		NB	pes			1					1			
	Control	25.3	8.07	7.84	8.9	7.5	301	2	2	2	2	2	2	2	2	2	2
7	100%	25.3	7.28	7,52	8.7	7.0	217	2	2	2	2	2	2	2	2	2	2
Day	Meter ID	103 A	12HA	PH 19	RDII	ED10	E(11										
	Date:	Sample ID:	Test Soluti	on Prep:	New WQ:	Old WQ:						al Time	:	Kenen	al Sign		
	H19 17	48081	NOV		TF	NO					11	46	_	,	3/	<i>y</i>	
	Control	25.7	8.17	7.44	9.1	6.0	302	2	7	2	2	2	2	2	2	2	2
3	100%	75%	7.24	7.41	8.9	5.4	209	2	2	2	2	2	2	2	2	2	~
Day	Meter ID	814	PHIS	PHIS	RDII	2011	ECII										
	Date:	Sample ID:	Test Soluti	on Prep:	New WQ: Old WQ:				Renewal Time: Renewal Sign-off:						********		
	11/20/17 48081		JBI	/	73	17				1115 SF							
	Control	25.0	7.97	7.37	8.0	6.0	311	2	2	2	2	2	2	~	2	2	2
4	100%	25.5	7.40	7.33	8,6	5.1	219	2	2	2	2	2	r	2	2	1	1
Day,	Meter ID	103A	PH19	рНаЗ	RDIZ	THE PERSON	ECI										
	Date:	Sample ID:	Test Soluti	on Prep:	New WQ:	Old WQ:		Renewal Time: Renewal Sign-off:									
	11/21/17	48081	SF	,	TF	1/R					34	S		(SUC		
	Control	25.7	7.83	7.93	9.1	4.0	306	2	2	2	2	2	2	2	2	2	2
S	100%	25.0	7-68	7.62	9.4	4.0	217	2	2	2	2	2	2	2	2	2	2
Day .	Meter ID	1031	171,19	7421	1000	PD12	Ecos										
	Date:	Sample ID:	Test Soluti		New WQ:	Old WQ:					Renew	al Time	:	Renew	al Sign	off:	
	11/22/17	48081	SM	Č	LUC	NB		74		(290	13			R	6	
	Control	25.9	2.14	789	88	8.4	298	2	2	2	2	2	2	2	2	2	2
	100%	26.0	759	771	9.0	4.5	221	2	2	2	2	2)	2	2	Z	2
Day 6	Meter ID	1631A	PHZ3	1423	RDIO	12009	ECIO										
	Date:	Sample ID:	Test Soluti	on Prep:	New WQ:	Old WQ:					Renew	al Time	:	Renew	al Sign	off:	
	11/23/17	48081	SI	10	TF	u		********	********	*********	0	95	1			36	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	Control	25.3		8.10		5.9	315	2	2	1	2	2	2	2	2	2	2
	100%	25.3		7.79		5.0	227	2	2	2	2	2	T	2	2	2	2
Day 7	Meter ID	814		Ph23		14012	ECIL										
	Date:					Old WQ:					Termi	nation T	ime:	Termi	nation S	ign-off.	
	11 24 17		A MARKATANA A MARK			ya		20000000		********	60	28			TO		*********

Report Date:

05 Dec-17 08:43 (p 2 of 4)

Test Code: CE

CE_1117PP_C1w | 05-1654-7027


Chronic Larva	al Fish Survival and	Growth Test			Pacific EcoRisk
Analysis ID: Analyzed:	07-5723-5811 05 Dec-17 8:42	•	Mean Dry Biomass-mg Parametric-Two Sample	CETIS Version: CETISv1.9. Official Results: Yes	2
Data Transfor	m Al	t Hyp		Comparison Result	PMSD
Untransformed	C C	> T		FD passed mean dry biomass-mg	18.46%

Sauras	Sum Sauaras	Moon Sau	270	DE		E Stat	P-Value	Decision(a:5%)
ANOVA Table			·			·		
Lab Water Control	FD	-2.17	1.86	0.064	8	CDF	0.9691	Non-Significant Effect
Sample I vs	Sample II	Test Stat	Critical	MSD	DF	P-Type	P-Value	Decision(a:5%)
Equal Variance t I	wo-Sample Test							

ANOVA Table						
Source	Sum Squares	Mean Square	DF	F Stat	P-Value	Decision(a:5%)
Between	0.0138754	0.0138754	1	4.71	0.0619	Non-Significant Effect
Error	0.0235856	0.0029482	8			
Total	0.0374611		9			
D. C. D. C	T 4 .					

Distributional Tests									
Attribute	Test	Test Stat	Critical	P-Value	Decision(α:1%)				
Variances	Variance Ratio F Test	1.06	23.2	0.9572	Equal Variances				
Distribution	Shapiro-Wilk W Normality Test	0.912	0.741	0.2938	Normal Distribution				

Mean Dry Biomass-mg Summary												
Sample	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect	
CE_1117PP_C1w	LW	5	0.346	0.28	0.412	0.345	0.27	0.402	0.0239	15.47%	0.00%	
FD		5	0.421	0.352	0.489	0.43	0.34	0.48	0.0246	13.10%	-21.53%	

Fathead Minnow Dry Weight Data Sheet

Client: Condor Earth Test ID #: 75510 Project #: 28160

Sample: D Tare Weight Date: 11/9/7 Sign-off:

Test Date: 11/9/17 Sign-off: Sign-off: R

Pan	Concentr	ation Replicate	Initial Pan Weight (mg)	Final Pan Weight (mg)	Initial # of Organisms	Biomass Value (mg	
1	Lab	A+B	410.80	412.09	4	0.323	
2	Control	C+D	411.61	412.69	4	0.270	
3		E+F	414.73	416.34	4	0.403	
4		G+H	469.43	410.81	時	0.345	
5		I+J	415.64	417.20	4	0.390	
11	100%	A+B	412.48	414.40	4	0.480	
12	FD	C+D	411.44	413.16	4	0.430	
13		E+F	418.77	420.13	£-\$	0,340	
14		G+H	414.76	46.34	4	0,395	
15		I+J	404.30	411.13	4	0.458	
QA 2			415.61	414.99			
Balance ID			BAL 04	BALOY			